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BOURNE ON FUTURE CONTINGENTS

AND THREE-VALUED LOGIC

Abstract. Recently, Bourne constructed a system of three-valued logic that
he supposed to replace Łukasiewicz’s three-valued logic in view of the prob-
lems of future contingents. In this paper, I will show first that Bourne’s
system makes no improvement to Łukasiewicz’s system. However, finding
some good motivations and lessons in his attempt, next I will suggest a bet-
ter way of achieving his original goal in some sense. The crucial part of my
way lies in reconsidering the significance of the intermediate truth-value so
as to reconstruct Łukasiewicz’s three-valued logic as a kind of extensional
modal logic based on partial logic.
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1. Bourne’s three-valued logic

Recently [1, 2], Bourne proposed to replace Łukasiewicz’s three-valued logic
with his system of three-valued logic for the reasons that Bourne’s system is
“a non-bivalent logic where classical laws remain intact” [1, p. 127] contrary
to Łukasiewicz’s and that it can deal with future contingent propositions,
which motivated Łukasiewicz’s three-valued logic, in an appropriate way.

The principal alteration of Bourne’s system to Łukasiewicz’s system lies
in his truth-functional definition of negation. He adopts the following defi-
nition of negation (Table 1) in place of Łukasiewicz’s (Table 2):
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P ∼ P

1 0

½ 1

0 1

Table 1.

P ∼ P

1 0

½ ½

0 1

Table 2.

He has four justifications for this modification:

(1) He sees “no reason to think that [Łukasiewicz’s definition] is correct” [1,
p. 124].

(2) “[G]iven that p is indeterminate, then it isn’t the case that p; so to say
that it is not the case that p is clearly to say something true” [1, p. 124].

(3) His negation reserves more classical logical truths such as the law of ex-
cluded middle and the law of contradiction than Łukasiewicz’s, working
with his definitions of conjunction and disjunction, which are the same
as Łukasiewicz’s (tables 3 and 4).

(4) His system can deal with future contingent propositions appropriately
by using his negation.

P & Q 1 ½ 0

1 1 ½ 0

½ ½ ½ 0

0 0 0 0

Table 3.

P ∨ Q 1 ½ 0

1 1 1 1

½ 1 ½ ½

0 1 ½ 0

Table 4.

As for (1), there are several logical reasons to adopt Łukasiewicz’s nega-
tion rather than Bourne’s. In the first place, Bourne’s negation loses the
equivalence between a proposition and its double negation (‘P ≡ ∼ ∼ P’),
while the following equivalences hold: ‘∼ P≡∼ ∼ ∼ P’, ‘∼ ∼ P≡∼ ∼ ∼ ∼ P’,
and so on. Besides, by this failure of equivalence concerning double nega-
tion, he also loses, as he admits [1, p. 127], de Morgan duality (‘P & Q ≡

∼(∼ P ∨ ∼ Q)’ and ‘P ∨ Q ≡ ∼(∼ P & ∼ Q)’), though the following equiva-
lences hold: ‘∼(P & Q) ≡ ∼ P ∨ ∼ Q’ and ‘∼(P ∨ Q) ≡ (∼ P & ∼ Q)’

These failures of equivalence also reduce the persuasiveness of his justi-
fication (3), since it is doubtful whether it has any significance to retain the
excluded middle and the law of contradiction in spite of losing these other
basic classical laws.
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In terms of (2), some may doubt whether we can really say that ‘given
that p is indeterminate, then it isn’t the case that p’. According to some
interpretation of future tensed propositions, even if the raining tomorrow is
indeterminate now, it can be the case that it will rain tomorrow. Setting this
doubt aside here, however, let’s consider the meaning of ‘p is indeterminate’.
It is strongly arguable that we can paraphrase it into ‘p is neither positively
nor negatively determinate’ (cf. [8, p. 165]). If so, we can again paraphrase
it into ‘it is neither determined that p is the case nor p is not the case’.
Therefore, we should say that ‘given that p is indeterminate, then neither it
is the case that p nor it isn’t the case that p’ rather than saying that ‘given
that p is indeterminate, then it isn’t the case that p’. It also follows that
we cannot say that ‘so to say that it is not the case that p is clearly to say
something true’; we should rather say that ‘so neither to say that it is the
case that p nor to say that it is not the case that p is to say something true’,
which is the very reason that p should be given the value ‘indeterminate’.

His last justification (4) is the following [1, p. 126]1; take the proposition

(a) Dr Foster will go to Gloucester

and the proposition

(b) Dr Foster will not go to Gloucester.

Though it may be thought that if one assigns the value ½ to (a), then
Bourne’s negation assigns the value 1 to (b) in spite of (b) being also inde-
terminate, he insists that it really does not, because these are to be analyzed
as follows:

(a∗) F (Dr Foster goes to Gloucester)

(b◦) F (∼ (Dr Foster goes to Gloucester)

Analyzed in this way, (b◦) is not the negation of (a∗) and so one can also
assign the value ½ to (b◦). According to Bourne, the correct analysis of the
negation of (a) is the following:

(b∗) ∼ F (Dr Foster goes to Gloucester)

He insists that one can assign the value 1 to this proposition, because to
say that (b∗) is true is not to say that (b◦) is true and so ‘even if it turns

1Bourne’s original numbering of propositions has been changed for the present paper.
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out that Dr Foster does go to Gloucester, we should still be happy to assign
truth to (b∗).’

He also believes that he can keep the excluded middle intact in this
way, because (b◦) taken as a whole is not the negation of (a∗) and so the
disjunction of (a∗) and (b◦) should not be taken as ‘p ∨ ∼ p’ but just as
‘p ∨ q’. To the contrary, the disjunction of (a∗) and (b* ) can be legitimately
taken as ‘p ∨ ∼ p’ and has the value 1 so that it does not break the law of
excluded middle.

However, it is evident that he also thinks that the disjunction of their
original propositions (a) and (b) is not true, because he interprets them
as (a∗) and (b◦) and both have the value “indeterminate” [1, p. 126]. It
follows that the disjunction is assigned the value ½ by the truth table that
he adopts for disjunction (Table 4). But that is nothing but what Łukasie-
wicz wanted to show with his three-valued logic. As a result, Bourne has
to agree with Łukasiewicz in thinking that the following proposition is not
true but indeterminate.

(c) Either Dr Foster will go to Gloucester or Dr Foster will not go to Glouces-
ter.

However, Bourne also says the following:

For suppose I say,

(d) Either I will buy a Ducati or I will not buy a Ducati.

Because there is no middle ground to be had—either I will or I will not
buy a Ducati—we must agree that (d) is determinately true.

[1, p. 123]

It is obvious that Bourne contradicts himself, which suggests that the
combination of his justification (2) and (4) includes some deficiency.

Bourne’s confusion originates in the ambiguity of his future-tense oper-
ator ‘F ’. As I quoted above, he thinks that (b∗) can be assigned the value 1
even if it turns out that Dr Foster does go to school. Why? His justification
is that saying that (b∗) is true is not saying that (b◦) is true. Then what is

saying that (b∗) is true? What is the truth condition of (b∗) (and (a∗))?
Adopting a model of branching future, he defines two concepts of truth

in a way that can be summarized as follows [2, pp. 52–61]:

‘Fp’ is true now iff p is true on some future branches.

‘Fp’ is determinately true now iff p is true on every future branch.
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Though it is not clear which he means when he says that (b∗) is true,
the future-tense propositions that have the value 1 should be those that
are ‘determinately true’ in his sense, as contingent future-tense propositions
are assigned the value ½. In this case, of course (b∗) can be assigned the
value 1 even if it turns out that Dr Foster does go to Gloucester, so long
as there are some (non-actualized) future branches on which he does not go
to Gloucester. Furthermore, this interpretation makes both (a∗) and (b◦)
indeterminate while it makes ‘Fp ∨ ∼ Fp’ necessarily true, conforming to
Bourne’s explications above.

However, what ‘Fp∨∼ Fp’ expresses is totally different from his intended
meaning of the disjunction (d). Under the present interpretation, ‘Fp∨∼ Fp’
just expresses an obvious truth that either there are no future branches on
which p is not true or there are such branches. In other words, it just says
that there is a present possibility of p being not actualized in the future or
there is no such possibility. On the other hand, I believe that what Bourne
could mean by saying ‘Because there is no middle ground to be had—either
I will or I will not buy a Ducati—we must agree that (d) is determinately
true’ is that either I will or will not buy a Ducati on any future branch.
Though he may insist that it can be expressed by the determinate truth of
‘F (p ∨ ∼ p)’, in that case he has to give up his explications of (c) by its
translation into the disjunciton of (a∗) and (p◦). It follows that he has failed
in retaining the excluded middle in a way he hopes in order to deal with
the problems of future contingents. What he has done is just selecting a
proposition that describes the determination of a future fact as an instance
of one of the conjuncts of the law of excluded middle.

Another bad news for Bourne is that Łukasiewicz’s system also includes
the truth-functional operator ‘L’ that makes it possible to express Bourne’s
negation together with Łukasiewicz’s negation (Table 5):

P LP ∼ P

1 1 0

½ 0 1

0 0 1

Table 5.

Consequently, we can reconfirm that the difference between Bourne’s
system and Łukasiewicz’s lies just in the way of expressing two kinds of
negation. Bourne adopted his negation and the intensional operator ‘F ’,
while Łukasiewicz chose his negation and the truth-functional operator ‘L’.
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Given the considerations so far, Łukasiewicz’s way seems much better than
Bourne’s at least in retaining extensionality and so giving a clearer and
simpler semantics to his operator ‘L’. Besides, Łukasiewicz’s negation has
some characteristics preferable to Bourne’s from logical points of view, as I
described in brief at the beginning of this paper. I will elaborate on them
in the next section.

2. Three-valued logic as Partial Two-valued Logic

Though I believe that Bourne has failed in improving Łukasiewicz’s three-
valued logic for the reasons described above, at the same time I find some
notable points in his attempt itself. In the first place, he agrees with Łukasie-
wicz in affirming that future contingents really matter in terms of bivalence,
at least when he says that ‘given that p is indeterminate, then it isn’t the
case that p’. As it is the contraposition of ‘given that it is the case that p,
p is determinate, he has almost accepted Łukasiewicz’s following statements
that were crucial for his motivation to invent three-valued logic and that
have been criticized by many philosophers:

– the proposition ‘I shall be in Warsaw at noon on 21 December of next
year’, can at the present time be neither true nor false. For if it were

true now, my future presence in Warsaw would have to be necessary.
[8, p. 165], italic by the present author

Of course they differ as to whether we should take the future fact in
question as ‘determinate’ or ‘necessary’ when it is true, but at least Bourne’s
attempt has made it plausible that there is some reason to introduce non-
bivalence in the context of future contingents. In other words, he has shown
that we can use non-bivalent logic in a way that does relate to the problems
of future contingents, though it may not necessarily follow that we should.

Secondly, I also have sympathy with his trial to make Łukasiewicz’s
three-valued logic somehow compatible with classical logic. Though I don’t
think his way of achieving it by retaining only some classical laws that seem
more important than others was appropriate, I believe that Bourne’s failure
gives us good lessons about how he should have done it, rather than what

he should have done. What I have in mind as a better way of preserving
classical laws in spite of accepting non-bivalence is taking the non-bivalence
in the context of future-contingents not as a kind of total three-valuedness
but as a kind of partial two-valuedness. In other words, we should adopt
only Truth and Falsity as the genuine truth values that are not inclusive
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and so admit that there are cases in which a proposition has no truth-value,
namely, the cases in which it falls in the so called ‘truth-value gap’. We can
also characterize this strategy as retaining bivalence in a weaker sense that
there are only two truth-values but giving up inclusiveness by allowing a
truth-value gap, though it still retains exclusiveness, contra paraconsistent
logic.

If we adopt this point of view that is based on partial logic, we can
recognize the crucial factors of Bourne’s failures more clearly. As shown
above, the most fundamental source of his failures lies in his negation. Beside
the problem of double negation which I described above, Bourne’s negation
is more deviant from classical negation than Łukasiewicz’s in being non-
monotonic, or “irregular” in Kleene’s sense [6]. That is, his negation makes
it possible that some true propositions become false and vice versa by filling
some truth-value gaps in the propositions. This means that the third value ½
does not just show some lack or incompleteness but has some positive status
that can make some propositions true or false by itself. In other words, the
third value does not just represent the truth-value gap but another genuine
truth-value paralleled with Truth and Falsity. That makes Bourne’s system
a genuine three-valued logic rather than a partial two-valued logic at the
basic level.

The fact that Bourne’s negation is definable using Łukasiewicz’s negation
and necessity underpins this characterization, for Łukasiewicz’s necessity
operator is also non-monotonic. It supports the view that Łukasiewicz’s
way of expressing two kinds of negation is legitimate in that he takes his
monotonic negation as basic and the other non-monotonic negation as the
one defined using a non-monotonic operation together. To the contrary,
Bourne took the latter as fundamental and tried to define the former using
his intensional operation shown by ‘F ’ together.

Prior called such operations as shown by Łukasiewicz’s necessity operator
“modal functions” and characterized them as the functions that never take
the third value, quoting Jordan [9, pp. 323–324]. Indeed Bourne’s negation
and conditional (Table 6), the latter being not defined as ‘∼(P ∨ Q)’ but as
‘∼(P & ∼ Q)’, also satisfy this criterion.

This fact also reveals the true reasons that Bourne could retain classical
laws such as the laws of excluded middle, non-contradiction, and identity;
what he did was just introducing modal functions in Prior’s sense into the
context of partial functions, so as to reduce some part of partial functions
to two-valued total functions in a way that the logical laws selected by him
turn out to be two-valued tautologies. Since the other parts still remain



40 Daisuke Kachi

P → Q 1 ½ 0

1 1 0 0

½ 1 1 1

0 1 1 1

Table 6.

partial, the equivalences such as double negation and de Morgan duality are
gone.

Moreover, this evaluation of Bourne’s attempt from the partial logical
point of view gives us another explanation of the failure of his justification
(2). One of the most important requirements given by partializing truth
functions is that we always have to take both of Truth and Falsity, or both
of affirmative and negative propositions, into consideration at the same time.
When bivalence is retained, we need not always take Falsity into consider-
ation as well as Truth and vice versa, because Falsity can be just defined
as non-Truth and vice versa. To the contrary, in the contexts of partial
truth-functions, just telling about Truth or Falsity is doomed to be incom-
plete descriptions, since non-Truth does not necessarily mean Falsity and
vice versa. Bourne’s failure in terms of his justification (2) was taking only
the positive case of determination and so saying that ‘given that p is in-
determinate, then it isn’t the case that p’, when he should have said that
‘given that p is indeterminate, then neither it is the case that p nor it isn’t
the case that p’. This is a typical case of mistreatment of partial logical
contexts. He should have recognized that there are two types of ‘being not
the case that p’; the one is the case in which it is the result of p having no
(genuine) truth-value, namely neither Truth nor Falsity, and the other is the
case in which it is the result of p having the truth-value of Falsity.

3. Partializing Łukasiewicz’s three-valued logic

Now let me show a detailed way I have in mind to retain somehow classical
laws by reconstructing Łukasiewicz’s three-valued logic as a system based
on partial logic. In fact, Łukasiewicz’s three-valued logic also includes a
non-monotonic operator among his basic operators in addition to his neces-
sity operator; he adopted the conditional as one of the primitives that was
assigned the definitions as shown by Table 7, and defined conjunction and
disjunction as follows:

P∨Q ≡df (P → Q) → Q, P&Q ≡df ∼(∼ P∨∼ Q)
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P → Q 1 ½ 0

1 1 ½ 0

½ 1 1 ½

0 1 1 1

Table 7.

As a result, his conjunction and disjunction agree with those in Kleene’s
strong three-valued logic, as well as Bourne’s. Though they are monotonic,
his conditional is non-monotonic.

Probably, the reason Łukasiewicz adopted his non-monotonic conditional
was, as Urquhalt conjectures [10, pp. 72–73], that he wanted the law of
identity ‘P → P’ to be a three-valued tautology and so gave it the value
1 when both of its antecedent and consequent has the value ½2. However,
from a partial logical point of view, this was an inappropriate move, because
it makes the conditional operator non-monotonic.

Moreover, partial logic does not require three-valued tautologies, since
we can take the propositions that have the third value just as a result of some
of its subformulae lacking a truth-value. So we can admit the propositions
that never have the value Falsity as a kind of what Woodruff called “hedged
tautologies” [11] that represent logical truths in partial logic. It is to be
noted here that this does not mean that we take both of Truth and the
third value as designated values that are opposed to Falsity. For we should
also take the propositions that never have the value Truth, namely that
have either the value Falsity or the third value as ‘hedged contradictions’.
This is one of the cases we should obey the rule of taking Truth and Falsity
equally. Since the third value is not a genuine truth-value, neither can it be
a designated nor anti-designated value.

So let’s replace Łukasiewicz’s non-monotonic conditional with the one
defined by Kleene’s strong disjunction (or conjunction) and negation, both
of which are the same as Łukasiewicz’s, in the following way:

P → Q ≡df ∼ P ∨ Q [or ∼(P ∼ & ∼ Q)]

Then it turns out to be a monotonic conditional that is shown in Table 8:

Under this interpretation, all and only the classical tautologies and con-
tradictions are preserved as the hedged tautologies and contradictions re-

2So Bourne is wrong in saying that “ ‘P ⊃ P’ is true (unlike Łukasiewicz and Bochvar’s
full systems!)” ([1, p. 127], italic by the present author).
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P → Q 1 ½ 0

1 1 ½ 0

½ 1 ½ ½

0 1 1 1

Table 8.

spectively in partial logic. Moreover, all the classical equivalences are also
retained3.

Thus, if we confine ourselves within the monotonic operators shown
above, the resulting partial logic coincides with Kleene’s strong three-valued
logic [6], so that it can be characterized as just a generalization of classi-
cal logic. By adding non-monotonic operators such as ‘L’, the system itself
loses the qualification as partial logic. However, it retains partiality at a
basic level and so we can take it as a kind of modal extension of partialized
classical logic, since, as Prior suggested, its non-monotonic operators can
be interpreted as expressions of a kind of alethic modality that is brought
about by the partiality of truth-functions4. (For example, the proposition
‘∼ Lp & ∼ L ∼ p’ tells that p is indeterminate, namely, that p has no (gen-
uine) truth-value.) In that sense, we can call it ‘extensional alethic modal-
ity’, contrasted with the intensional alethic modality of modal logics, for the
semantics of the present modality is truth-functional. In retrospect, that
was what Łukasiewicz originally tried to characterize with the modal oper-
ators in his three-valued logic [8]5. Moreover, I believe that this extensional
modality nicely represents the modality that is related to future contingents,
since we can take it that the third value corresponds to the present lack of
truth-makers of the propositions that tell about indeterminate future facts.
Consequently, I believe that Łukasiewicz was well motivated in his attempt
to cope with future contingents by the truth-functional modality in his three-
valued logic and that our modified system based on partial logic inherits his
spirit at a fundamental level.

3As for other semantic definitions and theorems in partial logic, see my [4, 5].
4Wooodruff expressed similar points more explicitly than Łukasiewicz by calling the

operator ‘T ’, which has the same definition as Łukasiewicz’s ‘L’, “truth-operator” in his
System Q [11].

5Font and Hájek also stressed Łukasiewicz’s concern with modality in developing his
many-valued logics [3].



Bourne on future contingents . . . 43

References

[1] Bourne, C., “Future contingents, non-contradiction, and the Law of excluded
middle muddle”, Analysis 64 (2004): 122–28.

[2] Bourne, C., A Future for Presentism, Cambridge University Press, Cambridge,
2006.

[3] Font, J. M., and P. Hájek, “On Łukasiewicz’s four-valued modal logic”, Studia

Logica 70 (2002): 157–182.

[4] Kachi, D., “Validity in Simple Partial Logic”, The Annals of the Japan Asso-

ciation for Philosophy of Science 10 (2002): 139–153.

[5] Kachi, D., “Tensed ontology based on Simple Partial Logic”, in: Proceedings

of Ninth Internaional Symposium on Temporal Representation and Reasoning:

TIME-02, 2002, pp. 141–145.

[6] Kleene, S. C., Introduction to Metamahtematics, North-Holland, Amsterdam,
1967.

[7] Łukasiewicz, J., “On three-valued logic”, 1920, in: L. Borkowski, (ed.), Jan

Łukasiewicz Selected Works, North-Holland, Amsterdam, 1970, pp. 87–88.

[8] Łukasiewicz, J., “Philosophical remarks on many-valued systems of proposi-
tional logic”, 1930, in: L. Borkowski (ed.), Jan Łukasiewicz Selected Works,
North-Holland, Amsterdam, 1970, pp. 153–178.

[9] Prior, A. N., “Three-valued logic and future contingents”, Philosophical Quar-

terly 3 (1953): 317–326.

[10] Urquhart, A., “Many-valued Logic”, in: D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Vol. III, North-Holland, Amsterdam, 1970,
pp. 71–116.

[11] Woodruff, P. W., “Logic and truth-value gaps”, in: K. Lambert (ed.), Philo-

sophical Problems in Logic, D. Reidel, Dordrecht, 1970, pp. 121–142.

Daisuke Kachi

Faculty of Liberal Arts
Saitama University
255 Shimo-okubo Sakura-ku
Saitama-city, 338-8570, JAPAN
kachi@mail.saitama-u.ac.jp


	
	
	

