
Logic and Logical Philosophy
Volume 21 (2012), 229–252

DOI: 10.12775/LLP.2012.012

Aleksandra Kiślak-Malinowska

EXTENDED PREGROUP GRAMMARS

APPLIED TO NATURAL LANGUAGES∗

Abstract. Pregroups and pregroup grammars were introduced by Lambek
in 1999 [14] as an algebraic tool for the syntactic analysis of natural lan-
guages. The main focus in that paper was on certain extended pregroup
grammars such as pregroups with modalities, product pregroup grammars
and tupled pregroup grammars. Their applications to different syntactic
structures of natural languages, mainly Polish, are explored/shown here.

Keywords: Pregroups, pregroup grammars, product pregroup grammars,
tuple pregroup grammars.

1. Introduction

Pregroups and pregroup grammars were introduced in 1999 [14]. Lambek
proposed them as a new tool for the syntactic analysis of natural lan-
guages. The formalism of pregroups belongs to the tradition of categorial
grammars. In general they are part of the wide field of mathematical
linguistics, i.e., the theory of formal grammars and automata with ap-
plications in computer science.

They are particularly useful in natural language processing. Many
grammatical aspects of natural languages have been described in terms
of pregroup grammars. The problems tackled include verbs, nouns, ad-
jectives, adverbs, noun phrases, negative sentences, why-questions, yes-
or-no questions, relative clauses, islands, and unbounded dependencies.

∗ The first version of this work was presented during The Third Conference:
Non-Classical Logic. Theory and Applications, NCU, Toruń, September 16–18, 2010.

Received December 14, 2010; Revised May 23, 2011
© Nicolaus Copernicus University (Toruń) 2012 ISSN: 1425-3305

http://dx.doi.org/10.12775/LLP.2012.012


230 Aleksandra Kiślak-Malinowska

Among the languages to which pregroup grammars have been applied
are English [17], German, French [18], Italian [4, 5], Japanese, Chinese
and Polish [8, 10, 11].

The idea of applying pregroup grammars to natural languages is as
follows. We start from the lexicon  to each word of the natural language
one or more types are assigned. Calculations are done on types and
when they give a simple s type as a result (the type of the sentence) the
sentencehood of the string is established. The formalism of pregroups has
two main advantages in comparison with other approaches. Firstly, the
calculations are quite easy, as for linguistic application only contractions
and induced steps are needed. What is more, they have the very nice
computational property of polynomial decidability. Pregroup grammars
are weakly equivalent to context-free grammars (without empty strings)
[1]. A dynamic polynomial parsing algorithm for pregroup grammars
with the proof of its correctness was given in [19].

Pregroup grammars have been under intense study since they were
introduced by logicians, mathematicians, linguists and computer scien-
tists. They have looked at axiomatization, the construction of algo-
rithms, and their mathematical and computational properties and their
application to natural language processing. A number of authors have
tried to modify the pure, initial calculus of pregroups in order to obtain
further desirable properties. To prevent unwanted derivations pregroups
with modalities have been considered [7, 9]. For feature agreement, es-
pecially in Romance languages, product pregroups have been introduced
[12, 18]. To tackle certain complicated aspects of grammar tupled pre-
groups have been employed [20].

In this paper the focus is mainly on the application of the formalism
to natural languages. The paper is organized as follows. In the second
section the notion of a pregroup and basic properties of pure calculus
of pregroups needed for processing the language are introduced. The
section ends with an illustration of the techniques. The third section
deals with pregroups with modalities which are pregroups with some
additional operators. The calculus of pregroups with modalities enjoys
properties similar to the pure calculus, the normalization theorem and
the cut elimination theorem for which have already been established
(see [7, 9]). Another version of the calculus of pregroups  product pre-
groups  is presented in the fourth section. On this approach it is possi-
ble to use more free pregroups (product of pregroups instead of one) in
order to deal with different aspects of a given grammar. Some authors



Extended pregroup grammars applied . . . 231

use just two, others more. A grammatical feature of Italian concerning
personal pronouns in the accusative case in constructions with verbs in
different tenses (here: present and present perfect) is examined. The
fifth and final section deals with tupled pregroup grammars, introduced
in [20] which allow for the treatment of more sophisticated grammatical
phenomena. The prepositional phrases of Polish have been chosen as an
illustration. It is worth mentioning that as the two last approaches seem
more powerful and cover more grammatical features, it is not surprising
that the languages they generate are not necessarily context-free: prod-
uct grammars can yield intersections of context-free languages which are
not always context-free, while languages generated by tupled pregroup
grammars are multiple context-free languages. They are very interesting
alternatives to the pure calculus of pregroups.

2. Pregroups and free pregroups

The notion of a pregroup was introduced by Lambek [14] as a mod-
ification of residuated monoids being algebraic models of the Lambek
syntactic calculus [13]. The formal calculus of pregroups is more easily
treatable and seems to have greater linguistic flexibility. A pregroup
is a structure (G, ≤, ·,l ,r,1) such that (G, ≤, ·, 1) is a partially ordered
monoid, and l and r are unary operations satisfying for all a ∈ G the
following inequalities:

(PRE) ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara.

al (resp. ar) is called the left (resp. the right) adjoint to a.
It is easily shown that the following conditions must hold in every

pregroup:

(1) 1l = 1r = 1, (al)r = (ar)l = a, (ab)l = blal, (ab)r = brar,
(2) if a ≤ b then bl ≤ al and br ≤ ar.

Pregroups have been studied in e.g. [1, 2, 8, 15, 16].
For any element a of a pregroup, we define an element a(n), for n ∈ Z:

• a(0) = a,
• a(n+1) = (an)r,for n ­ 0,
• a(n−1) = (an)l, for n ¬ 0.

Then the equalities a(n+1) = (an)r and a(n−1) = (an)l hold true, for all
n ∈ Z.



232 Aleksandra Kiślak-Malinowska

As a consequence of (PRE) and (2), we obtain:

(3) a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n), for all n ∈ Z.

(4) If a ≤ b, then a(2n) ≤ b(2n) and b(2n+1) ≤ a(2n+1), for all n ∈ Z.

Quasipregroups are defined as pregroups except that the relation →
need not be antisymmetrical. If → is a quasiordering on G, then one
defines x ≃ y iff x → y and y → x, for x, y ∈ G. Then, ≃ is a congruence
on G. ≃ is an equivalence relation and the quotient relation [x] → [y] iff
x → y is a partial ordering on the quotient set G/∼. We can construct
the quotient structure on the universe G/∼, by setting: [x] · [y] = [xy],

[x]l = [xl], [x]r = [xr], for any x, y ∈ G. This quotient structure is a
pregroup whose unit element equals [1].

Given a poset P , we may construct the free pregroup F (P ) generated
by P . Let (P, ≤) be a poset. Elements of P are treated as constant
symbols and are called basic types. Terms are expressions a(n), for a ∈ P ,
n ∈ Z and we call them simple types; a(0) is identified with a. Types are
finite strings of terms, called types.

First, we define a quasipregroup whose elements are types. For types
x, y, x · y is the concatenation of strings x, y, and 1 is the empty string.
The adjoints are defined as follows:

(5a) (a
(n1)
1 a

(n2)
2 . . . a

(nk)
k )

l

= a
(nk−1)
k . . . a

(n2−1)
2 a

(n1−1)
1 ,

(5b) (a
(n1)
1 a

(n2)
2 . . . a

(nk)
k )

r
= a

(nk+1)
k . . . a

(n2+1)
2 a

(n1+1)
1 .

It follows that (t1 . . . tk)l = tl
k . . . tl

1 and (t1 . . . tk)r = tr
k . . . tr

1 for any
terms t1, . . . , tk.

Let → be the least reflexive and transitive relation defined by the
following cases for all types x, y; n ∈ Z and a, b ∈ P :

contractions xa(n)a(n+1)y → xy,

expansions xy → xa(n+1)a(n)y,

induced steps xa(n)y → xb(n)y, if a ≤ b and n is even,
if b ≤ a and n is odd.

Contractions, expansions and induced steps can be treated as rules
of a term rewriting system. x → y is true iff x can be rewritten into y by
a finite number of applications of the rules. This procedure may be also
called a derivation of a string. This rewriting system is Lambek’s original
form of the logic of pregroups and is also called Compact Bilinear Logic.

It is easy to check that this structure is a quasipregroup. It is not
a pregroup, since aa(l)a ≃ a, but aa(l)a6=a. The quotient structure



Extended pregroup grammars applied . . . 233

employing the quasiordering defined above is a pregroup. It is called the
free pregroup generated by (P, ≤) and is denoted F (P ).

A generalized contraction combines a contraction with an induced
step and has the form:

(6) xa(n)b(n+1)y → xy, if a ≤ b and n is even or b ≤ a and n is odd.

A generalized expansion combines an expansion with an induced step
and has the form:

(7) xy → xa(n+1)b(n)y, if a ≤ b and n is even or b ≤ a and n is odd.

We recall the Lambek switching lemma from [14].

Lemma. If x → y in F (P ), then there exist types z and z′ such that:

x → z → z′ → y, where x → z by generalized contractions only, z → z′

by induced steps only and z′ → y by generalized expansions only.

This lemma states that if we derive type y from the type x (x →
y) using generalized contractions, generalized expansions and induced
steps the order of executing those operations in the derivation can be
changed (if necessary) starting from all contractions and ending with
all expansions. It is of vital importance for the application to natural
language as in particular for y = s no expansions need to be involved.

This lemma is closely related to the cut elimination theorem for Com-
pact Bilinear Logic. It also yields the polynomial time decidablility of
this logic [1].

A pregroup grammar is a quintuple G = (Σ, P, ≤, s, I) such that: Σ
is a nonempty, finite alphabet, (P, ≤) a finite poset, s ∈ P and I the
relation between symbols for Σ and nonempty types on P . The relation
I will be called lexicon in our further considerations.

Let x ∈ Σ+, x = a1a2 . . . an, (ai ∈ Σ). We say that the grammar
G assigns type y to x, if there exist xi ∈ I(ai), 1 ¬ i ¬ n, such that
x1, . . . , xn → y in Compact Bilinear Logic; (we write x →G y). The lan-
guage of the pregroup grammar G is the set L(G) = {x ∈ Σ+ : x →G s}.

3. Illustration

The idea of applying pregroups for a natural language can be illustrated
as follows. We start from the lexicon  to each word of the natural
language one or more types are assigned (terms are of the type a(n),



234 Aleksandra Kiślak-Malinowska

types are finite strings of terms; the lexicon for some chosen types for
Polish is given in the appendix). The types used in the lexicon are
assigned in such a way that they reflect the syntactic role of a word in
natural language. Given a string of lexical entries we use rewriting rules
on types associated with words. The sentencehood of a given string may
be verified by means of those calculations. When it ends with type s
(sentence type) we say the string of words is a well-formed sentence.

To start with, let us consider the following types:
s1 – declarative sentence in the present,
s2 – declarative sentence in the past,
π1 – first person subject, singular
π3 – third person subject, singular, masculine
π4 – third person subject, singular, feminine
π8 – third person plural subject, masculine.

In what follows we will ignore capital letters at the beginning of the
sentence. For example the sentence Ja jestem [I . am] will be written ja
jestem, as we are only interested in the sentencehood of a given string
of words. Taking from lexicon the type π1 to the first person subject ja
[I], and the type πr

1s1 to the Polish word jestem, we can get:

ja jestem
π1 πr

1s1 = (π1πr
1)s1 → s1.

Using contraction (π1πr
1) (parentheses play only auxiliary role to

show where the contraction occurs) we get the type s1 for the string ja
jestem, which means that this is a properly built present tense sentence
in Polish.

However, we cannot obtain: oni był [they . was]. Typing this string
of words one gets:

oni był
π8 πr

3s2 6→ s2.
Here a contraction rule cannot be used, as types π8 and πr

3 do not
contract. This means that the string oni był is not a sentence in Polish.

To type Polish nouns we use nij or n̂ij . n and n̂ stand for a singular
and a plural noun, respectively. The first index stands for the gender
(masculine, feminine or neuter), whereas the second index is for the case
(in Polish nouns are inflected for case). For typing adjectives nijnl

ij

and n̂ijn̂l
ij are used. The motivation behind this is that adjectives can

qualify nouns as long as they agree in number and case. We make use
of a partial order concerning types. nm1 ≤ π3 means that a masculine



Extended pregroup grammars applied . . . 235

singular Polish noun in the nominative case in the sentence may also
play the role of a third person subject, whereas nn4 ≤ o4 means that a
neuter singular noun in the accusative case may be seen as an accusative
object in the sentence.

An example here may be:

mały chłopiec lubi kino [(a) small . boy . likes . (a/the) cinema]

Taking types for words from the lexicon in this string one gets:

mały chłopiec lubi kino
nm1nl

m1 nm1 πr
3s1ol

4 nn4 → (contraction nl
m1nm1)

nm1 πr
3s1ol

4 nn4 → (partial order nm1 ≤ π3)
π3 πr

3s1ol
4 nn4 → (contraction πl

3π3)
s1ol

4 nn4 → (partial order nn4 ≤ o4)
s1ol

4 o4 → (contraction ol
4o4)

s1

The steps on the right illustrate the detailed verification the sentence-
hood of mały chłopiec lubi kino.

These examples convey the idea of checking whether a given string of
words is a well-formed declarative sentence or not. The calculus of pre-
groups seems to be more easily treatable in comparison with Lambek’s
former approach [13]  the syntactic calculus. The aim was to obtain an
effective rule for distinguishing sentences from nonsentences which could
work both for formal and natural languages. Lambek introduced the
calculus of types related to the well-known calculus of residuals.

4. Pregroups with modalities

In some cases one may need particular constraints in order to block
undesirable derivations. Examples of such situations and proposals how
to overcome the problem using modalities can be found in [7] or [9].

The definition of a pregroup with β-operator was proposed by Fadda
[7]. The motivation to introduce modal operators was the need to limit
(locally) associativity in the calculus.

A pregroup with β-operator is a pregroup G enriched additionally
with a monotone mapping β : G → G. A β-pregroup is a pregroup with
β-operator such that β-operator has the right adjoint β̂ (β̂-operator),
i.e., there exists a monotone mapping β̂ : G → G with the property that
for all a and b in G, β(a) ≤ b if and only if a ≤ β̂(b). It is easy to



236 Aleksandra Kiślak-Malinowska

show that β̂, if it exists, is uniquely defined and connected to β via the
following rules of expansion and contraction, for any a ∈ G:

a ≤ β̂(β(a)) and β(β̂(a)) ≤ a .

The construction of a free β-pregroup is similar to the free pregroup 
the reader may find details in [9]. Below we will give an illustration how
β-pregroups work. Consider the following example first (with nm4 ≤ o4):

[(I) visited. the boy . whom . (I) help]
odwiedziłam chłopca, któremu pomagam
s2ol

4 nm4 nr
m4nm4oll

3 sl
1 s1ol

3 → s2

It is worth noticing that the sentence has to be parsed in a specified
order (to obtain the derivation ending in s2), reflecting the semantic
role of relative pronouns. One may observe that there are two possibil-
ities of contracting nm4nr

m4 to 1 (ol
4o4 to 1  while making use of our

assumptions).
The first one is:

s2ol
4 nm4 nr

m4nm4oll
3 sl

1 s1ol
3 →

s2ol
4 nm4oll

3 sl
1 s1ol

3 →
s2ol

4 nm4oll
3 ol

3 →
s2ol

4 nm4 →
s2ol

4 o4 →
s2

The second one is:
s2ol

4 nm4 nr
m4nm4oll

3 sl
1 s1ol

3 →
s2ol

4 o4 nr
m4nm4oll

3 sl
1 s1ol

3 →
s2 nr

m4nm4oll
3 sl

1 s1ol
3 →

s2 nr
m4nm4oll

3 ol
3 →

s2 nr
m4nm4 6→ s2

Of the two derivations above only one proved successful. Some kind
of indeterminism can be observed here. It is clear from the example that
the contraction of type s2ol

4 of the verb in the main clause should be
postponed until the type nm4 of the noun chłopca is contracted with the
relative clause describing this noun. It reflects the semantic role of the
relative clause as describing and adding information about the noun.

On the former approach the types from lexicon allowed two deriva-
tions  one of them undesirable. In order to block that problematic
derivation one can use types enriched with β-s. Enriching our lexicon
with types with modalities, one gets:



Extended pregroup grammars applied . . . 237

[(I) visited . the boy. whom . (I) help]
odwiedziłam chłopca, któremu pomagam.
s2ol

4 β(nm4) [β(nm4)]rnm4oll
3 sl

1 s1ol
3 → s2

and the derivation is then as follows:

s2ol
4 β(nm4) [β(nm4)]rnm4oll

3 sl
1 s1ol

3 →
s2ol

4 nm4oll
3 sl

1 s1ol
3 →

s2ol
4 nm4oll

3 ol
3 →

s2ol
4 nm4 →

s2ol
4 o4 →

s2

The undesired derivation has been blocked by the β-operator, which
solves the problem of nondeterministic derivations.

5. Product pregroup grammars

Lambek [17] proposed an analysis of English verbs which consisted in two
parts: the first, called inflector, the second one, called infinitive. The
verb is described by these two parts. The inflector is responsible for the
conjugated form of the verb, whereas the infinitive contains additional
information concerning specific verb features like transitivity, possible
complementizers, etc. It means that the inflector modifies the infinitive
and as a result one gets a type of the verb in a certain grammar tense,
person and form.

An interesting approach was elaborated by Kusalik [12], who tried to
separate the two aspects of the English verb. The author presented an
alternative analysis which replaced Lambek’s free pregroup with product
pregroups, allowing for a separation between them. This could work bet-
ter for the cases which were problematic for Lambek’s former approach.

The product pregroup grammar is understood as an intersection of
two (or more) pregroup grammars. In the lexicon this time one can find
types of the first and the second (possibly more) pregroup grammars.
The first can be seen as a usual pregroup grammar checking sentencehood
on the syntactic level. The second can be responsible for feature check-
ing, etc. The calculations must end successfully on both (more) levels
in order to accept the string of words as a sentence. It has been shown,
that if G1 and G2 are pregroup grammars, the language defined by the
pregroup G1 × G2 is an intersection of two context-free languages, and
there is an algorithm of polynomial complexity for determining whether a



238 Aleksandra Kiślak-Malinowska

given string of types in G1×G2 reduces to 1. (1 is understood as a vector
of coordinates such that each coordinate belongs to the given pregroup
grammar. It is usually s ∈ P1 for the first grammar and 1 ∈ Pi, 2 ¬ i ¬ k
for the additional grammars.) Given a product of k free pregroups, the
language can be expressed as the intersection of k context-free languages.
The fact that the finite products of free pregroups are computationally
no more complex than free pregroup itself means that they can be used
as a model of a grammar structure of a given natural language.

Product pregroup grammars were used by Lambek [18] while trying
to analyze feature agreement in French. He made use of two pregroup
grammars, one for syntactic types and the other for feature types. Kusa-
lik [12] used the product of three pregroup grammars for analyzing En-
glish sentences. We will show examples of this formalism having first
reminded ourselves of some of the technical details.

According to Lambek [14] with each verb V we may associate a ma-
trix Cjk(V ), with j referring to the tense and k referring to the person.
For example the matrix for the verb be is given as follows:

Cjk (be) →

(
am are is
was were was

)

Taking single elements of the matrix we get the following, where j (as
well as i, ī, j̄ etc.) stand for an infinitive clause and it is assumed from
the lexicon that i ¬ j):

C13(go) = goes
(πr

3s1jl)i → πr
3s1

C23(go) = went
(πr

3s2jl)i → πr
3s2

C11(like) = like
(πr

1s1jl)(iol) → πr
1s1ol

As the constructions that need product pregroup grammars in Polish
language are quite rare, this approach is illustrated below with some
Italian sentences. All types used while assigned to words come from
Casadio [6, 5]. Consider first:

vedere il ragazzo [to see the boy]
vedere la ragazza [to see the girl]
vedere i ragazzi [to see the boys]
vedere le ragazze [to see the girls]
iol o → i



Extended pregroup grammars applied . . . 239

The inflectors used justify the Italian sentence, Mario vede la ragazza
[Mario sees a girl], namely:

Mario vede la ragazza.
Mario C13(vedere) la ragazza
π3 (πr

3s1il)(iol) o → s1

When the accusative objects il ragazzo, la ragazza, i ragazzi, le ragazze
are changed into personal pronouns in accusative case they become lo,
la, li, le, respectively. Then, in Italian, their position in the sentence
changes, as they need to be preverbal. Thus one gets:

lo vedere [to see him]
la vedere [to see her]
li vedere [to see them (masculine)]
le vedere [to see them (feminine)]
jollil iol → j

Here j (as well as i, ī, j̄ etc.) stand for infinitive clauses. All constraints
and partial order concerning them are at the moment irrelevant and we
will not bother the reader with the details.

Taking into consideration infinitive clauses in the present perfect
tense, we get:

avere visto il ragazzo [to have seen the boy]
avere visto la ragazza [to have seen the girl]
avere visto i ragazzi [to have seen the boys]
avere visto le ragazze [to have seen the girls]
ipl

2 p2ol o → i

Here p2 stands for the past participle of the verb vedere [to see].

Now nouns in the accusative case il ragazzo, la ragazza, i ragazzi, le
ragazze are changed into personal pronouns in the accusative case lo, la,
li, le again. And this causes problems. This is due to some grammatical
peculiarities of Italian: when using personal pronouns in accusative case
together with present perfect tense the endings of past participle accord-
ing to the pronoun’s gender and number must be changed. It should look
as follows:

lo avere visto [to have seen him]
la avere vista [to have seen her]
li avere visti [to have seen them (masculine)]
le avere viste [to have seen them (feminine)]
jollil ipl

2 p2ol → j



240 Aleksandra Kiślak-Malinowska

Now on we face over-generation. On syntactic grounds the wrong
word order can be blocked. For example avere visto lo cannot be accepted
in Italian. If personal pronouns are got rid of and replaced by objects
in the form of nouns no changes should be made, and avere visto will
be proper in all cases, irrespective of the gender and the number of the
noun. Changing the form of past participle is only needed when using a
personal pronoun instead of the noun in the present perfect tense. One
can say lo avere visto, but lo avere visti would not be correct, because
there is a lack of feature agreement. A similar problem arises when
considering the present perfect tense of intransitive verbs which form
present perfect forms with the verb essere. Here the endings of past
participle must agree with the personal pronoun.

In thse cases product pregroup grammars seem to be applicable. Let
us consider feature agreement. We introduce into to the lexicon of the
second pregroup grammar four new types: πms, πfs, πmp, πfp, where
m, f stand for masculine and feminine, and s, p stand for singular and
plural. Then the string of words from Italian can be typed on both
levels (using the product of two pregroup grammars), and the computa-
tions are done in a parallel way. If both are successful, the sentence is
accepted; otherwise it is rejected (in case one or two are wrong). The
first type assignment (syntactic level) should end in a single sj type
(infinitive clause), while the second one (feature agreement) should end
in 1. Making use of two free pregroups the following can be obtained:

lo avere visto
jollil ipl

2 p2ol → j
πms 1 πr

ms → 1

lo avere visti
jollil ipl

2 p2ol → j
πms 1 πr

mp 6→ 1

As can be seen above, the second sentence is rejected on the second
level and the string of words lo avere visti cannot be accepted. When
considering French Lambek [18] made a lot of additional assumptions and
tackled more complicated matters, but the above examples are enough
to give the reader some ideas about this particular pregroup usage.



Extended pregroup grammars applied . . . 241

6. Tupled pregroup grammars

Another approach was proposed by Stabler in [20]. In his paper he
presented the idea of tupled pregroup grammars and showed how to make
use of them when treating some aspects of English grammar. According
to Stabler the pregroup operations provide a simple feature checking
mechanism and the tupling allows additional operations like movement.
Languages definable in tupled pregroup grammars are weakly equivalent
to multiple context-free grammars with the power to define for example
mildly context sensitive languages like {xx | x ∈ {a, b}∗}.

In pregroup grammars the lexicon consists of ordered pairs whose
first element is a symbol from the alphabet and whose second element
is a type. Elements of the lexicon are also called lexical entries. In
tupled pregroup grammars we use tuples of those ordered pairs. It can
be motivated and explained by the fact that in natural languages certain
words tend to occur together in the sentence, as for example prepositions
with nouns, etc. Here the lexical entries are of the following form:

(
t1 . . . tk

s1 . . . sk

)

or alternatively t1, . . . , tk : s1, . . . , sk. Here s1, . . . , sk are elements of the
alphabet and t1, . . . , tk are types.

A merge operation applying to any pair of tuples is defined as follows:

(
t1 . . . ti

s1 . . . si

)

•

(
ti+1 . . . tk

si+1 . . . sk

)

=

(
t1 . . . tk

s1 . . . sk

)

An operation of deleting i-th coordinate, for any k-tuple k > 0 and any
1 ¬ i ¬ k is defined as follows:

(
t1 . . . tk

s1 . . . sk

)

−i

=

(
t1 . . . ti−1 ti+1 . . . tk

s1 . . . si−1 si+1 . . . sk

)

Let us define a binary relation on tupled pregroup grammar expressions,
denoted by →T P G that holds in the following cases, for any tuples e1, e2

and sequence of tuples α, β:

(Mrg) α e1 e2 β ⇒T P G α e1 • e2 β

(Move) α

(
t1 . . . tk

s1 . . . sk

)

β ⇒T P G α

(
titj

sisj

)

•

(
t1 . . . tk

s1 . . . sk

)

−i−j

β



242 Aleksandra Kiślak-Malinowska

(Move) applies to any k-tuple (k > 1), for any 1 ¬ i ¬ k and 1 ¬ j ¬ k.

The type in any coordinate can be contracted or expanded, for any
a, b such that either a ≤ b and n is even or b ≤ a and n is odd.

(GCon) α

(

. . .
xa(n)b(n+1)y

s
. . .

)

β ⇒T P G α

(

. . .
xy
s

. . .

)

β

(GExp) α

(

. . .
xy
s

. . .

)

β ⇒T P G α

(

. . .
xa(n+1)b(n)y

s
. . .

)

β

Before going into details, an example will be presented in order to show
how tupled pregroup grammars work. Let our lexicon be as follows:

I =

{(
nm1

profesor

)(
nm1nl

m1

znany

)(
nf2 nl

f2

nowej

)(
af1

ogromna

)(

πr
3s1λl

(1)

jedzie

)

(
α(1) nf2

do szkoły

)(
α(1) nf4

na konferencję

)(
πr

4s1al
f1

jest

)(
w π4

która ǫ

)

(
wrnr

f2nf2sl
1

ǫ

)(

nr
f2αr

(1)λ(1)

ǫ

)(

nr
f4αr

(1)λ(1)

ǫ

)}

with: nm1 ≤ π3.

Word to word translations of the words are: profesor [professor ],
znany [known], nowej [new — second case (genitive) feminine singular],
ogromna [huge, very big — first case (nominative) feminine singular],
jedzie [goes], do szkoły [to school ], jest [is], która [which — first case
(nominative) feminine singular]. Using this formalism we can check the
sentencehood of profesor jedzie do szkoły [a professor . goes . to . school].
The verification can be presented in two ways. The first is done using
rewriting rules, the second as a derivation tree. They are as follows, with
detailed comments right below each line:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(
α(1) nf2

do szkoły

)(

nr
f2αr

(1)λ(1)

ǫ

)

⇒

Applying (Mrg) to the third and the fourth tuple we get:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(

α(1) nf2 nr
f2αr

(1)λ(1)

do szkoły ǫ

)

⇒



Extended pregroup grammars applied . . . 243

We apply (Move) to the third tuple. First we pick the third and the
second coordinate and then merge them with the rest of the tuple  in
this case the rest means the first coordinate:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(

nf2nr
f2αr

(1)λ(1) α(1)

szkoły do

)

⇒

We execute (GCon) within the third tuple and get:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(

αr
(1)λ(1) α(1)

szkoły do

)

⇒

Again we apply (Move) to the third tuple. This time we pick the second
and the first coordinate:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(

α(1)α
r
(1)λ(1)

doszkoły

)

⇒

We execute (GCon) within the third tuple and get:

(
nm1

profesor

)(

πr
3s1λl

(1)

jedzie

)(
λ(1)

doszkoły

)

⇒

Applying (Mrg) to the second and the third tuple we get:

(
nm1

profesor

)(

πr
3s1λl

(1) λ(1)

jedzie doszkoły

)

⇒

Again we apply (Move) to the second tuple. This time we pick the first
and the second coordinate:

(
nm1

profesor

)(

πr
3s1λl

(1)λ(1)

jedzie do szkoły

)

⇒

We execute (GCon) within the second tuple and get:

(
nm1

profesor

)(
πr

3s1

jedzie do szkoły

)

⇒

Then we merge (Mrg) two remaining tuples:

(
nm1 πr

3s1

profesor jedzie do szkoły

)

⇒



244 Aleksandra Kiślak-Malinowska

Then we (Move) the first and the second coordinate in the tuple:

(
nm1πr

3s1

profesor jedzie do szkoły

)

⇒

Executing (GCon) within the tuple  making use of nm1 ≤ π3  we get
the sentence:

(
s1

profesor jedzie do szkoły

)

It is often more convenient to view the derivation of the sentence in the
form of a derivation tree. The second way of presenting the sentence by
means of tupled pregroup grammars is shown below. We do not give a
line by line description here, only a general explanation. In what follows
underbracing { means making use of (Mrg), ↓ means applying (Move)
and (⇓) is used for (GCon).

α(1), nf2 : do, szkoły nr
f2αr

(1)λ(1) : ǫ
︸ ︷︷ ︸

α(1), nf2, nr
f2αr

(1)λ(1) : do, szkoły, ǫ
↓

nf2nr
f2αr

(1)λ(1), α(1) : szkoły, do
⇓

αr
(1)λ(1), α(1) : szkoły, do

↓
α(1)α

r
(1)λ(1) : do szkoły

⇓
λ(1) : do szkoły πr

3s1λl
(1) : jedzie

︸ ︷︷ ︸

λ(1), πr
3s1λl

(1) : do szkoły, jedzie
↓

πr
3s1λl

(1)λ(1) : jedzie do szkoły
⇓

πr
3s1 : jedzie do szkoły nm1 : profesor
︸ ︷︷ ︸

πr
3s1, nm1 : jedzie do szkoly, profesor

↓
nm1πr

3s1 : profesor jedzie do szkoły
⇓

s1 : profesor jedzie do szkoły



Extended pregroup grammars applied . . . 245

The problem of relative pronouns in Polish in terms of tupled pre-
group grammars was presented in [11]. Another tough problem to solve
by means of traditional pregroup grammars is the problem of preposi-
tional phrases or adverbs. In earlier approaches every adverb or prepo-
sitional phrase was just given in the lexicon the type α, without making
any distinction between different types. In English phrases like to school,
today, later, to school soon, fast had type α in the lexicon, with the
assumption that αα = α. It can be easily seen that this led to overgen-
eralization. In [17] Lambek encountered the problem too. One can say
seen with her, seen by her, etc. whereas seen for her would be doubtful
and questionable.

When treating Polish sentences, the phrase do szkoły [to school] was
simply given the type α. Some attempts to introduce to the lexicon more
specified types for prepositions, like λ(1)n

l
m2, λ(1)n

l
f2, λ(1)n

l
n2, etc. . . for

the preposition do, were not fully successful. For example in the sentence
profesor jedzie do szkoły [(a) professor . goes . to . school]:

profesor jedzie do szkoły
nm1 πr

3s1λl
(1) λ(1)n

l
f2 nf2 → s1

this works perfectly. Also for many other sentences like profesor jedzie
do domu [(a) professor . goes . . home]. But in the sentence pro-
fesor jedzie do konferencji [(a) professor . goes . on . conference] it
violates the rules concerning the use of the the noun konferencja in com-
bination with prepositions. In Polish it is not correct  one can jechać
na konferencję, uczestniczyć w konferencji, być na konferencji, etc., but
not jechać do konferencji . Similarly, trying to introduce types for the
preposition na in the lexicon as follows: λ(1)n

l
m4, λ(1)n

l
f4, λ(1)n

l
n4, etc.,

allows one to parse the sentences profesor jedzie na konferencję, but also
profesor jedzie na dom, which cannot be said in Polish.

Tupled pregroup grammars can be very useful for this case. Consider
the preposition do [to] as an example. In order to create a phrase do
szkoły [to school], we take two tuples from the lexicon.

(
α(1) nf2

do szkoły

)(

nr
f2αr

(1)λ(1)

ǫ

)

The type assigned to do gives us the information that this preposition
may be used in creating a prepositional phrase answering the question
where to? [superscripts of λ’s and α’s must be coherent], but it needs
a complement in form of a noun of feminine gender in the accusative



246 Aleksandra Kiślak-Malinowska

singular. Combining those two tuples we get the phrase do szkoły with
the type λ(1), as show below:

(
α(1) nf2

do szkoły

)(

nr
f2αr

(1)λ(1)

ǫ

)

⇒

(

α(1) nf2 nr
f2αr

(1)λ(1)

do szkoły ǫ

)

⇒

(

nf2nr
f2αr

(1)λ(1) α(1)

szkoły do

)

⇒

(

αr
(1)λ(1) α(1)

szkoły do

)

⇒

(

α(1)α
r
(1)λ(1)

do szkoły

)

⇒

(
λ(1)

do szkoły

)

What is more, we can also introduce an adjective between do and szkoły,
in order to build a prepositional phrase do nowej szkoły [to . (the) new
. school]. The verb and its type must be also involved. So one of the
lexical entries for the word jedzie [goes] is:

(

πr
3s1λl

(1)

jedzie

)

This approach is very useful as it can block unwanted prepositional
phrases as well as their incorrect usage with inappropriate verbs. It can
also be used with phrases do której [to which – feminine], do którego [to
which  masculine, neuter] etc. Consider the sentence: Lubię szkołę, do
której jedzie [(I) like . school . to . which . (he) goes]. As the phrase do
której cannot be separated in any way (not as in English where one can
say I like the school which he goes to), it may be treated in the lexicon as
a single lexical entry that may occur in a certain position in the sentence.
The lexical entries needed to parse this sentence will be as follows:

(
nf4

szkołę

)(
s1ol

4

lubię

)(

λr
(1)s1

jedzie

)

(
w λ(1)

do której ǫ

)(
nr

f4nf4sl
1wl

ǫ

)

Let us conclude this section with a derivation tree for that sentence:

w, λ(1) : do której, ǫ λr
(1)s1 : jedzie

︸ ︷︷ ︸



Extended pregroup grammars applied . . . 247

w, λ(1), λr
(1)s1 : do której, ǫ, jedzie

↓
λ(1)λ

r
(1)s1, w : jedzie, do której

⇓
s1, w : jedzie, do której nr

f4nf4sl
1wl : ǫ

︸ ︷︷ ︸

s1, w, nr
f4nf4sl

1wl : jedzie, do której, ǫ
↓

nr
f4nf4sl

1wlw, s1 : do której, jedzie
⇓

nr
f4nf4sl

1, s1 : do której, jedzie
↓

nr
f4nf4sl

1s1 : do której jedzie
⇓

nf4 : szkołę nr
f4nf4 : do której jedzie

︸ ︷︷ ︸

nf4, nr
f4nf4 : szkołę, do której jedzie

↓
nf4nr

f4nf4 : szkołę do ktorej jedzie
⇓

s1ol
4 : lubię nf4 : szkołę do której jedzie

︸ ︷︷ ︸

s1ol
4, nf4 : lubię, szkołę do której jedzie

↓
s1ol

4nf4 : lubię szkołę do której jedzie
⇓

s1 : lubię szkołę do której jedzie

Note. All types w occurring in the tuples should be treated separately
for each example. They are just auxiliary variables used in the types.
In building the dictionary from lexical items we can use subscripts or
different letters.

In all the examples above with tupled pregroup grammars some re-
strictions were needed. In order not to bother the reader with too many
details they were omitted. They are as follows: all types used in tuples
must be of the form tr

1tr
2 . . . tr

kvwk
1 wl

2 . . . wl
m, for k, m ­ 0, (Mrg) can be

applied to a pair of tuples only when in one tuple all types are of the
form v (without left and right adjoints) and (Move) takes two items of
a tuple if one of the types is of the form v.



248 Aleksandra Kiślak-Malinowska

7. Conclusion

We are currently observing an increasing interest in different kinds of pre-
group grammars. Although treating all grammatical aspects and solving
all problems may prove to be very hard it is undoubtedly worth trying.
The range of grammatical aspects that have been treated by means of
them so far is quite large. There is no doubt that pregroup grammars
can help with really tricky aspects of natural languages. Tupled pre-
group grammars, product pregroup grammars instead of pure calculus
of pregroup grammars are an interesting kinds of approach that seem to
work better for different linguistic situations.

Appendix

List of basic types in Polish. In analyzing Polish grammar we distinguish
a number of types. Below we present the list of all types the reader will
find in our examples.

In Polish we distinguish four declarative sentence forms:

s1 declarative sentence in the present tense;
s2 declarative sentence in the past tense;
s3 declarative sentence in the future tense;
s4 declarative sentence in the conditional mood.

The basic types of verbs are:

i verb infinitive;
ī infinitive of modal verb.

The basic types of personal pronouns are of the form πi, where:

π1 ja [I];
π2 ty [you – singular forms];
π3 on [he];
π4 ona [she];
π5 ono [it];
π6 my [we];
π7 wy [you – plural forms];

π8 oni [they – masculine and neuter forms];
π9 one [they – female forms].

The basic types of nouns are of the form nki or n̂ki, where:



Extended pregroup grammars applied . . . 249

nki noun in singular form
n̂ki noun in plural form

and k = m, f, n, whereas i = 1, 2, . . . , 7, where:

k = m masculine noun;
k = f feminine noun;
k = n neuter noun;
i = 1 nominative case;
i = 2 genitive case;
i = 3 dative case;
i = 4 accusative case;
i = 5 instrumental case;
i = 6 locative case;
i = 7 vocative case.

Note. Polish differs from many other western European languages in how
it handles nouns. First, it does not need to use definite and indefinite
articles or determiners, whereas this is essential in English or German.
Second, Polish nouns have to be inflected for case. In English there are
no case inflections. In German one has to pay attention to articles only,
and in some cases to the endings of the particular noun. Like German,
Polish also syntactically distinguishes the genders of the nouns. There
are three: masculine, feminine and neuter.

A noun is a collection of forms which are chosen (one at time) de-
pending on the requirements of a sentence. Such forms may be reduced
to seven cases (German has four).

Summing up, there are three quite important things to note about the
Polish noun: its gender, its case and whether it is singular or plural. The
above mentioned types fulfil the requirements. One can easily determine
that książkę [book] with the type nf4 is a singular feminine noun in the
fourth (accusative) case, whereas dzieciom [children] with the type n̂n3

is a neuter noun in the plural in the third (dative) case. More detailed
explanation and examples may be found in [8].

Basic types concerning adjectives are of the type aki or âki, where:

aki adjective in singular form
âki adjective in plural form

and k = m, f, n, whereas i = 1, 2, . . . , 7, where the first index k indicates
gender, and the second index i indicates case.



250 Aleksandra Kiślak-Malinowska

k = m masculine adjective;
k = f feminine adjective;
k = n neuter adjective.

The meaning of i is the same as for nouns. We understand aki as an
abbreviation for nkin

l
ki and âki as an abbreviation for n̂kin̂

l
ki.

Note. The function of the declension form of adjectives is to express
their agreement in case and number with the nouns which they qualify.
In order to build a correct noun phrase the gender, number and case
of an adjective must comply with the gender, number and case of the
noun. It is therefore clear that the above proposed types comply with
these requirements. More detailed explanation and examples may be
found in [8].

The basic types concerning objects are of the type oi, where:

o2 genitive object; (kogo? czego?);
o3 dative object; (komu? czemu?);
o4 accusative object; (kogo? co?);
o5 instrumental object; (kim? czym?);
o6 locative object; (o kim? o czym?).

The basic types concerning prepositional phrases are:

λ(1) which answers the question dokad? [where to?]
λ(2) which answers the question gdzie? [where?]
λ(3) which answers the question kiedy? [when?]
λ(4) which answers the question po co? [what for?]
λ(5) which answers the question dlaczego? [why?]
. . .

Partial order. We will make use of the following partial ordering on
types: s1 ≤ s, s2 ≤ s, s3 ≤ s, s4 ≤ s, if the tense of the sentence is
irrelevant. That means that s is a sentence but we are not interested in
the tense. And again, it cannot be done the other way round.

In our further work we also make use of the following:

nki ≤ oi,
n̂ki ≤ oi.

for k = m, f, n and i = 2, 3, . . . , 6.
This means that nouns may also play the role of objects in a sentence.

nm1 ≤ π3, n̂m1 ≤ π8,
nf1 ≤ π4, and n̂f1 ≤ π9,
nn1 ≤ π5, n̂n1 ≤ π9.



Extended pregroup grammars applied . . . 251

This accounts for the fact that nouns in nominative cases also play the
grammatical role of the subject.

Acknowledgments. I would like to thank an anonymous referee for help-
ful comments and suggestions on an earlier version of this paper.

References

[1] Buszkowski, W., “Lambek grammars based on pregroups”, Logical Aspects
of Computational Linguistics, LNAI 2099, Springer, 2001, 95–109.

[2] Buszkowski, W., “Sequent systems for compact bilinear logic”, Mathemat-
ical Logic Quarterly 49, 5 (2003): 467–474.

[3] Buszkowski, W., and K. Moroz, “Pregroup grammars and context-free
grammars”, pages 1–22 in: Computational Algebraic Approaches to Natu-
ral Language, Polimetrica, 2008.

[4] Casadio, C., and J. Lambek, “An algebraic analysis of clitic pronouns in
Italian”, pages 110–124 in: Logical Aspects of Computational Linguistics,
LNAI 2099, Springer, 2001.

[5] Casadio, C., “Applying pregroups to Italian statements and questions”,
Studia Logica 87 (2007).

[6] Casadio, C., “Agreement and cliticization in Italian: A pregroup analy-
sis”, pages 166–177 in: Lecture Notes in Computer Science, LNCS 6031,
Springer, 2010.

[7] Fadda, M., “Toward flexible pregroup grammars”, pages 95–112 in: New
Perspectives in Logic and Formal Linguistics, Bulzoni Editore, Roma,
2002.

[8] Kiślak, A., “Pregroups versus English and Polish grammar”, pages 129–
154 in: New Perspectives in Logic and Formal Linguistics, Bulzoni Edi-
tore, Roma, 2002.

[9] Kiślak-Malinowska, A., “On the Logic of β-pregroups”, Studia Logica 87
(2007): 321–340.

[10] Kiślak-Malinowska, A., “Polish language in terms of pregroups”, pages
145–172 in: Computational Algebraic Approaches to Natural Language,
Polimetrica, 2008.

[11] Kiślak-Malinowska, A., “Some aspects of Polish grammar in terms of tu-
pled pregroups”, Linguistic Analysis (2010): 93–119.

[12] Kusalik, T., “Product pregroups as an alternative to inflectors”, pages
173–190 in: Computational Algebraic Approaches to Natural Language,
Polimetrica, 2008.

[13] Lambek, J., “The mathematics of sentence structure”, The American
Mathematical Monthly 65 (1958): 154–170.



252 Aleksandra Kiślak-Malinowska

[14] Lambek, J., “Type grammars revisited”, pages 1–27 in: Logical Aspects
of Computational Linguistics, A. Lecomte, F. Lamarche and G. Perrier
(eds.), LNAI 1582, Springer, Berlin, 1999.

[15] Lambek, J., “Type grammars as pregroups”, Grammars 4 (2001): 21–39.
[16] Lambek, J., “Pregroups: a new algebraic approach to sentence structure”,

pages 39–54 in: New Perspectives in Logic and Formal Linguistics, Bulzoni
Editore, Roma, 2002.

[17] Lambek, J., From word to sentence, Polimetrica, 2008.
[18] Lambek, J., “Exploring feature agreement in French with parallel pre-

group computations”, Journal of Logic, Language and Information (2009).
[19] Moroz, K., “Algorithmic questions for pregroup grammrs”, PhD Thesis,

Poznań 2010.
[20] Stabler, E., “Tupled pregroup grammars”, pages 23–52 in: Computational

Algebraic Approaches to Natural Language, Polimetrica, 2008.

Aleksandra Kiślak-Malinowska

Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Olsztyn, Poland
akis@uwm.edu.pl


	Introduction
	Pregroups and free pregroups
	Illustration
	Pregroups with modalities
	Product pregroup grammars
	Tupled pregroup grammars
	Conclusion
	Appendix
	References


