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Abstract. Lou Goble proposed powerful conditional deontic logics
(CDPM) that are able to deal with deontic conflicts by means of re-
stricting the inheritance principle. One of the central problems for dyadic
deontic logics is to properly treat the restricted applicability of the prin-
ciple “strengthening the antecedent”. In most cases it is desirable to
derive from an obligation A under condition B, that A is also obliged
under condition B and C. However, there are important counterex-
amples. Goble proposed a weakened rational monotonicity principle to
tackle this problem. This solution is suboptimal as it is for some exam-
ples counter-intuitive or even leads to explosion. The paper identifies
also other problems of Goble’s systems. For instance, to make optimal
use of the restricted inheritance principle, in many cases the user has to
manually add certain statements to the premises.

An adaptive logic framework based on CDPM is proposed which is
able to tackle these problems. It allows for certain rules to be applied as
much as possible. In this way counter-intuitive consequences as well as
explosion can be prohibited and no user interference is required. Further-
more, for non-conflicting premise sets the adaptive logics are equivalent
to Goble’s dyadic version of standard deontic logic.
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1. Introduction

Recent work in adaptive logics has shown growing interest in (monadic)
deontic systems which are able to deal with deontic conflicts (see [16]). A
deontic conflict between obligations occurs when the obligations cannot
be mutually realized. Note that deontic conflicts are not just an abstruse
philosophical notion, but that they occur quite commonly in our every-
day moral lives. This has for instance to do with the fact that different
obligations and behavioral codices may stem from different moral systems
and institutions. Sartre famously reports of one of his students who found
himself in an unfortunate situation. On the one hand he felt obliged to
support the French army in their resistance against Nazi Germany. On
the other hand, however, there was the obligation to stay at home in
order to support his ill mother. Obviously, it was not possible for him
to fulfill both obligations mutually.

Unlike standard deontic logic SDL, Goble’s logics DPM (see [9, 8,
5]) prevent deontic explosions in such cases by means of restricting the
inheritance principle (“if ⊢ A ⊃ B then ⊢ OA ⊃ OB”), while having
the same range of desired consequences for non-conflicting premise sets.
Developing adaptive versions of DPM in [16] the authors were able to
improve them in various aspects.

It is well known that attempts to model conditional obligations in
terms of monadic ought-operators (e.g. O(A ⊃ B) or A ⊃ OB) have sev-
eral shortcomings. This has led to various approaches based on dyadic
ought-operators O(A | B) — “if B is the case you are obliged to do/bring
about A”. Goble in [5, 8] developed conditional versions of his conflict-
tolerant DPM systems (CDPM) that are also based on a restricted in-
heritance principle.

One of the most difficult problems for dyadic deontic logics is to
handle cases in which the principle ‘strengthening the antecedent’ (⊢
O(A | B) ⊃ O(A | B ∧ C)) has to be restricted. Paradigmatic instances
are settings in which exceptions and/or violations of general obligations
occur, as for example (cp. [10]):

• You ought not to eat with your fingers: O(¬F | ⊤)
• You ought to put your napkin on your lap: O(N | ⊤)
• If you are served asparagus, you ought to eat it with your fingers:

O(F | A)
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By adding some intuitive permission statements,1 Goble’s preferred
conditional logic CDPM.2c is able to derive all the desired obligations
(e.g. O(F | N ∧ A), O(N | A)). Note, however, that given the permis-
sion P(¬F ∧ A | ⊤) also the counter-intuitive O(¬F | A) is derivable.
This causes a deontic conflict with O(F | A). Furthermore, replacing or
supplementing O(F | A) by P(F | A) leads to triviality – a severe short-
coming. We will also identify other shortcomings of Goble’s logics. For
instance, in order to make optimal use of the restricted inheritance prin-
ciple, in many cases the user needs to manually add certain statements
to the premise set. Furthermore, some of the rules of Goble’s CDPM
logics do not behave well together and cause undesired consequences.

This paper presents adaptive logics based on Goble’s CDPM logics
which are able to tackle these problems. They allow for certain rules to be
applied as much as possible. In this way counter-intuitive consequences
as well as explosion can be prohibited and no user interference is required.
For instance, it will be shown that for the adaptive approach there is no
need to explicitly add premises in order to make use of the restricted
inheritance rule. The proof dynamics of the adaptive logics take care of
this as part of the reasoning process which is explicated by the proof. In
addition, the dynamic aspect of our moral reasoning is nicely captured by
the dynamic proof theory. This also enables us to have a better insight
in the relations between obligations/permissions and thus to localize the
deontic conflicts as well as violations and exceptions of obligations as the
product of an actual reasoning process. Furthermore, for non-conflicting
premise sets the adaptive logics are equivalent to Goble’s dyadic version
of standard deontic logic.

In the Appendix the interested reader can find semantics for the
introduced logics and proofs for the (meta)-theorems presented in this
paper.

2. Restricting the inheritance principle

In the remainder we work, as usual in the context of deontic logics, with
a propositional language enriched by a monadic, and later on a dyadic,
obligation operator O. Where S = {p1, p2, . . . } is the set of propositional
atoms, the set of well-formed formulas W1 for the monadic approach and

1The permission operator is defined by P(A | B) =df ¬O(¬A | B) as usual.
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the set WO
1 are defined as follows:

W1 := ⊤ | ⊥ | 〈S〉 | O〈W1〉 | ¬〈W1〉 | 〈W1〉 ∨ 〈W1〉 | 〈W1〉 ∧ 〈W1〉 | 〈W1〉 ⊃ 〈W1〉

WO

1 := O〈W1〉 | ¬〈WO

1 〉 | 〈WO

1 〉 ∨ 〈WO

1 〉 | 〈WO

1 〉 ∧ 〈WO

1 〉 | 〈WO

1 〉 ⊃ 〈WO

1 〉

We define as usual A ≡ B by (A ⊃ B) ∧ (B ⊃ A) and PA by ¬O¬A.
A deontic logic that is able to deal with deontic dilemmas should

on the one hand be able to allow for occurrences of deontic conflicts,
such as OA ∧ O¬A, and on the other hand block unwanted consequences
from these conflicts. Most importantly it should avoid explosive behav-
ior. There are various proposals for achieving this goal. First, one could
restrict or reject the “ex contradictione quodlibet” principle, i.e. go para-
consistent (cp. e.g. [3]). Another approach is to restrict or to abandon
the aggregation principle (“if OA and OB, then O(A ∧ B)”). Lou Goble
followed this path with his logic P (see [6]).

Goble proposed in [9] another way to deal with deontic dilemmas,
namely to restrict the inheritance principle via permission statements.
The full inheritance principle

If ⊢ A ⊃ B, then ⊢ OA ⊃ OB, (RM)

is replaced by the following Permitted Inheritance Principle

If ⊢ A ⊃ B, then ⊢ PA ⊃ (OA ⊃ OB). (RPM)

The basic idea is to apply inheritance to OA only if the latter is not
conflicting, i.e., if not also O¬A is the case.

Enriching classical propositional logic PC by rules (RPM)

If ⊢ A ≡ B, then ⊢ OA ≡ OB (RE)

and axioms

⊢ O⊤ (N)

⊢ (OA ∧ OB) ⊃ O(A ∧ B) (AND)

defines the system DPM.1. More precisely, DPM.1 is the least set of
formulas containing all classical tautologies, plus all instances of (N) and
(AND), that is closed under Modus Ponens, (RE), and (RPM) with ’⊢’
indicating membership in DPM.1. We define in a canonical way, ⊢DPM.1
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A iff A is a member of DPM.1. Furthermore, where Γ ⊆ WO
1 , Γ ⊢DPM.1 A

iff for some suitable B1, . . . , Bn ∈ Γ we have ⊢DPM.1 (B1 ∧· · ·∧Bn) ⊃ A.2

The consequence relations for the other logics presented in this paper are
defined analogously and we will not repeat the definition anymore.

Note that axiom (P), ⊢ ¬O⊥, is not part of this logic since adding
it would result in a (not conflict-tolerant) system equivalent to SDL. A
way to achieve a conflict-tolerant logic that validates (P) is to weaken the
aggregation principle. Instead of (AND) we use the following Permitted

Aggregation Principle:

⊢
(

OA ∧ OB ∧ PA ∧ PB
)

⊃ O(A ∧ B) (PAND′)

Logic DPM.2′, is defined by (RPM), (RE), (N), (P) and (PAND′).3

As a measure for the explosiveness of a given (monadic) deontic logic
L Goble proposed three criteria:4

If 0L B then {OA, O¬A} ⊢L OB (MDEX-1)

{OA, O¬A, PB} ⊢L OB (MDEX-2)

{OA, O¬A, OC, PC, PB} ⊢L OB (MDEX-3)

None of the three principles is valid in DPM.1 (resp. DPM.2′) (see [16]).
Furthermore, both satisfy another convention by Goble (see [16]):

(⋆): A deontic logic for dilemmas should be such that the
result of adding (D), namely ⊢ OA ⊃ ¬O¬A, as an axiom to
it is equivalent to SDL.

Although these deontic logics serve their primary purpose, namely to
avoid explosion in face of deontic conflicts, they have some shortcomings.
In order to apply the weakened inheritance principle the user has to
manually add permission statements. If she, for instance, wants to apply

2See also [14] where the authors define consequence relations for rank-1 modal
logics in this way.

3We present a slight variation of the logic proposed by Goble. His DPM.2 employs
the following restriction of aggregation: ⊢ P(A ∧ B) ⊃

(

(OA ∧ OB) ⊃ O(A ∧ B)
)

(PAND). Our DPM.2′ allows for a technically more elegant adaptive strengthening
compared to DPM.2. Furthermore, in contrast to DPM.2, our DPM.2′ satisfies the
convention (⋆) which will be introduced in a moment.

4We slightly adjusted the criteria offered by Goble since his criteria were formulated
in terms of theoremhood while we focus on the consequences of premise sets.
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(RPM) to OA she is also in need of PA. However, should the latter not
be derivable from the given premises then she has to add it manually in
order to apply inheritance to OA. First, it is desirable that the inferential
mechanism of the logic generates these statements automatically. The
reasoning processes should be inherent to the logic as much as possible,
i.e., as little reasoning as possible should be left to the user of the logic.
Second, in case of complicated premise sets it is not at all obvious to the
user what permission statements can or should be added. Some additions
might be harmless, however, others might lead to deontic conflicts or
even worse to explosion. In such cases the user is forced to again add
permission statements from scratch.

What is desirable is a logic which locates deontic conflicts as part of
the proof procedure in a way that there is no need to locate conflicts as
part of a trial-and-error process conducted by the user.

3. Adaptive logics

Many of the deontic logics which are about to be presented belong to
the class of adaptive logics. The mechanism of adaptive logics has been
presented in various papers. The space limitations require that we refer
the reader interested in a detailed description of them to [1]. Here we
will only mention some key features.

An adaptive logic in the standard format is a triple consisting of (i) a
lower limit logic (henceforth LLL), which is a reflexive, transitive, mono-
tonic, and compact logic that has a characteristic semantics and contains
classical logic, (ii) a set of abnormalities Ω, characterized by a (possibly
restricted) logical form, and (iii) an adaptive strategy. Formulating an
adaptive logic in the standard format provides the logic with all of the
important meta-theoretic features, such as soundness and completeness
(as is shown in [1]). As the name itself suggests, the idea underlying
adaptive logics is that they adapt themselves to premise sets, interpret-
ing them “as normally as possible” with respect to some criterion for
normality. Their dynamic proofs make them very useful for modeling
defeasible reasoning, since a formula derivable at one stage of the proof
may turn out to be underivable at a later stage.

A line of a proof consists of a line number, a formula, a justification,
and a condition. Conditions are finite subsets of the set of abnormalities.
We abbreviate

∨

A∈∆ A by Dab(∆) for some finite set ∆ of abnormalities.
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Proofs are characterized by the following generic rules, where “A ∆”
abbreviates that A occurs in the proof on the condition ∆:

PREM If A ∈ Γ :
· · · · · ·
A ∅

RU If A1, . . . , An ⊢LLL B :

A1 ∆1

...
...

An ∆n

B ∆1 ∪ · · · ∪ ∆n

RC If A1, . . . , An ⊢LLL B ∨ Dab(Θ) :

A1 ∆1

...
...

An ∆n

B ∆1 ∪ · · · ∪ ∆n ∪ Θ

Of course it is not enough to apply rules conditionally since there may
be cases in which the condition turns out to be violated. Thus, we need
(a) to define a criterion for what it means that a condition is violated
and (b) introduce a mechanism to mark lines with violated conditions.
The adaptive strategy and the corresponding marking conditions take
care of this.

We shall need to consider stages of proofs, which are lists of lines
obtained by applications of rules PREM, RU and RC (with the usual
understanding that the justification of a line should only refer to lines
preceding it in the list). The empty list will be considered as stage 0 of ev-
ery proof. Where s is a stage, s′ is an extension of s iff all lines that occur
in s occur in the same order in s′. A (dynamic) proof is a chain of stages.

The following notions are useful for the definitions of the adaptive
strategies. Dab(∆) is a minimal Dab-formula at a stage s of the proof iff
it is the formula of a line with condition ∅ and no Dab(∆′) with ∆′ ⊂ ∆
is the formula of a line with condition ∅. Where Dab(∆1), . . . , Dab(∆n)
are the minimal Dab-formulas at stage s with respect to a premise set
Γ, we define the set of unreliable formulas at stage s, Us(Γ) = ∆1 ∪ · · · ∪
∆n. The minimal Dab-formulas derivable with the lower limit logic we
call minimal Dab-consequences. Where Dab(∆1), Dab(∆2), . . . are the
minimal Dab-consequences with respect to a premise set Γ, we define the
set of unreliable formulas, U(Γ) = ∆1 ∪ ∆2 ∪ . . . .

Let us have a look at the marking conditions of the two adaptive
strategies used in this paper. Given a set of abnormalities Ω, it is the
job of the marking conditions to determine if lines are “in” or “out” of
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the proof at a certain stage, i.e., to govern the internal dynamics of the
proof procedure. For the reliability strategy lines are marked which have
unreliable formulas in their condition.

Definition 1 (Marking for Reliability). Line i is marked at stage s iff,
where ∆ is its condition, ∆ ∩ Us(Γ) 6= ∅.

For the minimal abnormality strategy a few more notions need to be
introduced. A choice set of Σ = {∆1, ∆2, . . . } is a set that contains at
least one element out of each member of Σ. A minimal choice set of Σ is
a choice set of Σ of which no proper subset is a choice set of Σ.5 Where
Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas that are derived
on condition ∅ from a premise set Γ at stage s, Φs(Γ) is the set of minimal
choice sets of {∆1, . . . , ∆n}.

Definition 2 (Marking for Minimal Abnormality). Line i is marked at
stage s iff, where A derived on the condition ∆ at line i,

(i) there is no ∆′ ∈ Φs(Γ) such that ∆′ ∩ ∆ = ∅, or
(ii) for some ∆′ ∈ Φs(Γ), there is no line at which A is derived on a

condition Θ for which ∆′ ∩ Θ = ∅.

In order to highlight the difference between the two strategies con-
sider the following example: suppose A has been derived at line l1 on
condition {B1} as well as at line l2 on condition {B2}. Furthermore, sup-
pose that at this stage of the proof we have one minimal Dab-formula,
namely B1 ∨ B2. Thus, at least one of the abnormalities, B1 or B2, is
valid. They are both considered as being unreliable. By the reliability
strategy both lines, l1 and l2, are marked. The minimal abnormality
strategy, however, is more rigorous in interpreting the premises as nor-
mal as possible. In this case it ensures that one and only one of our
abnormalities is interpreted as valid, so that it is not the case that both
B1 and B2 are valid. Note that the minimal choice sets are at this stage
{B1} and {B2}. Thus, since A has been derived on either condition
and since at least one of the abnormalities is interpreted as false, A is
considered as a consequence.

Note that a line might be marked at stage s of the proof, but become
unmarked at a later stage s′. Indeed, even if Dab(∆) is a minimal Dab-
formula at stage s, we might be able to derive Dab(∆′) where ∆′ ⊂ ∆ at

5Let for instance Σ =
{

{1, 2}, {1, 3}
}

. Choice sets are {1}, {1, 2}, {1, 3}, {2, 3} and
{1, 2, 3}. Minimal choice sets are {1} and {2, 3}.
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stage s′ and some A ∈ ∆ \∆′ might lose the status of being unreliable at
this point. Consequently some formulas derived on conditions including
these might get unmarked.

In order to define the consequence set of an adaptive logic we are
interested in a stable criterion for derivability.

Definition 3. A is finally derived from Γ on line i of a proof at stage s
iff (i) A is the second element of line i, (ii) line i is not marked at stage
s and (iii) every extension of the proof in which line i is marked may be
further extended in such a way that line i is unmarked.

Γ ⊢AL A (A is finally AL-derivable from Γ) iff A is finally derived on
a line of a proof from Γ.

Let us have a look at the semantics: here the strategy selects a set of
LLL-models of a given premise set Γ in view of the abnormalities verified
by the models. Given a logic L, let ML(Γ) be the set of all L-models
of Γ.

Definition 4. An LLL-model M ∈ MLLL(Γ) is reliable iff Ab(M) ⊆
U(Γ), where Ab(M) =df {A | M |= A} ∩ Ω. For the reliability strategy
the selected set of LLL-models of Γ is the set of reliable LLL-models of Γ.

An LLL-model M ∈ MLLL(Γ) is minimally abnormal iff there is no
LLL-model M ′ ∈ MLLL(Γ) such that Ab(M ′) ⊂ Ab(M). For minimal
abnormality strategy the selected set of LLL-models of Γ is the set of the
minimal abnormal LLL-models of Γ.

Γ |=AL A (A is an AL-semantic consequence of Γ) iff A is verified by
all members of the selected set of LLL-models of Γ.

The idea behind the minimal abnormality strategy is that only the
models (of a given premise set) which validate a minimal set of abnor-
malities (that is, which are the “minimally abnormal” ones with respect
to ⊂) are taken into account. Similarly the reliability strategy takes into
account only models that validate no more than the unreliable formulas
with respect to a given premise set.

Finally we want to state a representational result for adaptive logics
in standard format (see [1]):

Theorem 1. Γ ⊢AL A iff Γ |=AL A.
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4. Going adaptive – the monadic case

The authors in [16] propose adaptive logics on the basis of DPM.1 (resp.
DPM.2′).

Definition 5. ADPM.α (where α ∈ {1, 2′}) is an adaptive logic in
standard format defined by the following triple:

• lower limit logic: DPM.α
• abnormalities: Ωc = {OA ∧ O¬A | A ∈ W1}
• strategy: minimal abnormality

The main motivation behind these logics stems from the following facts:

If A ⊢DPM B then OA ⊢DPM OB ∨
(

OA ∧ O¬A
)

, (1)

{OA, OB} ⊢DPM.2′ O(A ∧ B) ∨
(

(OA ∧ O¬A) ∨ (OB ∧ O¬B)
)

, (2)

where DPM ∈ {DPM.1, DPM.2′}. This enables us to derive OB from OA
on the condition {OA ∧ O¬A} in (1). Furthermore in ADPM.2′ aggrega-
tion may be applied to OA∧OB on the condition {OA∧O¬A, OB∧O¬B}
due to (2). Thus, in the adaptive logics defined above the inheritance
principle is applied conditionally. Furthermore, as demonstrated in (2),
aggregation is applied conditionally in ADPM.2′.

The following results have been shown in [16].

Theorem 2. Adding (D) to ADPM.1 (resp. ADPM.2′) as an axiom
results in a logic equivalent to SDL. Furthermore, for all SDL-consistent
premise sets ADPM.1 (resp. ADPM.2′) is equivalent to SDL.

Furthermore, none of Goble’s explosion principles (DEX-1)–(DEX-3)
is valid in these two logics (see [16]).

Additionally, the major benefit of these two logics is that they perform
all the reasoning for the user. No permission statements have to be added
as it was the case with DPM.1 and DPM.2′. Note that in order to apply
restricted inheritance to OA we also need PA. In cases in which PA is not
derivable from the premises, the user of DPM.1 and DPM.2′ has to add
PA manually to the premise set. The adaptive versions however apply
inheritance conditionally to OA without user interference. Moreover,
problematic lines leading to deontic conflicts get marked as a part of the
proof dynamics. In this way deontic conflicts are located as part of the
proof.
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Example 1. We take a look at what we shall dub the “life saver paradox”:
Suppose the unfortunate situation that Anne and Bob are just about to
drown. However, due to space and time related restrictions it is possible
to save the life of only one of them. For each of them individually the
obligation to save her or his life, OA and OB, is actual. The following
proof is for ADPM.1:

1 OA PREM ∅
2 OB PREM ∅
3 O(¬(A ∧ B)) PREM ∅
4 O(A ∨ B) 1; RC {OA ∧ O¬A}
5 O(A ∨ B) 2; RC {OB ∧ O¬B}
6 (OA ∧ O¬A) ∨ (OB ∧ O¬B) 1, 2, 3; RU ∅

Note that it is possible to derive from lines 1, 2 and 3 line 6. Lines 4
and 5 contain conditional applications of the inheritance principle to OA
resp. OB. Due to the fact that O(A∨B) is derivable on both conditions,
{OA∧O¬A} and {OB∧O¬B}, lines 4 and 5 are not marked. Clearly the
obligation to save either Anne or Bob, O(A∨B), is a desired consequence
of our logic.

Note that if we would define ADPM.1 based on the reliability strat-
egy, lines 4 and 5 would be marked. This is clearly undesired. Thus, the
minimal abnormality strategy is the more intuitive choice.

5. The conditional case

Most of our moral or behavioral norms are in a conditional form. For
instance “Being in an airplane, you ought to turn off your mobile phone.”
One proposal to model this in deontic logics is to use P ⊃ OM . A
disadvantage of this form is that it offers unrestricted “strengthening the
antecedent” (SA): from P ⊃ OM , (P ∧ B) ⊃ OM is derivable. In many
cases this is as expected. But consider the following case:

1. In general, we’re supposed not to eat with fingers.
2. Eating asparagus, we’re allowed to eat with fingers.

Modeling (1) by ⊤ ⊃ O¬F , A ⊃ O¬F is derivable. This obviously is in
conflict with (2) A ⊃ PF which is equivalent to A ⊃ ¬O¬F . Similarly
problematic is to use O(C ⊃ B) to represent the obligation B under
condition C. In the example we can derive by the inheritance principle



106 Christian Straßer

the counter-intuitive O(A ⊃ ¬F ) from O(⊤ ⊃ ¬F ). Also restricting
the inheritance principle as proposed by Goble doesn’t help, as nothing
speaks against adding the harmless premise P(⊤ ⊃ ¬F ). However, this
again enables the derivation of O(A ⊃ ¬F ) by (RPM) from O(⊤ ⊃ ¬F ).

Monadic approaches were also the object of other kinds of criticism.
The most prominent class of problems have to do with paradoxes such
as the Chisholm Paradox (see [2]) or the Gentle Murderer Paradox (see
[4]). It is commonly agreed that dyadic approaches are in general better
suited to deal with these kind of problems.

Modeling conditional obligations with dyadic obligation operators
also allows for a more subtle approach to (SA). We use O(A | B) in
order to express that “under condition B it ought to be that A”. As
usual, the permission operator P(A | B) is defined as ¬O(¬A | B). We
again use a propositional language, this time enriched by a dyadic obliga-
tion operator. Our well-formed formulas W2 and the set WO

2 are defined
as follows:

W2 ::= ⊥ | ⊤ | 〈S〉 | 〈W2〉 ∧ 〈W2〉 |

〈W2〉 ∨ 〈W2〉 | 〈W2〉 ⊃ 〈W2〉 | ¬〈W2〉 | O(〈W2〉 | 〈W2〉)

WO
2 ::= O(〈W2〉 | 〈W2〉) | 〈WO

2 〉 ∧ 〈WO
2 〉 | 〈WO

2 〉 ∨ 〈WO
2 〉 |

〈WO
2 〉 ⊃ 〈WO

2 〉 | ¬〈WO
2 〉

In this way we can formalize our example by: (A1) O(¬F | ⊤) and
(A2) P(F | A). An unrestricted (SA)

⊢ O(B | A) ⊃ O(B | A ∧ C) (SA)

would lead to the counter-intuitive O(¬F | A).

As in the case of the restricted inheritance principle (RPM), a pos-
sible way of restricting (SA) is to require certain permission statements.
Inspired by Kraus, Lehmann and Magidor’s work (see [11, 12]) on non-
monotonic consequence relations a candidate can be found in the princi-
ple of Rational Monotonicity

⊢
(

O(B | A) ∧ P(C | A)
)

⊃ O(B | A ∧ C) (RatMono)

Lou Goble proposed different axiomatizations of a standard dyadic
deontic logic (which are equivalent to van Fraassen’s CD in [17], David
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Lewis’s VN in [13] and his own SDDL in [7]). Let RSDDL be the logic
consisting of all classical tautologies, (RatMono) and the following rules:

If ⊢ A ≡ B then ⊢ O(C | A) ≡ O(C | B) (RCE)

If ⊢ B ⊃ C then ⊢ O(B | A) ⊃ O(C | A) (RCM)

and axioms

⊢ O(⊤ | ⊤) (CN)

⊢ ¬O(⊥ | A) (CP)

⊢
(

O(B | A) ∧ O(C | A)
)

⊃ O(B ∧ C | A) (CAND)

⊢ O(B | A) ⊃ O(A | A) (QR)

⊢ O(C | A ∧ B) ⊃ O(B ⊃ C | A) (S)

But employing (RatMono) instead of (SA) is problematic as well.
In our example it is in no way counter-intuitive to add the statement
P(A | ⊤), “It is in general allowed to eat asparagus”, to the premise set.
But now it is again possible to derive O(¬F | A). A further restriction
is needed. What about the following additional restriction?

⊢
(

O(B | A) ∧ P(C | A) ∧ P(B | A)
)

⊃ O(B | A ∧ C) (PRatMono)

However, this also is counter-intuitive. If just the harmless premise
P(¬F | ⊤) is added, again O(¬F | A) is derivable.

5.1. Lou Goble’s Proposal

Lou Goble proposes in [5, 8] the following Weak Rational Monotonicity

principle:

⊢
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(B | A ∧ C) (WRM)

On basis of his DPM systems he presents the following conditional
logics:

Definition 6. Enriching classical propositional logic by (RCE), (CN),
(CAND) and the rules

If ⊢ B ≡ C then ⊢ O(B | A) ≡ O(C | A) (CRE)

If ⊢ B ⊃ C then ⊢ P(B | A) ⊃
(

O(B | A) ⊃ O(C | A)
)

(RCPM)

results in logic CDPM.1. The logic CDPM.1c is CDPM.1 enriched by
(WRM), (QR) and (S).
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The idea behind the restricted inheritance principle (RCPM) is anal-
ogous to the monadic case: inheritance is only applied to non-conflicting
obligations. That is to say, it is applied to O(A | B) only in case we also
have P(A | B).

Definition 7. CDPM.2′ is defined analogously to CDPM.1, just add
(CP) and replace (CAND) by6

⊢
(

O(A | C) ∧ O(B | C) ∧ P(A | C) ∧ P(B | C)
)

⊃ O(A ∧ B | C)
(CPAND′)

Logic CDPM.2′c is like CDPM.1c with the exception of (CAND) which
is replaced by (CPAND′). Furthermore (CP) is added.

For the remainder of the paper, it is useful to introduce some writing
conventions: We write ⊕({P1, . . . , Pn}, L) for the logic L′ that is defined
as L with the addition of principles P1, . . . , Pn where each Pi ∈ P and7

P =df {WRM, WRM⋆, CAND, CPAND′,

QR, PS, S, CP, AWRM⋆, CD}.

Define L =df {⊕(Ψ, CDPM−) | Ψ ∈ ℘(P)} where CDPM− is de-
fined by (RCE), (CN), (CRE) and (RCPM). Let L = ⊕({P1, . . . , Pn},
CDPM−) ∈ L. We write ⊖({Pi | i ∈ I}, L) (where I ⊆ {1, . . . , n}) for
the logic L′ = ⊕({Pi | i ∈ {1, . . . , n} \ I}, CDPM−). We write ⊕P L
(resp. ⊖P L) instead of ⊕({P}, L) (resp. ⊖({P}, L)). Further define for
L = ⊕({Pi | i ∈ I}, CDPM−) ∈ L, ↓L as the set of all sub-logics of L in
{⊖(Ψ, L) | Ψ ∈ ℘({Pi | i ∈ I})}.

None of the following “deontic explosion principles” are valid in
CDPM1.c and CDPM.2′c:8

6Again we use a slight variation of Goble’s CDPM.2 which employs ⊢
(

O(A |

C) ∧ O(B | C) ∧ P(A ∧ B | C)
)

⊃ O(A ∧ B | C) (CPAND) instead of our (CPAND′).
Using CDPM.2′c instead of CDPM.2c as lower limit logic leads to technically more
elegant adaptive logics. Furthermore, in contrast to CDPM.2c, CDPM.2′c fulfills
criterion (C⋆), that is going to be introduced in a moment.

7Some of the principles in P will be defined later on (namely WRM⋆, PS, CD and
AWRM⋆).

8We slightly adjusted the criteria offered by Goble since his criteria were formulated
in terms of theoremhood, while we focus on the consequences of premise sets. Models
validating counter-instances of the criteria can be found in the proof of Theorem 13
in the Appendix.
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If 0 B then
{

O(A | C), O(¬A | C)
}

⊢ O(B | C) (DEX-1)
{

O(A | C), O(¬A | C), P(B | C)} ⊢ O(B | C) (DEX-2)
{

O(D | C), P(D | C), O(A | C), O(¬A | C), P(B | C)
}

⊢ O(B | C)
(DEX-3)

Goble defined a dyadic variant of convention (⋆) which is satisfied by
both logics, CDPM.1c and CDPM.2′c:

(C⋆): A dyadic deontic logic for dilemmas should be such that
the result of adding (CD), namely O(B | A) ⊃ ¬O(¬B | A),
as an axiom is equivalent to (R)SDDL.

Theorem 3. Where α ∈ {1, 2′}, CDPM.αc satisfies (C⋆).

5.2. A critical analysis

(A) CDPM.1c validates (PRatMono). As has been demonstrated by
Goble, one severe shortcoming of CDPM.1c is that (PRatMono) is deriv-
able from it. As shown above, this leads to counter-intuitive behavior.

(B) Explosive Behavior and other problems with (WRM). We saw
above that different restricted versions of (SA), such as (RatMono) and
(PRatMono), are counter-intuitive as soon as we add further harmless
premises to our asparagus example. Is the weak rational monotonicity
principle proposed by Lou Goble robust to criticism of this kind? Goble
demonstrates that it is not. It is not conflicting with our moral intuitions
to add the premise P(¬F ∧ A | ⊤), “in general it is allowed not to eat
with fingers and also to eat asparagus”, to the premise set consisting of
(A1) and (A2). But in this case, by applying (WRM) to O(¬F | ⊤) and
P(¬F ∧ A | ⊤), we arrive at O(¬F | A). This causes not just a deontic
conflict, but a full-fledged explosion, as we also have P(F | A) which is
equivalent to ¬O(¬F | A).

Note also that the following counter-intuitive statement is a conse-
quence of (WRM): ⊢

(

O(¬F | ⊤) ∧ P(F | A)
)

⊃ ¬P(¬F ∧ A | ⊤).
We add another problematic example: (1) in a hospital you ought not

to smoke – O(¬S | H); (2) If you’re in a smoking room, you’re allowed
to smoke – P(S | R); (3) If you’re in a hospital, you are allowed to be
in a smokers room and not to smoke – P(R ∧ ¬S | H); (4) If you’re in a
smoking room (and) in a hospital, you’re allowed to smoke – P(S | H∧R).
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Note that by (WRM) we can derive O(¬S | H ∧ R) from (1) and (3). In
face of (2) and (4) this is counter-intuitive and contradictory.

Solving problems (A) and (B). There is a way of tackling our problems
in a non-adaptive way by further restricting (WRM):

⊢
(

O(B | A)∧P(B∧C | A)∧¬P(¬B∧A | C)
)

⊃ O(B | A∧C) (WRM⋆)

The idea is to strengthen the antecedent A of obligation B by C only
if ¬B ∧ A is not allowed in the context described by C. Looking back
at the asparagus example this obviously blocks the unwanted derivation.
By (WRM⋆) we have ⊢ (O(¬F | ⊤) ∧ P(¬F ∧ A | ⊤) ∧ ¬P(F | A)) ⊃
O(¬F | A). Note that P(F | A) is a premise and thus O(¬F | A) is not
derivable by (WRM⋆). Also in the case of the second example we have
no means to derive O(¬S | H ∧R). We would need ¬P(S ∧H | R), which
is obviously counter-intuitive.

As (PRatMono) was derivable in CDPM.1c while not being deriv-
able in CDPM.2′c, this leads to an undesirable asymmetry. However, this
asymmetry disappears in case of ⊕WRM⋆

⊖WRMCDPM.1c and
⊕WRM⋆

⊖WRMCDPM.2′c.

In both systems neither (PRatMono) nor (WRM) is derivable. This
is clearly as desired. However, the price to pay for this is that nei-
ther ⊕WRM⋆

⊖WRMCDPM.1c nor ⊕WRM⋆
⊖WRMCDPM.2′c is equivalent

to (R)SDDL if we add (CD) as an axiom.

Both systems do not validate (DEX-1)—(DEX-3) and are therefore
sufficiently robust with respect to deontic conflicts.

Note that in (R)SDDL all instances of

⊢
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(A ⊃ B | C) (AWRM⋆)

are valid. Where α ∈ {1, 2′}, if all instances of (CD) are added to
⊕({WRM⋆, AWRM⋆}, ⊖WRMCDPM.αc) then the resulting logic is
equivalent to (R)SDDL.

Theorem 4. ⊕({WRM⋆, AWRM⋆}, ⊖WRMCDPM.αc) satisfies (C⋆),
where α ∈ {1, 2′}.

One of the major problems with restricting (WRM) is analogous to
the problem we already pointed out in connection with the restricted
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inheritance principle (RCPM): in order to apply (WRM⋆) the user has
to manually add permission statements. However, on the one hand, if
the relationships between various obligations are of a complicated nature,
the manual addition of permission statements might lead to undesired
results such as explosion. On the other hand we would like to delegate
as much reasoning as possible from the user to the logic itself. We will
therefore in Section 6.3 propose an adaptive logic which applies (WRM)
“as much as possible” without the need of user interference.

(C) A problem with aggregation and (S). Consider the following strict
version of the asparagus example: O(¬F | ⊤) (1), O(F | A) (2),
P(A | ⊤) (3), and P(¬F ∧ ¬A | ⊤) (4). From (2) we get by (S),

O(A ⊃ F | ⊤) (5)

Note that it is a consequence of (RCPM) that ⊢ P(C | B) ⊃ (P(C ′ | B)∨
O(C ′ | B)) where C ⊢ C ′. Therefore, by (3), P(A∨F | ⊤)∨O(A∨F | ⊤).
Since (4) is equivalent to ¬O(A ∨ F | ⊤) we arrive at

P(A ∨ F | ⊤) (6)

In case we apply (CAND) to (1) and (5) we get O(¬F ∧ (A ⊃ F ) | ⊤)
and therefore, by (CRE), O(¬F ∧ ¬A | ⊤). But this is equivalent to
¬P(A ∨ F | ⊤) — a contradiction with (6). Employing the weaker
aggregation principle (CPAND′) doesn’t help either. In this case we
add the harmless statements P(¬F | ⊤) and ¬O(A ∧ ¬F | ⊤) to the
premises. By (CPAND′), O(¬F ∧ ¬A | ⊤) is again derivable (as the
reader can easily verify herself) — in contradiction with (6).

Thus, the example shows that (CAND) and (CPAND′) do not behave
well together with (S). One possible solution is to use a restricted version
of (S), namely9

⊢
(

P(C | A) ∧ O(C | A ∧ B)
)

⊃ O(B ⊃ C | A) (PS)

Note that in ⊕PS⊖SCDPM.1c and ⊕PS⊖SCDPM.2′c the derivation of
(5) is blocked since we would need P(F | ⊤), but we have O(¬F | ⊤)
which is equivalent to ¬P(F | ⊤). It is also worth mentioning that, where

9(PS) was proposed by Goble in [5] in connection with another problem w.r.t.
(RatMono).
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α ∈ {1, 2′}, ⊕({CD, PS}, ⊖SCDPM.αc) is equivalent to ⊕CDCDPM.αc
and therefore to (R)SDDL.

Theorem 5. Where α ∈ {1, 2′}, ⊕PS⊖SCDPM.αc satisfies (C⋆).

While we so far tackled the problem above by restricting (S), it can
be argued that the application of (S) leading to (5) is not the problem.
One motivation would be to preserve one of the traditional monadic
representations of condition obligations as much as possible. (S) can be
seen in this sense as a bridging principle from the dyadic, O(F | A), to
the monadic representation, O(A ⊃ F ), of conditional obligations. It can
also be argued that (5), which is equivalent to ¬P(A ∧ ¬F | ⊤) should
be derivable since it is intuitive. In view of (2), the obligation to eat
with fingers when being served asparagus, one should in general not be
allowed to eat asparagus without using fingers. The punchline of this line
of argument is that instead of blaming (S), (CAND) (resp. (CPAND′))
is considered to be too strong. It should not be applicable in order to
derive O(¬F ∧ ¬A | ⊤). In the next section it will be demonstrated how
this strategy can be followed by use of an adaptive logic which applies
aggregation conditionally.

6. Going adaptive – the conditional case

After having located various problems of CDPM.1c and CDPM.2′c we
are now going to introduce an adaptive logic framework that can deal
with these problems. One of our goals is to develop conflict-tolerant
logics that are able to derive from the non-conflicting ‘parts’ of a given
premise set as much as possible without the need of manually adding
premises. Due to this, the criterion (C⋆) is not adequate anymore since
it measures the derivative power of a logic in view of adding all instances
of (CD) to it. We alter it in the following way:

(C‡): For all premise sets for which (R)SDDL is non-explosive,
a dyadic deontic logic for dilemmas should be equivalent to
(R)SDDL.

Note that logics satisfying this criterion are in a sense stronger than
logics only satisfying (C⋆) since, in order to achieve equivalence with
(R)SDDL, (CD) does not have to be added to the former ones.
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6.1. Applying Inheritance conditionally

In order to apply the dyadic inheritance principle (RCPM) conditionally
we can proceed in the same way as in the monadic case (see Section 4).

Definition 8. Ac(L) is defined by the triple

〈L, Ωc
d, minimal abnormality〉

where Ωc
d =df {O(A | B) ∧ O(¬A | B) | A, B ∈ W2} and L ∈ ↓CDPM.1c

∪ ↓CDPM.2′c.

Example 2. As we discussed the monadic variant already in Section 4,
we are only going to take a look at a very simple example for
Ac(CDPM.2′c). Let as usual F express ‘eating with fingers‘, N ‘us-
ing a napkin’ and let B stand for ‘belching at the table’. We abbreviate
O(C | D) ∧ O(¬C | D) by !cO(C | D).

1 O(¬F ∧ ¬B | ⊤) PREM ∅
2 O(¬B | ⊤) 1; RC {!cO(¬F ∧ ¬B | ⊤)}
3 O(N | ⊤) PREM ∅
4 O(¬F ∧ ¬B ∧ N | ⊤) 1, 3; RC {!cO(¬F ∧ ¬B | ⊤), !cO(N | ⊤)}

In line 2 we have a conditional application of the inheritance principle,
in line 4 one of the aggregation principle.

Similar as in the monadic case (see Theorem 2) we have:

Theorem 6. Where α ∈ {1, 2′}, Ac(CDPM.αc) satisfies (C‡).

6.2. Applying Aggregation conditionally

There are two ways of tackling the problem pointed out in Section 5.2
(C). One is to use a restricted version of (S), namely (PS). The other is
to alter the behavior of aggregation. This can be done via an adaptive
logic which enables conditional applications of (CAND).

As pointed out in Section 5.2 (C), neither (CAND) nor (CPAND′)
are acceptable in combination with (S). We will therefore, unlike the way
we proceeded for ADPM.2′c, fully reject the aggregation principle from
our lower limit logic. Instead we will apply the aggregation principle
conditionally. We define the following abnormalities: Ω∧

d =df {O(A |
C)∧ O(B | C)∧ ¬O(A ∧ B | C) | A, B, C ∈ W2}. Let !∧O(A ∧ B | C) =df
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O(A | C) ∧ O(B | C) ∧ ¬O(A ∧ B | C). Propositional logic warrants the
following:

O(A | C) ∧ O(B | C) ⊢ O(A ∧ B | C) ∨ !∧O(A ∧ B | C)

O(A | C) ∧ ¬O(A ∧ B | C) ⊢ ¬O(B | C) ∨ !∧O(A ∧ B | C)

¬O(A ∧ B | C) ⊢ ¬O(A | C) ∨ ¬O(B | C) ∨ !∧O(A ∧ B | C)

Note that for L in ↓ ⊖CPAND′CDPM.2′c validating (CP) we have

⊢L

(

O(A | B) ∧ O(¬A | B)
)

≡
(

O(A | B) ∧ O(¬A | B) ∧ ¬O(A ∧ ¬A | B)
)

Therefore the abnormalities in Ωc
d can be considered as a sub-case

of the abnormalities in Ω∧
d for the lower limit logic L. Hence,

O(A | B) ⊢L P(A | B) ∨ !∧O(A ∧ ¬A | B)

If A ⊢L B then O(A | C) ⊢L O(B | C) ∨ !∧O(A ∧ ¬A | C)

We define the following adaptive logics:

Definition 9. Logic A
m/r
∧ (L) is defined by the triple

〈L, Ω∧
d , minimal abnormality / reliability〉

where lower limit logic L belongs to

↓⊖CAND CDPM.1c ∪ {⊕CD⊖CANDCDPM.1c} ∪ ↓⊖CPAND′ CDPM.2′c ∪

{⊕CD⊖CPAND′CDPM.2′c}.

Here are some conditional derivations for these adaptive logics:

O(A | B) ⊢Ax
∧

(L.2) P(A | B) on the condition {!∧O(A ∧ ¬A | B)}

If A ⊢L.2 B, then O(A | C) ⊢Ax
∧

(L.2) O(B | C) o.t.c. {!∧O(A ∧ ¬A | C)}

O(A | C) ∧ O(B | C) ⊢Ax
∧

(L) O(A ∧ B | C) o.t.c. {!∧O(A ∧ B | C)}

where x ∈ {m, r}, L and L.2 are any of the lower limit logics defined in
Definition 9, and L.2 validates (CP).

Theorem 7. Where x ∈ {m, r}, (i) Ax
∧(⊕CD⊖CANDCDPM.1c) and (ii)

Ax
∧(⊖CPAND′CDPM.2′c) satisfy (C‡).

Example 3. Let us have a look at the problematic example from Sec-
tion 5.2 (C) again and let the lower limit be for instance ⊖CANDCDPM.1c.
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1 O(¬F | ⊤) PREM ∅
2 O(F | A) PREM ∅
3 P(A | ⊤) PREM ∅
4 P(¬F ∧ ¬A | ⊤) PREM ∅
5 O(A ⊃ F | ⊤) 2; S ∅

136 O(¬F ∧ (A ⊃ F ) | ⊤) 1, 5; RC {!∧O(¬F ∧ (A ⊃ F ) | ⊤)}
137 O(¬F ∧ ¬A | ⊤) 6; CRE {!∧O(¬F ∧ (A ⊃ F ) | ⊤)}

8 ¬O(F ∨ A | ⊤) 4; Def ∅
9 P(F ∨ A | ⊤) ∨ O(F ∨ A | ⊤) 3; RCPM ∅

10 P(F ∨ A | ⊤) 8, 9; DSyl ∅
11 ¬O(¬F ∧ ¬A | ⊤) 10; Def ∅
12 ¬O(¬F ∧ (A ⊃ F ) | ⊤) 11; CRE ∅
13 !∧O(¬F ∧ (A ⊃ F ) | ⊤) 1, 5, 12; Agg ∅

As desired, the logic is able to block the derivation of O(¬F ∧¬A | ⊤)
at line 7.

6.3. Applying Weak Rationality conditionally

Furthermore, our logics can be enabled for conditional applications of
(WRM). Compared with CDPM.1c and CDPM.2′c the advantage is that
in case an application of (WRM) leads to unwanted results (e.g. conflicts
or explosions) our logics block the application. Unlike the logic presented
in Section 5.2 that makes use of a further restriction of (WRM), namely
(WRM⋆), there is no need to add auxiliary permission statements to the
premise set for the adaptive logic that is presented in this section. This
accords with our goal to reduce the reasoning and interference of the user
as much as possible.

We define the set of abnormalities Ωr
d = {O(A | B) ∧ P(A ∧ C |

B) ∧ ¬O(A | B ∧ C) | A, B, C ∈ W2}. By propositional logic we have

O(A | B) ∧ P(A ∧ C | B) ⊢ O(A | B ∧ C) ∨
(

O(A | B) ∧ P(A ∧ C | B) ∧ ¬O(A | B ∧ C)
)

.

This enables us to derive O(A | B ∧ C) from O(A | B) and P(A ∧ C | B)
on the condition {O(A | B) ∧ P(A ∧ C | B) ∧ ¬O(A | B ∧ C)}.

Definition 10. Logic A
m/r
r (L) is defined by the following triple:

〈L, Ωr
d, minimal abnormality / reliability〉

where L ∈
⋃

α∈{1,2′} ↓ ⊖WRM CDPM.αc ∪ {⊕CD⊖WRMCDPM.αc}.
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Theorem 8. Where α∈{1, 2′} and x∈{r, m}, Ax
r (⊕CD⊖WRMCDPM.αc)

satisfies (C‡).

Let us take a look at a few examples.

Example 4. Let us return to the problematic asparagus example from
Section 5.2 (B) with lower limit logic ⊖WRMCDPM.1c. Let !rOB

A(C) =df

O(C | A) ∧ P(C ∧ B | A) ∧ ¬O(C | A ∧ B).

1 O(¬F | ⊤) PREM ∅
2 P(F | A) PREM ∅
3 P(¬F ∧ A | ⊤) PREM ∅

64 O(¬F | A) 1, 3; RC {!rO
A

⊤(¬F )}
5 ¬O(¬F | A) 2; RU ∅
6 O(¬F | ⊤) ∧ P(¬F ∧ A | ⊤) ∧ ¬O(¬F | A) 1, 3, 5; RU ∅

This demonstrates that unwanted derivations are successfully blocked.
In order to show that desired consequences are actually reached, the
example needs to be extended. Let X stand for “being in a country C”
and we know that eating with fingers is strictly forbidden (no exceptions!)
in C.

7 O(¬F | X) PREM ∅
8 P(¬F ∧ A | X) PREM ∅
9 O(¬F | X ∧ A) 7, 8; RC {!rOA

X(¬F )}

It can easily be shown that line 9 will not be marked in any extension of
the proof.

Example 5. Also with the other problematic example in Section 5.2 (B)
the adaptive logics block the undesired instances of (SA).

1 O(¬S | H) PREM ∅
2 P(S | R) PREM ∅
3 P(S | H ∧ R) PREM ∅
4 P(¬S ∧ R | H) PREM ∅

85 O(¬S | H ∧ R) 1, 4; RC {!rOR
H(¬S)}

86 O(H ⊃ ¬S | R) 5; S {!rOR
H(¬S)}

7 ¬O(¬S | H ∧ R) 3; Def ∅
8 !rOR

H(¬S) 1, 4, 7; Agg ∅
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Note that with CDPM.αc (α ∈ {1, 2′}) the counter-intuitive O(¬S |
H ∧ R) is derivable from O(¬S | H) and P(¬S ∧ R | H) by (WRM)
causing an explosion due to P(S | H ∧ R).

6.4. Combining the various systems

This section offers insight in the way the various systems introduced
above can be combined, allowing for different degrees of adaptiveness.
This is desired since each of our logics so far only treated particular
problems of the ones presented in Section 5.2. By combining them we
are able to get the most powerful and intuitive systems. The matter is
illustrated by means of some interesting selected examples.

Inheritance and Aggregation. We have argued in Section 5.2 (C) that in
order to keep (S) we have to apply the aggregation principle conditionally.

A first proposal for an adaptive approach to inheritance and aggre-
gation, paradigmatically based on CDPM.1, is presented in the following
definition:

Definition 11. Let Am
c,∧(L) be the adaptive logic defined by the triple

〈L, Ωc
d ∪ Ω∧

d , minimal abnormality〉, where L ∈ ↓ ⊖CAND CDPM.1c.

However this approach leads to difficulties:

Example 6. We take a look at the life-saver-paradox with

Am
c,∧(⊖CANDCDPM.1c).

1 O(A | ⊤) PREM ∅
2 O(B | ⊤) PREM ∅
3 O(¬(A ∧ B) | ⊤) PREM ∅

74 ¬O(A ∧ B | ⊤) 3; RC {!cO(¬(A ∧ B) | ⊤)}
75 !∧O(A ∧ B | ⊤) 1, 2, 4; RU {!cO(¬(A ∧ B) | ⊤)}
76 O(A ∧ B | ⊤) 1, 2; RC {!∧O(A ∧ B | ⊤)}
7 !cO(¬(A ∧ B) | ⊤) ∨ !∧O(A ∧ B | ⊤) 5; RU ∅

Some readers will be dissatisfied with the fact that line 4 is marked since
it is quite intuitive that, in a situation in which we cannot save the life
of both people, we should not be obliged to save both.

However, there is a solution. If we first conditionally apply inheri-
tance and then conditionally apply aggregation, the problem is solved.
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Let us take a look at the case in which for the second logic the minimal
abnormality strategy is used:

Definition 12. Logic Am
∧ ◦ Ac(L) is defined by the consequence relation

CnAm
∧

(L)(CnAc(L)(Γ)), where L ∈↓⊖CANDCDPM.1c∪↓⊖CPAND′ CDPM.2′c.

As we are dealing with a combined adaptive logic, the marking con-
ditions for the second logic have to be slightly altered.

Definition 13. Φ∧
s (Γ) is the set of minimal choice sets over {∆i | i ∈ I}

where {Dab(∆i) | i ∈ I, ∆i ⊂ Ω∧
d } is the set of all minimal Dab-formulas

derived at stage s at unmarked lines on a condition ∆′ ⊂ Ωc
d.

Line i is marked at stage s iff, where A is derived on the condition
∆ at line i,

(i) there is no ϕ ∈ Φ∧
s (Γ) such that ϕ ∩ ∆ = ∅, or

(ii) for some ϕ ∈ Φ∧
s (Γ), there is no line at which A is derived on a

condition Θ for which ϕ ∩ Θ = ∅.

It is easy to see that in our example line 6 gets marked due to line
5. However, line 4 and 5 remain unmarked and thus, ¬O(A ∧ B | ⊤) is
derivable. Furthermore, it can be shown that the very intuitive O(A∨B |
⊤) is finally derivable for both, Am

∧ ◦ Ac(⊖CANDCDPM.1c) and Am
∧ ◦

Ac(⊖CPAND′CDPM.2′c).

Theorem 9. Ax
∧◦Ac(⊖CANDCDPM.1c) and Ax

∧◦Ac(⊖CPAND′CDPM.2′c)
satisfy (C‡), where x ∈ {r, m}.10

Inheritance and Weak Rationality. A natural first suggestion for an
adaptive logic account of both inheritance and weak rational monotonic-
ity is given by the following logic:

Definition 14. Am
r,c(L) is defined by the following triple

〈L, Ωc
d ∪ Ωr

d, minimal abnormality〉,

where L ∈
⋃

α∈{1,2′} ↓ ⊖WRM CDPM.αc.

10We only gave marking conditions for the cases Am
∧ ◦ Ac(⊖CANDCDPM.1c) and

Am
∧ ◦ Ac(⊖CPAND′CDPM.2′c). However, the marking conditions for Ω∧

d in case of the
reliability strategy are defined similarly to Definition 16.
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However, the following example shows that this logic is suboptimal.

Example 7. Suppose the following obligations and permissions:
• If your friends Beth and Mike are around, you’re supposed to serve

coffee. – O(C | F )
• If your friend Anna, who has a coffee allergy, is around, you’re

supposed not to serve coffee. – O(¬C | A)
• If your friends Beth and Mike are around, you’re allowed to serve

coffee and to have Anne around. – P(C ∧ A | F )
• If your friend Anna is around, you’re allowed to have Beth and

Mike around and to not serve coffee. – P(¬C ∧ F | A)
The following proof is in Am

r,c(⊖WRMCDPM.1c).

1 O(C | F ) PREM ∅
2 O(¬C | A) PREM ∅
3 P(C ∧ A | F ) PREM ∅
4 P(¬C ∧ F | A) PREM ∅

95 O(C | F ∧ A) 1, 3; RC {!rOA

F
(C)}

96 O(¬C | F ∧ A) 2, 4; RC {!rOF

A
(¬C)}

7 O(C | F ∧ A) ∨ O(¬C | F ∧ A) 5; RU {!rOA

F
(C)}

8 O(C | F ∧ A) ∨ O(¬C | F ∧ A) 6; RU {!rOF

A
(¬C)}

9 !cO(C | F ∧ A) ∨ !rOA

F
(C) ∨ !rOF

A
(¬C) 5, 6; RU ∅

The minimal choice sets are
{

{!cO(C | F ∧A)}, {!rOA
F (C)}, {!rOF

A(¬C)}
}

.
Note that O(C | F ∧ A) ∨ O(¬C | F ∧ A) is derivable. This is undesired.
One possible solution is to use the reliability strategy instead of the
minimal abnormality strategy. In this case lines 5—8 are marked at line
9. Note however that we have already shown that the reliability strategy
leads in the case of the life saver example to undesired consequences with
respect to Ωc

d.11

A better solution to this problem is again presented in the form of a
sequential adaptive logic:

Definition 15. Ar
r ◦Ac(L) is the combined adaptive logic defined by the

consequence relation CnAr
r(L)(CnAc(L)(Γ)) where L ∈

⋃

α∈{1,2′} ↓ ⊖WRM

CDPM.αc.

The marking conditions for abnormalities in Ωr
d are defined in a sim-

ilar way as Definition 13.

11We have shown this for the monadic case in Section 4. However, this can be easily
generalized for the dyadic case.
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Definition 16. We define U r
s (Γ) =

⋃

I ∆i where {Dab(∆i) | i ∈ I, ∆i ⊂
Ωr

d} is the set of all minimal Dab-formulas derived up to stage s at
unmarked lines on a condition ∆′ such that ∆′ ∩ Ωr

d = ∅.
Line i is marked at stage s iff, where ∆ is its condition, ∆∩U r

s (Γ) 6= ∅.

Now the following line can be added to the proof of Example 7:

10 !rOA
F (C) ∨ !rOF

A(¬C) 9; RC {!cO(C | F ∧ A)}

Due to the reliability strategy we have to mark lines 5–8. Note that
for minimal abnormality strategy lines 7 and 8 would not be marked
at line 10. Thus, reliability strategy is preferable. Note furthermore
that, although the reliability strategy is employed for Ωr

d and hence for
the conditional applications of (WRM), we are free to use the minimal
abnormality strategy for Ωc

d and hence for the conditional applications
of (RCPM). Therefore this logic offers a satisfactory account for the
life-saver example.

Theorem 10. Where α ∈ {1, 2′}, Ar
r ◦ Ac(⊖WRMCDPM.αc) satisfies

(C‡).

Inheritance, Aggregation and Weak Rationality. Here an option is to
use the sequential adaptive logic Ar

r ◦ Ax
∧ ◦ Ac(L) defined by the conse-

quence relation CnAr
r(L)(CnAx

∧
(L)(CnAc(L)(Γ))), where x ∈ {r, m} and L ∈

↓ ⊖ ({CAND, WRM}, CDPM.1c) ∪ ↓ ⊖ ({CPAND′, WRM}, CDPM.2′c).
The marking conditions for Ωc

d are defined in Definition 2, the marking
conditions for abnormalities in Ω∧

d are defined in Definition 13 and the
ones for abnormalities in Ωr

d are defined in Definition 16.

Theorem 11. Ar
r◦Ax

∧◦Ac(⊖({CAND, WRM}, CDPM.1c)) and Ar
r◦Ax

∧ ◦
Ac(⊖({CPAND′, WRM}, CDPM.2′c)) satisfy (C‡), where x ∈ {r, m}.

It can be easily shown that for all the examples given in this section
this logic has the desired consequences.

7. Conclusion

Lou Goble presented in [5, 8] dyadic deontic logics based on a restriction
of the inheritance principle. These systems are able to deal with deontic
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conflicts in the sense that they are not explosive when facing dilemmas
and they block undesired derivations from these dilemmas. Furthermore,
by including a restricted version of rational monotonicity, Goble is able
to give an intuitive account of a restricted ‘strengthening the antecedent’
(SA) principle.

However, this paper locates various shortcomings of Goble’s logics.
Most importantly the treatment of (SA) is counter-intuitive for some
examples and can even lead to explosion. Furthermore, some of Goble’s
principles do not behave well together.

An adaptive logic framework is developed which enables a satisfactory
treatment of these problems. The price to pay for going adaptive is the
lack of monotonicity. However, although Goble’s systems are monotonic
logics, a defeasible approach is motivated by them due to the restrictive-
ness of some of their rules. Take for instance the restricted version of
the inheritance principle. In order to apply the rule, in many cases the
user needs to add permission statements to the premise sets. Especially
for complicated premise sets this demands a great deal of reasoning by
the user and can lead to explosive behavior in cases in which she is not
able to foresee all consequences of the addition of certain premises. A
defeasible approach is far more elegant. It not only avoids explosive be-
havior in such cases but also shifts the reasoning from the user to the
logic. It is self-explanatory that one of the basic requirements for an
adequate deontic logic is that it does as much reasoning with as little
external interference as possible. The adaptive logics are well-suited for
this task. By interpreting a premise set as “normally” as possible, the re-
quired additional permission statements are generated automatically as
part of the proof dynamics. Furthermore these proof dynamics explicate
our moral reasoning processes.

While this paper demonstrated that going adaptive improves CDPM
in terms of elegance, strength and intuitiveness, in [15] the author shows
that the adaptive logic approach on basis of CDPM is also able to give
a solution to another deep problem of dyadic deontic logics, namely the
lack of a proper treatment of (defeasible) detachment. The advantages of
the logics presented in this paper and in [15] can easily be assembled by
forming combined systems in the same manner as was done in Section 6.4.
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Appendix

Semantics

The interested reader can find semantics for the monadic systems in [9]
and [16]. Semantics for some of the dyadic CDPM systems, such as for
instance CDPM.1 and CDPM.1c, are introduced by Goble in [5]. The
semantics for the variations introduced in this paper can be defined along
the same lines.

One of the basic ideas for the neighborhood semantics is that proposi-
tions are interpreted in terms of sets of worlds. Moreover, each world has
associated with it pairs of propositions, i.e., pairs of sets of worlds. The
idea is that an obligation O(A | B) is true at a world w, in case 〈B, A〉 is
one of its associated pairs of propositions. Let us look the formal details.

Let a dyadic neighborhood frame F be a pair 〈W, O〉 where W is a set
of worlds and O assigns each world a ∈ W a set of ordered propositions,
i.e. Oa ⊆ ℘(W ) × ℘(W ). A model M on a frame F is a pair 〈F, v〉 where
v(p) ⊆ W for each propositional letter p. Where |A|M =df {a ∈ W |
M, a |= A}, we define

M, a |= A iff a ∈ v(A), where A ∈ S

M, a |= O(A | B) iff 〈|B|M , |A|M 〉 ∈ Oa

M, a |= ¬A iff M, a 2 A

M, a |= A ∧ B iff (M, a |= A and M, a |= B)

M, a |= A ∨ B iff (M, a |= A or M, a |= B)

M, a |= A ⊃ B iff (M, a |= ¬A or M, a |= B)

M, a |= ⊤

M, a 2 ⊤

For a model M = 〈W, O, v〉, M |= A iff M, a |= A for all a ∈ W . Where
Γ ⊆ WO

2 and M = 〈F, v〉, we say that M is an F -model of Γ iff M |= A
for all A ∈ Γ. Moreover, for a frame F , Γ |=F A iff M |= A for all
F -models of Γ and, for a class of frames F , Γ |=F A iff Γ |=F A for all
F ∈ F .

Semantics for CDPM.1c are defined by means of the following frame
conditions. Where F = 〈W, O〉 and X =df W \ X, we require for all
a ∈ W :

〈W, W 〉 ∈ Oa (S-CN)
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If 〈X, Y 〉 ∈ Oa and 〈X, Z〉 ∈ Oa, then 〈X, Y ∩ Z〉 ∈ Oa (S-CAND)

If Y ⊆ Z and 〈X, Y 〉 ∈ Oa and 〈X, Y 〉 /∈ Oa then 〈X, Z〉 ∈ Oa

(S-RCPM)

If 〈X, Y 〉 ∈ Oa, for any Y ⊆ W, then 〈X, X〉 ∈ Oa (S-QR)

If 〈X ∩ Y, Z〉 ∈ Oa, then 〈X, Y ∪ Z〉 ∈ Oa (S-S)

If 〈X, Y 〉 ∈ Oa and 〈X, Y ∩ Z〉 /∈ Oa, then 〈X ∩ Z, Y 〉 ∈ Oa

(S-WRM)

Semantics for CDPM.2′c are defined by means of (S-CN), (S-RCPM),
(S-QR), (S-S), (S-WRM) and the following frame conditions:

If 〈X, Y 〉 ∈ Oa, 〈X, Z〉 ∈ Oa, 〈X, Y 〉 /∈ Oa,

and 〈X, Z〉 /∈ Oa, then 〈X, Y ∩ Z〉 ∈ Oa (S-CPAND)

〈X, ∅〉 /∈ Oa (S-CP)

Moreover, the following frame conditions are useful to define the se-
mantics for some of our logical variants:

If 〈X, Y 〉 ∈ Oa, 〈X, Y ∩ Z〉 /∈ Oa and 〈Z, Y ∪ X〉 ∈ Oa,
then 〈X ∩ Z, Y 〉 ∈ Oa

(S-WRM⋆)

If 〈X ∩ Y, Z〉 ∈ Oa, and 〈X, Z〉 /∈ Oa, then 〈X, Y ∪ Z〉 ∈ Oa (S-PS)

If 〈Y, Z〉 ∈ Oa, and 〈Y, Z ∩ X〉 /∈ Oa, then 〈X, Y ∪ Z〉 ∈ Oa

(S-AWRM⋆)

Theorem 12. Where Ψ ∈ ℘(P), L = ⊕(Ψ, CDPM−) is strongly com-
plete and sound with respect to the class F of frames that meet the con-
ditions in {S-P | P ∈ Ψ}, (S-CN) and (S-RCPM), i.e., where Γ ⊆ WO

2 ,
Γ |=F A iff Γ ⊢L A.12

In view of Theorem 1 this completeness result generalizes to all the
adaptive logics in this paper.

12Goble offered a rather involved proof of weak completeness and soundness for
CDPM.1c in [5]. The authors in [14] have proven strong soundness and completeness
for all rank-1 modal logics (i.e., logics which are axiomatized by formulas containing
exactly one level of modal operators) with respect to their canonical neighborhood
semantics. Obviously our logics fall in this category.
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Proofs

Proof of Theorem 3. Goble has proven the statement already for
CDPM.1c. Note that from (CD) and (CPAND′), (CAND) is deriv-
able. Since CDPM.1c together with (CD) validates (CN), CDPM.2′c
together with (CD) is equivalent to CDPM.1c together with (CD). Thus,
CDPM.2′c together with (CD) is equivalent to (R)SDDL. ⊣

Proof of Theorem 4.

Note that ⊕({WRM⋆, AWRM⋆}, ⊖WRMCDPM.αc) and CDPM.αc are
equivalent. Due to (WRM⋆) and (AWRM⋆), (WRM) is valid in the
former logic. Due to (WRM), (WRM⋆), and due to (WRM) and (S),
(AWRM⋆) is valid in the latter logic. The rest is an immediate conse-
quence of the fact that CDPM.αc satisfies (C⋆). ⊣

Lemma 1. Where α ∈ {1, 2′}, ⊕({CD, PS}, ⊖SCDPM.αc) is equivalent
to ⊕CDCDPM.αc.

Proof. Suppose O(C | A∧B) and ¬O(B ⊃ C | A). By (PS) ¬P(C | A)
which is equivalent to O(¬C | A). By O(C | A ∧ B) and (CD), ¬O(¬C |
A ∧ B). This and O(¬C | A) results by (WRM) in ¬P(B ∧ ¬C | A)
which is equivalent to O(B ⊃ C | A),—a contradiction. The rest follows
immediately. ⊣

Proof of Theorem 5. This is an immediate consequence of Lemma 1
and the fact that CDPM.αc satisfies (C⋆). ⊣

Proof of Theorem 6. Let Γ be a (R)SDDL-consistent premise set.
As ⊕CDCDPM.αc is equivalent to (R)SDDL, M⊕CDCDPM.αc(Γ) 6= ∅. By
definition of Ωc

d these are the minimally abnormal models since for all
these models M , Ab(M) = ∅ and moreover, for all M ∈ MCDPM.αc(Γ) \
M⊕CDCDPM.αc(Γ), Ab(M) 6= ∅ since M validates a counter-instance of
(CD), O(A | B) ∧ O(¬A | B). Hence Ac(CDPM.αc) is equivalent to
⊕CDCDPM.αc for Γ. Therefore it is equivalent to (R)SDDL for all
premise sets for which (R)SDDL is non-explosive. ⊣

Proof of Theorem 7. Ad (i): Let Γ be any (R)SDDL-consistent pre-
mise set. Then M⊕CDCDPM.1c(Γ) 6= ∅ since ⊕CDCDPM.1c is equivalent
to (R)SDDL. Furthermore,

M⊕CDCDPM.1c(Γ) ⊆ M⊕CD⊖CANDCDPM.1c(Γ).
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As models in M⊕CDCDPM.1c(Γ) validate (CAND), they do not validate
any abnormalities in Ω∧

d and are therefore minimally abnormal. Let M ∈
M⊕CD⊖CANDCDPM.1c(Γ)\M⊕CDCDPM.1c(Γ). Then there are O(A | C) and
O(B | C) such that M |= O(A | C), O(B | C) and M |= ¬O(A ∧ B | C)
since M does not validate all instances of (CAND). But M cannot
be minimally abnormal then. Hence M⊕CDCDPM.1c(Γ) is the set of all
minimally abnormal models.

Ad (ii) M⊕CDCDPM.2′c(Γ) is a non-empty set of ⊖CPAND′CDPM.2c-
models that validate no abnormalities in Ω∧

d due to the fact that
⊕CDCDPM.2′c is equivalent to (R)SDDL and hence validates
(CAND). Let M ∈ M⊖

CPAND′CDPM.2′c(Γ) \ M⊕CDCDPM.2′c(Γ). In case
M does validate a counter-instance of (CPAND′) or (CAND), M has
a non-empty set of abnormalities and is thus not minimally abnormal
resp. reliable. Assume that M validates all instances of (CAND). Then
there are O(A | B) and O(¬A | B) such that M |= O(A | B), O(¬A | B).
But then by (CAND), M |= O(A ∧ ¬A | B)—a contradiction (due to
(CP) and (CRE)). Hence M⊕CDCDPM.2′c(Γ) is the set of all minimally
abnormal models. ⊣

Lemma 2. Where α ∈ {1, 2′} and x ∈ {m, r}, for all premise sets for which
CDPM.αc (resp. ⊕CDCDPM.αc) is non-explosive, Ax

r (⊖WRMCDPM.αc)
is equivalent to CDPM.αc (resp. Ax

r (⊕CD⊖WRMCDPM.αc) is equivalent
to ⊕CDCDPM.αc).

Proof. It is immediately clear that all models in MCDPM.αc(Γ) are min-
imally abnormal ⊖WRMCDPM.αc-models of Γ since they do not validate
any abnormalities in Ωr

d. For all M ∈ M⊖WRMCDPM.αc(Γ)\MCDPM.αc(Γ)
there is a counter-instance for (WRM). Therefore these M do vali-
date abnormalities and are therefore not minimally abnormal. Hence
MCDPM.αc(Γ) is the set of all minimally abnormal (and all reliable) mod-
els. The proof is similar for the other case. ⊣

Theorem 8 is an immediate consequence.

Proof of Theorem 9. Firstly note that for any (R)SDDL-consistent
premise sets Γ, M⊕CDCDPM.1c(Γ) (resp. M⊕CDCDPM.2′c(Γ)) is a non-empty
sets of ⊖CANDCDPM.1c-models (resp. ⊖CPANDCDPM.2′c-models) that
validate no abnormalities with respect to Ωc

d and Ω∧
d . Any model that

validates a counter-instance of (CD) validates an abnormality w.r.t. Ωc
d



126 Christian Straßer

and is therefore not minimally abnormal for Ac(⊖CANDCDPM.1c) and
Ac(⊖CPAND′CDPM.2′c). Furthermore, allmodels which validate all in-
stances of (CD) validate no abnormalities w.r.t. Ωc

d. Hence,

MAc(⊖CANDCDPM.1c)(Γ) ⊆ M⊕CD⊖CANDCDPM.1c(Γ)

and

MAc(⊖CPAND′CDPM.2′c)(Γ) ⊆ M⊕CD⊖
CPAND′CDPM.2′c(Γ).

Any model that validates counter-instances of (CAND) or (CPAND′),
validates an abnormality w.r.t. Ω∧

d . Models which validate all instances
of (CAND) do not validate any abnormalities w.r.t. Ω∧

d and are therefore
minimally abnormal and reliable. Hence M⊕CDCDPM.1c(Γ) is the set of
all minimally abnormal models (resp. all reliable models) in

MAx
∧

◦Ac(⊖CANDCDPM.1c)(Γ).

Note further that all models in M⊕CDCDPM.2′c(Γ) validate all in-
stances of (CAND). Thus, M⊕CDCDPM.2′c(Γ) is the set of all minimally
abnormal (resp. all reliable) models in MAx

∧
◦Ac(⊖

CPAND′CDPM.2′c)(Γ). The
rest follows due to the fact that ⊕CDCDPM.αc is equivalent to (R)SDDL.

⊣

The proofs of theorems 10 and 11 are very similar and are left to the
reader.

Theorem 13. All adaptive logics defined in Section 6 with lower limit
logics in ↓CDPM.1c ∪ ↓CDPM.2′c falsify (DEX-1)–(DEX-3).

Proof. Let F = 〈W, O〉 where W = ℘(S). We define W ′ = {w ∈ W |
p1 ∈ w} and Ow is defined as follows for all w ∈ W : Ow =

⋃

X∈Ψ{〈X, Y 〉 |
Y ⊇ X ∩ W ′} ∪ {〈W, ∅〉} where Ψ = {W ′′ ⊆ W | W ′′ ∩ W ′ 6= ∅}. It is
easy to see that F satisfies the frame conditions for CDPM.1c.

The model validates all premise sets Γ ∈
{

{O(⊤ | ⊤), O(⊥ | ⊤)},
{O(⊤ | ⊤), O(⊥ | ⊤), P(p2 | ⊤)}, {O(⊤ | ⊤), O(⊥ | ⊤), O(p1 | ⊤),
P(p1 | ⊤), P(p2 | ⊤)}

}

and falsifies the following instance of (DEX-3):
M |= O(⊤ | ⊤), O(⊥ | ⊤), O(p1 | ⊤), P(p1 | ⊤), P(p2 | ⊤) and M 2 O(p2 |
⊤). Thus, it does also not validate (DEX-1) and (DEX-2). Furthermore
the model is minimally abnormal for Γ w.r.t. Ωc

d, Ωr
d and Ω∧

d and any
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lower limit L ∈ ↓CDPM.1c. For Ωc
d note that the only abnormalities

are {O(A | ⊤) ∧ O(¬A | ⊤) |⊢L ⊤ ≡ A}, but we also have Γ ⊢L O(A |
⊤) ∧ O(¬A | ⊤) for all these abnormalities. For Ω∧

d and Ωr
d the set of

abnormalities verified by M is empty. Therefore, given premises Γ, the
model is selected in all adaptive logics based on lower limits in ↓CDPM.1c
that are defined in Section 6.

Let F = 〈W, O〉 where W = ℘(S). We define Wa = {w ∈ W | p1 /∈
w, p2 /∈ w}, Wb = {w ∈ W | p1 /∈ w, p2 ∈ w}, Wc = {w ∈ W | p1 ∈
w, p2 /∈ w}, Wd = {w ∈ W | p1 ∈ w, p2 ∈ w}, and Ow for all w ∈ W as
follows: Ow =

⋃

X∈Ψ{〈X, Y 〉 | Y ⊇ X ∩ (Wc ∪ Wd)} ∪ {〈W, Wa ∪ Wb〉}
where Ψ = {W ′′ ⊆ W | W ′′ ∩ (Wc ∪ Wd) 6= ∅}. It is easy to see that F is
a CDPM.2′c-frame.

The model validates all premise sets Γ ∈
{

{O(p1 | ⊤), O(¬p1 |
⊤)}, {O(p1 | ⊤), O(¬p1 | ⊤), P(p2 | ⊤)}, {O(p1 | ⊤), O(¬p1 | ⊤),
O(⊤ | ⊤), P(⊤ | ⊤), P(p2 | ⊤)}

}

and falsifies the following instance of
(DEX-3): M |= O(⊤ | ⊤), P(⊤ | ⊤), O(p1 | ⊤), O(¬p1 | ⊤), P(p2 | ⊤) and
M 2 O(p2 | ⊤). Thus, it does also not validate (DEX-1) and (DEX-2).
Furthermore, the model is minimally abnormal for Γ w.r.t. Ωc

d, Ωr
d and

Ω∧
d and any lower limit L ∈ ↓CDPM.2′c. For Ωc

d note that the only abnor-
malities verified by M are Abc(M) = {O(A | ⊤)∧O(¬A | ⊤) |⊢L A ≡ p1}
and Γ ⊢L A for all A ∈ Abc(M). For Ωr

d the set of abnormalities ver-
ified by M is empty. For Ω∧

d the set of abnormalities verified by M is
Ab∧(M) = {O(A | ⊤) ∧ O(¬A | ⊤) ∧ ¬O(A ∧ ¬A | ⊤) |⊢L A ≡ p1}. Note
that Γ ⊢L A for all A ∈ Ab∧(M). Therefore, given premises Γ, the model
is selected in all adaptive logics based on lower limits in ↓CDPM.2′c that
are defined in Section 6. ⊣
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