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BICONSEQUENCES

Abstract. p-consequence (plausible consequence; see [2]) allows for a
formulation of non-deductive reasonings, i.e., such where the conclusion
has weaker justification then assumptions and thus when added to the
set of assumptions results in its extension. But theoretical modesty of
p-consequence operation does not tell the difference between “good” and
“worse” conclusions. Therefore the bisconsequence is introduced.
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1. Preliminaries

Deductive inference in the sense of Ajdukiewicz [1] requires that a con-
clusion has degree of sureness at least the same as the degree of the
weakest among the premisses. The sentence ‘a + b = 0’ is true in the
same way as the sentences ‘a = c’ and ‘b = −c’ (in the standard meaning
of the symbols ‘+’ and ‘−’). This point of view is expressed by the third
Tarskian condition of consequence operation (i.e. idempotency). In the
opposite, in plausible inference, the degree of sureness of conclusion can
be smaller than the degree of assumption. In the classic example the sen-
tence ‘It was raining’ can be treated as having worse justification than
‘The streets are wet’. Moreover, the sentence ‘My garden is wet’ is quite
a possible conclusion from the sentence ‘It was raining’, but it should
be considered as much worse conclusion from the assumption ‘Streets
are wet’ (if the observer is not seeing his own garden at the moment of
making the statement). So, plausible inference does not fulfil the idem-
potency condition. Formal characterization of plausible (non-deductive)
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inference contained in [2] requires that such an inference must have two
relevant properties (for any sets of formulas X and Y of a fixed propo-
sitional language): X ⊆ Z(X) and if X ⊆ Y , then Z(X) ⊆ Z(Y ) (it is
the so-called p-consequence operation).

This work can be treated as a attempt of generalization of p-conse-
quence operation. For any p-consequence there is a problem to distin-
guish better and worse justified sentences. For example, given a formula
α ∈ Z(X) we do not know whether α is well justified as possible or not.
This lack can be supplemented by considering an operation on a disjoint
sum of the same language, i.e. L ⊕ L. When we dispose of the set X ⊕ Y
then the first component contains assumptions having the best degree
of sureness, and the second one  not-rejected formulas. Similarly, when
“consequence” of X ⊕ Y is of the form N(X ⊕ Y ) = U ⊕ V , then the
same remarks concern the sets U and V .

In this paper we are using the following notation. For any sets X1

and X2 by X1 ⊕ X2 we mean their disjoint sum, i.e.:

X1 ⊕ X2 := {〈x, 1〉 : x ∈ X1} ∪ {〈x, 2〉 : x ∈ X2}.

For t0 ∈ {1, 2}, by it0
: Xt0

→֒ X1 ⊕ X2, s.t. it0
(x) = 〈x, t0〉, we mean

inclusion into t0-component of the disjoint sum X1 ⊕ X2. Notice that
∅ = ∅ ⊕ ∅, X1 ⊕ ∅ = {〈x, 1〉 : x ∈ X1} and ∅ ⊕ X2 = {〈x, 2〉 : x ∈ X2}.
Moreover, every subset of X1 ⊕ X2 is a disjoint union of some subsets
of X1 and X2. Indeed, if X ∈ P(X1 ⊕ X2), then for t0 ∈ {1, 2} we put
X(t0) := i−1

t0
(X), i.e.:

X(t0) := {x : 〈x, t0〉 ∈ X}.

Of course X(t0) ⊆ Xt0
and X = X(1) ⊕ X(2).

For variables of disjoint unions of sets we will use bold letters: X,
Y , Z. It is obvious that:

Lemma 1.1. For all sets X1 and X2: X1 = (X1 ⊕ X2)(1) and X2 =
(X1 ⊕ X2)(2). Hence, for any disjoint union X:

(i) if X = X1 ⊕ X2, then X(1) = X1 and X(2) = X2 ;

(ii) X = X(1) ⊕ X(2) .

For any pair of mappings f1 : X1 −→ Y and f2 : X2 −→ Y , we define a
new mapping f1⊎f2 : X1⊕X2 −→ Y , by putting for any 〈x, i〉 ∈ X1⊕X2:

(f1 ⊎ f2)(〈x, i〉) := fi(x) .
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Moreover, for any pair of mappings f1 : X1 −→ Y1 and f2 : X2 −→ Y2 we
define a new mapping (f1 ⊕f2) : X1 ⊕X2 −→ Y1 ⊕Y2, by putting for any
〈x, i〉 ∈ X1 ⊕ X2:

(f1 ⊕ f2)(x, i) := 〈fi(x), i〉 .

2. Biconsequence

Definition 2.1. Assume that L = 〈L, f1, . . . , fn〉 is a propositional lan-
guage generated by the set of atoms At. Then by biconsequence for L

we understand any mapping N : P(L ⊕ L) −→ P(L ⊕ L) such that for
any disjoint unions X, Y from P(L ⊕ L), the following conditions hold:

(i) X ⊆ N(X),

(ii) N(X) ⊆ N(Y ), whenever X ⊆ Y ,

(iii) N(N(X)(1) ⊕ X(2)) ⊆ N(X).

Brief analysis of the above definition allows to spell out non-formal
intentions. In each disjoint sum sets of formulas X1 ⊕ X2 we indicate
assumptions from the first, the best founded (see similarities between
(iii) and the condition C(C(X)) ⊆ C(X) in the classical theory of con-
sequence), and from the second  worse but not the worst.

Moreover, if for every substitution e of the language L and every
X ∈ P(L ⊕ L) we have that:

(e ⊕ e)(N(X)) ⊆ N(e(X(1)) ⊕ e(X(2))),

then N will be called structural.
For now we do not demand stronger condition than this: for all sub-

stitutions e1, e2, (e1 ⊕ e2)(N(X)) ⊆ N(e1(X(1)) ⊕ e2(X(2))), because it
seems to be factitious in the linguistic practice. We assume that a plau-
sible reasoning is expressible in the same language as deductive – with
every consequence of that fact  when we substitute some formulas for
propositional variables to say something about reality. We distinguish
only the degrees of certainty.

As in the standard theory of consequence, N is finitary iff N(X) =
⋃

{N(Y ) : Y ∈ Fin(X)}, where Fin(X) stands for the family of finite
subsets of X (including the empty set).

Theory of p-consequence (see e.g. [2]) contains the notion of p-matrix,
that is defined to be a structure M = 〈M, F1, . . . , Fn, D1, D∗〉, where
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〈M, F1, . . . , Fn〉 is an algebra of interpretations similar to a given lan-
guage L = 〈L, f1, . . . , fn〉, D1 and D∗, with D1 ⊆ D∗ ⊆ M , are the sets
of distinguished values of two kinds:

• for D1: values corresponding to the maximal possible sureness,

• for D∗: values of the smaller degree of sureness.

Moreover, p-consequence ZM is defined by a p-matrix M in the fol-
lowing manner:

α ∈ ZM(X) iff h(X) ⊆ D1 implies hα ∈ D∗, for any

homomorphisms h : L −→ M.

How to interpret the above definition? Its explanation is simple and
rather intuitive: α is a p-conclusion of the set X iff every interpretation
that sends all the premisses into the smaller set D1 (i.e. such one which
values X in the best possible manner) does not take out α outside D∗

(that is α is not rejected).
By a bimatrix for the language L we shall understand a structure

M = 〈M, F1, . . . , Fn, E, D1, D∗〉, where 〈M, F1, . . . , Fn〉 is algebra similar
to L, E ⊆ M and D1 ⊆ D∗ ⊆ M .

Every bimatrix M = 〈M, F1, . . . , Fn, E, D1, D∗〉 determines the op-
eration of biconsequence NM : P(L ⊕ L) −→ P(L ⊕ L) in the following
way. For any X ∈ P(L ⊕ L) (see Lemma 1.1):

NM(X) := NM(X)(1) ⊕ NM(X)(2) ,

where for any α ∈ L:

α ∈ NM(X)(1) iff

∀h∈Hom(L,M)

(

h(X(1)) ⊆ E & h(X(2)) ⊆ D1 ⇒ h(α) ∈ E
)

,

and

α ∈ NM(X)(2) iff

∀h∈Hom(L,M)

(

h(X(1)) ⊆ E & h(X(2)) ⊆ D1 ⇒ h(α) ∈ D∗

)

.

Let us briefly comment the above definition. The assumptions are
divided into two sets, i.e., components of disjoint sum X = X1 ⊕ X2. If
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h is an interpretation of the propositional language which sends X1 into
the set E (of distinguished values for the left side) and sends X2 into
D1 (the set of strongly distinguished values of the left side), then the
formulas from NM(X)(1) must be mapped into E. This naturally behaves
as a matrix consequence operation. Similarly, the second component of
the sum behaves like a matrix p-consequence operation. One can ask
whether it should rather be forced that D1 = E. Although, it sounds
quite reasonably, we have decided for a more general version complete
w.r.t. Definition 2.1. (see also Theorem 2.1.)

Proposition 2.1. NM is structural consequence operation.

Proof. We put N = NM. First two conditions of the definition of bicon-
sequence are obvious. Let α ∈ N(N(X)(1) ⊕ X(2))(i), where i = 1, 2. Of
course, (N(X)(1) ⊕X(2))(1) = N(X)(1) and (N(X)(1) ⊕X(2))(2) = X(2).
We also suppose that for some h ∈ Hom(L,M) we have: h(X(1)) ⊆ E
and h(X(2)) ⊆ D1. Then, by definition of N(X)(1), for any β ∈ N(X)(1),
we have h(β) ∈ E. Thus, h(N(X)(1)) ⊆ E. Since by assumption
h((X)(2)) ⊆ D1, so h(α) ∈ E, when i = 1, and h(α) ∈ D∗, when
i = 2. Hence α ∈ N(X)(i). Thus, N(N(X)(1) ⊕ X(2)) ⊆ N(X).

The proof the structurality of N is straightforward. ⊣

Proposition 2.2. For every class N of biconsequences operation
∧

N

defined by (
∧

N)(X) :=
⋂

N∈N N(X) is a biconsequence.

Proof. For every N0 ∈ N we have (
∧

N)[((
∧

N)(X))(1) ⊕ (X)(2)] =
⋂

N∈N N [((
∧

N)(X))(1) ⊕ (X)(2)] ⊆ N0[(N0(X))(1) ⊕ (X)(2)] ⊆ N0(X).
Thus (

∧

N)[((
∧

N)(X))(1) ⊕ (X)(2)] ⊆ (
∧

N)(X). As the conditions (i)
and (ii) are obvious we omit them. ⊣

Corollary 2.1. For every class BM of bimatrices operation

NBM :=
∧

{NM : M ∈ BM}

forms a structural biconsequence.

For any biconsequence N we put

L(N) := {〈L, f1, . . . , fn, N(X)(1), X(2), N(X)(2)〉}X∈P(L⊕L) .

Naturally L(N) is a subclass of the class of all bimatrices for L.
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Theorem 2.1. N is structural iff NL(N) = N .

Proof. “⇒” (⊇) Assume that α ∈ N(X)(i) (i = 1, 2) and let e⊕e(X) ⊆
N(Y )(1)⊕Y (2). Thus, e(α) ∈ N(Y )(i), since e⊕eN(X) ⊆ N(e⊕e(X)) ⊆
N [N(Y )(1) ⊕ Y (2)] = N(Y ) and α ∈ NL(N)(X)(i).

(⊆) If α /∈ N(X)(i), then (id⊕ id)(X) ⊆ N(X)(1) ⊕X(2) and id(α) /∈
N(X)(i). Finally, α /∈ NL(N)(X)(i).

“⇐” By Corollary 2.1. ⊣

Every pair of the form C ⊕ Z, where C is a consequence, Z is a
p-consequence operation, and (C ⊕ Z)(X) := C(X(1)) ⊕ Z(X(2)) is
a biconsequence. But not every biconsequence has a representation
such that  it is enough to N(X1 ⊕ X2)(2) 6= N(Y1 ⊕ X2)(2) for some
X1, Y1, X2 ∈ P(L).

Definition 2.2. By biinference we understand an arbitrary member of
the set

⋃

k∈N
(L × {1, ∗:∗, ∗:1})k.

Definition 2.3. r is called birule iff r a non-empty set of biinferences.

Definition 2.4. Biinfence (a1, . . . , an) is a biproof of 〈α, x〉 (where x ∈
{1, ∗:∗, ∗:1}) based on the set R of birules from the set X iff an = 〈α, x〉
and for every i ∈ {1, . . . , n} at last one of the following conditions holds:

(i) pr1(ai) ∈ X(1) and pr2(ai) = 1;1

(ii) pr1(ai) ∈ X(2) and pr2(ai) = ∗:1;

(iii) for some {b1, . . . , bk} ⊆ {a1, . . . , ai−1}, (b1, . . . , bk, ai) ∈
⋃

R.

For any set R of birules we define NR : P(L ⊕ L) −→ P(L ⊕ L):

NR(X) := {〈α, 1〉 : exists biproof of 〈α, 1〉 based on R from X} ∪

{〈α, 2〉 : exists biproof of 〈α, x〉, where x ∈ {∗:∗, ∗:1},

based on R from X}.

Theorem 2.2. For any set of birules R, the operation NR : P(L⊕L) −→
P(L ⊕ L) is finitary biconsequence operation.

1pr
1

and pr
2

will stand for the first and the second projection respectively, i.e.,
pr

1
(〈x, y〉) := x and pr

2
(〈x, y〉) := y.
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Proof. Because the first two conditions from Definition 2.1 of biconse-
quence and finiteness are obvious, we will show only that for every set
X ∈ P(L ⊕ L): NR(NR(X)(1) ⊕ X(2)) ⊆ NR(X).

Assume that (a1, . . . , an) is some biproof from NR(X)(1) ⊕ X(2) by
the rules R. We show by induction, that for every 1 ¬ j ¬ n there exits
a biproof (c1, . . . , cm, aj) from the set X by using the same set of rules
and {a1, . . . , an−1} ⊆ {c1, . . . , cm}.

Assume that j = 1. When pr1(a1) ∈ NR(X)(1) and pr2(a1) = 1, then
there exists a biproof (c1, . . . , cm, a1) from X and our statement holds.

In the case when pr1(a1) ∈ X(2) and pr2(a1) = ∗:1 or (a1) ∈
⋃

R,
(a1) is a required biproof.

Assume that the proposition holds for every i ¬ j. If (a1, . . . , aj+1) is
a biproof and (b1, . . . , bk, aj+1) ∈

⋃

R, for some {b1, ..., bk} ⊆ {a1, ..., aj},
then there are biproofs (ci

1, . . . , ci
mi

, bi) for every i ∈ {1, . . . , k} from
X and {a1, . . . , aj} ⊆ {ci

1, . . . , ci
mi

}. Then (c1
1, . . . , c1

m1
, . . . , ck

1 , . . . , ck
mk

,
b1, . . . , bk, an+1) is the sequence which we needed.

Other cases are the same as in the first part of the proof. ⊣

For any biinference ā = (a1, . . . , an) and k ∈ {0, 1, . . . , n} let us put:

Aā
1(k) := {pr1(aj) ∈ L : 1 ¬ j ¬ k & pr2(aj) = 1},

Aā
∗:1(k) := {pr1(aj) ∈ L : 1 ¬ j ¬ k & pr2(aj) = ∗:1},

Aā
∗:∗(k) := {pr1(aj) ∈ L : 1 ¬ j ¬ k & pr2(aj) = ∗:∗}.

When biinference is fixed we omit upper index ā.
For any biconsequence N we define the set of birules R(N):

r ∈ R(N) iff for every ā = (a1, . . . , an) ∈ r and every Y ∈ P(L ⊕ L)
the following condition holds:

• if Aā
1(n − 1) ⊆ N(Y )(1), Aā

∗:∗(n − 1) ⊆ N(Y )(2) and N(Y (1) ⊕ (Y (2) ∪
Aā

∗:1(n − 1)) = N(Y ), then

(i) if pr2(an) = 1, then pr1(an) ∈ N(Y )(1);

(ii) if pr2(an) = ∗:∗, then pr1(an) ∈ N(Y )(2);

(iii) if pr2(an) = ∗:1, then N(Y (1) ⊕ (Y (2), pr1(an)) = N(Y ).

Lemma 2.1. If ā = (a1, . . . , an) is a biproof from X by R(N), then

Aā
1(n) ⊆ N(X)(1), Aā

∗:∗(n) ⊆ N(X)(2) and N(X(1) ⊕ (X(2) ∪Aā
∗:1(n))) =

N(X).
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Proof. We shall show by induction, that for every i ∈ {1, . . . , n}:

(∗i) Aā
1(i) ⊆ N(X)(1), Aā

∗:∗(i) ⊆ N(X)(2) and
N(X(1) ⊕ (X(2) ∪ Aā

∗:1(i))) = N(X).

It is straightforward to check that (∗1) holds.

Assume that for every k ¬ i, (∗k) holds, or equivalently (∗i). Let
ai+1 be introduced to the sequence ā by b̄ = (b1, . . . , bm, ai+1) ∈

⋃

R.
Then by the definition of R(N) we have for every Y ∈ P(L ⊕ L):

• if Ab̄
1(m) ⊆ N(Y )(1), Ab̄

∗:∗(m) ⊆ N(Y )(2) and N(Y (1) ⊕ (Y (2) ∪

Ab̄
∗:1(m)) = N(Y ) then

(i) if pr2(an) = 1, then pr1(ai+1) ∈ N(Y )(1);

(ii) if pr2(an) = ∗:∗, then pr1(ai+1) ∈ N(Y )(2);

(iii) if pr2(an) = ∗:1, then N(Y (1) ⊕ (Y (2), pr1(ai+1)) = N(Y ).

In particular for Y = (X(1) ∪ Aā
1(i)) ⊕ (X(2) ∪ Aā

∗:1(i)):

• if Ab̄
1(m) ⊆ N [(X(1) ∪ Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))](1) = N(X)(1),

Ab̄
∗:∗(m) ⊆ N [(X (1) ∪ Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))](2) = N(X)(2) and

N [(X(1) ∪ Aā
1(i)) ⊕ ((X(2) ∪ Aā

∗:1(i)) ∪ Ab̄
∗:1(m))] = N [(X(1) ∪ Aā

1(i)) ⊕
(X(2) ∪ Aā

∗:1(i))] = N(X), then

(i) if pr2(ai+1) = 1, then pr1(ai+1) ∈ N [((X (1) ∪ Aā
1(i)) ⊕ (X(2) ∪

Aā
∗:1(i)))](1) ;

(ii) if pr2(ai+1) = ∗:∗, then pr1(ai+1) ∈ N [((X (1) ∪ Aā
1(i)) ⊕ (X(2) ∪

Aā
∗:1(i)))](2) ;

(iii) if pr2(ai+1) = ∗:1, then N [(X(1) ∪ Aā
1(i)) ⊕ (X(2) ∪ Aā

∗:1(i),
pr1(ai+1))] = N [(X (1) ∪ Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))].

But antecedent of this implication is true, thus consequent too, so

• if pr2(ai+1) = 1, then Aā
1(i + 1) = Aā

1(i) ∪ {pr1(ai+1)} ⊆ N [(X(1) ∪
Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))](1) = N(X)(1);

• if pr2(ai+1) = ∗:∗, then Aā
∗:∗(i+1) = Aā

∗:∗(i)∪{pr1(ai+1)} ⊆ N [(X(1) ∪
Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))](2) = N(X)(2);

• if pr2(ai+1) = ∗:1, then N [(X(1) ∪Aā
1(i))⊕((X (2) ∪Aā

∗:1(i)), pr1(ai+1))]
= N [(X(1) ∪ Aā

1(i)) ⊕ (X(2) ∪ Aā
∗:1(i))] = N(X).
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Cases when pr1(ai+1) ∈ X(1), pr2(ai+1) = 1 or pr1(ai+1) ∈ X(2),
pr2(ai+1) = ∗:1 are straightforward. Finally (∗i+1) holds. ⊣

Theorem 2.3. For every X ∈ P(L⊕L): NR(N)(X) ⊆ N(X). Moreover,

if N is finitary, then NR(N) = N .

Proof. When 〈α, x〉 ∈ NR(N)(X), then there exists a biproof (ā, 〈α, x〉)
from the set X by using the rules R(N). According to Lemma 2.1,
〈α, x〉 ∈ N(X)(1), when x = 1; 〈α, x〉 ∈ N(X)(2), when x = ∗:∗. More-
over, 〈α, x〉 ∈ N(X(1) ⊕(X(2), α)), and consequently α ∈ N(X)(2), when
x = ∗:1.

If α ∈ N(X)(1), then α ∈ N({β1, . . . , βn} ⊕ {γ1, . . . , γk})(1), for some
β1, . . . , βn ∈ X(1) and γ1, . . . , γk ∈ X(2). Then ā = (〈βi, 1〉n

i=1, 〈γi,

∗:1〉k
i=1〈α, 1〉) is the biinference which fulfils both ā ∈

⋃

R(N) and ā is
a biproof from X using R(N). Similarly in the case when α ∈ N(X)(2)

(it is enough biproof terminating on 〈α, ∗:∗〉). ⊣

Definition 2.5. For any class of similar bimartix BM = {〈M t, F t
1 , . . . ,

F t
n, Dt

1, Dt
∗:1, Dt

∗:∗〉 : t ∈ T }, we shall say that birule is valid for BM (or
BM-valid) iff for each ā = (a1, . . . , ak) ∈ r, t ∈ T and ht ∈ Hom(L, 〈M t,
F t

1 , . . . , F t
n〉) : ht(A

ā
x(k − 1)) ⊆ Dt

x for x = 1, ∗:1, ∗:∗ implies pr1(ak) ∈
Dpr2(ak). We put R(BM) for the set of BM-valid birules.

Theorem 2.4. For any class of bimatrices BM and any X ∈ P(L ⊕ L):
NR(BM)(X) ⊆ NBM(X). Moreover, if NBM is finitary, then NR(BM) =
NBM .

Proof. For the first part it is enough to show by induction that for any
biproof ā = (a1, . . . , ak) from the set X ∈ P(L ⊕ L) and any ht from
Hom(L, 〈M t, F t

1 , . . . , F t
n〉):

if ht(A
ā
x(k − 1)) ⊆ Dt

x for x = 1, ∗:1, ∗:∗, then pr1(ak) ∈ Dpr2(ak).

The proof of this fact is easy but quite long. Moreover it is very similar
to the case of p-consequence (see [2]).

Assume that NBM is finitary and α ∈ NBM(X)(i), i.e. α ∈ NBM(Xf )(i)

for some Xf = {〈χj , xj〉}k
j=1 and finite subset of X (xj ∈ {1, 2}). It is

easy to check, that (〈χj , fxj〉k
i=1, 〈α, 1〉), when i = 1, and (〈χj , fxj〉

k
i=1,

〈α, ∗:1〉), when i = 2, is desirable biproof. We have used notation
f : {1, 2} −→ {1, ∗:1}, f(1) = 1 and f(2) = ∗:1. ⊣
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3. Operations associated with biconsequence

For any biconsequence N and arbitrary but fixed Y ⊆ L we define
CN

Y : P(L) → P(L), by putting for any X ∈ P(L):

CN
Y (X) := N(X ⊕ Y )(1) .

We note without proofs.

Fact 3.1. CN
Y is consequence operation. If N is finitary (resp. struc-

tural), then so is CN
Y .

For any consequences C1, C2 for the same language by C1 ≤ C2 we
note the fact, that for every X ∈ P(L): C1(X) ⊆ C2(X). Naturally ≤ is
a partial order.

Fact 3.2. CN
Y1

≤ CN
Y2

whenever Y1 ⊆ Y2.

Implication in the opposite direction does not hold. For example we
can define

N(X ⊕ Y ) :=

{

L ⊕ L if Y 6= ∅,

X ⊕ ∅ if Y = ∅

then for all non-empty sets Y1 and Y2 we have that CN
Y1

= CN
Y2

.

For arbitrary family of consequences C we put
∨

C for supremum of
C in the lattice of consequences for the language L.

Fact 3.3. If N is finitary and {Yζ}ζ<ξ is a chain of sets of formulas

(where ξ is an ordinal), then

∨

ζ<ξ

CN
Yζ

= CN
⋃

ζ<ξ
Yζ

.

Fact 3.4. If N is finitary and {Yt}t∈T is a directed set of sets of formulas,

then
∨

t∈T

CN
Yt

= CN
⋃

t∈T
Yt

.
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4. Final remarks and conclusions

So far it was proved a few properties of biconsequence operation. The
higher complexity of this notion allows for considering many classes of
biconsequences. In the fact, we have consider the most general case
of biconsequence, but it is possible to take under considerations such
operations N for which the following condition is valid:

N(X)(1) ⊆ N(X)(2) .

It can be interpreted as the fact that every “good” conclusion is a “worse”
consequence. For example the sentence ‘2 + 2 = 4’ is universally valid
(in the standard meaning of symbols), so it is a conclusion of the right
side as well (likewise in the theory of p-consequence).

But there arises another problem. We have three types of sentences:

• sentences that occur on the left side (good justified in the new sense 
distinguished by the symbol 1) and,

• sentences from the right side: worse-good, and worse-worse (associated
to ∗:1 and ∗:∗, respectively).

It would seems that our problem has been moved but not removed,
namely, how to distinguish worse-good from worse-worse sentences. Our
explanation is rather simple  we have the most fundamental distinction
between good justified and not-rejected sentences and the rest is out of
our interest. For example, the first component of a disjoint sum can
correspond to undoubtedly true sentences (of the mathematical charac-
ter), the other one can contain statements concerning the material world.
Both types of sentences could be naturally expressed in some language
containing both of them.

One more thing  it is possible to multiple a number of components
in disjoint sum. Every of them would be to correspond of different degree
of sureness (we remark that degrees not need to be linear a order). But it
is something which requires more reflection, and we leave it for a future
work.
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