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THE THEORY OF FORM LOGIC

So were it not for the mathematician’s bi-
assed interest he would invent a symbol-
ism which was completely symmetrical as
regards individuals and qualities.

Frank P. Ramsey, Universals

Abstract. We investigate a construction schema for first-order logical sys-
tems, called “form logic”. Form logic allows us to overcome the dualistic
commitment of predicate logic to individual constants and predicates. Du-
alism is replaced by a pluralism of terms of different “logical forms”. Indi-
vidual form-logical systems are generated by the determination of a range
of logical forms and of the formbased syntax rules for combining terms into
formulas. We develop a generic syntax and semantics for such systems and
provide a completeness proof for them. To illustrate the idea of form logic,
and the possibilities it facilitates, we discuss three particular systems, one
of which is the form-logical reconstruction of standard first-order predicate
logic.

Keywords: form logic, particular-universal distinction, three-valued logic,
logical form, Wittgenstein.

1. Introduction

First-order predicate logic (PL) presupposes the classification of the non-
logical terms into exactly two categories, individual and predicate terms,
and gives a formation rule for atomic propositions based on those cat-
egories: Atomic formulas are formed by combining an n-place predi-
cate and n individual terms. The commitment to exactly two types of
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non-logical terms comes with specific restrictions on the syntax rules
for atomic and quantified formulas. Given intuitive formalization rules,
“Black is beautiful”, “Rolling over the floor is fun” and “Russell has three
valuable properties” cannot be rendered in first-order predicate logic.
On the other hand, PL permits formalization of arguably meaningless
sentences like “The number 1 is rolling over the floor” and “Colorless
green ideas sleep furiously”.

Why should we accept the particular syntax of PL? Why should
we not classify the non-logical terms into, say, 42 different syntactical
categories and formulate rules which take account of this classification?
Such a syntax may result in a more restrictive system than predicate
logic, perhaps ruling out the two arguably meaningless sentences from
above. On the other extreme, why not shoehorn all terms into a single
syntactical category and advocate a more liberal system in which any
n-tuple of terms is a well-formed formula? Such a system would be
able to represent not only the notorious “Colorless green ideas sleep
furiously”, but also such syntactic oddities as “The number 3 is greater
than” and “Russell Frege”. Antecedently to any further argumentation,
the formation rule for atomic formulas in PL appears arbitrary and no
better off than possible alternatives.

For Gottlob Frege, the chosen syntax rules for atomic propositions
are by no means due to arbitrary choice, but grounded in the very nature
of sentences:

We shall not stop at equations and inequalities. The linguistic form of
equations is a statement. [. . . ] Statements in general, just like equations
or inequalities [. . . ], can be imagined to be split up into two parts;
one complete in itself, and the other in need of supplementation, or
“unsaturated”. Frege 1960/1891, p. 31

In the sentence “Caesar conquered Gaul”, Frege claims, “Caesar” is com-
plete, while “conquered Gaul” is incomplete: A sentence contains two
types of expressions, an incomplete concept-expression, standing for an
(incomplete) concept, and complete individual-expressions, standing for
(complete) objects. A complete sense, a “thought”, surfaces only where
the empty space of the concept is saturated by a (complete) object.
The dualistic syntax of predicate logic then arguably reflects the distinc-
tion between incomplete and complete sub-propositional terms. As the
quote suggests and context confirms, the Fregean claim that all sentences
contain an incomplete predicate and complete individual expressions is
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prompted by his analysis of identity. In identity statements, Frege holds,
there is an incomplete expression, “=” or “is identical to”, flanked by
two complete expressions, singular terms. Frege’s conception of identity
therefore seems to be the motivational basis for predicate-logical dualism.

Ludwig Wittgenstein criticized this view on identity. He famously
denies that there is an objectual identity relation at all: “That identity
is not a relation between objects is obvious” (1922, §5.5301). He elabo-
rates: “Roughly speaking: to say of two things that they are identical is
nonsense, and to say of one thing that it is identical with itself is to say
nothing” (Wittgenstein 1922, §5.5303).1 Wittgenstein concludes that a
proper symbolism must dispense with the identity sign. He proposes the
alternative option of showing identity and difference by means of nota-
tional choice: “Identity of the object I express by identity of the sign
and not by means of a sign of identity. Difference of the objects by dif-
ference of the signs” (Wittgenstein 1922, §5.53). In subsequent passages
(§§5.531–5.5321), Wittgenstein attempts to undermine indispensability
arguments by providing an identity-free notation of first-order formulas
involving the identity sign. Only much later Jaakko Hintikka (1956)
and, more recently, Kai F. Wehmeier (e.g., 2004) succeeded in formulat-
ing first-order predicate-logical systems representing a Wittgensteinian
predicate logic, which dispense with the identity sign while maintaining
the expressive power of predicate logic with identity.2

Wittgenstein’s criticism of identity has found some response amongst
philosophers and logicians, but a more basic discontent, pertaining to
Frege’s analysis of propositions in general, has been largely ignored or at
least insufficiently adverted to.3 If there is no objectual identity relation,
an identity statement does not express a Fregean thought (cf. Wittgen-
stein 1922, §§6.2–6.21) and a fortiori is not amenable to an analysis in

1 Wittgenstein’s criticism clearly echoes an objection which already Bertrand
Russell considered in his Principles of Mathematics, §64: “The question whether
identity is or is not a relation, and even whether there is such a concept at all, is
not easy to answer. For it may be said, identity cannot be a relation, since, where
it is truly asserted, we have only one term, whereas two terms are required for a
relation. And indeed identity, an objector may urge, cannot be anything at all: two
terms plainly are not identical, and one term cannot be, for what is it identical with?”
(1903, p. 63).

2 In a recent paper (forthcoming), Wehmeier even claims that we can dispense
with any form of objectual identity in ordinary language, by giving a different expla-
nation of apparent identity statements.

3 A notable exception is, of course, Ramsey (1925).
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terms of the distinction between complete and incomplete expressions.
Identity statements therefore cannot provide the model for analyzing
atomic propositions. But in as much as this analysis is unsupported, so
is the Fregean view that the syntax of PL reflects the logical syntax of
ordinary language.

In contrast to Frege, Wittgenstein understands atomic sentences not
as combinations of predicate and individual terms: “The atomic propo-
sition consists of names. It is a connexion, a concatenation, of names”
(Wittgenstein 1922, §4.22). By calling all non-logical constants ‘names’,
Wittgenstein does not, however, reject the idea of incomplete terms. On
a plausible interpretation, he suggests that all names are incomplete, re-
ferring to objects (Wittgenstein 1922, §§2.13–2.131, §3.22) which them-
selves are incomplete constituents of states of affairs (Wittgenstein 1922,
§2.01). The Wittgensteinian alternative to Frege is therefore not the re-
jection of incompleteness, but its generalization. Any sub-propositional
term is incomplete.4

This opens up new syntactical possibilities. While Frege claims that
all atomic propositions essentially possess the same syntactical structure
(n-place predicate, n individual terms), Wittgenstein thinks that they
can be of very different forms. Restricting himself to the simplified model
of sentences containing a subject and a one-place predicate, he says:

The fact that we use subject-predicate propositions is only a matter
of our notation. The subject-predicate form does not in itself amount
to a logical form and is the way of expressing countless fundamentally
different logical forms [. . . ]. One difficulty in the Fregean theory is
the generality of the words ‘concept’ and ‘object’. For even if you can
count tables and tones and vibrations and thoughts, it is difficult to
bracket them all together. Concept and object: but that is subject and
predicate. And we have just said that there is not just one logical form
which is the subject-predicate form. Wittgenstein 1980/1964, §93

According to Wittgenstein, the subject-predicate form of ordinary-
language propositions does not determine a single logical form and a
fortiori not the logical form of a proposition. “Russell is wise” and “2
is even” do not possess the same logical form, for this would mean that

4 For this interpretation see, e.g., Eric Stenius 1976, p. 80: “According to what
I believe to be the theory which Wittgenstein tends to embrace in his Tractatus all

‘things’ are what Frege calls ‘unsaturated’.” Ramsey (1925, pp. 403, 408), influenced
by Wittgenstein, also characterizes objects as incomplete. For further discussion, see
Freitag 2009, pp. 20 ff.
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we could swap the predicates salva congruitate. Exchange of the ‘pred-
icates’, however, would result in meaningless strings of signs and there-
fore violate the conditions on a proper symbolism. In a Wittgensteinian
Begriffsschrift, as we might call a system which respects Wittgenstein’s
demands, all well-formed propositions are meaningful, i.e., express pos-
sible states of affairs.

Wittgensteinian “names” (encompassing, recall, ordinary ‘predi-
cates’) are all incomplete, but they are not all incomplete in the same
way. A name is classified with respect to its “logical form”, determin-
ing its possibility of combining, together with other names, into atomic
propositions representing possible atomic states of affairs. “Russell” and
“the number 2” fall into different categories since they have different
logical forms. Where Frege classifies non-logical terms with respect to
their being incomplete or not, Wittgenstein classifies them according to
the specific ways in which they are incomplete. This change of per-
spective generates the possibility of replacing the Fregean dualism with
a pluralism of terms of different forms and hence the possibility of an
alternative syntax for atomic propositions.

Our aim is not to settle the dispute on incompleteness between Frege
and Wittgenstein, nor even to decide whether it is an appropriate dispute
in the present context. The mere possibility of disagreement concerning
the question of the logical form of atomic propositions suggests that the
PL-syntax of atomic formulas is not indisputable. Alternative logical
systems are conceivable. Pending further argumentation, PL is only one
of many possible systems, the choice of and justification for which will
depend on our needs and persuasions.

The aim of this paper is the investigation of a construction schema for
logical systems which does justice to the possibility of choice and there-
fore allows the implementation of arbitrary syntactic classifications of
the non-logical terms. Besides a Fregean predicate logic and a Wittgen-
steinian Begriffsschrift, the schema should also permit formal languages
in which there are, say, exactly 42 categories of non-logical terms, and
systems with no category distinctions at all. In deference to Wittgen-
stein, we call this construction schema form logic and the individual
systems form-logical systems.

Here is an informal synopsis of form-logic. We first introduce the
syntax. While in first-order predicate logic atomic formulas are defined
by means of predicate terms and individual terms, i.e., have the form
Pn(τ1 . . . τn) where n is the arity of the predicate P and the τi’s are in-
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dividual terms, in form-logical systems atomic formulas are sequences of
terms simpliciter, i.e., have the form τ1 . . . τn. However, not any sequence
corresponds to a well-formed formula. In each form-logical system S the
terms (i.e. the constants and variables) of the alphabet are partitioned
into so-called “term-form classes”, Ti. S is equipped with a class ST of
finite sequences of term-form classes. A well-formed sequence of terms
respects the forms of the occurring terms: only sequences of terms whose
respective sequence of term-form classes is in ST are well-formed. Pred-
icate logic is then merely a special form-logical system.5

We present a semantics for form-logic, in which we assign to any
term an object of the domain. Truth is then defined with respect to
an extension and an anti-extension, which are sets of tuples of objects.
Intuitively, the extension is the set of possible (according to the system)
and obtaining atomic states of affairs, and the anti-extension is the set
of possible (according to the system) but non-obtaining atomic states of
affairs. It will be seen that many form-logical systems, not the form-
logical reconstruction of PL, however, are three-valued.

Once the construction schema has been introduced, we discuss three
sample form-logical systems. First, we present a simple system without
any category distinctions. Then we discuss the form-logical reconstruc-
tion of predicate logic. Finally, we illustrate the idea of a Wittgensteinian
Begriffsschrift with respect to a toy universe.

Certain meta-logical results are available. A proof for the strong
completeness of all form-logical systems will be given in the appendix.

2. The Formal System of Form Logic

In this section, we present the construction schema for form-logical sys-
tems.

Alphabet.

(i) Terms: constants: a1, a2, . . . ; variables: x1, x2, . . .

5 Since form logic is not distinctive with respect to issues surrounding identity,
we will construct the system without identity. Systems with an identity sign can
be easily formulated. Alternatively, it is also possible to incorporate the Hintikka-
Wehmeierstyle of dispensing with identity, while obtaining the same expressive power
as in a system with identity.
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(ii) Logical constants: propositional connectives: ∨, ¬;6 quantifier: ∀.7

(iii) Punctuation: parentheses: (, )

Syntax. To every form-logical system S there belongs a partition of the
set T of terms. The equivalence classes introduced by the partition are
called term-form classes. The partition must be chosen such that if there
are variables in a term-form class, then there are countably infinitely
many variables in the respective term-form class. ST

∗ is the set of the
term-form classes of S. The function Sf

T : T → ST
∗ maps each term to

its term-form class. To every form-logical system S there also belongs a
set of finite sequences of term-form classes, SS

T.
The syntax rule for atomic formulas is the following:8

τ1 . . . τn is an atomic well-formed formula of the form-logical system S
iff fT(τ1) . . . fT(τn) ∈ SS

T.

The syntax rules for molecular formulas are those of (PL). The set of
well-formed formulas of a form-logical system S is thus uniquely deter-
mined by Sf

T and SS
T, onto which form logic as such does not impose

any substantial restrictions. Form logic therefore has the syntactical
variability which we have demanded; it allows for a great number of
different form-logical systems.9

Semantics. A structure A is defined as a pair 〈D, i〉 consisting of a non-
empty set D, called the domain of A, and a function i from the set of
constants into the domain. A variable assignment β is a function from
the set of variables into a subset DV of the domain. To every system
S belongs an interpretation I, which is a pair 〈A, β〉 consisting of a
structure A = 〈D, i〉 and a variable assignment β. We define:

(i) I (aj) = i(aj) for all constants aj

(ii) I (xj) = β(xj) for all variables xj ,
(iii) I (τ1 . . . τn) = (I(τ1), . . . , I(τn)) for all atomic formulas τ1 . . . τn.

If fT(aj) 6= fT(ak) (for arbitrary j, k ∈ N), then i must be chosen such
that i(aj) 6= i(ak).

6 The other propositional connectives (“∧”, “→”, “↔”) can be defined via these
connectives in the usual manner.

7 The existential quantifier “∃x” can be introduced as an abbreviation for “¬∀x¬”.
8 Here and in what follows, we use τ1, . . . , τn as meta-language parameters for

terms, and ϕ, χ, ψ for formulas.
9 In the following, we avoid indexing with S wherever context disambiguates.
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Note that, semantically, we treat all non-logical terms alike; in par-
ticular, the function i assigns to all non-logical constants elements of
the domain. This formally encodes Wittgenstein’s view that all sub-
propositional signs are names and that names stand for, or represent,
simple objects.

Synontix. To define truth in a model, we first introduce a classification
of the elements of the domain into object-form classes. As the syntax
states the rules for the combination of the signs, the synontix states the
rules for the combinations of the ontic elements, i.e., the elements of the
domain.

We first choose an enumeration of the term-form classes: T1, T2, . . . .
Then, we choose a partition of the domain D into object-form classes Oj

as follows: If aj ∈ Tk then i(aj) ∈ Ok, for all Tk ∈ T∗ and j ∈ N. Form
classes with an identical index are said to correspond to each other (i.e.
Tk and Ok are corresponding form-classes for all k ∈ N). Objects without
a name are classified in arbitrary object-form classes corresponding to
term-form classes with variables.10 (Note that we allow object-form
classes that contain only unnamed objects. Such an object-form class
then corresponds to a term-form class that only contains variables.)

O∗ is the set of all object-form classes. The function fD : D → O∗

maps every object of the domain to its object-form class.
To every form-logical system S there belongs a set SS

O of finite
sequences of object-form classes. We choose SS

O such that for every
sequence of term-form classes in SS

T there is a corresponding sequence
of object-form classes in SS

O, where a sequence of object-form classes
and a sequence of term-form classes are called corresponding if and only
if there are corresponding form classes at all places of the sequences. No
other sequences of object-form classes appear in SS

O.
This construction guarantees that every well-formed atomic formula

expresses a “legitimate” (atomic) state of affairs, i.e., a state of affairs
such that its respective sequence of object-form classes is in SS

O.

Truth in a model. We choose a set E of sequences of elements of the
domain, called the extension, and a set E−, called the anti-extension,

10 The correspondence between term-form classes and object-form classes im-
plements Wittgenstein’s idea of isomorphy, a cornerstone of his picture theory of
meaning. A picture, and hence a sentence, and the pictured reality must have in
common the “logical form” (Wittgenstein 1922, §2.161–2.2).
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such that

E ∩ E− = ∅ and E ∪ E− = {a1, . . . , an | fD(a1) . . . fD(an) ∈ SO}.

Intuitively, E ∪ E− is the set of legitimate atomic states of affairs of a
logical system S. The extension E is then the set of obtaining atomic
states of affairs and the anti-extension E− is the set of non-obtaining
states of affairs. A model IE,E− is a triple consisting of an interpretation,
an extension and an anti-extension: IE,E− = 〈I, E, E−〉.

Form-logic permits the construction of three-valued systems. We will
explain the reasons for this in the next paragraph after we have given
the exact truth-conditions for molecular formulas. We indicate the third
truth-value with “∗” and use a strong Kleene semantics for molecular
formulas:

IE,E−(τ1 . . . τn) = true :⇔ I(τ1, . . . , τn) ∈ E,

IE,E− (τ1 . . . τn) = false :⇔ I(τ1, . . . , τn) ∈ E−,

IE,E− (¬ϕ) = true :⇔ IE,E−(ϕ) = false,

IE,E− (¬ϕ) = false :⇔ IE,E−(ϕ) = true,

IE,E−(ϕ ∨ ψ) = true :⇔ IE,E− (ϕ) = true or IE,E− (ψ) = true,

IE,E−(ϕ ∨ ψ) = false :⇔ IE,E− (ϕ) = false and IE,E−(ψ) = false,

IE,E−(∀xϕ) = true :⇔ IE,E−a/x(ϕ) = true for all a ∈ DV ,11

IE,E−(∀xϕ) = false :⇔ IE,E−a/x(ϕ) = false for at least one
a ∈ DV ,

IE,E− (ϕ) = ∗ :⇔ neither IE,E− (ϕ) = true nor IE,E− (ϕ) = false.

Form-logical semantics differs from classical model-theoretical semantics
in that the truth-values of the formulas do not supervene on the given
interpretation.

Paracompleteness. As already noted, there are form-logical systems
which are three-valued, i.e., for which ϕ ∨ ¬ϕ is not a theorem. Such
systems are paracomplete.

Closed atomic formulas are either true of false. Open and quantified
formulas can take on the third truth-value, because it can happen that
one has to take into account non-legitimate states of affairs to evaluate

11 As usual, βa/x (with β being an assignment and a ∈ DV ) is defined as follows:
βa/x(y) = β(y) if y 6= x and βa/x(y) = a if y = x. Furthermore, Ia/x (with a ∈ DV

and I = (A, β)) is defined as (A, βa/x).
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them. For illustration, consider the following example: DV = {a1, a2},
a1 ∈ O1, a2 ∈ O2, SO = {O1O2}. Let there be just one constant, a1,
and the variable x.12 Be i(a1) = a1, E = {〈a1, a2〉}, and E− = ∅. Now,
consider the quantified formula “∀x a1x”. To evaluate it, we have to
consider assignments that map x on a1 and assignments that map x on
a2. Because of 〈a1, a1〉 /∈ E, the formula is not true. But because of both
〈a1, a2〉 /∈ E− and 〈a1, a1〉 /∈ E−, the formula is not false either. In gen-
eral, a universally quantified formula ∀xϕ is not true, iff ϕ is not satisfied
by all objects in DV . And the formula is not false, iff it has no counter-
instance, i.e., iff there is no object a ∈ DV such that (Ia/xϕ) ∈ E−.13

One could modify the semantics such that all closed formulas of form-
logical systems come out as true or false, but those modifications would
have problematic consequences. We will discuss by way of example two
possible modifications of the semantics.

(a) The first proposal goes as follows (for ϕ atomic):

IE,E−(∀xϕ) = true :⇔ IE,E−a/x(ϕ) = true for all
a ∈ {o ∈ DV | Io/x(ϕ) ∈ SO}.

IE,E−(∀xϕ) = false :⇔ IE,E−a/x(ϕ) = false for at least one
a ∈ {o ∈ DV | Io/x(ϕ) ∈ SO}.

The idea is that only legitimate states of affairs are considered in the
evaluation of the formula. Problems for this proposal arise when quantifi-
cations over molecular formulas are considered. How are we to evaluate
the formula ∀xϕ∧ψ where x occurs free in both ϕ and ψ? The obvious
proposal is the following (for ϕ, ψ atomic):

IE,E−(∀xϕ ∧ ψ) = true :⇔ IE,E−a/x(ϕ ∧ ψ) = true

for all a ∈ {o ∈ DV | Io/x(ϕ) ∈
SO} ∩ {o ∈ DV | Io/x(ψ) ∈ SO}.

This proposal has the consequence that the formula ∀xϕ∧ψ can be true
in a model, where ∀xϕ is false. Just assume that there is an a0 with
a0 ∈ {o ∈ DV | Io/x(ϕ) ∈ SO} and a0 /∈ {o ∈ DV | Io/x(ψ) ∈ SO} and
that Ia0/xϕ is false.

12 There are countable infinite further variables, but this need not bother us here.
13 Open formulas can also receive the third truth-value. Consider the open for-

mula ax and assume that fD(i(a))fD(β(x)) /∈ S
O. Then, the interpretation of ax is

neither an element of the extension nor of the anti-extension. This could be avoided
by demanding that the assignment of the variables respects their form class (just like
the interpretation of the constants does): If xj ∈ Tk then β(xj) ∈ Ok, for all Tk ∈ T

∗

and j ∈ N (in other words: β[Tk] ⊆ Ok, for all k such that there is a Tk ∈ T
∗).
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We don’t want to buy into this consequence and therefore reject this
proposal.

(b) The second proposal is to modify the semantics for quantified
formulas as follows:

IE,E−(∀xϕ) = true :⇔ IE,E−a/x(ϕ) = true for all a ∈ Ok

where x ∈ Tk.

IE,E−(∀xϕ) = false :⇔ IE,E−a/x(ϕ) = false for at least one
a ∈ Ok where x ∈ Tk.

The idea is that only elements of the object-form class that corresponds
to the term-form class of the bound variable are considered in the evalua-
tion of the formula. This would correspond to a sortal logic for variables.
We shall point to three unwanted consequences of this modification:

(i) The modification allows that the formula ∀xϕ is true in a model,
while the formula ϕa/x is false. Just assume that i(a) /∈ fD(β(x)).
Translating this into natural language, it would mean, e.g., that
there is a model where “everything is rolling over the floor” is true,
but “Russell is rolling over the floor” is false.

(ii) According to the modified semantics, we cannot substitute bound
variables salva veritate, even if the resulting formulas are well-
formed. It can be the case that ∀xϕ is true in a model and ∀y ϕ y/x
is false. Just assume that fD(β(y)) 6= fD(β(x)).

(iii) The variable-domain is not, in general, an object-form class itself
and, thus there will usually be no term-form class which corre-
sponds to the variable-domain. With the modified semantics, we
would not in general have a device for quantifying over the whole
variable-domain, but only over subsets of it. This is a severe re-
striction on the expressivity of the formal language.

These consequences appear problematic enough to motivate investiga-
tion of an alternative. We therefore propose a three-valued semantics.
Though form-logical systems will usually be three-valued, some turn
out to be two-valued. In Section 3, we discuss three different form-
logical systems. The most liberal form-logical system (MSL) and the
form-logical reconstruction of first-order predicate logic (FPL) turn out
to be two-valued, because in these systems all elements of DV are in
the same object-form class and this object-form class corresponds to the
only term-form class that contains variables. A third system, illustrating
a Wittgensteinian Begriffsschrift, will indicate the source for paracom-
pleteness in most form-logical systems.
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Completeness. The calculus of the general form logic is a modification
of the standard calculus for a three-valued strong Kleene logic. There
also exists a proof of the completeness of all form-logical systems. The
completeness of the form-logical reconstruction of predicate logic, as of
any other form-logical system (see below), is then a consequence of this
general result. The strategy of the completeness proof is as follows: we
show that for every consistent set X of formulas and every formula ϕ not
deducible from X there is a consistent set of formulas that is deductively
closed, contains examples, is strongly disjunctive and does not contain
ϕ as a member. This set can then be used to define a model such that a
formula is true in the model if and only if it is a member of the set. It
then follows immediately that X � ϕ implies X ⊢ ϕ. (See the appendix
for the proof in full.)

3. Three Form-Logical Systems

We present three specific form-logical systems: (a) We explicate the
simplest form-logical system (MSL), in which all terms are classified in
the same form class. (b) We show that first-order predicate logic can
be translated into a form-logical system (FPL); thus classical first-order
predicate logic can be understood as a syntactical specialization of form
logic. (c) We illustrate the idea of a Wittgensteinian Begriffsschrift,
where a sequence of signs is a well-formed atomic proposition iff it cor-
responds to an atomic possibility. For ease of application, assume that
our systems share the following alphabet and structure:

The alphabet:

(i) Variables: x1, x2, . . .
(ii) Constants: Russell, the egg, 1, is poached, is rolling over the floor,

is (numerically) greater than, is fun.

The structure A is the pair 〈D, i〉 defined as follows:

D = {Russell, Frege, the egg, the number 1, the property of being
poached, the property of rolling over the floor, the relation of being
greater than, the property of being fun}.

The function i is defined as follows:

i(Russell) = Russell; i(the egg) = the egg; i(1) = the number 1;
i(is poached) = the property of being poached;
i(is rolling over the floor) = the property of rolling over the floor;
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i(is greater than) = the relation of being greater than;
i(is fun) = the property of being fun.

Note that the domain contains an unnamed object, namely Frege.

a. The minimally syntactical form logic (MSL)

In order to obtain the most liberal form-logical system, we choose the
trivial partition for the set T of all terms; all terms are in the same
term-form class T0 : T0 = T .

The set of sequences of term-form classes, MSLS
T, is the set of all

finite, non-singleton sequences of T0 :MSL ST = T2
0 ∪T3

0∪ . . . (where Ti
0

is the i-ary Cartesian product of T0).
The co-domain DV of the assignment function is the domain D it-

self: DV = D. MSL is two-valued, because MSLD
V = D is the only

object-form class, O0, and O0 corresponds to the only term-form class
containing variables, namely T0.

MSL has minimal syntax rules: all finite, non-singleton sequences of
terms are well-formed. Here are some examples of well-formed atomic
and quantified formulas of MSL:
Russell is rolling over the floor; the egg is poached; rolling over the floor
is fun; Russell is poached; the egg is greater than 1; is greater than is
poached; the number 1 is greater than; Russell Russell; ∀x1(x1is rolling
over the floor); ∀x2(the eggx2); ∃x3∃x5(x3x5).

Choose the extension E and the anti-extension E− as you like (as long
as E ∩E− = ∅ and E ∪E− = {a1 . . . an | fD(a1) . . . fD(an) ∈MSL SO}.
For the sake of definiteness, choose E and E− as follows:

E = {〈 the egg, the property of being poached〉, 〈the egg, the prop-
erty of rolling over the floor〉},

E− = {a1 . . . an | fD(a1) . . . fD(an) ∈MSL S
O}\E.

With this choice of E and E−, e.g., the formula The egg is poached is
true, because of 〈i(the egg), i(is poached)〉 ∈ E. The formulas Russell is
poached and Russell Russell are false since 〈i(Russell), i(is poached)〉 ∈
E− and 〈i(Russell), i(Russell)〉 ∈ E−. The unrestrictive syntax rules
have as a consequence that many ‘meaningless’ strings of signs appear as
well-formed formulas. Some may perceive this to be a sign of excessive
liberalism. We see no problem in this consequence, since  a sensible
choice of extension and anti-extension presupposed  the meaningless



376 Wolfgang Freitag and Alexandra Zinke

strings of signs will not come out as true. For many purposes, e.g.,
the formalisation of ordinary-language arguments and proofs, MSL is as
useful as any of its form-logical competitors.

b. The form-logical reconstruction of first-order predicate logic (FPL)

We can construct a form-logical system which exactly matches classical
first-order predicate logic. In this system, only a proper subset of the well-
formed formulas of MSL is well-formed (assuming the same alphabet).

The constants are divided into exactly n + 1 term-form classes Ti

(for some n ­ 1). All variables are in term-form class T0. Intuitively,
the form class T0 is the form class of the individual constants and the
variables, and form class Ti (for 1 ¬ i ¬ n) is the form class of the
relations of arity i. If we conceive of all form classes Ti (for 1 ¬ i ¬ n)
as collectively capturing all relations, this classification of terms captures
the dualism of terms in predicate logic.

We determine the set of term-form class sequences as follows:

FPLS
T={TiT

i
0 | i­1} (where Ti

0 is the sequence of i occurrences of T0).

The co-domain of the assignment function is O0 : FPLD
V = O0. FPL

is two-valued, because FPLD
V = O0 corresponds to T0, which is the only

term-form class containing variables. Thus, in FPL the quantifiers range
only over the domain of individuals (traditionally conceived).

In FPL, the terms of our example are classified into term-form classes
as follows:

T0 = {Russell, 1, the egg, x1, x2, . . . }; T1 ={is poached, is rolling
over the floor, is fun}; T2 = {is greater than}. The objects are classified
into object-form classes as follows: O0 = {Russell, Frege, the number 1,
the egg}; O1 = {the property of being poached, the property of rolling
over the floor, the property of being fun}, O2 ={the relation of being
greater than}.

Here are some examples of atomic and quantified well-formed for-
mulas of FPL: Russell is rolling over the floor ; the egg is poached; the
egg is greater than 1 ; Russell is poached; 1 is rolling over the floor;
∀x1(x1is poached); ∃x2(x2is rolling over the floor). Examples of atomic
and quantified formulas that are not well-formed are: Russell Russell;
being greater than 1 is poached; being poached is rolling over the floor ;
rolling over the floor is fun; ∀x2(the egg x2).
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FPL is much more restrictive than MSL and thus avoids some “mean-
ingless” strings of signs to come out as well-formed. However, it still
allows the arguably meaningless The egg is greater than 1 and Russell is
poached as well-formed formulas, while it rules out the arguably mean-
ingful (though certainly false) Rolling over the floor is fun.

c. A Wittgensteinian Begriffsschrift (W)

An especially interesting form-logical system conforms to the demands of
Wittgenstein’s Tractatus. It constitutes a Wittgensteinian Begriffsschrift
where all and only those sentences expressing metaphysically possible
atomic states of affairs  Wittgenstein’s “meaningful” atomic proposi-
tions  are treated as well-formed. This can be achieved by a suitable
classification of the terms into form classes, such that two terms are in
the same form class if and only if they have the same Wittgensteinian
logical form, i.e., the same combinatorial possibilities. In such a system
first-order possibility is represented already in form-logical syntax. We
will now formulate such a modally adequate Wittgensteinian Begriffs-
schrift for the alphabet and the structure introduced above (we assume
an intuitive, pre-theoretical understanding of the atomic possibilities).

The terms are divided into term-form classes as follows: Russell ∈ T1;
the egg ∈ T2; 1 ∈ T3; is poached ∈ T4; is rolling over the floor ∈ T5;
is greater than ∈ T6; is fun ∈ T7. Additionally, let there be countably
infinitely many variables in every term-form class.

The objects of D are divided into object-form classes as follows: O1 =
{Russell, Frege}, O2 = {the egg}, O3 ={the number 1}, O4 ={the prop-
erty of being poached}, O5 = {the property of rolling over the floor},
O6 = {the relation of being greater than}, O7 ={the property of be-
ing fun}.

We determine the set of term-form class sequences as follows:

WST = {T1T5,T2T4,T2T5,T6T3T3,T5T7}.14

The set of object-form class sequences isthen as follows:

WSO = {O1O5,O2O4,O2O5,O6O3O3,O5O7}.

The co-domain of the assignment function is D: WD
V = D.

14 For the sake of illustration, we ignore that, arguably, Wittgenstein would not
have accepted the proposition ‘The number 1 is greater than the number 1’ as well-
formed, since this is a necessary atomic falsehood.
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Choose E and E− as you like (as long as E ∩E− = ∅ and E ∪E− =
{a1 . . . an | fD(a1) . . . fD(an) ∈ WSO}). For the sake of definiteness,
choose E and E− as follows:

E = {〈 the egg, the property of being poached〉, 〈the egg, the prop-
erty of rolling over the floor〉},

E− = {〈 Russell, the property of rolling over the floor〉, 〈 Frege, the
property of rolling over the floor〉, 〈the property of being greater than,
the number 1, the number 1〉, 〈the property of rolling over the floor, the
property of being fun〉}.

The set WST is chosen such that exactly those atomic formulas that
express possible states of affairs are well-formed. We will illustrate the
syntax of W with some examples. We start with formulas without vari-
ables, continue with open formulas and finally give some examples of
quantified formulas:

(i) Well-formed: Russell is rolling over the floor ; the egg is poached;
the egg is rolling over the floor ; rolling over the floor is fun.

(ii) Not well-formed: The egg is greater than 1 ; Russell is poached; 1
is rolling over the floor ; The egg is greater than; Russell Russell.

Because of E ∪ E− = {a1 . . . an | fD(a1) . . . fD(an) ∈ WSO}, all well-
formed atomic formulas without variables are either true or false. To
discuss some examples of atomic formulas with variables, let xi ∈ Ti for
(i ∈ {1, . . . , 7}). We begin with open formulas.

(i) Well-formed: x1 is rolling over the floor ; x2 is rolling over the floor
x2 is poached; the egg x4; x5x7.

(ii) Not well-formed: x3 is rolling over the floor ; x1 is poached; the egg
x7; x3x5.

Whether a formula with free variables is well-formed depends on the
term-form classes of the free variables. Variables of different term-form
classes are not, in general, substitutable salva congruitate.

The truth-value of an open formula depends on the variable-assign-
ment β, which assigns an arbitrary element of DV to each variable. If
β(xi) = the egg, then the formula xi is rolling over the floor gets assigned
the truth-value true. If β(xi) = Frege, then the formula gets assigned
the truth-value false. And if β(xi) = the number 1, then the formula
gets assign the third truth-value “∗”.

Finally, here are some examples of quantified formulas:
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(i) Well-formed:
∀x1(x1 is rolling over the floor); ∃x2(x2 is rolling over the floor);
∀x2(x2is poached); ∀x4 (the egg is x4); ∃x5∃x7(x5x7).

(ii) Not well-formed:
∀x3(x3 is rolling over the floor); ∃x1(x1 is poached); ∀x7 (the egg
x7); ∃x3∃x5(x3x5).

Again, variables of different term-form classes are not, in general, sub-
stitutable salva congruitate. The truth-values of the quantified formulas
are as follows: The formula ∀x1(x1is rolling over the floor) gets assigned
the truth-value false, because, e.g., 〈Frege, the property of rolling over
the floor〉 ∈ E− (and Frege ∈ DV ). The formula ∃x2(x2 is rolling over
the floor) gets assigned the truth-value true, because 〈the egg, the
property of rolling over the floor〉 ∈ E (and the egg ∈ DV ). The formula
∀x2(x2 is poached) gets assigned the truth-value “∗”. The formula is not
false, because there is no object a ∈ DV with 〈a, the property of being
poached〉 ∈ E−. The formula is not true either, because, e.g., 〈Russell,
the property of being poached〉 /∈ E. Intuitively speaking, ∀xϕ gets
assigned the third truth-value iff (i) all objects in DV that can possibly
satisfy ϕ, do satisfy ϕ, and (ii) there is at least one object in DV that
cannot possibly satisfy ϕ. And ∃xϕ gets assigned the third truth-value
iff (i) there is no object in DV that satisfies ϕ, and (ii) there is at least
one object in DV that cannot possibly satisfy ϕ. Given a suitable multi-
plicity of form classes and no restriction on the domain for the variables,
a Wittgensteinian Begriffsschrift will always come out as three-valued.
It should be noted that three-valuedness is introduced by open and quan-
tified formulas only. Atomic propositions are always either true or false.

4. Conclusion

Form logic does not rest on the dualistic presupposition of PL but rather
allows for any number of different types of terms and is thus syntactically
more general than PL. This provides the possibility of systems with arbi-
trary sets of well-formed atomic formulas. MSL is the most liberal system
in that it harbours a single term-form class only and allows all sequences
of terms as well-formed. PL can be understood (ignoring arity-differences
for predicates) as a dualistic specialization of form logic. While form-
logical systems are often three-valued, MSL and FPL are two-valued.

Generic form logic does not determine a single system, but presents
us with an infinite number of form-logical alternatives. The individ-
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ual choice will depend, for example, on the purpose the system is to
fulfil and on the metaphysical and linguistic background conceptions. A
Fregean will opt for FPL, since its dualism may be taken to represent the
distinction between complete and incomplete non-logical terms. More
generally, a philosopher who holds that language essentially adheres to
the subject-predicate form, perhaps because he believes language to re-
flect the metaphysical dualism between individuals and universals, may
equally opt for FPL. Form logic is able to accommodate the convictions
of conservative term dualists.

Philosophers of different persuasions, however, might wish to repre-
sent their alternative views also in the syntax of the formal language they
work with. Ramsey (1925), MacBride (2005) and Freitag (2009) have
argued that none of the traditional criteria for drawing the distinction
between individuals and universals is adequate. As an alternative to the
traditional dualism, one might advocate ontological monism, the view
that all sub-propositional entities are of one and the same type. Corre-
spondingly, one might want to propose syntactic monism and hence use
MSL rather than FPL as one’s logic.

Logico-galactic hitchhikers, again, while also rejecting ontological du-
alism, favour a view according to which entities, and the corresponding
names, fall not into one, but into exactly 42 form classes. They then
prefer systems considerably more complex than both FPL and MSL,
which are perfectly functioning form-logical systems nevertheless.

Still other philosophers might want to put their form-logical system
to modal use and pursue the idea of a Wittgensteinian Begriffsschrift.
They will construct their systems in such a manner that the respective
names are, like the corresponding objects, classified in accordance to
their combinatorial possibilities (pre-theoretically so conceived). Then,
exactly the contingent atomic propositions are well-formed. This kind
of pluralism represents non-iterated modality already in the syntax of
the system. Modal facts would not, to invoke Wittgenstein’s famous
distinction, be said, but shown in the rules of syntax of the system. As
a Wittgensteinian predicate logic à la Hintikka/Wehmeier does without
the identity sign and provides syntactical rules to represent identity and
difference, a Wittgensteinian Begriffsschrift dismisses the box-operator
in favor of a syntactical means of representing possibility.15 (Of course,

15 Of course, a modal use of form-logical systems is by no means mandatory.
One may choose to represent modality in a more traditional way. As modal logic
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in light of the fact that such systems can be very complex, one might re-
frain from the attempt to actually construct a Wittgensteinian Begriffs-
schrift for any particular domain, but still appeal to it as the logical
ideal.)16

These are only a few linguistic, logical and metaphysical considera-
tions in favour of one and against another system. There might be many
more. Our purpose was not to enter, or to decide, the debate concerning
the correct logical system. We even wish to remain neutral on the ques-
tion of whether there is a unique correct system. Our purpose was to
present a construction schema, which allows us to formulate first-order
logical systems which best fit our preferences  whatever they may turn
out to be.

Appendix

In this appendix we provide a calculus for form-logical systems and show
their completeness.

1. Calculus

The calculus consists of the following rules:

ϕ

ϕ ∨ ψ

ψ

ϕ ∨ ψ
1.

ϕ ∨ ψ

[ϕ]

χ

[ψ]

χ

χ

(occurrences of the bracketed hy-
pothesis leading to the indicated
occurrences of χ are cancelled by
this rule)

2.

ϕ ¬ϕ

ψ
(for every well-formed formula ψ)3.

adds the box-operator to the syntax of predicate logic in order to make modal claims
expressible, one might add the box-operator to any form-logical system. Any form-
logical system may be the basis of a modal, or, more generally, intensional, logic in
the classical sense.

16 A Wittgensteinian Begriffsschrift might represent the ideal system for combi-
natorialism such as proposed, inspired by Wittgenstein, by Brian Skyrms (1981) and
David Armstrong (1989).



382 Wolfgang Freitag and Alexandra Zinke

∀x(ϕ ∨ ψ)

ϕ ∨ ∀xψ
(for x /∈ fr(ϕ))4.

∀xϕ

ϕa/x
(for i(a) ∈ DV )175.

ϕa/x

∀xϕ

(a does neither appear in ϕ nor in
any uneliminated assumption that
led to ϕa/x).

6.

ϕ

¬¬ϕ
7.

¬¬ϕ

ϕ
8.

¬ϕ ¬ψ

¬(ϕ ∨ ψ)
9.

¬(ϕ ∨ ψ)

¬ϕ

¬(ϕ ∨ ψ)

¬ψ
10.

¬∀xϕ

[¬ϕa/x]

ψ

ψ

(a does neither appear in ϕ or ψ
nor in any uneliminated assump-
tion that led to ψ)

11.

2. Completeness

In this section we prove the completeness of all form-logical systems.
The proof follows that of John T. Kearns for the completeness of a three-
valued predicate logic (Kearns 1979), but is adapted to our purposes.

17 In the rule 5: you get ‘ϕa/x’ by substituting ‘a’ for every ‘x’ in ‘ϕ’. We here
make an explicit reference to the structure, a semantic notion. We could avoid this by
distinguishing constants referring to objects in DV and constants referring to objects
in D \DV already syntactically by choosing different symbols for them, e.g., aV

1 , aV
2 ,

. . . and aD
1 , aD

2 , . . . İnstead of the clause ‘i(a) ∈ DV ’, we could then just say ‘for
all aV

i (i ∈ N)’. But we think that the introduction of two types of constants is an
unnecessary complication.
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i. Preliminary definitions

The entailment and consequence relations are defined as usual: A for-
mula ϕ is entailed by a set of formulas Γ in a form-logical system S
(Γ �S ϕ) iff in every model of S in which every formula of Γ is true, ϕ is
true, too.

A set of formulas Γ implies a formula ϕ (Γ ⊢S,L ϕ) in a form-logical
system S and a language L iff we can deduce ϕ from Γ in S and L by a
finite number of applications of the rules of the calculus.18

A set Γ of formulas is consistent iff there is no formula ϕ such that
Γ ⊢ ϕ and Γ ⊢ ¬ϕ.

A set Γ of formulas is strongly disjunctive iff for every formula (ϕ ∨
ψ) ∈ Γ, it is the case that ϕ ∈ Γ or ψ ∈ Γ.

A set Γ of formulas is instantially sufficient iff for every existentially
quantified formula ∃xϕ ∈ Γ there is a constant a such that ϕa/x ∈ Γ.

ii. Proof

Let X0 be a consistent set of formulas of S of the language L0. In the
following, we enlarge the set X0 to a strongly disjunctive, instantially
sufficient, and deductively closed set of formulas Z of the system S.

a. Enlarge X0 to be strongly disjunctive and
deductively closed, get 1Y0

We select some enumeration 0ϕ1,
0 ϕ2, . . . of the formulas19 of L0. Let

Y 1
0 be the closure of X0 under deducibility in L0. Y 1

m+1 is obtained from
Y 1

m as follows: If 0ϕm+1 ∈ Y 1
m and 0ϕm+1 = (ψ∨χ) and not Y 1

m ⊢ ψ and
not Y 1

m ⊢ χ, then Y 1
m+1 = Y 1

m ∪ {ψ}; otherwise Y 1
m+1 = Y 1

m.

Then Y 1
ω is the union of Y 1

0 , Y 1
1 , Y 1

2 , . . . . Then Y 2
0 is the closure of Y 1

ω

under deducibility in L0. The above construction is repeated to obtain

18 In the following, we often omit reference to a system S, because we do not
change the system throughout the proof. We also omit reference to a language L
wherever possible. Let us remark here that form-logical systems are robust under
enrichments of the language or the domain: Merely enriching the alphabet of a system
with new terms does not generate a new system as long as the terms are classified into
already existing term-form classes. Analogously, we do not generate a new system by
merely enriching the domain with new objects, as long as the new objects are classified
into already existing object-form classes.

19 The superscript indicates to which language the enumeration refers: nϕm is
the m-th formula of Ln.
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Y 2
0 , Y

2
1 , Y

2
2 , . . . , Y 2

ω . Then Y 3
0 is the closure of Y 2

ω under deducibility in
L0, etc. 1Y0 is the union of Y 1

0 , Y 2
0 , Y 3

0 , . . . .

b. Enlarge 1Y0 to be instantially sufficient
and deductively closed, get 1Y 1

0

We use the new constants ax
y (with x, y ∈ N) to enlarge the language.

You get Ln+1 from Ln by adding the constants an+1
1 , an+1

2 , an+1
3 ,. . . . Lω

is the union of the languages Ln. (In this paragraph we only need the
new constants a1

y with y ∈ N, but the constants for languages of order
Ln with n > 1 will become relevant when the construction procedure is
repeated in paragraph (d).) Let each formula of the form “∃xϕ” of Ln

be associated with a unique constant an+1
k of Ln+1 such that ϕan+1

k /x
is well-formed: if ∃xϕ is the m-th formula in the enumeration of Ln,
let an+1

m be its associated constant and ϕan+1
m /x be its distinguished

instance. In L1, ϕa1
m/x is the distinguished instance of ∃xϕ.20

1Ym+1 is obtained from 1Ym as follows: If 0ϕm+1 ∈1 Ym and 0ϕm+1 =
∃xϕ, then 1Ym+1 =1 Ym ∪ {ϕa1

m+1/x}, otherwise 1Ym+1 =1 Ym.
1Yω is

the union of 1Y0, 1Y1, 1Y2, . . . . And 1Y 1
0 is the closure of 1Yω under

deducibility in L1.

c. Enlarge 1Y 1
0 to be strongly disjunctive

and deductively closed, get X1

We define M1 and N1 as follows:

M1 = {ψ | ψ is a formula of L0 and ψ /∈
1
Y 1

0 },

N1 = {ϕa1
m/x | ϕa1

m/x is the distinguished instance in L1 of ∃xϕ and

∃xϕ ∈ M1}.

Let P1 be the closure of M1 ∪ N1 under disjunction (i.e., if ϕ ∈ P1 and
ψ ∈ P1, then (ϕ ∨ ψ) ∈ P1).

1Y 1
m+1 is obtained from 1Y 1

m as follows (where 1ϕm+1 is the (m+1)-th
formula of L1):

20 Note that X ⊢ ϕ in Ln iff X ⊢ ϕ in Ln+1 (for arbitrary X ⊆ Ln and ϕ ∈ Ln).
(X ⊢ ϕ in Ln ⇒ X ⊢ ϕ in Ln+1) is trivial. We show that (X ⊢ ϕ in Ln+1 ⇒ X ⊢ ϕ
in Ln). Assume that you have a proof of ϕ from X in Ln+1. There occur only a finite
number of new constants in the proof. To generate a proof in Ln from the proof in
Ln+1, you have to successively substitute the new constants with variables of Ln that
do not occur free in any formula of the proof. As ϕ is in Ln, it is not affected by the
substitution.

Because the enhancement of the language does not affect the implication relation
in any relevant way, we need not relativize it to a language here.
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If 1ϕm+1 ∈ 1Y 1
m and 1ϕm+1 = (ψ∨χ) and not 1Y 1

m ⊢ ψ and not 1Y 1
m ⊢ χ,

then (i) if there is no σ ∈ P 1 such that 1Y 1
m ∪ {ψ} ⊢ σ, then 1Y 1

m+1 =
1Y 1

m ∪ {ψ}, (ii) if there is a σ ∈ P1 such that 1Y 1
m ∪ {ψ} ⊢ σ, then

1Y 1
m+1 = 1Y 1

m ∪ {χ}; otherwise 1Y 1
m+1 = 1Y 1

m. 1Y 1
ω is the union of 1Y 1

0 ,
1Y 1

1 , 1Y 1
2 , . . . . And 1Y 2

0 is the closure of 1Y 1
ω under deducibility in L1.

This procedure is repeated to obtain 1Y 3
0 , 1Y 4

0 ,. . . etc. The set X1 is the
union of 1Y0, 1Y 2

0 , 1Y 3
0 , . . .

d. Repeat the whole procedure to obtain X2, X3, . . . and finally
their union Z

The procedure used to obtain X1 is repeated to obtain X2, X3,. . . : We
first enlarge X to be strongly disjunctive and deductively closed and get
2Y0 (see step a). Then we enlarge 2Y0 to be instantially sufficient and
deductively closed and get 2Y 1

0 . To do so, we need the new constants a2
1,

a2
2, a2

3, . . . of the language L2 (see step b) and the following definition:
We define Mn+1, Nn+1, Pn+1, where

M2 = {ψ | ψ is a formula of L1 and ψ /∈ Xn},

N2 = {ϕa2
m/x | ϕa2

m/x is the distinguished instance in L2 of ∃xϕ

and ∃xϕ ∈ M2},

and P2 is the closure of M2 ∪N2 under disjunction.
In a last step, we enlarge 2Y 1

0 to be strongly disjunctive and deduc-
tively closed, so that we get X2. Analogously, we obtain X3, X4, . . .
with the following definition:

For each Xn, there are Mn+1, Nn+1, Pn+1, where

Mn+1 = {ψ | ψ is a formula of Ln and ψ /∈ Xn},

Nn+1 = {ϕan+1
m /x | ϕan+1

m is the distinguished instance in Ln+1 of ∃xϕ

and ∃xϕ ∈ Mn+1},

and Pn+1 is the closure of Mn+1 ∪Nn+1 under disjunction. Finally, Z is
the union of X0, X1, X2, . . .

e. Lemmas

Proofs of the following lemmas are omitted when they are straightfor-
ward.

Lemma 1. Z is consistent.

Lemma 2. Z is strongly disjunctive.

Lemma 3. Z is instantially sufficient.
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Lemma 4. Z is closed under deducibility.

Lemma 5. Let ϕ be a formula of L such that X0 0 ϕ. Then there is a

set Zϕ as above such that ϕ /∈ Zϕ.

Proof of Lemma 5. We construct Zϕ in the same way as we con-
structed Z above (see a.–d.) except for the following modifications: (i)
We do not define P1 and Pn as above, but let Pn = ϕ, (ii) we modify the
construction of Y n

m (where n,m ∈ N) so that it parallels that of 1Y n
m.

To be shown: ϕ /∈ Zϕ. Proof via induction on the construction of Zϕ.
X0 0 ϕ, therefore ϕ /∈ Y 1

0 . We show that if Y 1
m 0 ϕ, then Y 1

m+1 0 ϕ:
For Y 1

m+1 = Y 1
m: Trivial. Y 1

m+1 6= Y 1
m: Proof by cases:

(i) Y 1
m+1 = Y 1

m ∪ {ψ}. From the construction rule that there is no
σ ∈ P1 with 1Y 1

m ∪ {ψ} ⊢ σ and from ϕ ∈ P1, we get Y 1
m ∪ {ψ} 0 ϕ.

(ii) Y 1
m+1 = Y 1

m ∪ {χ}. From the construction rule Y 1
m ∪ {ψ} ⊢ ϕ and

the assumptions that (ψ ∨ χ) ∈ Y 1
m and Y 1

m 0 ϕ, we get Y 1
m+1 =

Y 1
m ∪ {χ} 0 ϕ.

Therefore: Y 1
ω 0 ϕ. Hence we get Y 2

0 0 ϕ for the deductive closure Y 2
0

of Y 1
ω .
By exactly analogous reasoning we get Y n

0 0 ϕ for all n ∈ N. As the
set X1 is the union of 1Y0, 1Y 2

0 , 1Y 3
0 , . . . , we get X1 0 ϕ. Since ϕ is a

formula of L, ϕ cannot become a member of the set we construct in any
higher step. Thus we get Zϕ 0 ϕ, and therefore ϕ /∈ Zϕ.

f. Construction of the term model SI
Z
E,E−

We construct a term model SI
Z
E,E−

for Z. Let all terms of Lω be in the

domain of SI
Z
E,E−

. The co-domain of the assignment function of SI
Z
E,E−

is the union of all term-form classes of SI
Z
E,E−

that contain variables.

The interpretation I of SI
Z
E,E−

is given as follows:

(i) For constants α: I(α) = i(a) = α,
(ii) For variables x: I(x) = β(x) = x,
(iii) I(τ1, . . . , τn) = I(τ1) . . . I(τn).

The terms are classified in object-form classes such that if τ ∈ Tk, then
I(τ) ∈ Ok in SI

Z
E,E−

(for all terms τ and all Tk in T∗). The extension

E and the anti-extension E− of SI
Z
E,E−

are defined as follows:

E = {τ1 . . . τn | Z ⊢ τ1 . . . τn},

E− = {τ1 . . . τn | Z ⊢ ¬(τ1 . . . τn)}.
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Theorem 1. For the term model SI
Z
E,E−

and any formula ϕ of Lω, we

get:

SI
Z
E,E−(ϕ) = true ⇔ ϕ ∈ Z.

Proof. By induction on the rank of the formulas.
Base case: If r(ϕ) = 0, then SI

Z
E,E−

(ϕ) = true ⇔ ϕ ∈ Z and

SI
Z
E,E−

(ϕ) = false ⇔ ¬ϕ ∈ Z.

Proof of the basic step: ϕ = τ1 . . . τn.

SI
Z
E,E−(τ1 . . . τn) = true

⇔ I(τ1 . . . τn) ∈ E

⇔ τ1 . . . τn ∈ E

⇔ Z ⊢ τ1 . . . τn

⇔ τ1 . . . τn ∈ Z (Z deductively closed)

SI
Z
E,E−(τ1 . . . τn) = false

⇔ I(τ1 . . . τn) ∈ E−

⇔ τ1 . . . τn ∈ E−

⇔ Z ⊢ ¬(τ1 . . . τn)

⇔ ¬(τ1 . . . τn) ∈ Z (Z deductively closed)

Induction Hypothesis (IH): For every ϕ in Lω, if r(ϕ) = n, then

SI
Z
E,E−

(ϕ) = true ⇔ ϕ ∈ Z and SI
Z
E,E−

(ϕ) = false ⇔ ¬ϕ ∈ Z.
Inductive step: Assume (IH), and show that if r(ϕ) = n + 1, then

SI
Z
E,E−

(ϕ) = true ⇔ ϕ ∈ Z.
Proof of the inductive step by cases (assume that r(ψ) = n):

i) ϕ = ¬ψ:

SI
Z
E,E−

(¬ψ) = true

⇔ SI
Z
E,E−

(ψ) = false

⇔ ¬ψ ∈ Z (IH)
ii) ϕ = ψ ∨ χ:

SI
Z
E,E−

(ψ ∨ χ) = true

⇔ SI
Z
E,E−

(ψ) = true or SI
Z
E,E−

(χ) = true

⇔ ψ ∈ Z or χ ∈ Z (IH)
⇔ (ψ ∨ χ) ∈ Z (deductively closed and strongly disjunctive)

iii) ϕ = ∃xψ:

SI
Z
E,E−

(∃xψ) = true
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⇔ there is an a with SI
Z
E,E−

(ψa/x) = true (instantially sufficient)
⇔ there is an a with ψa/x ∈ Z (IH)
⇔ ∃xψ ∈ Z (deductively closed and instantially sufficient)

Theorem 2 (Completeness). Let X be a set of formulas of L and let ϕ
be a formula of L with X � ϕ. Then: X ⊢ ϕ.

Proof. Trivial for X inconsistent.

Let X be consistent. We prove that X 0 ϕ implies X 2 ϕ.

If X 0 ϕ, then there is an expansion Zϕ of X with ϕ /∈ Zϕ which is
consistent, strongly disjunctive and deductively closed (Lemma 5). Let

SI
Zϕ

E,E−
be the term model for Zϕ as described in (f). By Theorem 1,

SI
Zϕ

E,E−
2 ϕ (because of ϕ /∈ Zϕ) and SI

Zϕ

E,E−
� Zϕ. But SI

Zϕ

E,E−
� Zϕ

implies SI
Zϕ

E,E−
� X (because of X ⊆ Zϕ). Hence X 2 ϕ.
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