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Abstract. This paper looks at how the idea of pointless topology itself
evolved during its pre-localic phase by analyzing the definitions of the con-
cept of topological space of Menger and Nöbeling. Menger put forward a
topology of lumps in order to generalize the definition of the real line. As
to Nöbeling, he developed an abstract theory of posets so that a topological
space becomes a particular case of topological poset. The analysis empha-
sizes two points. First, Menger’s geometrical perspective was superseded by
an algebraic one, a lattice-theoretical one to be precise. Second, Menger’s
bottom–up approach was replaced by a top–down one.
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1. Introduction

Historically, Karl Menger appears to have been the first to raise the idea
of a point-free definition of the concept of topological space. In his 1928
book Dimensionstheorie [16], he indeed proposed to define the general
concept of space without referring to the points of an underlying set, but
rather using pieces or, as he liked to say, lumps.1 In doing so, Menger

1 Menger was also interested in geometry, especially in what he at times called
metrical, set-theoretical or even general geometry. See [16, 17, 18, 21]. He also made
suggestions towards pointless geometry, the most notable of which was an algebra of
geometry based on the operations of join and meet. See [15, 17, 19]. Von Neumann
would refer to it in his work on continuous geometry. See [24].
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was formulating for topology an idea that had already been put forward
for geometry, most notably by de Laguna and Whitehead.2

This is in itself interesting for Johnstone, whose papers [11] and [12]
constitute standard references on the history of pointless topology, does
not mention Menger. According to him, the idea that points are sec-
ondary in a topological space required the prior development of lattice
theory. In this regard, the key step occurred in the mid 1930s when Mar-
shall H. Stone established a formal connection between general topology
and algebra (see [29, 30]). It initiated a lattice-theoretical approach to
general topology according to which topological spaces are to be un-
derstood as lattices and studied by means of the methods of abstract
algebra, that is independently of points.

This lattice-theoretical approach to general topology would find its
most achieved presentation in Georg Nöbeling’s 1954 book Grundlagen

der analytischen Topologie [27].3 In fact, the review in the Bulletin of

the American Mathematical Society opened with the following sentence:
“This carefully written monograph has a good chance of becoming the
definitive text on the subject it treats.” [2, p. 594] Furthermore, in light
of the advent of locales in the late 1950s (see [11]), Nöbeling’s book could
be seen as marking the end of the lattice-theoretical phase of pointless
topology.

The present paper successively looks at the work of Menger and Nö-
beling in order to highlight how the idea itself of pointless topology
changed. More specifically, the emphasis will be on two aspects. First,
Menger’s geometrical perspective was superseded by an algebraic one.
Second, Menger’s idea of a generalized theory inspired by the definition
of real numbers was replaced by an abstract one based on lattice theory.
In other words, his bottom-up approach was replaced by a top-down one.

2. Menger or the topology of lumps

The theory of curves and dimension is one of Menger’s many contri-
butions to mathematics. Indeed, he is responsable, along with Pavel
Urysohn who developed it independently, for the definition of the con-

2 It should be noted however that Menger only refers to Huntington’s foundation
of Euclidean geometry and to Nicod’s 1923 thesis which he describes as a continuation
of Whitehead’s ideas. See [20, p. 84]. Menger [19, p. 41] also refers to Pieri.

3 Johnstone [12, p. 838] refers to him as Gustav Nöbeling.
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cept of dimension.4 His interest for these notions goes back to the first
lecture of Hans Hahn’s 1921 seminar “Neueres über den Kurvenbegriff ”
at Universität Wien.5

As mentioned in the introduction, Menger first argued for a defi-
nition of the concept of topological space independent of points in his
book Dimensionstheorie (see [16, §4]). The book presented the concept
of dimension for spaces in general  starting with the elementary geo-
metrical objects  and in such a way as to be suitable for set-theoretical
geometry. Actually, Menger’s idea of a set-theoretical geometry led him
to look at spaces in terms of subsets.

Menger presented again his point-free definition of space in a talk
entitled “Topology Without Points” [20], the last of a series of three he
gave at the Rice Institute in December 1939.6

Central to Menger’s conception is a comparison between the processes
by means of which topological spaces and the real line are respectively
defined.

2.1. Topological spaces and the real line

Menger starts by recalling the three classic definitions of the concept of
topological space.

The first is the concept of a limit class or, to use the terminology of
Fréchet who first defined it in his thesis, of a (L) class. Informally, a
limit class is a set of elements with a notion of convergent sequence.7

The second is based on neighborhoods and is obviously due to Haus-
dorff. According to Hausdorff, a topological space is a set whose elements
are associated to certain subsets called neighborhoods.8

The third is due to Kuratowski and uses the closure operator. A
topological space is a set X and a function, called closure, assigning to
each set X ⊂ T a set X satisfying some axioms.9

4 For more on the history of the theory of dimension, see [9, 10].
5 For further biographical information, see [13].
6 Menger also gave a talk entitled “Topology of Lumps” at the fourth annual

mathematical symposium at the University of Notre-Dame in April 1940. See [1,
p. 599].

7 For Fréchet’s definition, see [6, p. 5]
8 For Hausdorff’s definition, see [8, p. 213].
9 For the definition, see [14, p. 182].
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Menger insists that all three definitions are set-theoretical, meaning
that a space is to be thought of as a set of points. The points themselves
are pre-existent and indivisible elementary particles that need to be or-
ganized. From this point of view, to know a space, one must look at
its points, their properties and the relationships between them. In this
sense, the points could be said to determine the identity of the space.

These three foundations of topology have in common that they are what
may be called point set theoretical [sic]. By this we mean that each
of them considers the space as a set of elements. Of course, it is a set
with special properties distinguishing the space from an abstract set,
viz. a set in which certain sequences of elements are distinguished, or
a set in which subsets are associated with elements or with subsets in
a certain way. But in all three cases it is assumed that the elements
of the space, the points, are somehow given individually, and that the
space character of the set consists in relation between, and properties
of, certain sets of these elements. [20, p. 82]

Before going any further, it should be stressed that, while Menger’s
analysis certainly holds for Fréchet’s and Hausdorff’s concepts of topolog-
ical space, it hardly does for Kuratowski’s. Indeed, Kuratowski’s axioms
make absolutely no reference to the points of the underlying set, only to
arbitrary subsets. Moreover, his definition contains no separation axiom.
This implies that, in contradistinction to Hausdorff, it is not essential
to be able to tell the points of a topological space apart. The reason is
simple: the topological nature of a space depends on the algebraic struc-
ture defined by the closure operator. In other words, to know about a
topological space is to know about the properties of the closure operator.
The points are simply irrelevant from this point of view. If anything,
Kuratowski’s approach is not set-theoretical, but algebraic.

Menger next looks at the three standard definitions of the real num-
bers or, from a geometrical point of view, the straight line. Each is put in
correspondence with one of the definitions of the concept of topological
space previously presented.10

• To the concept of (L) class corresponds Cantor’s definition of real
numbers as limits of converging sequences of rational numbers.

• To Hausdorff’s neighborhood definition corresponds the definition of
real numbers as limits of nested sequences of rational intervals of
decreasing length.

10 For the detailed constructions of real numbers, see [20, p. 82–83].
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• To Kuratowski’s definition in terms of the closure operator corre-
sponds Dedekind’s cuts.11

Menger points out that a common feature of these definitions of the
straight line is that any talk of the set of real numbers is preceded by the
explicit introduction of the real numbers themselves. In other words, the
points are not assumed to exist; they have to be explicitly constructed.
Only then can the set of real numbers be formed.

These three ways of introducing the straight line or the set of all real
numbers do not presuppose the concept of a point or of a real number.
On the basis of a denumerable set (the set of rational numbers or ra-
tional intervals) for whose elements certain relations are assumed to be
given, (a <-relation for the rational numbers, a relation of containing
for the rational intervals) they introduce the individual real numbers or
points. The set of all of them is formed in order to enable us to talk, if
necessary, about the straight line as a whole. [20, p. 84]

This means that, despite the correspondence between them, the def-
initions of the concept of topological space and of the straight line are
fundamentally different. In fact, they represent two different procedures
to define a space. The first presupposes the existence of points and
consists in organizing them so that certain properties are satisfied. It
is exemplified by topological spaces. The second starts with pieces and
consists in explicitly constructing points in terms of such pieces as illus-
trated by the case of the real line.

2.2. The idea of a generalization of the real line

Menger was perfectly aware of the difference between the definition of
the concept of topological space and that of the real line and thought
that the first should be modified so to be analogous to the second.

In my book Dimensionstheorie I pointed out the desirability of an intro-
duction of the general concept of space in topology which is not point
set theoretical [sic] in the sense of Section 1, but rather analogous to the
introductions of the straight line in arithmetic, outlined in Section 2.

[20, p. 85]

11 Compared to the other two cases, Menger here seems to nuance the corre-
spondence as he writes: “A way seemingly related to the concept of closure class is
Dedekind’s definition of a real number as a cut or upper section in the set of rational
numbers.” [20, p. 83].
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As to why it would be desirable for topological spaces to be defined
analogously to the real line, Menger seems to have two things in mind.

The first is what Menger refers to as an abstract definition. In Dimen-

sionstheorie, Menger makes a parallel with the transition from number
fields to abstract fields. This implies that Menger wanted a definition
that would induce an abstract concept of space. This is puzzling for
Fréchet, Hausdorff and Kuratowski’s concepts of space were already ab-
stract, that is they are to number and function spaces what abstract
fields are to number fields. Furthermore, in the historical notes at the
end of §4, Menger states that Fréchet was the first to adopt an abstract
point of view, that is one that makes abstraction of the arithmetic nature
of the points of Rn (see [16, p. 23]).

This concern for abstraction is still present in the conference, but
in a different form. Menger insists that it is the abstract properties
of topological spaces that should be similar to those of the real line:
“I should like to mention that in order to obtain a space whose abstract
properties are related to those of a straight line [. . . ]” [20, p. 88]

This suggests that when Menger talked of an abstract definition,
what he actually meant was a generalization. Indeed, he is not looking
for a definition that would subsume many cases under a single abstract
one, but rather appears to want to reproduce the construction of the
real numbers in the more general context of topological spaces. This
also explains why he was not satisfied with the definitions of Fréchet,
Hausdorff and Kuratowski; despite being abstract, they did not provide
the generalization he had in mind.

The second aspect is that the definition of the general concept of
space should have the same dignity as that of the real line. Menger
writes:

To make it clear that the general concept of space of set-theoretical
geometry can be introduced so to have a dignity fully equivalent to that
of the methods employed in analysis, we will now consider a foundation
of the concept of space which is absolutely analog to the reasoning that
was used in the previous section for the definition of the straight line
and Cartesian space.12 [16, p. 16]

12 Um deutlich zu machen, daß der allgemeine Raumbegriff der mengentheoreti-
schen Geometrie durch Betrachtungen eingeführt werden kann, die an Dignität den
in der gesamten Analysis angewandten Methoden völlig gleichstehen, gründen wir im
folgenden den Raumbegriffe auf eine Überlegung, welche durchaus analog ist dem Rä-
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In the conference, the value of pointless topology is once again related
to such a dignity: “To supply the [general concept of space] with a
foundation whose logical dignity equals that of the basis of the concept
of the straight line, is the purpose of our theory.” [20, p. 85]

Unfortunately, neither Dimensionstheorie nor “Topology Without
Points” go deeper into the question of what is that logical dignity that
Menger attributes to the definition of real numbers and that the set-
theoretical definitions of the concept of topological space does not have.

There is a third aspect that Menger does not explicitly touch on,
but that seems to underlie the importance he gives to a definition of
topological spaces generalizing that of the real line. Indeed, Menger’s
fundamental concern appears to be with continuity.

In the case of topological spaces, continuity is defined by means of
the points of a set. In the case of the real line, points are explicitly
constructed in order to form a continuum. This means that there is a
conceptual tension that could be described as follows. On the one hand,
continuity’s most basic representation is given by the real line. As such,
it does not rely on points. On the other hand, continuity in general can
only be defined, and as a result completely understood as a mathematical
phenomenon, in the context of topological spaces, that is on the basis of
a point-based concept of space. Simply put, there are two treatments of
continuity at play.

2.3. Lumps

In section 3 of “Topology Without Points”, Menger presents the point-
free definition of the concept of topological space first exposed in Dimen-

sionstheorie. As stated in the previous section, his goal is to generalize
the construction of the real line in order to obtain topological spaces.
In particular, he takes as model the definition of real numbers as nested
sequences of rational intervals.

I especially aimed to introduce the points of a space as nested sequences
of what may be called pieces or lumps  analogous to the introduction
of real numbers as nested sequences of rational intervals, and related to
Hausdorff’s concept of a neighborhood. [20, p. 85]

sonnement, das im vorigen Abschnitt zur Definition der Zahlengeraden und der Car-
tesischen Räume durchgeführt wurde.
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To achieve this, Menger considers nested sequences of “generalized
intervals”. As indicated in the quotation above, these generalized inter-
vals are what he calls lumps.

Now, this raises the obvious question of what exactly is a lump. First,
Menger sees the words “piece” and “lump” as synonyms. In fact, the
words seem to be used in the sense of R. L. Moore in his axiomatization
of the plane topology of the place (see [23]). By a “piece” of the plane,
Moore means any limited piece of the plane with an interior: “[. . . ] the
word ,piece‘ is interpreted to mean any limited piece (in the ordinary
sense) of the plane”. [23, p. 14] In a footnote, he adds: “It would seem
to be accordance with ordinary usage to refrain from applying the term
,piece of space‘ to a point or a straight line or anything else which has
no interior.” [23, p. 14, n. 3]

Second, in the conclusion of his conference, Menger gives an indica-
tion of what he means by a lump: “[. . . ] by a lump, we mean something
with a well defined boundary.” [20, p. 107]

While those indications do not provide a precise definition of the
notion of lump, they do suggest that a lump must be thought of a part
of space that is well delimitated and has an interior.

Because the central notion of his theory is that of lump, Menger
actually refers to it as a topology of lumps.

2.4. The topology of lumps

Menger starts with a partially ordered system of lumps U , V , W , . . . .
The order relation is “completely contained in” and is denoted by ⊂⊂.
Menger [20, p. 86] says he uses the relation “completely contained in”
instead of “contained in” so that lumps U and V such that U ⊂⊂ V

behave like open sets such that the closure of U is a subset of V .13

The order relation gives rise to a criterion of identity for the elements
of the partially ordered system. Two elements U and V are identical if
for each element W , W ⊂⊂ U if and only if W ⊂⊂ V . In other words, two
lumps are identical if they completely contain the same lumps.

A point of this partially ordered system is a sequence of lumps
U1, U2, . . . such that Uk+1 ⊂⊂ Uk for each k. Simply put, a point is
a strictly decreasing sequence of lumps.

13 Interestingly, Menger would later use the relation “contained in”. See [21,
pp. 27–28].
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An equality relation is defined for points. Two points U1, U2, . . .
and V1, V2, . . . are equal if each Ui completely contains a Vj and each
Vi completely contains a Uk. The idea is that Ui’s completely contains
almost all of the Vj and reciprocally.

An inclusion relation for points can also be defined. A point
U1, U2, . . . lies in the lump U if there exist an i such that Ui ⊂⊂ U .

The set of all the points so defined is called a space.
Menger’s topology of lumps unfortunately suffers from some prob-

lems. The first occurs when the lumps are the open sets of a topological
space. Given a strictly decreasing sequences U1, U2, . . . of open sets,
four cases are possible: (i) the sequence contracts to a point p; (ii) the
sets of the sequence have only one point in common, but they do not
contract to this point; (iii) the sets of the sequence have many points in
common; and (iv) the sets of the sequence have no points in common.

Seen as a particular case of the theory of lumps, the definition of
real numbers as nested sequences of rational intervals works because
the requirement that the length of the intervals converges towards 0 is
sufficient to exclude case 3. As to cases 2 and 4, they “are automatically
excluded” says Menger [20, p. 87]

This entails that for Menger’s generalization of the real line to work
or, in other words, for the concept of space at the core of the topology
of lumps to be a suitable one, a general criteria that would exclude
cases 2, 3 and 4 is required. In this respect, Menger mentions that in
Dimensionstheorie, he did not give such a general criteria. Furthermore,
he suggests that he only realized its necessity later on.

In my book I suggested the considerations of points of a space as certain
decreasing sequences of lumps, without giving a criterion as to which
sequences should be called points. I pointed out the desirability of
formulating such a criterion in my colloquium in Vienna. [20, p. 88]

A somewhat related problem is the following. As mentioned above,
the topology of lumps is a device to define the concept of topological
space as a generalization of the real line. In particular, Menger wanted
topological spaces to have the same abstract properties as the real line.
Menger says that this prompted him to consider a denumerable set of
lumps. Now, this entails that the class of topological spaces so defined
does not contain all topological spaces.

[. . . ] it is clear that if we start with a set of lumps that is altogether
denumerable (as I originally did), then we can not possibly get all topo-



154 Mathieu Bélanger and Jean-Pierre Marquis

logical spaces on the mere basis of the order relation for the lumps. For,
the set of all partially ordered denumerable sets which are distinct (that
is to say, no two of which are isomorphic) has the power of the contin-
uum. Consequently, if we wish to describe the points of a space in terms
of the order relation alone, we cannot get more than continuously many
spaces  while the set of all types of topological spaces satisfying the
second denumerability axiom, and even the set of all topological types
of subsets of the straight line has a greater power than the continuum.

[20, p. 88]

In the rest of the conference, Menger looks at attempts to define
the concept of topological space without referring to the points of an
underlying set. He identifies a fundamental difference between, on the
one hand, the theories of Wald, Moore and himself and, on the other,
those of Stone, Wallman and Milgram.14

Another remark should clear up the relation between the theories dis-
cussed in sections 3–5, and those studied in sections 6–8. The former
ones introduce points as nested sequences of lumps after the model of
the introduction of real numbers as sequences of rational intervals  the
latter ones introduce points as sets of lumps which if applied to the case
of the straight line would yield a definition of a real number as the set
of all open rational intervals containing the number. [20, p. 105]

This suggests that the difference between both classes of theories
amounts to that between generalization and abstraction. On the one
hand, the theories of Menger, Wald and Moore would define the points
of a topological space as nested sequences of lumps by generalizing the
construction of real numbers as nested sequences of rational intervals. On
the other hand, the theories of Stone, Wallman and Milgram would be
abstract ones from which a definition of real numbers could be deduced
as a particular case. In other words, Menger, Wald and Moore adopt a
bottom–up approach while Stone and his successors favor a top–down
one.

While he recognizes that the latter approach has the advantage of
being applicable to a wider class of spaces, Menger still prefers the for-
mer because of its simplicity or, to paraphrase him, its minimal logical
machinery.

14 See [20, §4–8]. The theories themselves are in [31], [23], [29], [30] and [22]
respectively.
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3. Nöbeling or lattice-theoretical topology

Before looking at Grundlagen der analytichen Topologie, a historical re-
mark should be made. Nöbeling’s PhD advisor was none other than
Menger. Nöbeling also worked as a research assistant with Menger until
1933 when he left Vienna for Erlangen to work with Otto Haupt.15

This obviously raises the question of whether Nöbeling’s research
on pointless topology is indebted to Menger. Considering the working
relationship from the late 1920s to the early 1930s, but also the fact
that Dimensionstheorie is listed in the bibliography of Grundlagen der

analytischen Topologie, Nöbeling had to know about Menger’s idea of
defining spaces independently of points. However, nothing suggests that
Nöbeling looked at pointless topology in the continuity of Menger. In
fact, Nöbeling’s papers of 1948 [25] and 1953 [26] in which he had pre-
viously published parts of his theory make no reference to Menger while
Grundlagen der analytischen Topology makes only one, but in relation
to continuous curve (see [27, p. 128]).

Putting this historical question aside, the title of Nöbeling’s book
naturally raises the question of what analytical topology is. Nöbeling
uses the expression as a synonym for general topology. Considering that
by 1954 the denominations “general topology” or even “set-theoretical
topology” were well-established, Nöbeling’s choice of terminology is at
the very least surprising, but intents to highlight the fact that analysis
is based on topology. In a footnote, he writes:

The name general topology is also usual. However, for a theory of the
foundations of analysis, the name analytic topology appears clearer to
us. Besides, the latter establishes a clearer delimitation with algebraic

topology.16 [27, p. VIII, n. 1]

This said, Nöbeling’s book is not about general topology in the usual
sense. The introduction actually makes it clear that the goal of the
book is to develop topology independently of points. Nöbeling starts by
pointing out that, because the fundamental concepts of analysis are that
of convergence of a sequence and continuity of a function, topological

15 For further biographical information on Nöbeling, see [7].
16 Es ist auch der Name allgemeine Topologie gebräuchlich. Für eine Theorie der

Grundbegriffe der Analysis erscheint uns jedoch der Name analytische Topologie deut-
licher. Außerdem liegt im letzteren eine klarere Abgrenzung gegenüber der algebraische
Topologie.
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spaces have traditionally been approached by means of the notions of
point and point-set. He then suggests that making abstraction of the
points would provide clearer foundations for topology: “To clarify this
situation and also from a methodological point of view, it seems justified
to ask whether one could not initially do without the points and only
introduce them when they are really needed.17” [27, p. IX]

Nöbeling’s solution is to resort to the theory of posets and lattices.
Indeed, using the closure operator, topologies can be defined on posets.
So, for Nöbeling, the concept of topological space is derived from that
of topological poset and the theory of topological spaces is a particular
case of the theory of posets.

3.1. The theory of posets and lattices

Because it is a preamble to topology, the theory of posets and lattices is
the object of the first chapter of Grundlagen der analytischen Topologie

which, incidentally, is aptly titled “Preliminaries”18.
Before going any further, it must be said that the following does

not pretend to give an exhaustive presentation of that first chapter, but
simply to present notions that will be directly involved in the theory of
topological spaces.

Nöbeling starts by defining the concept of poset. A set B is a poset

if there is a binary relation ≤ such that, for all elements A, B and C,
the following axioms are satisfied:

Axiom V1. if A ≤ B ≤ C, then A ≤ C;
Axiom V2. if A ≤ B ≤ A, then A = B and conversely.19

An element of a poset is called a soma. Nöbeling takes the word from
Constantin Carathéodory to whom he refers in his 1948 paper Topologie

der Vereine und Verbänte (see [25, p. 1]).
Now, this terminological choice is in itself revealing. Carathéodory

coined the term “soma” in the late 1930s in the context of algebraic
theory of measure to designate elements of a Boolean algebra forming
sets that themselves had to be considered as elements of a set. These

17 Um diese Verhältnisse zu klären und auch vom methodischen Standpunkt aus
erscheint es gerechtfertig zu fragen, ob man nicht auf die Punkte zunächst verzichten
und sie erst dann einführen kann, wenn man sie wirklich braucht.

18 Vorbereitungen in German.
19 In contradistinction to the contemporary definition, Nöbeling does not require

≤ to be reflexive, but points out in a footnote that it a consequence of his axiom V2.
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elements were intended to be the equivalent of the points in the theory
of abstract spaces. However, Carathéodory did not want to call them
points because they did not agree with Euclid’s conception of a point
as that which is indivisible. He also did not want to refer to them as
sets because they have different properties. In particular, the sum of
uncountably many somas is not necessarily a soma.

For mathematical objects with properties so fundamental and impor-
tant, one must have a name that is neutral and suggests no false asso-
ciations. We will see that these objects are not always sets so the word
“set” cannot be used. The name “body” is also excluded because its
use would lead to misunderstandings; the “structures” introduced by
Ore are far too general. However, nothing prevents to talk of soma (täsÀma= body).20 [4, p. 304]

By designating the elements of posets as somas, Nöbeling is clearly taking
an abstract stance.21

As he will do with many notions introduced in the first chapter,
Nöbeling gives a set-theoretical example of poset which he says is the
most important for his purposes. Let B be a system of subsets. The
inclusion ⊆ between subsets defines a relation satisfying axioms V1 and
V2. The resulting poset is called the set-theoretical poset.22

Various notions related to posets are next introduced. For the defi-
nition of the concepts of lattice and, by extension, of topological space,
the following are especially important.

First, let B be a poset and (Ai)i∈I be a family of somas. A soma S is
an upper bound if for all i ∈ I, Ai ≤ S. A soma S is called a lower bound

if for all i ∈ I, S ≤ Ai. Each poset contains a unit and a zero, that is
two somas that are respectively an upper bound and a lower bound for
all the somas of the poset

Second, let B be a poset and (Ai)i∈I be a family of somas. A least

upper bound of the family (Ai)i∈I is a soma V such that (i) Ai ≤ V for

20 Für mathematische Objekte, die so grundlegende und wichtige Eigenschaften
besitzen, muß man einen Namen haben, der ganz neutral ist und keine falschen As-
soziationen erweckt. Wir werden sehen, daß diese Objekte nicht immer Mengen sind,
so daß die Bezeichnung „Menge“nicht benutzt werden kann. Der Name „Körper“, der
vieles für sich hätte, ist ebenfalls ausgeschlossen, weil sein Gebrauch zu Mißverständ-
nissen führen würde; die „Strukturen”, die Ore eingefürht hat, sind viel zu allgemein.
Nichts hindert aber Soma (tä sÀma = Körper) zu sagen.

21 For more on Carathéodory’s theory of somas, see [4, 5].
22 Mengenverein in German.
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all i ∈ I and (ii) if Ai ≤ B for all i ∈ I, then V ≤ B. V is then called
the join of the family and is noted

∨
Ai. A greatest lower bound of the

family is a soma D such that (i) D ≤ Di for all i ∈ I and (ii) if B ≤ Ai

for all i ∈ I, then B ≤ D. D is called the meet of the Ai’s and is noted
by

∧
Ai.

For example, if B is the set-theoretical poset whose elements are the
subsets of a set, the least upper bound and greatest lower bound are
simply the set-theoretical union ∪ and intersection ∩.

Third, let B a poset. A soma A of B is an atom if A is different from
zero and there is no soma B different from zero such that B < A. A poset
is atomic if every soma A of B can be represented as a join of atoms.

The notion of lattice is introduced by means of ∨- and ∧-posets. Let
B be a poset. B is a ∨-poset if, for any somas A and B of B, the join A∨

B exists and is in B. Likewise, B is a ∧-poset if the meet A∧B exists and
is in B for any somas A and B of B. A lattice is simply a ∨- and ∧-poset.

Some properties of lattices are then defined. Let B be a poset. B is
complete if, for any family of somas (Ai)i∈I , the join

∨
Ai and the meet

∧
Ai exist. B is distributive if A1 ∧ (A2 ∨ A3) = (A1 ∧ A2) ∨ (A1 ∧ A3).

Assuming that B has a unit E and a zero 0, then B is complemented if,
for each soma A, there is a soma cA such that A∨cA = E and A∧cA = 0.

In particular, a lattice that is distributive and complemented is
Boolean.

Another important notion is that of poset homomorphism. Let B and
B

′ be two posets. An homomorphism from B into B
′ is an assignment

Φ that associates to each soma A of B a soma A′ = ΦA of B
′ such

that A1 ≤ A2 entails ΦA1 ≤ ΦA2. A onto homomorphism is defined as
expected. A homomorphism Φ: B to (onto) B

′ is an isomorphism from
B to (onto) B

′ if ΦA1 ≤ ΦA2 entails A1 ≤ A2.

As an example, Nöbeling defines the notion of function between lat-
tices, specifying again that he considers it the most important. Let E and
E′ be two sets and E and E

′ be the respective complete lattices of their
subsets. Let every element p ∈ E be assigned to an element p′ = φp ∈ E′,
that is let φ be a function E → E′. This function φ determines a ho-
momorphism, also denoted φ, from E to E

′ by assigning to each set A

of E the set A′ of E′ whose elements are p′ = φp for p ∈ A. This homo-
morphism is called a function from E to E

′. Reciprocally, the function
φ : E → E

′ determines the function φ : E → E′ in a unique manner.
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3.2. Topological spaces as lattices

The 148-page long second chapter is dedicated to topological structures.
As hinted at previously, Nöbeling is able to define the concepts of topo-
logical space and, as a result, to develop topology on the sole basis of
the poset- and lattice-theoretical notions introduced in the first chapter.
From this perspective, general topology becomes part of the theory of
lattices and is developed independently of points. This would prompt
A. H. Stone to write in his review of Grundlagen der analystischen Topo-

logie that “on the whole the essential fundamentals of ‘point-set’ topology
have been fitted into this ‘pointless’ setting” [28]. As the considerations
below shall make clear, Nöbeling does so by adopting a top–down ap-
proach.

Nöbeling starts by defining the notion of a topology on a poset.23

Let B be a poset. A topological structure or topology on B is an endo-
morphism ⊤ assigning to each soma A a soma ⊤A = A of B called its
closure such that

Axiom H0. if A1 ≤ A2, then A1 ≤ A2;
Axiom H1. A ≤ A;
Axiom H2. A = A.24

A poset B equipped with such an endomorphism is called a topological

poset.

Let B be a topological poset. A soma A of B is closed if A =
A. Closed somas have the desired properties in that both the maximal
element of a topological poset and the meet of an arbitrary number of
closed somas, if they exist, are closed.

Let B be a ∨-poset with a minimal element 0. B has a classic

topology if it satisfies the following axioms which, as Nöbeling points
out, are nothing but Kuratowski’s closure axioms:

Axiom H1. A ≤ A;
Axiom H2. A = A;

23 The notion of a topology is actually defined for the first time in the section on
homomorphisms as an example of a reversible one. See [27, p. 17].

24 It should be pointed out that Nöbeling’s definition of topology marks a de-
parture within the lattice-theoretical approach in so far as Stone and his followers
defined the notion by means of prime ideals. Also, Nöbeling’s axioms are not some
early version of the conditions defining a Lawvere–Tierney topology in elementary
topos.
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Axiom H3. A1 ∨ A2 = A1 ∨ A2;
Axiom H4. 0 = 0.

In a classic topological poset, the join of a finite number of closed
somas is closed.

At this point, Nöbeling turns his attention to topological Boolean
lattices. Let B be a topological Boolean lattice. For any soma A of B,
the soma A = ccA is the interior of A. A soma A of B is open if A = A

and an open soma U is a neighborhood of A if A ≤ U . As the notations
A and A imply, the closure and interior operators are dual.

In particular, topological spaces are special instances of topological
Boolean lattices. In this regard, Nöbeling writes that “[t]he most impor-
tant examples of our theory are the topological spaces.25” [27, p. 47] A
topological space is a topological atomic complete Boolean lattice B. If
the topology of B is classic, then B is a classic topological space.

Having previously shown, using Stone’s representation theorem, that
any atomic Boolean lattice is isomorphic to a lattice of sets26, Nöbeling
points out that to any topological space corresponds a lattice of sets
whose subsets form a fixed set E. This set E and its elements are
respectively called the support and the points of the space.

Nöbeling’s study of topological spaces is oriented towards recuperat-
ing what he has identified in the introduction as the fundamental notions
of analysis, to wit convergence of a sequence and continuity of a func-
tion. For the first, he develops a theory of limits adapted to topological
posets.27

For the second, he uses poset homomorphisms which he defines as
follows. Let B and B

′ be two topological posets. A homomorphism
Φ: B → B is continuous if for any somas A and B of B such that
A ≤ B, ΦA ≤ ΦB.

In the case where Φ has an inverse, the above definition is equivalent
to the usual one, that is Φ is continuous if an only if, for any closed soma
A′ of B′, Φ−1A′ is a closed soma of B.

Continuous homomorphisms allow Nöbeling to define homeomor-
phisms. An isomorphism Φ: B → B

′ is a homeomorphism if Φ and
its inverse Φ−1 are continuous. As expected, properties invariant under
homeomorphisms are called topologically invariant.

25 Die wichtigsten Beispiele unserer Theorie sind die topologischen Räume.
26 See [27, Theorem 5.3, p. 31].
27 For this, see [27, §8].
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Since the notion of function is defined by means of that of homomor-
phism, a continuous function between two topological spaces is simply a
particular case of continuous homomorphism between topological posets.
Likewise, a function is said to be topological if it is a homeomorphism.

Nöbeling then gives a local condition for a function to be continuous.
Let E and E

′ be two topological spaces. A function φ : E → E
′ is con-

tinuous if and only if for each point p ∈ E and each neighborhood U ′ of
φp in E

′, there exists a neighborhood of p in E such that φ(U) ⊆ U ′. In
other words, a function is continuous if and only if it is at every point of
its domain. This is remarkable because it reverses the usual order. In
classic analysis, continuity in general is defined by means of continuity
at a point. In the lattice-theoretical framework, continuity at a point is
deduced from the definition of continuity in general.

In the third and last chapter of Grundlagen der analytischen To-

pologie, Nöbeling presents uniform structures as particular cases of the
theory of topological structures developed in the second chapter.

3.3. Pointless topology: an abstract algebraic theory

As seen in section 2, Menger’s interest in a point-free concept of topo-
logical space was motivated by analysis. More specifically, he wanted
to eliminate the conceptual tension generated by the two different treat-
ments of continuity  one for the real line and one for topological spaces.
To do so, he proposed to define topological spaces by generalizing the
construction procedure of the real numbers as nested sequences of ratio-
nal intervals. In this sense, his approach was bottom-up.

Nöbeling is also motivated by analysis. Indeed, he sees pointless
topology as a mean to provide analysis with better foundations. How-
ever, in contradistinction to Menger, Nöbeling takes a top–down ap-
proach in that he develops an abstract theory from which can be deduced
a theory of topological spaces.

Another aspect that sets apart Nöbeling’s approach to pointless
topology from Menger’s is its algebraic character. In this regard, it
puts forward a radically different conceptualization of space.

First, in Grundlegen der analytischen Topologie, a topological space
is a lattice, a topological atomic complete Boolean one to be exact. So,
a topological space is not so much to be thought of as set of points with
a spatial structure, but as a particular case of topological poset and, by
extension, of poset. Now, posets and lattices being algebraic structures,
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topological spaces have to be seen, not as geometrical or even analytical
objects, but as genuine algebraic objects.

Consequently, topological spaces no longer need to have a geometrical
inspiration. This disconnects topology from the geometrical background
it rose from historically and, simultaneously, widens its field of applica-
bility.

Second, general topology itself becomes algebrized insofar as the
methods by means of which topological spaces are studied are purely
algebraic. Historically, this idea certainly was not new and should be
attributed to Stone. Indeed, Stone duality had shown that the meth-
ods of modern algebra could be transferred to the study of topology
spaces. This possibility is a consequence of the equivalence of the theo-
ries of topological spaces and of Boolean algebras by virtue of which any
proposition about the latter can be translated into a proposition about
the former and vice-versa. In this sense, algebraic methods are only ap-
plied indirectly to topological spaces; what is really being manipulated
algebraically are Boolean algebras known to be equivalent (see [29, 30]).
In comparison, Nöbeling’s approach is much stronger for the inclusion
of topology into poset theory allows him to take the methods of poset
and lattice theory as the natural methods of general topology.

4. Conclusion

The analysis of Menger’s and Nöbeling’s respective idea of a point-free
definition of the concept of topological space attest of the evolution of
pointless topology during its pre-localic phase.

Menger’s topology of lumps was motivated by the double treatment
of continuity at play in the contexts of topological spaces and the real
line and was intended to allow for a generalization of the construction
of the real line. As such, Menger’s approach was a bottom-up one.

Working in the continuity of Stone, Nöbeling adopted an algebraic
point of view instead of Menger’s geometric one. Indeed, he derived
a theory of topological spaces from an abstract theory of posets and
lattices. To be specific, he used the closure operator to define the notion
of topological poset, that is a poset equipped with a topology, and then
defined the concept of topological space as a particular case. For this
reason, Nöbeling’s approach is top-down.
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Historically, the idea that the concept of topological space should be
independent from points was further developed in the context of locale
theory in the late 1950s and, a few years later, in the context of cate-
gory theory. Now, one remarkable aspect is that, even though lattices
remained relevant and the approach was just as abstract, these devel-
opments mark at least a partial departure from the lattice-theoretical
point of view, and especially from Nöbeling’s work. Indeed, Bénabou’s
referring to Nöbeling appears to be the exception rather the rule.28

This being said, to properly understand the transition from the lat-
tice-theoretical approach to the localic one, it should be kept in mind,
as Johnstone emphasizes (see [11, 12]), that the goals were considerably
different in both enterprises. Whereas Nöbeling was trying to recover the
classic concept of topological space which goes back to Hausdorff, locale
and category theorists were searching for a generalized concept of space.
The best example in this respect has to be Grothendieck’s concept of
topos.
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