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TOPOLOGIES AND FREE CONSTRUCTIONS∗

Abstract. The standard presentation of topological spaces relies heavily on
(naïve) set theory: a topology consists of a set of subsets of a set (of points).
And many of the high-level tools of set theory are required to achieve just
the basic results about topological spaces.

Concentrating on the mathematical structures, category theory offers
the possibility to look synthetically at the structure of continuous transfor-
mations between topological spaces addressing specifically how the funda-
mental notions of point and open come about. As a byproduct of this, one
may look at the different approaches to topology from an external perspec-
tive and compare them in a unified way.

Technically, the category of sober topological spaces can be seen as con-
sisting of (co)algebraic structures in the exact completion of the elementary
category of sets and relations. Moreover, the same abstract construction of
taking the exact completion, when applied to the category of topological
spaces and continuous functions produces an extension of it which is carte-
sian closed. In other words, there is one general mathematical construction
that, when applied to a very elementary category, generates the category
of topological spaces and continuous functions, and when applied to that
category produces a very suitable category where to deal with all sorts
functions spaces.

Yet, via such free constructions it is possible to give a new meaning to
Marshall Stone’s dictum: “always topologize” as the category of sets and
relations is the most natural way to give structure to logic and the category
of topological spaces and continuous functions is obtained from it by a good
mix of free  i.e. syntactic  constructions.
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1. Introduction

Topological spaces offer an excellent abstraction for many aspects of re-
ality. As a mathematical abstraction, they require a deep understanding
of the theory of sets as a topological space is far from being an algebraic
structure. Indeed, the notion of topology imposes to use sets of sets as
a basic piece of information.

Taking a different point of view via categorical constructions, it is
possible to recognize topological spaces as structures in a category ob-
tained by a finitary, syntactic construction from the category of sets
and relations. The difficult requirement moves in this case to handling
mathematical structures  i.e. categories  which are alas far from the
common intuition, worse still often that intuition stops at categories of
functions. Yet, once the step of viewing categories as structures is taken,
irrespective of their actually consisting of just functions, it is possible to
look at topological spaces as algebraic structures in some free extensions
of the category of sets and relations. Crucially here one must notice that
a free extension corresponds to a very specific syntactic construction. By
“finitary” above, we meant that the actual production of the extending
categorical structure is performed only with finite constructions applied
to the data of the given category.

The first section introduces the notion of category and suggests a few
examples in order to provide some intuition of how to think of a category
as itself a mathematical structure, not as a universe of mathematical
structures and transformations between these. It is only in this way
that we can explain how the overall scheme to produce a category of
topological spaces can be seen as based on solutions to universal problems
about categories. A reader expert in category theory can simply skim
rapidly through that section just to check the notation introduced.

In the second section, we recall the essential notions of monoid and
of comonoid (taking full advantage of the freedom of categories where
arrows are fundamental notions and need not be specific set-theoretic
functions) in a category and develop it in the case of the category of
sets and relations. We also recall some basic facts about comonoids.
In the third section, we describe the first two syntactic constructions
on categories: the Freyd completion and the category of commutative
comonoids. We recall the universal problem each solves, so that we can
explain how topological spaces can be recognized as comonoids in that.
In the fourth section we introduce another syntactic construction (the
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exact completion) and go through the same steps as in the previous
section to get to the category of frames and homomorphism in the next,
fifth section. In the final section, we connect the analysis completed thus
far with another result using exact completions pointing out some open
problems.

2. The category of relations

Categories allow to approach mathematical structures and theories of
those within a unified framework. The structures and the transforma-
tions between them are viewed as whole in a graph together with an
operation of composition1 on pairs of consecutive arrows which is asso-
ciative and with unit loops, uC for each node C. A node in a graph
which is a category is usually termed object.

In the following we shall review very quickly a few basic notions that
we shall need in other sections, but we invite the reader to refer to the ex-
tensive literature available to read more about some of the concepts intro-
duced in the following, see e.g. (Borceux 1995; Freyd and Scedrov 1991;
Lawvere and Schanuel 1997; Lawvere and Rosebrugh 2003; Mac Lane 1998;
Mac Lane and Moerdijk 1992; McLarty 1995; Taylor 1999).

Some concrete examples of categories are
W W W : objects are the web hosts in the World Wide Web; an arrow

from a host to another is a path connecting the first to the second;
composition is concatenation of paths; the unit at a host is the empty
path from that host

Hop: objects are the web hosts in the World Wide Web (like the previ-
ous one); an arrow from a host to another is a number counting the
hops needed to connect the first to the second; composition is given
by addition; the unit at an object is the zero hop from that object

Route: objects are the street intersections on a city map; an arrow
from an intersection to another is a drivable route; composition is
concatenation; the unit at an intersection is a stop

T ube: objects are the stations of the London Tube; an arrow from a
station to another is a sequence of line connections which allow to

1 Like many names in the literature in category theory, it has a strong similarity
with some set-theoretic name, but there is no implied connection between the two; in
particular, always remember that a category need hardly be a category of sets and
functions. We shall alwyas write it by simply juxtaposing the two arguments.
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go from the first to the second; composition is given by linking two
sequences of connections; units are the empty sequences.

Abstract mathematical examples are

P ath(G): given any (directed, multilabelled) graph G, the objects are
the same as those of G; an arrow from an object to another is a path
in the graph G from the first object to the second; composition is
concatenation; units are empty paths

Num&F ct: objects are the finite numerals; an arrow from an object
to another is a set-theoretic function from the first numeral to the
second; composition is functional composition (usually written back-
wards); the unit at a numeral is the identity function on that numeral

F in&F ct: objects (form a class and) are the finite sets; an arrow from
an object to another is a set-theoretic function from the first set
to the second; composition is functional composition; units are the
identity functions

Set&F ct: objects (form a class and) are the sets; an arrow from an
object to another is a set-theoretic function from the first set to the
second; composition is functional composition; units are the identity
functions

ModA&Hm: given an algebraic theory A, objects (form a class and)
are the models of A; an arrow from a model to another is a ho-
momorphism from the first to the second; composition is functional
composition (since a functional composition of homomorphisms is a
homomorphism); units are identity functions

Set&Rel: objects (form a class and) are the sets; an arrow from an
object to another is a set-theoretic relation from the first set to the
second; composition is relational composition2; units are diagonal
relations  the same as (the graphs of) identity functions

T op&Cnt: objects (form a class and) are the topological spaces; an ar-
row from a topological space to another is a continuous function from
the first to the second; composition is functional composition (since a
functional composition of continuous functions is continuous); units
are identity functions.

Clearly, W W W and Route are examples of categories of the form
P ath(G). Comparing the various examples, the category Set&F ct con-

2 Recall that, given relations a ⊆ C × D and b ⊆ D × E, their relational
composition is the relation ab ⊆ C × E of those pairs 〈x, z〉 ∈ C × E such that
∃y∈D(〈x, y〉 ∈ a ∧ 〈y, z〉 ∈ b).
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tains the category F in&F ct: there are fewer objects. Similarly the
category Set&Rel contains the category Set&F ct: the objects are the
same, but there are definitely fewer arrows from a non-empty object to
an(y )other object. There is an important difference between the two
containments: the peculiarity in the first case is that the subcategory
F in&F ct is completely determined from the data of the supercate-
gory Set&F ct and its objects, i.e. those sets which are finite. Such
a subcategory is named full. Other examples of full subcategories are
ModM&Hm and its subcategory ModG&Hm where M is the alge-
braic theory of monoids and G is the algebraic theory of groups, and
ModSL0

&Hm and its subcategory ModB&Hm where SL0 is the al-
gebraic theory of semilattices with a null element and B is the algebraic
theory of Boolean algebras.

Categories and functors3 are the best mathematical paradigm avail-
able to compare apparently different presentations of a mathematical
concept, as it allows for a general notion of isomorphism between ob-
jects in a category and uses that to determine a general comparison
test between categories which is weaker (and often apter) than the re-
quest that they be isomorphic. In the following we recall the notion of
iso(morphism) in a category and of equivalence of categories.

Given a category C, an arrow C1 a //C2 in C is iso if it has a
(necessarily unique) inverse, i.e. an arrow C2 b //C1 such that in the
diagram

C1uC1 55

a ((
C2 uC1ii

b
hh

compositions on all paths linking any two objects give the same result4

where uN denotes the unit loop on the object N .
An equivalence of categories captures formally how two presentations

describe the same mathematical concept: it consists of a functor F : C →
D such that, for every pair of objects C1 and C2 in C the function F

restricted to the set of arrows from C1 to C2 is bijective onto the set of
arrows from F (C1) to F (C2) and for every object D in D, there is an
object C in C and an iso from F (C) to D.

3 It is the name of the obvious notion of “homomorphism from a category to
another”: a functor F : C → D is a function that maps each object of C to a object of
D and each arrow a from object C1 to object C2 in C to an arrow F (a) from object
F (C1) to object F (C2) in D in such a way that composition and units are preserved.

4 In the present case, the equalities are all those that can be derived from the
two uC1

= ab and uC2
= ba.
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The inclusion functor from Num&F ct to F in&F ct is an equiva-
lence of categories since every finite set is in bijection with its cardinality.

We are interested in various other equivalences that will appear in
the next sections.

The notion of iso between objects looks like a relaxed notion of equal-
ity and a prominent example of that is the structure that the cartesian
product of sets induces on many of the examples we have listed.

In the category Num&F ct, the product of two numerals is given
by number multiplication and it is easy to define the product of two
functions. The functor so obtained

Num&F ct × Num&F ct
×

// Num&F ct

enjoys properties reminiscent of those for a monoid. Similarly, in the
category Set&F ct, the cartesian product of two sets extends to a functor

Set&F ct × Set&F ct
×

// Set&F ct

only this time the monoid-like properties are “up to iso”. And the same
can be performed in the category Set&Rel

Set&Rel × Set&Rel
×

// Set&Rel

〈C1, C2〉 � //

〈a1

��

,a2〉
��

C1 × C2

a1 ⊗ a2

��

� //

〈D1, D2〉 � // D1 × D2

where a little care must be put in the definition of the product of two
relations as, given a1 ⊆ C1 × D1 and a2 ⊆ C2 × D2, one wants a relation
a1 ⊗ a2 ⊆ (C1 × C2) × (D1 × D2). So a1 ⊗ a2 consists of those pairs of
pairs 〈〈x, y〉, 〈u, v〉〉 such that 〈x, u〉 ∈ a1 and 〈y, v〉 ∈ a2.

We shall consider in the remainder of the section how category theory
allows to approach such notions as those of point or of open more freely
by looking at some examples.

In the paradigmatic instance of the category Num&F ct, the object
{0} encompasses the notion of constant as the constant functions are
precisely those that are obtained by composition with a function into
{0}, and also it represents the generic point as, considered any numeral
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n, the functions from {0} to n are precisely the elements of n. It is
easy to see that the same analysis can be performed with a(ny) one-
point topological space T in the category T op&Cnt; on the other hand,
in a category ModA&Hm, while the one-point algebra will certainly
provide the notion of constant (homomorphism), this is not very useful.
And the notion of generic point will be taken by the free algebra U

on one generator  e.g. the additive monoid on the natural numbers in
ModM&Hm or the additive group on the integers in ModG&Hm  ,
as all homomorphisms from U into another algebra A will be (in bijection
with) the elements of the underlying set of A.

Similar to the last example, in the category Set&Rel the notion of
constant is of very little interest (and provided by ∅) while a(ny) one-
element set I represents the generic point. Note that the arrows from I

to a set S in Set&Rel are (in bijection with) the subsets of S.
In all the examples considered, the generic point G allows to detect

equality of parallel arrows, in other words, given two arrows C1
a //

b //C2

such that all the composites

G p // C1
a //

b // C2

as p varies among the arrows from G to C1, are equal, one has that a = b.
We check that in Set&Rel any one-element set I enjoys that prop-

erty. Indeed, let C1
a //

b //C2 be two relations, i.e. a, b ⊆ C1 × C2,

and consider any 〈x, z〉 ∈ a. Consider the relation I p //C1 given by
p := I × {x}. Since I × {z} ⊆ pa = pb, by definition of relational
composition it must be that 〈x, z〉 ∈ b. Hence every pair in a is also in
b. The converse follows symmetrically.

3. Monoids and comonoids

There is an important characterization of the category Set&F ct within
the category Set&Rel which is relevant for the sequel. It requires
first to recognize an algebraic structure on each object of Set&Rel,
see (Carboni and Walters 1987). For the rest of the paper, we shall use
I for a specific one-element set, say {0}.

Given a set C in Set&Rel, write δC : C → C × C and εC : C → I for
the relations

δC := {〈x, 〈y, z〉〉 ∈ C × (C × C) | x = y, x = z}
εC := C × I
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Given a relation a: C → D the following holds:
(i) a is total if and only if the diagram

C

a
��

εC

??
?

��
??

?

D εD // I

commutes in Set&Rel

(ii) a is single-valued if and only if the diagram

C

a
��

δC
// C × C

a ⊗ a
��

D δD
// D × D

commutes in Set&Rel.5

In fact, all this sums up very well with the fact that each struc-
ture (C, δC , εC) is a commutative comonoid in Set&Rel. We refer the
reader to (Carboni and Walters 1987; Fox 1976) for the definition and
the properties of commutative comonoid in a monoidal category and
content ourselves with specifying what this amount to in the special
case: a commutative comonoid in Set&Rel is a triple (C, m, e) where C

is an object in Set&Rel, and m: C → C × C and e: C → I are arrows
in Set&Rel such that the following diagrams commute

associativity: C

m
��

m // C × C

m ⊗ uC

TTT
TTT

))TT
TTT

C × C uC ⊗ m // C × (C × C) aC,C,C // (C × C) × C

neutrality: C × C

uC ⊗ e
��

Cmoo

uC

��

m // C × C

e ⊗ uC

��

C × I rC // C I × ClCoo

commutativity: C

m
NN

NN
NN

''N
NNN

N

m // C × C

cC,C

��

C × C

5 We sketch how to prove (ii): consider a pair 〈x, 〈u, v〉〉 in C × (D × D). It is
in the relation δC(a ⊗ a) exactly when both 〈x, u〉 and 〈x, v〉 are in a. It is in the
relation aδD exactly when both 〈x, u〉 and 〈x, v〉 are in a, and also u = v. Clearly
aδD ⊆ δC(a ⊗ a), but the two coincide precisely when a is single-valued.
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where the relations a, r, l and c are the obvious isos (in fact, bijections).
A homomorphism between two comonoids (C, m, e) and (D, n, d) is an
arrow a: C → D such that

C

es
ss
ss
s

yyss
ss
ss

a
��

m // C × C

a ⊗ a
��

I Ddoo n // D × D

We denote by CCom(Set&Rel, ×) the category of commutative como-
noids and homonorphisms in Set&Rel.

The unexperienced reader, though possibly stunned by the sheer
complexity of the last arrows and diagrams, may feel encourage to press
on by the following remark.

3.1 Remark. A relation C a //D is a function from C to D if and only
if it is a homomorphism of comonoids from the comonoid (C, δC , εC) to
the comonoid (D, δD, εD).

In other words, the functions f : C → D are exactly those relations
from C to D which satisfy the two conditions (i) and (ii). So, the no-
tion of function between sets can be recovered from that of relation by
(co)algebraic means: the category Set&F ct of sets and functions can
be seen as a category of (co)monoids on the category Set&Rel of sets
and relations.

We shall see that topological spaces with continuous functions appear
in a very similar fashion on a natural extension of the category Set&Rel.

4. The Freyd completion

Recall that the category BP of basic pairs, as introduced in (Sambin and Gebellato 1999
consists of
objects: arrows r: X → A in Set&Rel. In this context, one calls the

triple (X, A, r) a basic pair
an arrow [a, a′]: (X, A, r)→(Y, B, s) is an equivalence class of pairs〈a, a′〉

of Set&Rel such that
X a //

r
��

Y

s
��

A a′ // B
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commutes, with respect to the equivalence relation

〈a, a′〉 ∼ 〈b, b′〉 ⇔ as = bs[= ra′ = rb′]

composition is given by pasting commutative squares

X a //

r
��

Y b //

s
��

Z

t
��

A a′ // B b′ // C

More explicitly, it is given on representative pairs as (ab, a′b′).
By its very definition, the category BP coincides with the free com-

pletion Fr(Set&Rel) of the category Set&Rel of sets and relations
to a category with a proper factorization system. The general con-
struction goes under the name of “Freyd completion of a category”, see
(Freyd 1966; Grandis 2000). Recall from (Freyd and Kelly 1972) that a
factorization system in a category C consists of a pair (E , M) of collec-
tions of maps of C such that
1. E and M are subcategories of C, each containing all isomorphisms,
2. every map can be factored as the composition of a map in E followed

by a map in M,
3. each map in E is orthogonal to any map in M, i.e. there is a unique

diagonal fill-in in any commutative square of the form

��

in E //

�����
�
�
�
�
�
�

in M
//

It is proper if every map in E is epic, or equivalently, every map in M is
monic.

Factorization systems generalize the structure of surjections and one-
one functions on the category Set&F ct.

4.1 Remark. The statement about the universal property satisfied by
the Freyd completion of a category C is the following:
For a category C, the category Fr(C) has a proper factorization system
and there is an embedding functor D: C → Fr(C) which is the universal
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solution among categories with proper factorization systems and a func-
tor from C, i.e. for every category B with a proper factorization system
and every functor G: C → B there is a functor Gs: Fr(C) → B which
maps the factorization system of Fr(C) into that of B and such that

C

G
!!D

DD
DD

DD
DD

DD
DD

D
D // Fr(C)

Gs

��
�

�

�

�

�

B.

The functor Gs with that property is completely determined up to a
unique natural iso.

As already said, the construction of the category Fr(C) is that given
in the particular instance of the category of basic pairs replacing
Set&Rel with C. Its syntactic nature is apparent by the finitary def-
inition from the data of C and also by the universal property it sat-
isfies. We shall see that all categorical constructions involved in the
de-pointification of topological spaces have such a syntactic nature.

The product functor Set&Rel × Set&Rel
×

// Set&Rel

extends directly to the category of basic pairs Fr(Set&Rel). Another
similarity between Set&Rel and Fr(Set&Rel) is that each is equivalent
to its opposite category.

In a sense, when we determined functions between sets as particular
homomorphisms of comonoids we chose one direction in Set&Rel. Sim-
ilarly, one can do that in Fr(Set&Rel). As we have seen, a set enjoys
a structure of commutative comonoid in the category Set&Rel. And it
is possible to do the same for a topological space (S, σ) in the category
of basic pairs. First consider the relation S ∈ //σ and note that the
diagram of relations

I

u!

��

SεSoo

∈
��

δS
// S × S

∈ ⊗ ∈
��

I σ{S} × Ioo ∩o // σ × σ
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commutes, providing the basic pair (S, σ, ∈) with a structure C(S, σ)
of commutative comonoid. Moreover, given any continuous function
f : (S, σ) → (T, τ), the diagram

S

∈
��

f // T

∈
��

σ (f−1)o // τ

commutes so that [f, (f−1)o]: (S, σ, ∈) → (T, τ, ∈) is an arrow of basic
pairs which is clearly a homomorphism of comonoids.6

4.2 Theorem. The functor C: T op&Cnt //CCom(Fr(Set&Rel),
×), which maps a topological space (S, σ) to the basic pair (S, σ, ∈) and

a continuous function f : (S, σ) → (T, τ) to the pair C(f) = [f, (f−1)o],
has a right adjoint. Moreover, the topological spaces on which the unit

of the adjunction is a homeomorphism are precisely the sober spaces.

The proof of the theorem can be found in (Bucalo and Rosolini 2006)
and we refer the interested reader to that. There are two important
points that we recall in the followings remarks

4.3 Remark. The functor C: T op&Cnt //CCom(Fr(Set&Rel), ×)
is completely determined by a universal property of the category
CCom(Fr(Set&Rel), ×), which was proved by Thomas Fox in (Fox 1976)
and whose statement is the following:

Given a symmetric monoidal category (C, ⊗, I, a, r, l, t), the category
CCom(C, ⊗) of commutative comonoids and homomorphisms has finite
(categorical) products and the forgetful functor U : CCom(C, ⊗) → C is
strict monoidal. Moreover, this is the universal solution among cate-
gories with finite products and a strict monoidal functor to C, i.e. for
every category A with finite products and every functor G: A → C which
transforms the products in A into tensor products in C and takes the
terminal object to the unit for the tensor

G(A1) ⊗ G(A2) ∼−→ G(A1 × A2) I ∼−→ G(1)

6 For a relation C a //D , we write D ao //C for its opposite relation, i.e.

ao := {〈x, y〉 ∈ D × C | 〈y, x〉 ∈ a}.
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preserving all coherence isomorphisms, there is a functor
Gc: A → CCom(C, ⊗, I) which preserves finite products and extends G

A

G

%%J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

Gc

��
�

�

�

�

�

CCom(C, ⊗, I)
U // C.

The functor Gc with that property is completely determined up to a
unique natural iso.

In the particular situation of topological spaces and comonoids of ba-
sic pairs, the category C is Fr(Set&Rel), the tensor product (X, A, r)⊗
(Y, B, s) is (X × Y, A × B, r ⊗ s), the category A is that of topological
spaces and continuous functions T op&Cnt, and the functor
G: T op&Cnt → Fr(Set&Rel) evaluates the basic pair (S, σ, ∈) of a
topological space (S, σ). What the general theorem explains is that,
in order to obtain the product preserving representation of topological
spaces as comonoids of basic pairs, it is enough to check that G trans-
forms a topological product into a product of basic pairs.

It is very useful to know that the underlying property for the repre-
sentation functor in 4.2 is trivial to check, and that the reason for that re-
sides in a general, syntactic construction on (monoidal) categories: that
of taking the category of commutative comonoids and homomorphisms.

4.4 Remark. The second observation about 4.2 is how the construction
of the right adjoint is based on the notions of generic point, as discussed
on p. 332, and on that of generic open.

Let G be the only comonoid structure on the basic pair u1: 1 //1,
and let Σ be the comonoid

I {0, 1} δ{0,1} //too {0, 1} × {0, 1}

I {0, 1} ∨o //{0} × Ioo {0, 1} × {0, 1}

uI

��

≥
��

≥ ⊗ ≥
��

on the basic pair {0, 1} ≥ //{0, 1} .
If a basic pair is of the form (S, σ, ∈) for some sober topological

space (S, σ), then the points of S are in a one-one correspondence with
the comonoid homomorphisms from G to the comonoid C(S, σ).
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Moreover, the open subsets of S are in a one-one correspondence
with the comonoid homomorphisms from C(S, σ) to Σ. And a point of
S is in an open subset if and only if the composition of the corresponding
homomorphisms is equivalent to the total homomorphism [I ×{0, 1}, I ×
{0, 1}]:G → Σ.

The view of topological spaces as comonoids of basic pairs makes
the approach to topology much more elementary as it avoids completely
references to families of subsets. It also provides a standard approach
to topological representations of preordered structures as such a piece of
data prompts immediately the point of view of the preorder as a basic
pair.

In that way, it provides standard tools with which to approach topol-
ogy in a pointfree way. Indeed, one could take the underlying structure
of comonoids of basic pairs in the perspective that, since all there is to
know about a topological space is determined by its open sets, all one
must do is to give a (relational) presentation for those, irrespective of
what points one expects.

5. The exact completion

A category is exact (in the sense of Barr (Barr 1971)) if it has finite
products, equalizers, quotients (i.e. coequalizers) of equivalence relations
and ,moreover, these are effective and stable under pullbacks. Instances
of exact categories are F in&F ct, Set&F ct, ModA&Hm for A an
algebraic theory.

The exact completion is another free construction on categories that
is related to topology. The exact completion Set&Relex of the cat-
egory Set&Rel of sets and relations is (equivalent to) the category
CmpLatt&SupP res of complete lattices and functions between those
which preserve arbitrary sups.

The theorem about the universal property satisfied by the exact com-
pletion of a category C is similar to that for the Freyd completion, pro-
viding the universal solution for appropriate functors to exact categories.

Instances of exact completions are categories of the form
ModA&Hm, for A an algebraic theory; the category ModA&Hm

is the exact completion of its full subcategory on the free algebras. Also
the effective topos, the extension of the realizability interpretation of
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(Kleene 1945) to full intuitionistic set theory, is an exact completion of
the category of assemblies, see (van Oosten 2008), which offers a fitting
interpretation of Martin-Löf intensional type theory.

Since in a exact category coequalizers and monos form a factorization
system, by the universal property of the Freyd completion there is a
canonical functor

Q: Fr(Set&Rel) → CmpLatt&SupP res

which maps a basic pair (X, A, r) to the complete sublattice Q(X, A, r)
of P(A) which is the image of P(X) via r. In fact, since every lattice
is a homomorphic image of a powerset lattice and also a sublattice of a
powerset lattice, it is easy to conclude that the canonical functor is an
equivalence.

For the constructively minded reader, it would be relevant to note
that that result is equivalent to the underlying logic of the universe of
discourse being Boolean. And there are two other remarks:
• the functor does not transform the product functor on Fr(Set&Rel)

in the tensor product of complete lattices, see (Joyal and Tierney 1984;
Bucalo and Rosolini 2006)7.

• unlike Set&Rel and Fr(Set&Rel), there is no duality on the cat-
egory CmpLatt&SupP res which transforms the tensor product
into itself.

In other words, when we look at the exact completion of Set&Rel, we
have preemptively decided a direction of arrows, and the possibility to
decide the direction of arrows for comonoid homomorphisms is already
imposed.

On the other hand, given topological spaces (S, σ) and (T, τ), the
functor Q: Fr(Set&Rel) → CmpLatt&SupP res transforms the prod-
uct (σ × τ, S × T, ∋ ⊗ ∋) of the basic pairs (σ, S, ∋) and (τ, T, ∋) in the
complete lattice Q(σ, S, ∋) ⊗ Q(τ, T, ∋).

6. The opposite category of monoids

The closing remark in the previous section suggests that the represen-
tation of topological spaces should take the opposite direction in the

7 The tensor product L⊗M of the complete lattices L and M is the set of Galois
connections from L to M with the pointwise order.
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category CmpLatt&SupP res. Indeed, the category of locales and
continuous functions is a full subcategory of the opposite of the cat-
egory of commutative monoids and homomorphisms in the category
CmpLatt&SupP res with respect to the tensor of complete lattices. A
monoid in the category CmpLatt&SupP res is named a unital quan-
tale and a fundamental reference for those is (Rosenthal 1990). The
full subcategory of unital commutative quantales and homomorphisms
whose opposite is the category of locales is the category of frames, see
(Johnstone 1982; Joyal and Tierney 1984; Taylor 1999; Vickers 1989).

Since a sup-preserving function M ⊗ M → M amounts to a binary
operation M × M → M which preserves sups in each argument sepa-
rately, a monoid in CmpLatt&SupP res with respect to the tensor
consists of a complete lattice with a binary operation of monoid on M

which distributes over arbitrary sups.

6.1 Remark. Frames are those unital commutative quantales whose
binary operation ·: M × M → M is idempotent and whose unit is the
top element of M . Indeed, since · preserves sups, it preserves the order;
hence, for a, b ∈ M , a · b ≤ a · ⊤ = a. Moreover, for any x ∈ M such that
x ≤ a and x ≤ b, one has that x = x · x ≤ a · b.

Frames (aka locales) and (the opposite direction of) homomorphisms
have become the most successful approach to topology in a pointless
perspective, when one need not expect to have sufficient information to
construct all the points of the intended space. It is not surprising that
many constructions of frames have useful applications in constructive
aspects of topology.

It is important to note that the constructions involved in the presen-
tation of frames (or quantales, for that matter) are of a finitary, syntactic
nature, based on the underlying data of the category of sets and relations.
In a sense, in its various forms topology is a syntactic extension of the
logical calculus of relations.

We conclude this section by reviewing briefly how the notions of
generic point and of generic open which contribute to the construction
of the right adjoint in 4.2 extends to the present situation by computing
the correponding frames to the comonoids G and Σ: the first frame is
P(I), the second is given by the frame of the only non-trivial topology ς

on two points  i.e. with a single non-trivial open O.
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Obvious care must be taken in computing points and opens of a given
unital quantale M : the points are the homomorphisms from p: M →
P(I). Open subsets are determined by homomorphisms ℓ: ς → M as

Uℓ := {p: M → P(I) | p(ℓ(O)) = I}.

7. Spaces of continuous functions

We conclude by mentioning some problems which involve the construc-
tions we have presented in the previous sections.

It is well-known that the same construction of the exact comple-
tion, when applied to the category T op&Cnt, produces a very rich
category which falls short of being a topos, see (Birkedal et al. 1998;
Rosolini 2000; Carboni and Rosolini 2000). Beyond being an exact, full
extension of the category of topological spaces and continuous functions,
the category T op&Cntex is locally cartesian closed, hence it is a setting
where topological spaces can be treated as sets, and one can compute
function spaces for any pair of topological spaces.

Again T op&Cntex fits with the spirit of using syntactic construc-
tions, but the syntactic construction, the exact completion, is applied
to the very category of topological spaces and continuous functions. It
would be interesting to consider if, for any of the syntactic construction
considered in the previous sections such as CCom(Fr(Set&Rel), ×), or
the category of locales, the exact completion is locally cartesian closed.

Since we have to leave that as a conjecture, we only mention that,
in case any one of those were cartesian closed, it would be a very useful
setup for a constructive approach to algebraic constructions which re-
quire applications of the axiom of choice to produce actual topological
spaces of functions.

A. The exact completion

There are many references on exact completion and its various descrip-
tions available in the literature, e.g. (Carboni 1995; Carboni and Magno 1982;
Freyd and Scedrov 1991; Robinson and Rosolini 1990): we shall just re-
call that the elementary presentation of the exact completion Cex of a
category C with weak finite limits consists of
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objects: equivalence spans C1
r1 //

r2 //C0 in C, i.e. a pair of arrows from
an object C1 to an object C0 such that there are arrows r, s and t

making the following diagrams commute

C0

C0

uC0|||

>>|||

uC0

BB
B

  B
BB

r // C1

r1

OO

r2
��

C0

C0

C0

r2|||

>>|||

r1

BB
B

  B
BB

s // C1

r1

OO

r2
��

C0

C1

r2
xx
xx

{{xx
xx

r1 // C0

C0 w.p.b. C2

r′
1FFF

ccFFF

r′
2
xx
x

{{xx
x

t // C1

r1

OO

r2
��

C1

r1FFFF

ccFFFF

r2 // C0

where w.p.b. indicates that the square is a weak pullback

an arrow from C1
r1 //

r2 //C0 to D1
s1 //

s2 //D0 is an equivalence class [a] of
arrows a of C such that there is an arrow a′

C0 a // D0

C1

r1

OO

r2
��

a′ // D1

s1

OO

s2
��

C0 a // D0

where a ∼ b if there is an arrow c

D0

C0

a|||

==|||

b
BB
BB

!!B
BB

c // D1

s1

OO

s2
��

D0

composition is defined using that of C on representatives.

It is a theorem that the data above define an exact category Cex,
and the free one such, see (Carboni and Magno 1982).
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