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DYADIC DEONTIC LOGIC

AND SEMANTIC TABLEAUX

Abstract. The purpose of this paper is to develop a class of semantic
tableau systems for some dyadic deontic logics. We will consider 16
different pure dyadic deontic tableau systems and 32 different alethic
dyadic deontic tableau systems. Possible world semantics is used to
interpret our formal languages. Some relationships between our systems
and well known dyadic deontic logics in the literature are pointed out and
soundness results are obtained for every tableau system. Completeness
results are obtained for all 16 pure dyadic deontic systems and for 16
alethic dyadic deontic systems.
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1. Introduction

Many of our most interesting normative sentences seem to be conditional
in nature. Consider, for instance, the following examples:

• If you have promised to do something, you should keep your promise,

• If you have borrowed an item from someone, you should return it,

• If you have hurt someone, you should apologize,

• If you want to be treated in a certain way, you should treat others
similarly,
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• It is permitted that you do A only if you accept that everyone does A
in similar circumstances,

• If you are drunk, it is forbidden that you drive.

However, it is not at all obvious how such sentences should be formalized
logically. According to one tradition, we should introduce certain dyadic
deontic operators that can be used to symbolize at least some sentences
of this kind adequately. The purpose of this essay is to develop seman-
tic tableau systems for some logical systems that include some dyadic
deontic operators.

This is not the place to consider all the philosophical arguments for
these systems in detail, but I will mention five nice features that they
have.

(1) They can be used to avoid Arthur Prior’s paradoxes of derived
obligation. E.g. none of our systems include the following sentence

Fp → O[p]q

So, you are not commited to doing anything given that you have done
something forbidden (see [22]).

(2) They can be used to give a fairly plausible formalization of so
called contrary-to-duty obligations (obligations that tell us what ought
to be the case given that something forbidden is the case). Hence, they
can be used to give a reasonable (although not entirely problem-free)
solution to Roderick M. Chisholm’s contrary-to-duty imperative paradox
(see [2]).

(3) None of our systems include the following sentence

O[p]r → O[p ∧ q]r

So, they can be used to avoid the problem of overridable conditional
obligations. It may be true that it is obligatory that you meet your
friend for lunch given that you have promised to meet her for lunch,
while it is false that it is obligatory that you meet your friend for lunch
given that you have promised to meet her for lunch and your son needs
you to drive him to the hospital (because he suddenly became ill).

(4) By defining unconditional obligation, permission and prohibition
in terms of conditional obligation, permission and prohibition we can
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derive many monadic deontic systems as special cases of our dyadic sys-
tems. So, we can preserve many of the nice features that such systems
have while at the same time avoiding several problems.

(5) We can give some interesting definitions of the concepts better
than, at least as good as and equally good as in terms of our dyadic deontic
notions. Hence, we can see how dyadic deontic logic may be connected
to a logic of preference in a systematic, rigorous and interesting way.
I think that these features, among others, show that our systems are
philosophically interesting enough to warrant this investigation.

All in all 16 different pure dyadic deontic tableau systems and 32
alethic dyadic deontic tableau systems are introduced. All of the 48
logics that we discuss in this essay have been described axiomatically by
Lennart Åqvist in e.g. [33, 34, 35]: some explicitly, some only implicitly.
However, as far as I know, no one has devised any tableau systems for
these logics. So, I think that this investigation is also justified from a
logical perspective.1

The modal parts of the tableau systems that are described in this
essay are similar to systems developed by Melvin Fitting in e.g. [5, 6]
and by Graham Priest in [21]. Their propositional part can be traced
back to Raymond Smullyan ([24, 25, 26, 27]) and Richard Jeffrey ([13]).
I think that this form is particularly elegant and easy to apply. We use
possible world semantics similar to the kind introduced by Saul Kripke
([14, 15, 16]) to interpret our systems.

In [23] I described a set of counterfactual tableau systems. Techni-
cally some of the systems considered in this essay are very similar to
some systems introduced in that paper. So, we can apply many of our
results about these counterfactual systems more or less directly to our
dyadic systems. However, there are also some differences. I think that
these differences together with other facts about the dyadic deontic sys-
tems considered in this essay motivate a separate investigation of them.
Let us mention some facts that justify this investigation.

(1) It may not be immediately obvious to everyone that there are
many similarities between several different classical counterfactual logics

1Åqvist uses a slightly different notation than we do and his languages do not
contain the operators F and x. So, in a strict sense none of our systems is deduc-
tively equivalent to any of his. But I will ignore such subtle differences in this essay.
Similar remarks apply to our comparisons with other systems from the literature (see
Section 7).
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and several classical dyadic deontic systems (this point is of course not
new, but it is worth reiterating).

(2) We introduce some pure dyadic deontic systems that do not have
any analogues in [23] and show how these are related to each other.

(3) There are some principles that seem reasonable for the subjunctive
conditional but not for conditional obligation. E.g.

(p� q) → (p → q)

seems reasonable, but

O[p]q → (p → q)

does not seem plausible. So, even though there are similarities between
counterfactual logic and dyadic deontic logic there are also important
differences. The informal interpretation of our systems and our semantics
is, of course, also different.

(4) We consider an alternative semantics that we didn’t examine in
[23], one that uses models with a preference relation.

(5) We show how our systems are related to some famous deontic
systems in the literature.

(6) I fill in some gaps in the soundness and completeness proofs that I
intentionally cut out in [23]. We extend the soundness and completeness
results to our set of 16 pure dyadic deontic systems. We also obtain
soundness results for several systems with respect to our supplemented
models that include a dyadic preference relation.

(7) We mention several new theorems and some new derived rules.
(8) We show how the concepts better than, at least as good as and

equally good as can be defined in our systems and mention several intu-
itively plausible theorems that include these notions.

The essay is divided into seven parts. Part 2 deals with syntax and
Part 3 with semantics. In Part 4 I describe the tableau systems that are
the main focus of the essay and Part 5 contains soundness and complete-
ness proofs. In Part 6 I say some things about the relationships between
these systems. Section 7 ends with some notes on how our dyadic sys-
tems are related to some other systems described in the literature. I
have not been able to establish that the systems including Tα0 are com-
plete. Hopefully someone will be able to prove this in the future or show
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that they are not complete and find some other tableau rule that exactly
corresponds to the semantic condition Tα0.2

2. Syntax

We use two different languages, L1 and L2, in this essay.

Alphabet. The alphabet of the language L1 consists of 1–4 and that
of L2 of 1–5:

1. A denumerably infinite set Prop of proposition letters: p, q, r, s, p1,
q1, r1, s1, p2, q2, r2, s2, . . . .

2. The primitive truth-functional connectives: ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (material implication) and ↔ (material
equivalence).

3. Three deontic operators: O (dyadic obligation), P (dyadic permis-
sion), and F (dyadic prohibition).

4. ⊤ (verum), ⊥ (falsum) and the brackets (, ), [ and ].

5. Three alethic operators: ◻ (necessity), ◇ (possibility) and x (impos-
sibility).

Sentences. The language L1 is the set of well-formed formulas (wffs)
or sentences generated by 1–4 and 6 below and L2 is the set of wffs or
sentences generated by 1–6 below.

1. Every proposition letter, ⊤ and ⊥ are wffs.

2. If A is a wff, so is ¬A.

3. If A and B are wffs, so are (A ∧ B), (A ∨ B), (A → B) and (A ↔ B).

4. If A and B are wffs, so are O[A]B, P [A]B and F [A]B.

5. If A is a wff, so are ◻A, ◇A and xA.

6. Nothing else is a wff.

2The first person to produce a formal deontic system seems to have been Ernst
Mally in [20]. However, modern deontic logic is often traced back to Georg Henrik
von Wright’s [32]. Pioneering contributions to dyadic deontic logic are [4, 10, 29, 30,
18, 19, 31]. For an introduction to deontic logic and more references, see for instance
[11, 12, 33, 34, 35].
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Formulas O[A]B, P [A]B and F [A]B represent a kind of conditional
obligation, permission and prohibition, respectively. O[A]B is to be read
“B is obligatory given that A” or “A commits us to B” or “if A then it
is obligatory that B”; P [A]B – “B is permitted given that A” or “if A
then it is permitted that B”; F [A]B – “B is forbidden given that A” or
“if A then it is forbidden that B”.3

Capital letters “A”, “B”, “C”, . . . are used to represent arbitrary
(not necessarily atomic) formulas of the object language. The upper case
Greek letter Σ represents an arbitrary set of formulas. The empty set is
denoted by ∅. Outer brackets around sentences are usually dropped if the
result is not ambiguous. “L1” is used in our pure dyadic deontic tableau
systems and “L2” is used in our alethic dyadic deontic tableau systems.

Definitions.

1. OA =df O[⊤]A

2. PA =df P [⊤]A

3. FA =df F [⊤]A

4. O′[B]A =df P [B]⊤ ∧ O[B]A

5. P ′[B]A =df ¬O′[B]¬A (or O[B]⊥ ∨ P [B]A)

6. F ′[B]A =df ¬P ′[B]A (or O′[B]¬A or (P [B]⊤ ∧ F [B]A))

7. A ≥ B =df O[A ∨ B]⊥ ∨ P [A ∨ B]A (or P ′[A ∨ B]A)

8. A > B =df P [A ∨ B]⊤ ∧ O[A ∨ B]¬B (or O′[A ∨ B]¬B)

9. A = B =df O[A ∨ B]⊥ ∨ (P [A ∨ B]A ∧ P [A ∨ B]B)
(or P ′[A ∨ B]A ∧ P ′[A ∨ B]B)

Definitions 1–3 are definitions of the monadic deontic operators O (“it
is obligatory that”), P (“it is permitted that”) and F (“it is forbidden
that”) in terms of our dyadic deontic operators and verum. The defini-
tions 4–9 will be used to compare our systems with some other systems
in the literature (see Section 7). O′[B]A, P ′[B]A correspond to Åqvist’s
symbols Odfl

B A and P dfl
B A, respectively. These symbols provide us with

3Other symbols are sometimes used for the same notions, e.g. instead of O[A]B and
P [A]B some write OAB and PAB, some O(B/A) and P (B/A), and others (A O B)
and (A P B).
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some alternative readings of the concepts of conditional obligation, per-
mission and prohibition. A ≥ B is to be read “A is at least as good as
(better than or equally good as) B”, A > B – “A is better than B” and
A = B – “A is as good as (equally good as) B”. So, our dyadic operators
can be used to give us a possible interpretation of the concepts better
than, at least as good as and equally good as.

3. Semantics

3.1. Basic notions

Frames. We will consider two kinds of frames in this essay: (ordinary)
frames and supplemented frames. An ordinary frame F is a relational
structure 〈W, {RA : A ∈ L}〉, where W is a non-empty set of possible
worlds and {RA : A ∈ L} is a set of dyadic relations on W , one for each
sentence, A, in L, where L is the language we are interested in (L1 or
L2). So, for every A in L, RA ⊆ W × W .

A supplemented frame Fs is a relational structure 〈W, {RA : A ∈ L},
≥〉, where W and {RA : A ∈ L} are exactly as in an ordinary frame and ≥
is a preference relation defined over the elements in W , i.e. ≥ ⊆ W × W .
If it is clear that we are talking about a supplemented frame, we will
sometimes drop the subscript. Intuitively, w ≥ w′ means that w is at
least as good as w′.

Models. We will discuss two kinds of models in this essay: (ordinary)
models and supplemented models. An ordinary model M is a pair 〈F, V 〉
where: F is an (ordinary) frame, and V is a valuation or interpretation
function, which assigns a truth-value T (true) or F (false) to every propo-
sition letter p in each world w ∈ W .

A supplemented model Ms is a pair 〈Fs, V 〉 where: Fs is a supple-
mented frame, and V is exactly as in an ordinary model.

We will sometimes drop the subscript if it is clear from the context
that we are talking about supplemented models (or if we are talking
about any model whatsoever, ordinary or supplemented).

We shall also speak of a model directly as a relational structure
〈W, {RA : A ∈ L}, V 〉 (〈W, {RA : A ∈ L} , ≥, V 〉) to save space.

In a supplemented model the accessibility relations can be defined in
terms of the preference relation over our possible worlds in the following



228 Daniel Rönnedal

way, for every A ∈ L:

γ0. xRAy iff 
M, y A & ∀z(
M, z A ⇒ y ≥ z).

Truth conditions. Let M be any model (ordinary or supplemented),
let w be any member of W and let A be in L (L1 or L2). To mean
that A is true at a possible world w in the model M we write 
M, w A.
The truth conditions for proposition letters, ⊤, ⊥ and sentences built by
truth functional connectives are the usual ones. ◻A, ◇A and xA are
interpreted as in [23]. The truth conditions for the remaining sentences
in L are given by the following clauses:

1. 
M, w O[A]B iff for all w′ ∈ W such that wRAw′: 
M, w′ B

2. 
M, w P [A]B iff for at least one w′ ∈ W such that wRAw′: 
M, w′ B

3. 
M, w F [A]B iff for all w′ ∈ W such that wRAw′: 
M, w′ ¬B.

Validity, entailment, countermodel, satisfiability etc. The con-
cepts of validity, entailment, countermodel, satisfiability etc. can be
defined in the usual way.4 
M B says that B is valid in M, where M
is a class of models, and Σ 
M B says that B is a consequence of Σ
in M.

3.2. Conditions on a model

We will consider several different conditions on our models divided into
three groups in this essay. The first group of conditions is used to define
a set of pure dyadic deontic systems (table 1), the second a set of alethic
dyadic deontic systems based on ordinary models (table 2) and the third
a set of alethic dyadic deontic systems based on supplemented models
(table 3).

The variables x, y, z are taken to range over W . Corresponding
to the conditions in group 1 there are four different tableau rules (see
Section 4.2.3).

‖A‖M = {w ∈ W : 
M, w A}, i.e. ‖A‖M is the set of all worlds in
M where A is true, or, in other words, the set of all A-worlds in M .
Corresponding to the conditions in group 2 there are six different tableau
rules (see Sections 4.2.4 and 4.2.5).

4For an idea of how to do this, see [21].
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For all A and for all B

CDτ ∀x∀y∀z((xRAy & yRBz) ⇒ xRBz)
CDǫ ∀x∀y∀z((xRAy & xRBz) ⇒ yRBz)
CDρ′ ∀x∀y(xRAy ⇒ yRAy)
CDσ′ ∀x∀y∀z((xRAy & yRAz) ⇒ zRAy)

Table 1. Conditions on a model (group 1)

For all A and for all B
Ca6 ∀x∀y∀z(xRAy ⇒ zRAy)
Cα0 ‖A‖M = ‖B‖M ⇒ RA = RB

Cα1 ∀x∀y(xRAy ⇒ 
M, y A)
Cα2 ∀x∀y((xRAy & 
M, y B) ⇒ xRA∧By)
Cα3 ∀x((‖A‖M 6= ∅) ⇒ ∃yxRAy)
Cα4 ∀x∀y∀z((xRAy & 
M, y B) ⇒ (xRA∧Bz ⇒ (xRAz & 
M, z B)))

Table 2. Conditions on a model (group 2)

3.3. Classification of some models

The conditions introduced in Section 3.2 can be used to obtain a cat-
egorization of the set of all models into various kinds. In general, we
shall say that M(C1, . . . , Cn) is the class of (all) models that satisfy the
conditions C1, . . . , Cn. M(V ) will denote the class of all models.

A model that satisfies any combination of the conditions in group 1
but no other conditions will be called a pure dyadic deontic model and
a model that satisfies at least condition Ca6 (that is Ca6 plus any other
combination of conditions) will be called an alethic dyadic deontic model.

M(G) stands for the class of all models that satisfy all conditions in
group 1 and group 2. In Section 5 we will show that the tableau system
TG is sound with respect to M(G).

Following Åqvist we will also use the following classification of differ-
ent models (table 4).

3.4. Relations between our conditions

Not all combinations of the conditions in Section 3.2 are independent as
the following theorem shows.
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For all A and for all B
γ0 xRAy iff 
M, y A & ∀z(
M, z A ⇒ y ≥ z)
δ1 ∀x x ≥ x

δ2 If ‖A‖M 6= ∅ then {x ∈ ‖A‖M : (∀y ∈ ‖A‖M ) x ≥ y} 6= ∅
δ3 ∀x∀y∀z((x ≥ y & y ≥ z) ⇒ x ≥ z)
δ4 ∀x∀y(x ≥ y or y ≥ x or (x ≥ y & y ≥ x))

Table 3. Conditions on a model (group 3)

The class of all... = the class of models that satisfy...
minimal H-models Ca6
H-models γ0
H1-models γ0 and δ1
H2-models γ0, δ1 and δ2
H3-models γ0, δ1, δ2 and δ3
strong H3-models γ0, δ1, δ2, δ3 and δ4

Table 4. Classification of supplemented models

Theorem 1. (i) All models that satisfy condition CDǫ also satisfy
conditions CDρ′ and CDσ′.

(ii) All models that satisfy Ca6 also satisfy CDτ , CDǫ, CDρ′ and CDσ′.

(iii) If M is any H-model or H1-model, then M satisfies Ca6, Cα0, Cα1
and Cα2.

(iv) If M is any H2-model, M satisfies Ca6, Cα0, Cα1, Cα2 and Cα3.

(v) If M is any H3-model or strong H3-model, then M satisfies Ca6,
Cα0, Cα1, Cα2, Cα3 and Cα4.

(vi) Let M be any H-model. Then the truth conditions for dyadic obli-
gation, permission and prohibition, can be equivalently stated in
the following way:


M, x O[A]B iff ∀y((
M, y A & ∀z(
M, z A ⇒ y ≥ z)) ⇒ 
M, y B),


M, x P [A]B iff ∃y((
M, y A & ∀z(
M, z A ⇒ y ≥ z)) & 
M, y B),


M, x F [A]B iff ∀y((
M, y A & ∀z(
M, z A ⇒ y ≥ z)) ⇒ 
M, y ¬B),

where x, y and z range over possible worlds.

Proof. Left to the reader. ⊣
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According to part (vi) in Theorem 1 we can say that it is obligatory
that B given A iff B is true in all the best A-worlds, it is permitted that
B given A iff B is true in at least one of the best A-worlds and it is
forbidden that B given that A iff B is false in all the best A-worlds.

Obviously, ∀x∀y∀z((xRAy & yRBz) ⇒ xRBz) entails ∀x∀y∀z((xRAy
& yRAz) ⇒ xRAz) and ∀x∀y∀z((xRAy & xRBz) ⇒ yRBz) entails
∀x∀y∀z((xRAy & xRAz) ⇒ yRAz). It follows from Theorem 1 that
some classes of models will turn out to be identical even though they are
defined in different ways, as our next theorem shows.

Theorem 2. (i) M(CDǫ) = M(CDρ′, CDǫ) = M(CDσ′, CDǫ) =
M(CDρ′, CDσ′, CDǫ).

(ii) M(CDτ, CDǫ) = M(CDρ′, CDτ, CDǫ) = M(CDσ′, CDτ, CDǫ) =
M(CDρ′, CDσ′, CDτ, CDǫ).

(iii) Let C denote any combination of the conditions in group 1 (there
are 16 of them). Then M(Ca6) = M(Ca6, C).

Proof. This follows immediately from Theorem 1. ⊣

M(Ca6) = M(Ca6, CDτ) and M(Ca6) = M(Ca6 , CDτ, CDǫ) are
examples of instances of part (iii) in Theorem 2. There are other identi-
ties too as the reader may easily verify, but these suffice to illustrate our
point.

3.5. Logical systems

The set of all sentences in L that are valid in a class of models M is
called the logical system of (the system of or the logic of) M, in symbols
S(M) = {A ∈ L : 
M A}.

Theorem 3. (i) S(M(CDǫ)) = S(M(CDρ′, CDǫ)) = S(M(CDσ′,
CDǫ)) = S(M(CDρ′, CDσ′, CDǫ)).

(ii) S(M(CDτ, CDǫ)) = S(M(CDρ′, CDτ, CDǫ)) = S(M(CDσ′, CDτ,
CDǫ)) = S(M(CDρ′, CDσ′, CDτ, CDǫ)).

(iii) Let C be as in Theorem 2. Then S(M(Ca6)) = S(M(Ca6 , C)).

Proof. This follows immediately from Theorem 2. ⊣
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Part (iii) in Theorem 3 is a summary of several different identi-
ties. Above we saw, for instance, that M(Ca6) = M(Ca6 , CDτ) and
M(Ca6) = M(Ca6 , CDτ, CDǫ). So, it is easy to see that S(M(Ca6)) =
S(M(Ca6 , CDτ)) and S(M(Ca6)) = S(M(Ca6, CDτ, CDǫ)) are exam-
ples of instances of part (iii). (In the next section we will develop tableau
systems that correspond to these systems.)

4. Semantic tableaux and deontic logic

4.1. Semantic tableaux

The kind of semantic tableaux systems I use is inspired by Fitting and
Priest (see e.g. [5], [6] and [21]). The propositional part is similar to
systems introduced by Raymond Smullyan ([24, 25, 26, 27]) and Richard
Jeffrey ([13]).5

The concepts of semantic tableau, branch, open and closed branch
etc. are defined as in Priest’s [21].

4.2. Tableau rules

4.2.1. Propositional rules and Alethic rules

We use the same propositional rules as in [21] and the same alethic rules
as in [23].

4.2.2. Dyadic deontic rules

There are six dyadic deontic rules (see table 5), two for each dyadic
deontic operator.

4.2.3. Dyadic deontic accessibility rules

The dyadic deontic accessibility rules correspond to the conditions on
our models discussed in Section 3.2, table 1. There are four rules of this
kind, displayed in table 6.

5See [23], footnote 1 for some references.
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D O-pos (O) D P-pos (P ) D F-pos (F )
O[A]B, i P [A]B, i F [A]B, i

irAj ↓ ↓
↓ irAj O[A]¬B, i

B, j B, j
where j is new

D O-neg (¬O) D P-neg (¬P ) D F-neg (¬F )
¬O[A]B, i ¬P [A]B, i ¬F [A]B, i

↓ ↓ ↓
P [A]¬B, i O[A]¬B, i P [A]B, i

Table 5. Dyadic deontic rules

D Trans (TDτ) D Euclid (TDǫ) D Al ref (TDρ′) D Al sym (TDσ′)
irAj irAj irAj irAj
jrBk irBk ↓ jrAk

↓ ↓ jrAj ↓
irBk jrBk krAj

Table 6. Dyadic deontic accessibility rules

4.2.4. Basic alethic dyadic deontic rules

There are two basic alethic dyadic deontic rules: CUT and Ta6 (see
table 7). These rules are included in every alethic system. The CUT
rule is interpreted as in [23].

From Ta6 all rules in table 6 can be derived. I call this rule “Ta6”
because it corresponds to Åqvist’s axiom a6 in e.g. Åqvist [35], p. 237.
According to this rule we may add krAj for any k on any open branch
on which irAj occurs. Ta6 corresponds to condition Ca6 in Section 3.2,
table 2.

CUT Ta6
∗ irAj

ւց ↓
¬A, i A, i krAj
for every A

Table 7. Basic alethic dyadic deontic rules
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4.2.5. Alethic dyadic deontic accessibility rules

There are five different alethic dyadic deontic accessibility rules (see ta-
ble 8) that correspond to the conditions Cα0–Cα4 in Section 3.2, ta-
ble 2. These rules are similar to the accessibility rules found in [23],
Section 4.2.5 and they are interpreted similarly.

Tα0 Tα1 Tα2 Tα3 Tα4
If A is of the form irAj irAj A, i irAj
◻(A ↔ B) → ↓ B, j ↓ B, j

(O[A]C ↔ O[B]C), A, j ↓ jrAk irA∧Bk
A, i can be added to any open irA∧Bj where k is new ↓

branch on which i occurs. irAk
B, k

Table 8. Alethic dyadic deontic accessibility rules

4.2.6. Derived rules

Let us mention some derived rules that can be used to abbreviate our
proofs.

The Global Assumption Rule (GA). If A has a tableau proof, then
A, i can be added as a line to any open branch of a tableau, for any i.

Theorem 4. The Global Assumption Rule is admissible in any alethic
dyadic deontic system, i.e. GA can be added without expanding the class
of provable sentences.

Proof. Left to the reader. Use CUT. ⊣

GA together with the theorem schema

◻(A ↔ B) → (O[A]C ↔ O[B]C)

can be used to obtain several useful derived rules.
By using these derived rules our tableau proofs can become signifi-

cantly shorter.

Theorem 5. Every rule in table 9 is admissible in any alethic dyadic
deontic system that contains Tα0.

Proof. Left to the reader. ⊣
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DR1 DR3 DR5
◻(A ↔ B), i ◻(A ↔ B), i ◻(A ↔ B), i

O[A]C, i P [A]C, i F [A]C, i
↓ ↓ ↓

O[B]C, i P [B]C, i F [B]C, i

DR2 DR4 DR6
◻(A ↔ B), i ◻(A ↔ B), i ◻(A ↔ B), i

O[B]C, i P [B]C, i F [B]C, i
↓ ↓ ↓

O[A]C, i P [A]C, i F [A]C, i

Table 9. Derived rules (group I)

DR7 DR8 DR9
◻(A → B), i O[A]B, i ◻(A → B), i

↓ ↓ ↓
O[A]B, i O[⊤](A → B), i O[⊤](A → B), i

Table 10. Derived rules (group II)

Theorem 6. (i) DR7 is admissible in any alethic dyadic deontic sys-
tem that contains Tα1.

(ii) DR8 is admissible in any system of this kind that includes Tα0
and Tα2.

(iii) DR9 is admissible in any system of this kind that contains Tα0,
Tα1 and Tα2 (see table 10).

Proof. Left to the reader. ⊣

4.3. Conventions for applying rules

We use similar conventions for applying our rules as can be found in [23],
Section 4.3.

4.4. Tableau systems

By a dyadic deontic tableau system we mean a set of (primitive) tableau
rules that includes all dyadic deontic and all propositional rules. By
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an alethic dyadic deontic tableau system we mean a set of (primitive)
tableau rules that includes all propositional rules, all dyadic deontic rules,
all alethic rules and the rules Ta6 and CUT. By a pure dyadic deontic
tableau system we mean a dyadic deontic tableau system that does not
contain anything other than the propositional rules and the rules in table
5 and 6 in Section 4.2. The smallest dyadic deontic system, which we call
DDL, does not contain any accessibility rules. By adding dyadic deontic
accessibility rules to DDL we obtain extensions of this system. Since
there are four different dyadic deontic accessibility rules (see table 6), we
have 16 different pure dyadic deontic tableau systems. Not more than
10 of them are distinct however (see Section 6). The smallest alethic
dyadic deontic system is called ADDL. By adding alethic dyadic deontic
accessibility rules to ADDL, we obtain 32 different extensions of this
system. For there are five such rules (see table 8).6

We will call the tableau system that includes all rules we discuss in
this essay TG. TG is our strongest system (see Section 6).

Example. DDLTDτ is the (pure) dyadic deontic tableau system that
includes all propositional rules, all dyadic deontic rules and TDτ , and
ADDLTα0Tα1Tα2 is the alethic dyadic deontic tableau system that in-
cludes all propositional rules, all dyadic deontic rules, all alethic rules,
CUT, Ta6, Tα0, Tα1 and Tα2. If it doesn’t lead to any ambiguity,
we can drop the letters “T ”, “D” and “α” in our names. So, DDLτ =
DDLTDτ and ADDL012 = ADDLTα0Tα1Tα2 . And if it is clear from
the context that we are speaking of a dyadic deontic system or an alethic
dyadic deontic system, respectively, we may drop the letters in the be-
ginning of the name. So, τ may be used as an abbreviation of DDLTDτ
and 012 of ADDLTα0Tα1Tα2 in certain contexts.

6There are of course many other combinations of our rules. If we suppose that every
system includes all propositional rules, all dyadic deontic rules and all alethic rules,
there are still over 2000 (2048 to be exact) different combinations of our remaining
rules. (If we count the global assumption rule as a separate rule there are 4096 different
combinations.) However, many of the systems that result from such combinations are
deductively equivalent (i.e. contain exactly the same set of theorems). E.g. everything
that can be proved in our strongest pure dyadic deontic system can also be proved
in any alethic dyadic deontic system; in the light of Ta6 it is redundant to add any
dyadic deontic accessibility rule to any alethic dyadic deontic system. So, we will focus
on the systems we have mentioned.
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4.5. Proofs, derivations and syntactic validity

The concepts of proof, theorem, derivability etc. can now be defined in
the usual way (see e.g. [21] for an idea of how to do it). ⊢S B says that
B is provable in the tableau system S (or that B is a theorem in S), and
Σ ⊢S B that B is derivable from Σ in S.

4.6. Logical systems

Let S′ be a pure dyadic deontic tableau system and S′′ be an alethic
dyadic deontic tableau system. Then L(S′) = {A ∈ L1 : ⊢S′ A} (the
logic of S′), and L(S′′) = {A ∈ L2 : ⊢S′′ A} (the logic of S′′).

4.7. Examples

In this section we will consider some examples of theorems in some sys-
tems. Proofs are usually easy and are left to the reader.

System Theorem Condition on M
DDL O[r](p → q) → (O[r]p → O[r]q) −
DDLτ O[r]p → O[s]O[r]p CDτ
DDLǫ P [r]O[s]p → O[s]p CDǫ
DDLρ′ O[r](O[r]p → p) CDρ′

DDLσ′ O[r](P [r]O[r]p → p) CDσ′

Table 11. Examples of theorems in some dyadic deontic tableau systems

System Theorem Condition on M
ADDL ◻q → O[p]q −
ADDL O[p]q → ◻O[p]q Ca6
ADDL0 ◻(p ↔ q) → (O[p]r ↔ O[q]r) Cα0
ADDL1 O[p]p Cα1
ADDL2 O[p ∧ q]r → O[p](q → r) Cα2
ADDL3 ◇p → (O[p]q → P [p]q) Cα3
ADDL4 P [p]q → (O[p](q → r) → O[p ∧ q]r) Cα4

Table 12. Examples of theorems in some alethic dyadic deontic tableau systems

Theorem 7. The sentences in tables 11 and 12 are theorems in the
indicated systems.
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Proof. Left to the reader. ⊣

Theorem 8. (i) Let A be a sentence in table 9 in [23] (except the
first) and let t(A) be the result of replacing every subsentence in A
of the form C � B by O[C]B, C � B by P [C]B, and C � ¬B
by F [C]B. Then t(A) is a theorem in DDL.

(ii) Let A be a sentence in table 13 in [23] and let t(A) be defined as
in (i). Then t(A) is a theorem in ADDL.

(iii) Let A be a sentence in table 10 or in table 14 in [23] and let t(A)
be defined as in (i). Then t(A) is a theorem in ADDL3.

(iv) Let A be a sentence in table 11 in [23] and let t(A) be the result of
replacing every subsentence in A of the form C � B by O[C]B,
C � B by P [C]B, C � B by O′[C]B, and C � B by P ′[C]B.
Then t(A) is a theorem in ADDL1+Def. 4–5.

(v) Let A be a sentence in table 15 in [23] and let t(A) be defined as
in (i). Then t(A) is a theorem in ADDL13.

(vi) Let A be a sentence in table 9 in [23] (except the first) and let
t(A) be the result of replacing every subsentence in A of the form
C � B by O′[C]B, C � B by P ′[C]B, and C � ¬B by F ′[C]B.
Then t(A) is a theorem in DDL+Def. 4–6.

Proof. Left to the reader. ⊣

Theorem 9. The smallest normal monadic deontic system OK con-
ceived of as a set of sentences is included in DDL+Def. 1–3.7

Proof. Left to the reader. ⊣

Many other monadic deontic systems are also included in our dyadic
systems in a similar way.

Theorem 10. (i) The following sentences are theorems in DDL:

(P [s]p ∧ O[s](p → (q ∨ r))) → (P [s]q ∨ P [s]r)

(P [s]p ∧ O[s](p → (q ∧ r))) → (P [s]q ∧ P [s]r)

7See e.g. [33, 34, 35] for a discussion of this system.
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(ii) The following sentences are theorems in ADDL+Def. 4–6:

P [p]q → ◻P [p]q

F [p]q → ◻F [p]q

◻p → O[¬p]p

P [p]p → ◇p

xp → O[p]¬p

O′[p]q → ◻O′[p]q

P ′[p]q → ◻P ′[p]q

F ′[p]q → ◻F ′[p]q

(P [s]p ∧ ◻(p → (q ∨ r))) → (P [s]q ∨ P [s]r)

(P [s]p ∧ ◻(p → (q ∧ r))) → (P [s]q ∧ P [s]r)

(iii) The following sentences are theorems in ADDL0+Def. 4–6:

◻(p ↔ q) → (O′[p]r ↔ O′[q]r)

◻(p ↔ q) → (P ′[p]r ↔ P ′[q]r)

◻(p ↔ q) → (F ′[p]r ↔ F ′[q]r)

(iv) The following sentences are theorems in ADDL1:

P [p]⊤ ↔ P [p]p

O[¬p]⊥ ↔ O[¬p]p

O[p]⊥ ↔ O[p]¬p

(v) The following sentences are theorems in ADDL3:

◇p → P [p]⊤

O[¬p]⊥ → ◻p

O[p]⊥ → xp

◇s → ((O[s]p ∧ O[s](p → (q ∨ r))) → (P [s]q ∨ P [s]r))

◇s → ((O[s]p ∧ ◻(p → (q ∨ r))) → (P [s]q ∨ P [s]r))

(vi) The following sentences are theorems in ADDL02+Def. 1–3:

O[p]q → O(p → q)

(O[p](q ∨ r) ∧ (Fq ∧ Fr)) → Fp
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O[p]q → (Op → Oq)

((Op ∧ Oq) ∧ O[p ∧ q]r) → Or

(O[p]q ∧ Op) → Oq

((Op ∨ Oq) ∧ O[p ∨ q]r) → Or

O[p]q → (Pp → Pq)

(Op ∧ O[p](q ∧ r)) → (Oq ∧ Or)

(O[p]q ∧ Pp) → Pq

(Fr ∧ O[p ∨ q]r) → (Fp ∧ Fq)

O[p]q → (Fq → Fp)

((Pp ∨ Pq) ∧ O[p ∨ q]r) → Pr

(O[p]q ∧ Fq) → Fp

(O[p](q ∧ r) ∧ (Fq ∨ Fr)) → Fp

(vii) The following sentences are theorems in ADDL13+Def. 4–6:

◻p ↔ O[¬p]⊥

xp ↔ O[p]⊥

◇p ↔ P [p]⊤

O′[p]q ↔ (◇p ∧ O[p]q)

P ′[p]q ↔ (◇p → P [p]q)

F ′[p]q ↔ (◇p ∧ F [p]q)

(viii) The following sentence is a theorem in ADDL24 :

P [p]q → (O[p ∧ q]r ↔ O[p](q → r))

Proof. Left to the reader. ⊣

5. Soundness and completeness theorems

The concepts of soundness and completeness are defined as in [23], Sec-
tion 5.

Let S = STA1...TAn, where STA1...TAn is the tableau system con-
structed from DDL by adding the tableau rules TA1, . . . , TAn, if S is



Dyadic deontic logic and semantic tableaux 241

a pure dyadic deontic system, and STA1...An is the tableau system con-
structed from DDL by adding the tableau rules TA1, . . . , TAn and CUT,
if S is an alethic dyadic deontic system. Then we shall say that the class
of models, M, corresponds to S just in case M = M(CA1...CAn), i.e.
the class of models that satisfy CA1, . . . , and CAn.

5.1. Soundness theorems

Let M be any model, and b be any branch of a tableau. Then b (or, to
be more precise, the set of sentences on b) is satisfiable in M iff there is
a function, f , from the set of natural numbers {0, 1, 2, 3, . . .} to W such
that: (i) A is true at f(i) in M , for every node A, i on b, and (ii) if irAj
is on b, then f(i)RAf(j) in M . If f fulfills these conditions, we say that
f shows that b is satisfiable in M .

Lemma 11 (Soundness lemma). Let b be any branch of a tableau, and M
be any model. If b is satisfiable in M , and a tableau rule is applied to it,
then it produces at least one extension, b′, of b such that b′ is satisfiable
in M .

Proof. First the Soundness lemma is proved for DDL. Then it is ex-
tended to the other systems. This is done as usual.

Propositional rules. The proof is standard (see e.g. [21]).
Dyadic deontic rules, CUT, Tα0, Tα1, Tα3. The proof is similar

to proofs found in [23], Section 5.1, just replace A� B by O[A]B and
A� B by P [A]B.

(D Al ref). Assume that irAj is on b, and that we apply D Al ref
to give an extended branch, b′, of b including jrAj. Since b is satisfiable
in M , f(i)RAf(j). Accordingly, f(j)RAf(j), since M satisfies condition
CDρ′. So, D Al ref produces at least one extension, b′, of b such that b′

is satisfiable in M .
(D Al sym). Suppose that irAj and jrAk are on b, and that we apply

D Al sym to give an extended branch, b′, of b containing krAj. Since
b is satisfiable in M , f(i)RAf(j) and f(j)RAf(k). Hence, f(k)RAf(j),
since M satisfies condition CDσ′. Consequently, D Al sym produces at
least one extension, b′, of b such that b′ is satisfiable in M .

(Ta6). Suppose that irAj is on b, and that we apply Ta6 to give an
extended branch, b′, of b containing krAj. Since b is satisfiable in M ,
f(i)RAf(j). Accordingly, f(k)RAf(j), since M satisfies condition Ca6.
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Consequently, Ta6 produces at least one extension, b′, of b such that b′

is satisfiable in M .
(Tα2). Suppose that irAj and B, j are on b, and that we apply Tα2

to give an extended branch, b′, of b containing irA∧Bj. Since b is satisfi-
able in M , f(i)RAf(j) and B is true at f(j). Accordingly, f(i)RA∧Bf(j),
since M satisfies condition Cα2. In conclusion, Tα2 produces at least
one extension, b′, of b such that b′ is satisfiable in M .

(Tα4). Suppose that irAj, B, j and iRA∧Bk are on b, and that we
apply Tα4 to give an extended branch, b′, of b containing irAk and B, k.
Since b is satisfiable in M , f(i)RAf(j), f(i)RA∧Bf(k) and B is true at
f(j). Accordingly, f(i)RAf(k) and B is true at f(k), since M satisfies
condition Cα4. In conclusion, Tα4 produces at least one extension, b′,
of b such that b′ is satisfiable in M . Remaining cases are left to the
reader. They are proved similarly. ⊣

Theorem 12 (Soundness theorem I). Let S be any of the 48 tableau
systems we discuss in this essay. Then S is sound with respect to the
class of models M that corresponds to S. For finite Σ, if Σ ⊢S B, then
Σ 
M B.8

Proof. The proof is essentially the same as the proof that certain
normal modal systems are sound. (See e.g. [21], especially chapters 1
and 2.) ⊣

Theorem 13 (Soundness theorem II). (i) ADDL012 is sound with re-
spect to the class of all H-models and also with respect to the class
of all H1-models.

(ii) ADDL0123 is sound with respect to the class of all H2-models.

(iii) TG (ADDL01234) is sound with respect to the class of all H3-
models and also with respect to the class of all strong H3-models.

Proof. This follows from Soundness theorem I and Theorem 1 in Sec-
tion 3.4. ⊣

8This result can be extended to the infinite case. For an idea of how to do this see
[23].
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5.2. Completeness theorems

Let b be an open branch of a tableau. The model, M = 〈W, {RA : A ∈
L}, V 〉, induced by b is defined as follows. W = {wi : i occurs on b},
wiRAwj iff irAj occurs on b. If p, i occurs on b, then p is true in wi; if
¬p, i occurs on b, then p is false in wi.

Lemma 14 (Completeness lemma). Let b be any open branch in a com-
plete tableau and let M = 〈W, {RA : A ∈ L} , V 〉 be the model induced
by b. Then

(i) A is true at wi, if A, i is on b,

(ii) A is false at wi, if ¬A, i is on b.

Proof. The proof is easy. See [21] and [23, Section 5.2], just replace
A � B by O[A]B and A � B by P [A]B, for an idea of how to do
it. ⊣

Theorem 15 (Completeness theorem I). For finite Σ, if Σ 
M(V ) B,
then Σ ⊢DDL B.9

Proof. The proof is similar to the proof that certain normal modal
systems are complete. (See e.g. [21], especially chapter 1 and 2.) ⊣

Theorem 16 (Completeness theorem II). Let S be any of the remaining
31 systems we discuss in this essay, not including Tα0, and let M in each
case be the corresponding class of models. For finite Σ, if Σ 
M B,
then Σ ⊢S B.10

Proof. The proof is standard. We just have to check that the model
induced by the open branch, b, is of the right kind in every case.

The proofs of Cα1, Cα2, Cα3 are similar to proofs found in [23],
Section 5.2.

(CDρ′). Suppose that wiRAwj, where wi, wj ∈ W . Then irAj
occurs on b (by the definition of an induced model). Since the tableau
is complete, D Al ref has been applied and jrAj occurs on b. Hence,
wjRAwj, as required (by the definition of an induced model).

9For an idea of how to extend this result to the case with an infinite set of premises,
see [23].

10This result can be extended to the case with an infinite set of premises. See [23]
for an idea of how to do this.
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(CDσ′). Suppose that wiRAwj and wjRAwk, where wi, wj, wk
∈ W . Then irAj and jrAk occur on b (by the definition of an induced
model). Since the tableau is complete, D Al sym has been applied and
krAj occurs on b. It follows that wkRAwj, as required (by the definition
of an induced model).

(Ca6) Suppose that wiRAwj and that wi, wj, wk ∈ W . Then irAj
is on b (by the definition of an induced model). Since the tableau is
complete Ta6 has been applied and krAj is on b, for every k on b.
Hence, wkRAwj for every wk, as required (by the definition of an in-
duced model).

(Cα4). Let wi, wj, wk ∈ W . Suppose that wiRAwj, wiRA∧Bwk
and that B is true at wj. Then irAj and irA∧Bk (by the definition of
an induced model). Since the tableau is complete CUT has been applied
and either B, j or ¬B, j is on b. Assume that ¬B, j is on b. Then B is
false at wj (by the completeness lemma). But this is absurd. So, B, j
is on b. Since the tableau is complete Tα4 has been applied and irAk
and B, k occur on b. It follows that wiRAwk and that B is true at wk,
as required (by the definition of an induced model and the completeness
lemma). Remaining cases are left to the reader. ⊣

6. Relations between our tableau systems

Figure 1 contains all the 16 pure dyadic deontic tableau systems that we
discuss in this essay and it depicts some important relationships between
these systems. Inclusions are marked by lines. Systems higher up are
extensions of systems lower down, systems lower down are included in
systems higher up. τǫ is the strongest system, it includes every system,
while DDL is the weakest system. DDL is included in every system. Two
systems are non-comparable just in case neither is included in the other.
So, τ and ρ′ are examples of non-comparable systems. Systems displayed
in the boxes are systems that are deductively equivalent to the system
with which the box is associated. E.g. all of the following systems are
deductively equivalent: τǫ, ρ′τǫ, σ′τǫ and ρ′σ′τǫ.

That there are at most these systems and that the inclusion relations
that are displayed in figure 1 hold follows from our results in sections 3.4
and 3.5 and the soundness and completeness proofs in Section 5. Proofs
of distinctness are left to the reader.
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Figure 1. Some relations between our tableau systems

All alethic dyadic deontic systems are stronger than our strongest
pure dyadic deontic tableau system. Exactly how these systems are re-
lated to each other remains, however, an open question.

7. Relations to some other systems

In [33], [34, chapters V and VI], and [35] Åqvist introduces a set of
axioms and inference rules that can be used to construct 16 different
‘pure’ dyadic deontic axiomatic systems and 32 different alethic dyadic
deontic axiomatic systems. These systems can be seen to match our
systems in a very precise sense.11

Let f be a function such that: f(TDτ) = a4 (O[B]A → O[C]O[B]A),
f(TDǫ) = a5 (P [C]O[B]A → O[B]A), f(TDρ′) = a3 (O[B](O[B]A →
A)), f(TDσ′) = O[B](P [B]O[B]A → A), f(Ta6) = a6 (O[B]A →
◻O[B]A), f(T αi) = αi, for i = 0 (◻(A ↔ B) → (O[A]C ↔ O[B]C)),

11Throughout this section we will ignore minor differences between our syntax and
the syntax used by the thinkers we discuss.
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for i = 1 (O[A]A), for i = 2 (O[A ∧ B]C → O[A](B → C)), for i = 3
(◇A → (O[A]B → P [A]B)), for i = 4 (P [A]B → (O[A](B → C) →
O[A ∧ B]C)). Let S be a pure dyadic deontic tableau system and let A
be a pure axiomatic system. Then we shall say that A corresponds to S
just in case A includes all and only the axioms (axiom schemas) f(t) such
that t is a tableau rule in S plus a0 (all truth-functional tautologies),
a1 (P [B]A ↔ ¬O[B]¬A), a2 (O[B](A → C) → (O[B]A → O[B]C)),
F [B]A ↔ O[B]¬A and A has R1 (modus ponens) and R2 (A/O[B]A)
as the only primitive rules. Let S be an alethic dyadic deontic tableau
system and A an alethic dyadic deontic axiomatic system. Then we shall
say that A corresponds to S precisely when A includes all and only the
axioms (axiom schemas) f(t) such that t is a tableau rule in S plus
a0–a2, a7 (◻A → O[B]A) and a8 (an appropriate set of S5-schemata),
F [B]A ↔ O[B]¬A and A has R1 and R2′′ (A/◻A) as the only primitive
rules. Then we can state the following theorem.

Theorem 17. (i) Let S be any of our 32 tableau systems not including
Tc0 and let A be the axiomatic system that corresponds to S (as
defined above). Then S and A are deductively equivalent.

(ii) Let S be any of the remaining 16 systems and A the axiomatic
system that corresponds to S. Then, if B is a theorem in S, B is a
theorem in A.

Proof. This follows directly from our soundness and completeness re-
sults in this essay and from the soundness and completeness results found
in Åqvist’s [33], [34, chapters V and VI], or [35]. ⊣

Theorem 18. (i) Our tableau system TG contains all axioms in the
system vK+ introduced by Franz von Kutschera, i.e. all of the
following sentences (see [31] and [34, p. 205]):

P [B]A ↔ ¬O[B]¬A

O[A]A

O[¬A]A → O[B]A

(O[¬(A → B)](A → B) ∧ O[C]A) → O[C]B

(O[B]A ∧ O[B]C) → O[B](A ∧ C)

¬O[A]¬B → (O[A ∧ B]C ↔ O[A](B → C))

O[¬A]A → A
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◻A ↔ O[¬A]A

◇A ↔ ¬ ◻ ¬A

(ii) If we add definitions 4 and 5 to our language, TG includes all
axioms in the system DFL based on work by Sven Danielsson, Bas
van Fraassen and David Lewis, i.e.

O[B]A ↔ (P ′[B]⊥ ∨ O′[B]A)

P [B]A ↔ (O′[B]⊤ ∧ P ′[B]A)

P ′[B]A ↔ ¬O′[B]¬A

O′[B]A → P ′[B]A

O′[B](A → C) → (O′[B]A → O′[B]C)

O′[B]A → ◻O′[B]A

◻A → (P ′[B]⊥ ∨ O′[B]A)

◻(A ↔ B) → (O′[A]C ↔ O′[B]C)

P ′[A]⊥ ∨ O′[A]A

(P ′[A ∧ B]⊥ ∨ O′[A ∧ B]C) → (P ′[A]⊥ ∨ O′[A](B → C))

◇A → O′[A]⊤

(O′[A]⊤ ∧ P ′[A]B) → ((P ′[A]⊥ ∨ O′[A](B → C)) →
(P ′[A ∧ B]⊥ ∨ O′[A ∧ B]C))

all the axioms in Lewis’s system Lw (and hence in the weaker sys-
tems CO, CD, CU, CA, CDA and CUA too), i.e.

P ′[C]A ↔ ¬O′[C]¬A

O′[C](A ∧ B) ↔ (O′[C]A ∧ O′[C]B)

O′[C]A → P ′[C]A

O′[C]⊤ → O′[C]C

O′[C]⊤ → O′[B ∨ C]⊤

(O′[B]A ∧ O′[C]A) → O′[B ∨ C]A

(P ′[C]⊥ ∧ O′[B ∨ C]A) → O′[B]A

(P ′[B ∨ C]B ∧ O′[B ∨ C]A) → O[B]A

O′[⊤]⊤

A → O′[A]⊤
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O′[A]⊤ → P ′[P ′[A]⊥]⊥

O′[B]A → P ′[¬O′[B]A]⊥

P ′[B]A → P ′[¬P ′[B]A]⊥

all axioms in van Fraassen’s system vF, i.e.

P ′[B]A ↔ ¬O′[B]¬A

O′[B](A → C) → (O′[B]A → O′[B]C)

O′[B]A → P ′[B]A

O′[A]B → O′[A](B ∧ A)

O′[A ∨ B]¬B → (O′[B ∨ C]¬C → O′[A ∨ C]¬C)

P ′[A ∨ B]A → (O′[B ∨ C]¬C → O′[A ∨ C]¬C)

O′[A ∨ B]¬B → (P ′[B ∨ C]B → O′[A ∨ C]¬C)

and the theorems G1–G7, i.e. (see [4, 29, 30, 19] and [34, pp. 212,
226–227, 232, 234]):

O[A]⊥ → ◻¬A

P [A]B → (P [A ∧ B]C → P [A](B ∧ C))

O[A ∨ B]¬B → O[A ∨ B ∨ C]¬B

(O[A ∨ B]¬B ∧ P [B ∨ C]B) → O[A ∨ B ∨ C]¬C

P [A ∨ B]A → P [A ∨ B ∨ C]⊤

P [A ∨ B]A → P [A ∨ C]⊤

(P [A ∨ B]⊤ ∧ O[A ∨ B]¬B) → P [A ∨ B]A

(iii) If we add definitions 4–9 to our language, TG includes all axioms
in Åqvist’s system for preference PR and the theorems p0–p23, i.e.
(see [34, pp. 241–243, 253–254]):

((A ≥ B) ∧ (B ≥ C)) → (A ≥ C)

(A ≥ B) ∨ (B ≥ A)

(A > B) ↔ ¬(B ≥ A)

(A = B) ↔ ((A ≥ B) ∧ (B ≥ A))

(((A → C) ∧ B
)

> (¬(A → C) ∧ B)) →
(((A ∧ B) > (¬A ∧ B)) → ((C ∧ B) > (¬C ∧ B)))



Dyadic deontic logic and semantic tableaux 249

(A ≥ B) → ◻(A ≥ B)

(A > B) → ◻(A > B)

◻A → ((⊥ ≥ B) ∨ ((A ∧ B) > (¬A ∧ B)))

(A ≥ B) ↔ (A ≥ (¬A ∧ B))

(A > B) → ◇(A ∨ B)

◻(A ↔ B) → (((A ≥ C) ↔ (B ≥ C)) ∧ ((C ≥ A) ↔ (C ≥ B)))

◇A → (A > ⊥)

((⊥ ≥ (A ∧ B)) ∨ ((C ∧ A ∧ B) > (¬C ∧ A ∧ B))) →
((⊥ ≥ A) ∨ (((B → C) ∧ A) > (¬(B → C) ∧ A)))

((A > ⊥) ∧ ((B ∧ A) ≥ (¬B ∧ A))) →
the converse of the preceding sentence

A ≥ A

A = A

(A > B) → (A ≥ B)

(A = B) → (A ≥ B)

(A ≥ B) ↔ ((A > B) ∨ (A = B))

(A > B) → ((B > C) → (A > C))

((A > B) ∧ (B = C)) → (A > C)

(A ≥ B) → ((B > C) → (A > C))

(A = B) → ((B > C) → (A > C))

(A > B) → ((B ≥ C) → (A > C))

(A = B) → ((B = C) → (A = C))

(A = B) → ¬(A > B)

(A = B) → (B = A)

(A > B) → ¬(B > A)

¬(A > A)

((A > B) ∨ (B > A)) ∨ (A = B)

(B ≥ A) ∨ (A > B)

A ≥ ⊥

¬(⊥ > A)

(A = ⊥) ↔ (⊥ ≥ A)
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◇A ↔ (A > ⊥)

◻A ↔ (⊥ ≥ ¬A)

(A ≥ B) → (A = (A ∨ B))

◻(A → B) → (B ≥ A)

O[B]A ↔ ((⊥ ≥ B) ∨ ((A ∧ B) > (¬A ∧ B)))

P [B]A ↔ ((B > ⊥) ∧ ((A ∧ B) ≥ (¬A ∧ B)))

O′[B]A ↔ ((A ∧ B) > (¬A ∧ B))

P ′[B]A ↔ ((A ∧ B) ≥ (¬A ∧ B))

Proof. Left to the reader. ⊣
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