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ON UNIVOCAL CONNECTIVES

Abstract. We pay attention to the concept of univocal connective. Consid-

ering the corresponding definition in the context of the sequent calculus a

problem arises in a paper by Belnap. We provide an explanation by Belnap

and finally give some examples and non-examples of univocal connectives.
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1. Introduction

The concept of univocal connective appears naturally in certain contexts,
e.g. when considering non-classical logics (see e.g. [5] and [2]). In a natural
deduction setting we may tentatively define a unary connective k to be
univocal if kϕ ⊣⊢ k′ϕ, where k′ is a new connective (that is, a symbol
that does not appear in the list of the symbols for the connectives already
present in the logic under consideration) having analogous rules to the rules
of k. With this definition we may easily prove that conjunction, disjunction,
conditional and negation are all univocal in intuitionistic logic with the usual
natural deduction rules. For a non-example consider negation in the context
of Johansson’s minimal logic (for details see Section 4 in this note).

In his influential paper “Tonk, Plonk and Plink” Belnap defines the con-
cept of univocal connective (he uses the word ‘uniqueness’) in the context
of a concept of derivability (he uses the word ‘deducibility’) characterized in
the following way:

Axiom (rx): A ⊢ A.
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Rules:

Weakening (W)

from A1, . . . , An ⊢ C to infer A1, . . . , An, B ⊢ C.

Permutation (Per)

from A1, . . . , Ai, Ai+1, . . . , An ⊢ B to infer A1, . . . , Ai+1, Ai, . . . , An ⊢ B.

Contraction (Con)

from A1, . . . , An, An ⊢ B to infer A1, . . . , An ⊢ B.

Transitivity (Cut)

from A1, ..., Am ⊢ B and C1, ..., Cn, B ⊢ D to infer A1, ..., Am, C1, ..., Cn ⊢ D.

These are a variant of the usual left structural rules of Gentzen.

If the system is extended with connectives, Belnap requires that they
will have to satisfy two conditions, to wit, conservativeness and uniqueness.
Note that these properties have also been suggested in papers such as [5]
and [2].

Now Belnap asks “What do we mean by uniqueness . . . ?” (see [1], p. 133).
He himself answers:

“Clearly that at most one inferential role is permitted by the character-
ization of plonk; i.e., that there cannot be two connectives which share the
characterization given to plonk but which otherwise sometimes play different
roles. Formally put, uniqueness means that if exactly the same properties
are ascribed to some other connective, say plink, then A-plink-B will play
exactly the same role in inference as A-plonk-B, both as premiss and as con-
clusion. To say that plonk (characterized thus and so) describes a unique
way of combining A and B is to say that if plink is given a characterization
formally identical to that of plonk, then

(1) A1, . . . , B-plonk-C, . . . , An ⊢ D iff A1, . . . , B-plink-C, . . . , An ⊢ D

and

(2) A1, . . . , An ⊢ B-plonk-C iff A1, . . . , An ⊢ B-plink-C.

Whether or not we can prove this will depend, of course, not only on the
properties ascribed to the connectives, but also on the properties ascribed to
deducibility. Given the characterization of deducibility above, it is sufficient
and necessary that B-plonk-C ⊢ B-plink-C and conversely.” ([1], p. 134).
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For the following section we label the just given “sufficient and necessary”
conditions:

(3) B-plonk-C ⊢ B-plink-C,

(4) B-plink-C ⊢ B-plonk-C.

2. A problem

Now we come to the following problem. In his paper Belnap did not write
down his proof of the mentioned fact, i.e. that conditions (1) and (2) are
equivalent to conditions (3) and (4), but this is not difficult to do:

(1) and (2) =⇒ (3) and (4) (†)

1. B-plink-C ⊢ B-plink-C (rx)

2. B-plonk-C ⊢ B-plink-C (1), 1

and we analogously get (4).

(3) and (4) =⇒ (1) and (2) (‡)

In the proof of (1) we use sets of formulas Γ to the left and Σ to the right
instead of Belnap’s notation:

1. Γ , B-plonk-C,Σ ⊢ A Sup

2. B-plink-C ⊢ B-plonk-C (4)

3. Γ , B-plink-C,Σ ⊢ A (Cut), (Per), 1, 2

1. Γ ⊢ B-plonk-C Sup

2. B-plonk-C ⊢ B-plink-C (3)

3. Γ ⊢ B-plink-C (Cut), 1, 2

In the proof (†) one finds, surprisingly enough, that either (1) or (2) is
enough. As a matter of fact, they are both equivalent as we easily see in the
next

Proposition. (1) ⇐⇒ (2).

Proof. “⇒”
1. A1, . . . , An ⊢ B-plonk-C Sup

2. B-plink-C ⊢ B-plink-C (rx)
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3. A1, . . . , B-plink-C, . . . , An ⊢ B-plink-C (W), (Per), 2

4. A1, . . . , B-plonk-C, . . . , An ⊢ B-plink-C (1), 3

5. A1, . . . , An ⊢ B-plink-C (Cut), (Con), (Per), 1, 4

and the other conditional is analogous.

“⇐”

1. A1, . . . , B-plonk-C, . . . , An ⊢ D Sup

2. B-plink-C ⊢ B-plink-C (rx)

3. A1, . . . , B-plink-C, . . . , An ⊢ B-plink-C (W), (Per), 2

4. A1, . . . , B-plink-C, . . . , An ⊢ B-plonk-C (2), 3

5. A1, . . . , B-plink-C, . . . , An ⊢ D (Cut), (Con), (Per), 1, 4

and the other conditional is analogous. ⊣

This is surprising because conditions (1) and (2) seem to be saying dif-
ferent things. Also, why did Belnap include both if one is enough?

3. Belnap’s explanation

Fortunately, we have got an answer provided by a personal communication
by Belnap, for which we are grateful:

“I have an explanation for laying down both of the conditions (1) and (2),
but not exactly an excuse. In fact I should have noted that in the particular
context at hand, either one would suffice.

The explanation is that even at that time I had done a lot of work on
“Gentzen systems,” most of which appears in volume I and volume II of
Entailment (vol. 1 by Alan Ross Anderson and myself, and vol. 2 including
Michael Dunn as a third co-author). The setting in Gentzen systems is
this: one postulates rules for each connective on the left of the turnstile,
and separately postulates rules for those connectives (whichever ones are
at issue) on the right of the turnstile. Then the major mathematical fact,
the result that Gentzen called his “Hauptsatz,” is that transitivity (even
when generalized) is redundant. You have said all there is to say about a
connective when you establish its properties on the left, and on the right.
Furthermore, every rule, whether on the left or on the right, only introduces
a connective, and never eliminates it. This is one of the principal results of
proof theory.

So I was thinking of something that I did not mention, namely, a version
of the calculus with those separate rules instead of transitivity. And in that
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case, (1) and (2) stand as separate properties until when and if transitivity
is proved.

That is as close as I can come to an explanation.”

We consider that Belnap’s explanation answers our question and that
the problem has been useful to throw light on the role of transitivity in the
concept of univocal connective.

4. Some examples and non-examples

It is easily seen that the usual conjunction, disjunction and conditional are
univocal in positive logic. Consequently, they are also univocal in Johans-
son’s minimal logic M, intuitionistic logic I and classical logic C. In I also
negation is univocal (consequently also in C). But negation is not univo-
cal in M. To see that a connective is univocal one derivation is enough.
To see that a connective is not univocal in a given logic, we will use the
following procedure: we will consider a logical calculus of the given logic
and provide two different semantic characterizations of the connective under
consideration. Then we will prove that the calculus is sound with respect to
both semantic characterizations. Finally, we will find a formula containing
the connective and a valuation such that by one semantic characterization
of the connective the formula takes a designated value and by the other
characterization it takes a non-designated value.

Now, let us consider the case of ‘¬’ in M, which may be given by an
axiomatic system with modus ponens (MP) as only rule and the following
axioms:

(A1) ϕ → (ψ → ϕ),

(A2) (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)),

(A3) (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ))),

(A4) (ϕ ∧ ψ) → ϕ,

(A5) (ϕ ∧ ψ) → ψ,

(A6) ϕ → (ϕ ∨ ψ),

(A7) ψ → (ϕ ∨ ψ),

(A8) (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ)),

(A9) (ϕ → ψ) → ((ϕ → ¬ψ) → ¬ϕ).

Now, let us consider a semantics with values 0 and 1, the last as only
designated value. Let us define a valuation in the usual way in classical logic
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for ‘∧’, ‘∨’ and ‘→’. Now, in the case of negation we give the following two
characterizations: (a) V (¬ϕ) = 1 iff V (ϕ) = 0; (b) V (¬ϕ) = 1, for all ϕ. It
is easily seen that the given axiomatic system is sound with respect to both
characterizations. But, consider the formula ‘¬p’ and a valuation V such
that V (p) = 1. Then, in the first characterization, V (¬p) = 0, but in the
second, V (¬p) = 1. This proves that ‘¬’ is not univocal in M.

Also, ‘¬’ is not univocal in the logics D and E, where D := M +ϕ∨ ¬ϕ
and E := M + ((ϕ → ψ) → ϕ) → ϕ (see e.g. [3, Chap. 6, p. 261]). To see
that ‘¬’ is not univocal in the logics D and E, first note that E is stronger
than D (this may be seen substituting in the axiom ((ϕ → ψ) → ϕ) → ϕ

the formula ϕ ∨ ¬ϕ for ϕ and the formula ϕ ∧ ¬ϕ for ψ). It follows that
if ‘¬’ is not univocal in E, then it also cannot be univocal in D. To see that
‘¬’ is not univocal in E, we may proceed exactly as we did in the case of M

(the new axiom in E, that is, Peirce’s Law, does not include ‘¬’ as one of its
symbols).

Negation is also not univocal in paraconsistent logic P
1 (see [7]). In

the just cited place this logic appears in an axiomatic setting with language
{→,∼}, the usual intuitionistic axioms for ‘→’ (that is, (A1) and (A2)), the
following axioms for the negation ‘∼’:

(S1) (∼ϕ → ∼ψ) → ((∼ϕ → ∼ ∼ψ) → ϕ),

(S2) (ϕ → ψ) → ∼ ∼(ϕ → ψ),

(there is one more but redundant axiom) and MP as only rule. It is also
proven that the given calculus is sound and complete (with designated values
T0 and T1) relatively to the semantics given by the following valuations:

→ T0 T1 F

T0 T0 T0 F
T1 T0 T0 F
F T0 T0 T0

∼
T0 F
T1 T0

F T0

Now, let us consider the semantic characterization given by the following
table:

∼
T0 F
T1 F
F T0

It is easily seen that the given calculus is sound also with respect to this
characterization. For this, we just need to check that the given axioms for ‘∼’
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have one of the designated values in any valuation. In the case of axiom
(S1), suppose a valuation V with V (S1) = F. Then, (i) V (∼ϕ → ∼ψ) = T0

and V ((∼ϕ → ∼ ∼ψ) → ϕ) = F. Then, (ii) V (∼ϕ → ∼ ∼ψ) = T0 and
V (ϕ) = F. So, V (∼ϕ) = T0. Then, using (i) it follows that V (∼ψ) 6= F .
Then, V (∼ ∼ψ) = F. But then V (∼ϕ → ∼ ∼ψ) = F, a contradiction
with (ii). The case of (S2) is similar. Now, consider the formula ∼ p and
a valuation V such that V (p) = T1. Then, in the first characterization,
V (∼ p) = T0, but in the second, V (∼ p) = F. This proves that ‘∼’ is not
univocal in P

1.
Ending this note, we provide two more examples of univocal connectives:

negations ‘α’ and ‘h’. The connective ‘α’ may be defined adding to an
axiomatic system of I the formulas of the form αϕ, the following axiom
schema

(α1) (αϕ → ϕ) → ϕ

and the rule

(α2)
(ψ → ϕ) → ϕ

αϕ → ψ
,

obtaining an axiomatic system of the logic Iα (see [6] for the original non-
axiomatic formulation and [4] for an alternative axiomatization). Moreover,
if we add another connective ‘α′’ satisfying (α1) and (α2), then we obtain
the logic I

α′

α . The fact of derivability of ϕ from formulas in Γ and axioms
of I

α′

α using both (MP) and (α2) is denoted by Γ ⊢
I
α′

α

ϕ (we often say that ϕ

is globally derivable from Γ in I
α′

α ). We have the following global derivation:

1. αϕ Sup

2. (α′ ϕ → ϕ) → ϕ Axiom (α1) for ‘α′’

3. αϕ → α′ ϕ Rule (α2) for α, 2

4. α′ ϕ (MP), 1, 3

As we can similarly obtain a global derivation of αϕ from α′ ϕ in I
α′

α , we
may deduce both

αϕ ⊢
I
α′

α

α′ ϕ and α′ ϕ ⊢
I
α′

α

αϕ .

Therefore, ‘α’ is univocal.

Remark. Notice that ‘α’ is also univocal for another concept of derivability
in I

α′

α which is often called deducibility.
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We say that a formula ϕ is deducible from a set of formulas Γ in a logic L,
we write Γ 
L ϕ, iff there is a derivation of ϕ from formulas in Γ and theses
of L with the help of only modus ponens. Because the set of theses of L is
closed under (MP): ∅ 
L ϕ iff ∅ ⊢L ϕ, i.e. ϕ is a thesis of L, where ⊢L is a
relation of global derivability with the help of all axioms and all rules for L.1

If (A2) and ϕ → ϕ are theses of L, then the standard deduction theorem —
Γ , ψ 
L ϕ iff Γ 
L ψ → ϕ — holds.2 Hence, ψ 
L ϕ iff ⊢L ψ → ϕ.

By the steps 2 and 3 in the above global derivation, the logic I
α′

α has the
following theses: αϕ → α′ ϕ and α′ ϕ → αϕ. Thus, we may deduce both:
αϕ 


Iα
′

α

α′ ϕ and α′ ϕ 

Iα

′

α

αϕ. ⊣

The connective ‘h’ may be defined adding to an axiomatic system of I

the formulas of the form hϕ and the following axiom schemas

(h1) ¬ϕ → ¬¬hϕ,

(h2) hϕ → (ψ ∨ (¬ϕ ∧ ¬ψ)),

obtaining an axiomatic system of the logic Ih (for more on this sort of ex-
tension of I see [4]). It may be seen that hϕ is equivalent to γ ∧ ¬ϕ, where
γ is the constant with the axiom schemas ¬¬γ and γ → (ϕ∨¬ϕ) added to I

(see [8] or [9]).
Suppose that we add another connective ‘h′’ satisfying (h1) and (h2).

Then we have the following derivation in I
h′

h :

1. hϕ Sup

2. hϕ → (h′ ϕ ∨ (¬ϕ ∧ ¬h′ ϕ)) Axiom (h2) for ‘h’

3. h′ ϕ ∨ (¬ϕ ∧ ¬h′ ϕ) (MP), 1, 2

4. ¬ϕ → ¬¬h′ ϕ Axiom (h1) for ‘h′’

5. h′ ϕ ∨ (¬¬h′ ϕ ∧ ¬h′ ϕ) theses of I, 3, 4

6. h′ ϕ theses of I, 5

Thus, it follows that hϕ ⊢
I
h′

h

h′ ϕ (notice that ⊢
I
h′

h

= 

I
h′

h

; see Remark). We

may analogously get the reciprocal. Hence, the connective ‘h’ is univocal.
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to the question posed at the end of Section 2 and his allowing his answer to
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1If we consider an axiomatic system of L with modus ponens as only rule, then 
L = ⊢L.
2Notice that the deduction theorem does not hold for ⊢Iα and ⊢

Iα
′

α

.
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