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1. Introduction

Modal-type logics play an important role in various disciplines ranging from
philosophy, through foundations of mathematics to applications in AI and
CS. They provide excellent formalisms for studying the semantics of com-
putation via graphs, e.g. transition systems, parse trees, Petri nets, deci-
sion diagrams, and flow charts. Most members of the AI community agree
that logic has an important role to play in the central areas of AI research.
This, in particular, follows from logical tools for deriving new knowledge
(from known/accepted facts), which are based on logical consequence rela-
tion. Logical consequence, arguably the most fundamental concept in logic,
is the relation that holds between a set of sentences (or propositions) and a
sentence (proposition) when the latter follows from the former. Technique
of non-classical logic (modal, multi-modal, temporal ones) has been involved
to cover various aspects of problems for computerized modeling of intelligent
behavior. Major applications to AI and CS was focused to reasoning about
knowledge, time and computation (cf., for instance, Goldblatt [10, 11], van
Benthem [31, 32], Gabbay, Hodkinson and Reynolds [5], Gabbay, Hodkinson
[6]). Semantic tools for modal and temporal logics are often based on spe-
cial sort of Kripke/Hinttikka models (special graphs), modal and temporal
algebras (cf. Goldblatt [10, 11]).

It is relevant to say, that modal-like logics with linear alternative acces-
sibility relations, linear temporal logics, were studied in details (and deserve
it as most natural interpretation of the time flow). Say, Bull [2, 3] and
Segerberg [30] found finite axiomatizations for many such logics, proved
fmp (finite model property) (and hence decidability) for some these log-
ics. Though [2] shows that temporal logic LZ of integers with strict order
does not have fmp. The decidability of LZ , first, it seems, was proved
by D.Gabbay basing at Rabin’s results of monadic 2nd order theories of
successor functions (perhaps the decidability also followed from earlier re-
search of D.Scott using automata). Litak and Wolter [19] showed that all
finitely axiomatizable tense logics of linear time flows are decidable: coNP-
complete.

We are interested to extend the language of linear temporal logics by op-
erations imitating possibility of discovery in time flow. The logic of discovery
has a solid prehistory, maybe, starting from the monograph Logic of Dis-
covery and Logic of Discourse by Jaakko Hintikka and Fernand Vandamme
[18]. This logic has evident interdisciplinary direction and is influenced by
various ideas coming from researchers with distinct background.
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One more direction merging pure proof theory and semantics is discov-
ering admissible inference rules originated by Lorenzen [20]. Initially only
particular interesting examples of admissible but not derivable rules were ob-
served (cf. Harrop [14], Mints [21]). An affirmative solution for H.Friedman
problem (1975) on existing an algorithm for solving admissibility problem
for intuitionistic logic IPC was found in Rybakov [23]. Then S. Ghilardi [7]
gave a solution of this problem via projective formulas, while P. Rozire [22]
discovered the solution within proof theory. The area of study admissible
inference rules was developed in a solid branch in non-classical logics (cf.
Ghilardi [8, 9], Iemhoff [15], Jerábek [16], Rybakov [24]–[29]).

Next interest to our research came from the easy observation that lin-
ear temporal logics possess the definable universal modality. The universal
modality, first was investigated in Goranko and Passy [13]. In study of hy-
brid logics, universal modality nowadays is one of standard constructors,
cf. Acrces, Blackburn, Marx [1]. The idea to employ definable universal
modalities for admissibility problem was looking rather attractive.

We address all this questions in this our paper, we study the logic

TL(N2
+−

w

C ) of linear discrete time with time point clusters and additional

operations for discovery in time. The semantics for TL(N2
+−

w

C ) are Kripke/
Hintikka models generated by linear discrete time with time points being a
clusters of states—uncertain situations. To study the properties of reason-
ing/computation modeled by these structures we introduce modal(temporal)
like language including modalities 3

+ (possible in future) and 3
− (possible

in past) and else special temporal operations—weak necessities directed to
future and past: 2

+
w (weakly necessary in future) and 2

−
w (weakly neces-

sary in past). We discuss the language and rules for computing truth values
of formulas of the suggested language in specified Kripke/Hintikka models,

define formally the logic TL(N2
+−

w

C ) – the logic of linear time with weak
necessity. The basic question we are dealing with first is construction of

an algorithm recognizing theorems of TL(N2
+−

w

C ) and checking satisfiabil-

ity of formulas. We propose an algorithm (so we show that TL(N2
+−

w

C ) is
decidable) based on reduction of formulas to rules and converting rules in
special reduced normal form, and, then, on checking validity of such rules in
models of single-exponential size in the rules. The technique which we use
is borrowed from our research (cf. [23]–[29]) devoted to study inference rules
in non-classical logics. At the second part of the paper, we show how to

reduce in TL(N2
+−

w

C ) the admissibility problem for inference rules to the de-
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cidability of TL(N2
+−

w

C ) itself. It seems the logic TL(N2
+−

w

C ) has interesting
new properties which been not considered yet in contemporary literature,
and which are problematic to express by standard modal or temporal lan-
guages. The paper uses standard terminology and known facts about modal
and temporal logic, though we supply the reader all necessary definitions
and known facts to follow the paper.

2. Notation, Preliminaries

This paper explores special expansions of linear temporal logics; in general,
temporal logics (in standard language) are, in own turn, special cases of
bi-modal logics. Therefore we proceed by recalling definitions and notation
concerning multi-modal logics. The language of multi-modal logics consists
of the language of Boolean logic extended by new unary logical modal op-
erations 2i. Basically only finite amount of modal operations, – n – , of
2i, are used, then the introduced logics are called n-modal logic. Formation
rules for formulas are standard.

A Kripke/Hintikka frame is a tuple F := 〈F,R1, . . . , Rn〉, where F is the
base of F – a non-empty set, and all Ri are binary (accessibility) relations on
F . |F| := F , a ∈ F is denotation for a ∈ |F|. If, for a set of propositional
letters P , a valuation V of P in |F| is defined, i.e. V : P → 2F , ∀p ∈ P :
V (p) ⊆ F , we call M := 〈F , V 〉 Kripke/Hintikka model (structure). The
truth values of formulas are defined at elements of F by the following rules:

(F , a) 
V p ⇐⇒ a ∈ V (p),∀p ∈ P, ∀a ∈ F

(F , a) 
V ϕ ∧ ψ ⇐⇒ (F , a) 
V ϕ and (F , a) 
V ψ,

(F , a) 
V ϕ ∨ ψ ⇐⇒ (F , a) 
V ϕ or (F , a) 
V ψ,

(F , a) 
V ϕ → ψ ⇐⇒ (F , a) 1V ϕ or (F , a) 
V ψ,

(F , a) 
V ¬ϕ ⇐⇒ (F , a) 1V ϕ,

(F , a) 
 2iϕ ⇐⇒ ∀a ∈ F((aRib) ⇒(F , b) 
 ϕ).

Definition 1. For a Kripke-Hintikka structure M := 〈F , V 〉 and a formula
ϕ, ϕ is true in M (denotation: M 
 ϕ) if ∀a ∈ F , (F , a) 
V ϕ. F 
V ϕ iff
∀w ∈ F , (F , w) 
V ϕ.

Definition 2. For a class K of frames, the logic L(K) generated by K is
the set of all formulas which are true in all models based on frames from K.

For instance, for the basic minimal normal modal logic K, K = L(Kfr),
where Kfr is the set of all frames with single accessibility relation, for Lewis
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modal logic S4, S4 := L(Krt), where Krt is the set of all frames with single
reflexive and transitive accessibility relation. We can take in the definitions
above only finite frames, i.e. K and S4 have so called finite model property
(fmp). A semantic definition for temporal logics can be given based at special
2-modal logics. Consider a set K of all 2-frames of structure 〈F,R,R−1〉, and
the language with two modal operations 2+ – for R, and 2

− – for R−1. The
logic L(K) of K in this language is the temporal logic of K. Operations 3

+

and 3
− are derivatives of 2+ and 2

−, as usual in modal logic. All Kripke-
complete temporal logics can be generated this way. For any logic L(K), a
formula ϕ is a theorem of L(K) if ϕ ∈ L(K), ϕ is satisfiable in K if, for some
valuation V in some frame F ∈ K, ϕ is true at an world of F w.r.t. V .

Linear Kripke complete temporal logics L(K) are based on classes K
of frames with linear accessibility relation R imitating time flaw. In this
approach, any time point is just a state where propositions coded by formulas
may be evaluated (computed).

We would like to extend this interpretation, looking at a time point as
a model of current states in the given time point. What are these states?
Maybe, the set of all human beings with their own knowledge and viewpoints,
maybe the set of all Internet WEB sites and the set of all libraries and
other information nodes available in a given time point, etc. So, based on
this general idea, the semantics we consider are Kripke/Hintikka models
based on linear graphs with circles described below. The frame is a graph
NC := 〈

⋃

i∈N C(i), R〉, where N is the set of all natural numbers, each i ∈ N
(any natural number i) is the time index for possible current events from
now to future.

Any C(i) is a finite set of all possible states in the time point i. In
our formalism, any C(i) is simply a set of elements (worlds in terms of
Kripke/Hintikka semantics).

The time flow (say, imitating a computational process, an evolving of
a system, a discovery search, a verification, just time flow from physi-
cal/philosophical viewpoint) is modeled by the binary accessibility relation
R in the frame NC := 〈

⋃

i∈N C(i), R〉, where for all elements a and b from
⋃

i∈N C(i),

aRb ⇐⇒ a ∈ C(i) and b ∈ C(j) and i ¬ j .

R imitates the discrete flow of time connecting states in time, so, aRb means
that a and b are some states at the same time point or the state b may be
achieved after the time point where the state a will be accomplished. So,
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the flow of the time is supposed to be linear, which matches well with daily
human experience. To reason about properties of the truth for statements
in these frames, we introduce the following modal-like language

Take a set P of propositional letters (to code facts, propositions, which
may or may not happen, may be true or not true in the time flow of com-
putation/reasoning). For each frame NC , we consider all valuations V of P ,
which are mappings of P into the set of all subsets of the set

⋃

i∈N C(i),

∀p ∈ P, V (p) ⊆
⋃

i∈N

C(i).

If, for an element a ∈
⋃

i∈N C(i), if a ∈ V (p) we say the fact p holds in the

state a. For example, consider the frame NC := 〈
⋃

i∈N [2i, 2i + 1], R〉, with
the valuation V of the letter p, where V (p) := {2i | i ∈ N}. Then the fact
p holds (is true) in a state of any cluster [2i, 2i + 1]. This follows from the
fact that any cluster [2i, 2i + 1] consists of an even number 2i, where p is
true, and followed by the odd number 2i + 1. Let the frame NC above to
model the parallel computing, where at each computational step i we achieve
exactly two states 2i and 2i+1 (numeration of which is not essential), but 2i
always is the state, where the property p—to have consistent outputs—holds.
Then the frame NC models the special parallel computing, where, at each
computational step, at least one state with consistent outputs is discoverable.
To construct formulas, we use all Boolean logical operations: ∧ (and), ∨
(or), ¬ (not), → (implease), and extend them by the modal operations 3

+

(possible in future), 3− (possible in past), 2
+
w (weak necessary in future)

and 2
−
w (weak necessary in past). The formation rules for formulas (wffs)

are the standard ones:

(i) Any propositional letter from P is a well formed formula (wff).

(ii) If ϕ and ψ are wffs then ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ and ¬ϕ are also wffs.

(iii) If ϕ is a wff then , 3+ϕ, 3−ϕ, 2+ϕ and 2
−ϕ are also wffs.

The rules for computing of truth values for formulas in models NC

with valuations V of propositions P are as follows. In the notation below
(NC , a) 
V ϕ is meant to say the formula ϕ in true at the state a in the model
NC w.r.t. valuation V . ∀p ∈ P , ∀a ∈ NC : (NC , a) 
V p ⇐⇒ a ∈ V (p).
Steps for Boolean operations are standard, as described above for multi-
modal logics. The steps for 3

+ and 3
− are also standard, as temporal
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operation for future and past:

(NC , a) 
V 3
+ϕ ⇐⇒ ∃b ∈ NC [aRb and (NC , b) 
V ϕ],

(NC , a) 
V 3
−ϕ ⇐⇒ ∃b ∈ NC [bRa and (NC , b) 
V ϕ].

But we interpret 2
+
w and 2

−
w as not in standard modal or temporal opera-

tions:

(NC , a) 
V 2
+
wϕ ⇐⇒ [a ∈ C(i)⇒[∀j ­ i∃b ∈ C(j)(NC , b) 
V ϕ]],

(NC , a) 
V 2
−
wϕ ⇐⇒ [a ∈ C(i)⇒[∀j ¬ i∃b ∈ C(j)(NC , b) 
V ϕ]].

So, computation of the operations 2
+
w and 2

−
w are nonstandard. 2

+
wϕ says

that ϕ is weakly necessary in future – in any time cluster in future, there
is a state where ϕ holds, while the dual one – 2

−
wϕ says that ϕ is weakly

necessary in past – for any time cluster in past, there is a state where ϕ is
true. Thus, we suggest a thinner treatment of the operation 2 as a variant
of week necessity. This specification of 2w makes the logic we offer to be
different from all standard temporal or modal logic—being a non-classical
temporal logic.

Definition 3. The logic TL(N2
+−

w

C ) is the set of all formulas which are true
in any state of any frame NC w.r.t. any valuation.

We enumerate below some standard modal laws which being referred to

2
+
w do not hold in TL(N2

+−

w

C ).

Lemma 4. The following holds 2
◦
wp → p 6∈ TL(N2

+−

w

C ), 2
◦
wp ≡ ¬3◦¬p 6∈

TL(N2
+−

w

C ) and 3
◦p ≡ ¬2◦

w¬p 6∈ TL(N2
+−

w

C ), 2◦
w(p → q) → (2◦

wp → 2
◦
wq) 6∈

TL(N2
+−

w

C ), where ◦ ∈ {+,−}.

The proof is easy computation. So, 2+
w-fragment of TL(N2

+−

w

C ) is not a
fragment of any modal logic, 2

+
w is not a modal or temporal operation in

standard understanding. And evidently, 2
◦
w and 3

◦ are no longer mutual

counterparts of each other, so TL(N2
+−

w

C ) differs with any standard normal
or not-normal modal/temporal logic (because 2

◦
wp ≡ ¬3◦¬p and 3

◦p ≡

¬2◦
w¬p do not hold in TL(N2

+−

w

C )). So, the logic is indeed a bit unusual. It
is interesting whether 2◦

w and 3
◦ may be mutually expressed by some other

ways. At the same time, it is immediate to show that
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Lemma 5. The following holds

2
◦
wp → 2

◦
w2

◦
wp ∈ TL(N2

+−

w

C ),

2
◦
w(2◦

wp → 2
◦
wq) ∨ 2

◦
w(2◦

wq → 2
◦
wp) ∈ TL(N2

+−

w

C ),

ϕ ∈ TL(N2
+−

w

C ) ⇒ 2
◦
wϕ ∈ TL(N2

+−

w

C ).

Expressive power of TL(N2
+−

w

C ) is visible when we combine both modal-
ities 2

◦
w and 3

◦ in formulas, the language became to be much more flexible
and expressible. For instance, the truth of formula 3

+
2

+
wϕ in a frame NC

w.r.t a valuation (labeling) V means that a time point i is possible, where,
since i in any time cluster the property ϕ is discoverable. The truth of the
formula 2

+
wp∧2

+
w¬p → ¬3+q would mean that if, in any time point, both

p and ¬p are discoverable then in any length of time flow (a computation)
q cannot be discovered. All such properties are difficult to be expressed in
the standard interpretation of modal or temporal language.

We will study properties of TL(N2
+−

w

C ) in order to know which logical
laws hold for it, say, to know whether two formulas ϕ and ψ are equivalent,

i.e. whether ϕ ≡ ψ ∈ TL(N2
+−

w

C ), whether a formula ϕ is a theorem (a logical

law for TL(N2
+−

w

C )), i.e. whether ϕ ∈ TL(N2
+−

w

C ).

Definition 6. A logic L is said to be decidable if there is an algorithms,
which, for any formula ϕ, answer whether ϕ ∈ L (i.e. whether ϕ is a theorem
of L).

The problem of decidability is one of basic problems for any logic. For
instance, the satisfiability problem may be reduced to decidability. Indeed, a
formula ϕ is satisfiable iff ¬ϕ is not a theorem. We address the decidability

problem to TL(N2
+−

w

C ) in the following section.

3. Results, Decidability

The prime question we are dealing with in this section is how, for any given

formula ϕ, to determine whether ϕ is a theorem of TL(N2
+−

w

C ), whether

ϕ ∈ TL(N2
+−

w

C ). Actually TL(N2
+−

w

C ) is an expansion of bimodal logic, and
we can borrow some evolved technique to approach this task. Several ways
are possible and we apply a technique based on our own approach tested for
several logics (cf. [23]–[29]). This approach uses a representation of formulas
by rules, and converting rules in a special normal reduced form. Recall, a
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(sequential) rule is an expression

r :=
ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)

ψ(x1, . . . , xn)
,

where ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn) and ψ(x1, . . . , xn) are some for-
mulas constructed out of letters x1, . . . , xn. Letters x1, . . . , xn are called
variables of r, and are denoted by Var(r). A formula ϕ is valid in a frame NC

(notation: NC 
 ϕ) if, for any valuation V of Var(ϕ) and, for any element
a of NC , (NC , a) 
V ϕ.

Definition 7. A rule r is said to be valid in the Kripke model 〈NC , V 〉 with
the valuation V (we will use notation NC 
V r) if

∀a
(

(NC , a) 
V

∧

1¬i≤m

ϕi

)

⇒ ∀a (NC , a) 
V ψ.

Otherwise we say r is refuted in NC , or refuted in NC by V , and write
NC 1V r.

A rule r is valid in a frame NC (notation: NC 
 r) if, for any valuation
V of Var(r), NC 
V r. A rule r is said to have the reduced normal form if
r = εc/x1 where

εc :=
∨

1¬j≤m

(
∧

1¬i¬n

[x
t(j,i,0)
i ∧ (2+

wxi)
t(j,i,1) ∧ (3+xi)

t(j,i,2) ∧

∧ (2−
wxi)

t(j,i,3) ∧ (3−xi)
t(j,i,4)]),

and xs are certain letters (variables), t(j, i, z) ∈ {0, 1} and, for any formula
α above, α0 := α, α1 := ¬α. For any formula ϕ we can convert it in the rule
x → x/ϕ and employ technique of reduced normal forms as follows.

Definition 8. Given a rule rnf in the reduced normal form, rnf is said to
be a normal reduced form for a rule r iff, for any frame NC , NC 
 r ⇐⇒
NC 
 rnf .

Based on proofs of Lemma 3.1.3 and Theorem 3.1.11 from [24] directed
to modal inference rules, by similar technique, we can obtain

Theorem 9. There exists an algorithm running in (single) exponential time,
which, for any given rule r, constructs its normal reduced form rnf .



152 V. Rybakov

Proof. We just sketch the proof below because the construction is simple.
Given a rule r = ϕ1(x1, ..., xn), ..., ϕm(x1, ..., xn)/ψ(x1, ..., xn). r is equiva-
lent to

r0 = ϕ1(x1, ..., xn) ∧ · · · ∧ ϕm(x1, ..., xn) ∧ xc ≡ ψ(x1, ..., xn)/xc,

where xc is a new variable. Therefore we can restrict the case by considera-
tion only rules in the form c = ϕ(x1, ..., xn)/xc.

If ϕ = α◦β, where ◦ is a binary logical operation and both formulas α and
β are not simply variables or unary logical operations applied to variables
(which both we call final formulas), take two new variables xα and xβ and
the rule

r1 := xα ◦ xβ ∧ xα ≡ α ∧ xβ ≡ β/xc.

If one from formulas α or β is final and another one not, we apply this trans-
formation to only non-final formula. It is clear that r and r1 are equivalent
w.r.t. validity in frames.

If ϕ = ∗α, where ∗ is a unary logical operation and α is not a variable,
take a new variable xα and the rule r1 := ∗xα ∧ xα ≡ α/xc. Again r and r1

are equivalent.
We continue this (similar) transformation over the resulting rules

∧

j∈J1
γj ∧

∧

i∈I1
xαi

≡ αi

xc

until all formulas αi and γj in the premise of the resulting rules will be either
atomic formulas—logical operations applied to variables—or variables. Ev-
idently this transformation is polynomial. Next, we transform the premise
of the resulting rule in the disjunctive normal form and make disjunctive
normal form to be perfect (having the disjunctive members to be uniform
length and containing all the components required in the definition of re-
duced normal forms) and obtain as the result an equivalent consecution r2.
This transformation, as well as all known ones for reduction Boolean formu-
las to disjunctive normal forms, is exponential. But then r has the required
form. ⊣

To discuss this transformation more, in (Rybakov [24]), as an immediate
consequence of the reduction of modal rules to normal forms (as above), it
was shown (Corollary 3.1.27) that any normal modal logic extending K4
can be axiomatized by formulas of modal degree at most 2 (known result,
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Zakharyaschev, 1992). It can be done with impressive ease. Take a modal
formula α, its validity is equivalent to the validity of the rule r := ⊤/α. Take
its reduced normal form rf(r) = β/x1. For any rule r1 = γ/δ, its transfor-
mation to the semi-universal formula f(r1) is the formula 2γ ∧ γ → δ. And,
for any modal logic L over K4, L⊕α = L⊕f(rf(r)), so all works. In the case
of temporal logics, using the transformation of rules to the reduced normal
forms described above, we can obtain a similar result: any temporal logic (it
is unimportant transitive or not) enriched with the universal modality can
be axiomatized by formulas of modal/temporal degree at most 2. The same
holds for simply temporal logics where 2

+ and 2
− are K4-modalities.

It is immediate to see that a formula ϕ is valid in a frame NC iff the rule
x → x/ϕ is valid in NC , so from Theorem 9 we obtain

Lemma 10. A formula ϕ is a theorem of TL(N2
+−

w

C ) iff the rule (x → x/ϕ)nf

is valid in any frame NC .

Thus, to solve the question about decidability of TL(N2
+−

w

C ) it is sufficient
to find an algorithm recognizing rules in reduced normal form which are valid
in all frames NC . To describe our algorithm we need the following special
finite Kripke models. Take any frame NC and some numbers n,m, where
m > n > 1. The frame NC(n,m) has the following structure:

NC(n,m) := 〈
⋃

1¬i¬m

C(i), R〉,

where R is the accessibility relation from NC extended by pairs (x, y), where
x ∈ C(j1), y ∈ C(j2) and j1, j2 ∈ [n,m], so xRy holds for all such pairs. If
given a valuation V of letters from a formula ϕ in NC(n,m), the truth values
of ϕ can be defined at elements of NC(n,m) by the same rules as for frames
NC above (simply in accordance with standard computing of truth values
for modal/temporal operations). Just in case, we describe below steps for
operations 3

+, 2+
w , 3− and 2

−
w :

(NC(n,m), a) 
V 3
+ϕ ⇐⇒ ∃b ∈ NC [aRb and (NC(n,m), b) 
V ϕ],

(NC(n,m), a) 
V 2
+
wϕ ⇐⇒ [(a ∈ C(i)) & (i ¬ n) &

(∀j(m ­ j ­ i)∃b ∈ C(j)(NC(n,m), b) 
V ϕ)] or

[(a ∈ C(i))&(i > n)&(∀j(n ¬ j ¬ m)∃c ∈ C(j)(NC(n,m), b) 
V ϕ)],

(NC(n,m), a) 
V 3
−ϕ ⇐⇒ ∃b ∈ NC [bRa and (NC(n,m), b) 
V ϕ],
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(NC(n,m), a) 
V 2
−
wϕ ⇐⇒ [(a ∈ C(i))&(i ¬ n) &

(∀j(j ¬ i)∃b ∈ C(j)(NC(n,m), b) 
V ϕ)] or

[(a ∈ C(i))&(i > n)&(∀j∃c ∈ C(j)(NC(n,m), c) 
V ϕ)].

Notice that the interpretations for 2+
w and 2

−
w are not mutually dual. Using

this modified Kripke structures NC(n,m) we derive

Lemma 11. A rule rnf in the reduced normal form is refuted in a frame NC

w.r.t. a valuation V if and only if rnf is refuted in a frame NC(n,m) by a
valuation V1, where

• The size of any cluster C(i) in NC(n,m) is linear in rnf .

• n and m are single-exponential in rnf .

• For any C(i) ⊂ NC(n,m) with i ­ n, there is a C(j) ⊂ NC(n,m) with j <
n such that C(j) and C(i) are isomorphic as models w.r.t. the valuation V1.

Proof. Let NC := 〈
⋃

i∈N C(i), R〉 and NC 1V rnf . Let Pr(rnf) be the
premise of rnf , D(rnf) be the set of all disjuncts from Pr(rnf) and Var(rnf)
be the set of all letters from rnf . For any D ∈ D(rnf ), Sub(D) is the set of all
subformulas of D. By NC 1V rnf , for any a ∈ NC , there is a unique disjunct
D from D(rnf) such that (NC , a) 
V D. In the sequel we will denote this
unique disjunct by DNC

(a). First, instead of doing standard filtration on
clusters C(i), we will restrict the size of clusters C(i) by simply rarefication.
In any C(i) we choose only one world a from {b | b ∈ C(i), (NC , b) 
V

DNC
(a)}. This reducing the number of worlds in clusters evidently does not

change the truth values of formulas from D(rnf), so the resulting model will
also invalidate rnf by V . So, we can admit that the size of clusters in NC is
linear in rnf . In the sequel we consider any cluster C(i) as the Kripke model

with the induced valuation V . In the sequel we will write C(i) = C(j) if C(i)
and C(j) are isomorphic as models. By our rarefication, the set of all such
C(i) (as Kripke models w.r.t. V ) is at most exponential in rnf .

By NC 1V rnf it follows (NC , a0) 
V ¬x1 for a0 ∈ C(i0) and some i0,
fix a such minimal i0. Consider minimal number k0 > i0 such that

{C(j) | j < k0} ⊇ {C(j) | j ∈ N}. (1)

Recall we consider here and in what follows all C(j) as Kripke models
w.r.t. V . Take minimal number imax > k0 + 1, where

∀i ∈ N, {C(j) | j ¬ i} ⊆ {C(j) | j ¬ imax}. (2)
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Next, we take the minimal number imin
max ­ imax + 2 such that

∀i ∈ N, {C(j) | j ­ i > imax} ⊇ {C(j) | j ­ imin
max}. (3)

For any C(i) ∈ {C(j) | j ­ imin
max} choose the minimal jC(i) > imin

max + 1
where C(jC(i)) = C(i). Among all such jC(i) choose the maximal, one – j0.

Let n := imin
max and m := j0 + 1. Consider the model NC(n,m) obtained

from NC as described above with the induced from NC valuation V .

To continue the proof we need the following lemma:

Lemma 12. For any a ∈ NC(n,m), (NC(n,m), a) 
V DNC
(a).

Proof. It follows by simple conventional computation using (2), (3) and
the choice of j0, and therefore detailed proof is left to the reader. ⊣

Numbers n and m are not bounded yet. But we can reduce the number
of clusters above C(n) as follows. Let S := {C(i) | i ∈ [n,m]}. For any
C(i) ∈ S choose a single C(i1) in {C(j) | j ∈ [n,m], C(j) = C(i)}. Modify
NC(n,m) as follows

NC(n) := 〈
⋃

i∈[1,n]

C(i) ∪
⋃

i∈[n+1,m]

C(i1), R, V 〉,

where R and V are transferred from NC(n,m).

Lemma 13. For any a ∈ NC(n), (NC(n), a) 
V DNC
(a).

Proof. follows from Lemma 12 and the choice of clusters C(i1) above by
simple computation and is left to the reader. ⊣

Note that the number of clusters C(i1) is at most exponential in rnf . So,
we can assume that rnf is invalidated by a valuation V in a model NC(n,m)
with clusters C(i) linear in rnf and where m − n is at most exponential in
rnf . It only remains to bound n. For this, for any C(i) where i ¬ n − 1,
consider the set

Clones(C(i)) := {C(j) | j ¬ n− 1, C(j) = C(i)}.

Let

C(i,min) := C(j1), j1 = min{j | C(j) ∈ Clones(C(i)),

C(i,max) := C(j2), j2 = max{j | C(j) ∈ Clones(C(i)).
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Modify now our model NC(n,m) with the valuation V as follows:

NC(n,m, 1) := 〈
⋃

i∈[1,n−1]

[C(i,min) ∪ C(i,max)] ∪
⋃

i∈[n,m]

C(i), R, V 〉,

where R and V are transferred from NC(n,m).

Lemma 14. For any a ∈ NC(n,m, 1), (NC(n,m, 1), a) 
V DNC
(a).

Proof. Follows from the construction of the model NC(n,m, 1) above and
the choice of clusters C(i,min) and C(i,max) by simple routine verification
which is left to the reader. ⊣

So, NC(n,m, 1) invalidates rnf by V , and NC(n,m, 1) has form
NC(n1,m1), where n1 and m1 are at most exponential in rnf , clusters are
linear in rnf and (iii) from Lemma 11 holds for this NC(n1,m1) by (1), (2),
(3) and the choice of j0. Thus, we proved the necessity in Lemma 11.

Sufficiency. Vise versa, assume rnf is invalidated by a valuation V1 in
some NC(n,m) satisfying conditions of Lemma 11. We transform NC(n,m)
by standard bulldozing technique. We roll the whole interval of all clus-
ters [C(n), C(n + 1), . . . , C(m − 1), C(m)] towards ‘future’ transferring the
valuation V1 as identical on copies. The resulting Kripke model has form
NC . Let, for any cluster C(i) from NC , f−1C(i) be the pre-image of C(i) in
NC(n,m); note that f−1C(i) and C(i) are identical as Kripke models. Let,
for any a ∈ C(i) ⊂ NC , f−1(a) to be pre-image of a in N (n,m).

Lemma 15. For any a ∈ NC , (NC , a) 
V DNC(n,m(f−1(a)).

Proof. follows from (iii) in Lemma 11 by standard routine verification.
Therefore NC refutes the rule rnf as well as NC(n,m) does. This con-

cludes the proof of Lemma 11. ⊣

Combining Theorem 9 and lemmas 10 and 11 we derive

Theorem 16. The logic TL(N2
+−

w

C ) is decidable. The algorithm of verifi-
cation formulas to be a theorems consists of verification validity of rules in
reduced normal form in Kripke frames of single-exponential size in the rules.

The overall complexity of the algorithm includes as well the reduction of
rules to normal reduced forms, but this complexity is single exponential (the
same as the complexity of reduction any Boolean formula to the disjunctive
normal form). This theorem is a departure point for study admissible in

TL(N2
+−

w

C ) inference rules, which is undertaken in the next section.
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4. Reduction Admissible in TL(N
2

+−

w

C
) Rules

to Theorems of TL(N
2

+−

w

C
)

To recall definitions, given a logic L, FormL is the set of all formulas in the
language of L.

Definition 17. A rule

r :=
ϕ(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)

ψ(x1, . . . , xn)
,

is said to be admissible for a logic L if, ∀α1 ∈ FormL, . . . ,∀αn ∈ FormL,

[
∧

1¬i¬m

ϕi(α1, . . . , αn) ∈ L] =⇒ ψ(α1, . . . , αn) ∈ L .

Thus, for any admissible rule, any instance into the premises converting
all of them into theorems of L also turns the conclusion to be a theorem.
For instance, the Lemmon-Scott rule

2(2(232p → 2p) → (2p ∨ 2¬2p))

232p ∨ 2¬2p

is admissible but not derivable in standard Hilbert-style axiomatizations for
modal logics S4, S4.1 and Grz (cf. [24]).

We need one more useful notion from multi-modal logics to develop our
technique. For any frame F := 〈F,R1, . . . , Rn〉 with n accessibility relations,
and any w ∈ F , the frame F(w)s strongly generated by w in F is the set of
all a ∈ F , were a = w or

wQi1w1, w1Qi2w2, . . . , wk−1Qkwk, wk = a ,

for some Qj ∈ {R1, . . . Rn, R
−1
1 , . . . R−1

n }, wi ∈ F .

Definition 18. We say a class of frames K admits an universal formula
if there is a formula 2u(x) (called universal formula) constructed from a
single letter x and logical operations, such that the following holds. For any
F ∈ K, any world w ∈ F and any valuation V , (F , w) 
V 2u(x) if and only
if (F , a) 
V x, for all a ∈ F(w)s.

A logic L admits an universal modality if, for some class of frames K,

L = L(K) and K admits an universal formula. The logic TL(N2
+−

w

C ) admits
universal modality, the term (formula)

2u(x) := ¬3−¬x ∧ ¬3+¬x
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is an universal formula for the class of frames generating TL(N2
+−

w

C ). Based
on this we can prove Lemma 19. Recall that, for a logic L, a formula ϕ is
unifiable (in L), if there is a substitution σ, where σϕ ∈ L.

Lemma 19. A rule ϕ/ψ is admissible in TL(N2
+−

w

C ) if and only if

¬3−¬ϕ ∧ ¬3+¬ϕ → ψ ∈ TL(N2
+−

w

C ), or ϕ is not unifiable in TL(N2
+−

w

C ).

Proof. If ϕ is not unifiable, then evidently ϕ/ψ is admissible. If ϕ/ψ is
valid in all frames NC then we immediately infer that ϕ/ψ is admissible.
For the converse, suppose that ϕ/ψ is not valid in some NC , LC 1 ϕ/ψ,

but there is a substitution σ such that σϕ ∈ TL(N2
+−

w

C ). Take the universal
formula 2u(x) and the substitution εxi := (2u(ϕ) ∧xi) ∨ (¬2u(ϕ) ∧σxi) for
every variable letter xi from ϕ/ψ.

Consider an NC , a valuation V of letters from εϕ in NC and an a ∈ NV .
If (NC , a) 
V 2u(ϕ) then, for any b ∈ NC(a)s, (NC , b) 
V 2u(ϕ) and
(LC , b) 
V ϕ. Therefore, for any b ∈ NC(a)s, (NC , b) 
V εxi ≡ xi and
hence (NC , a) 
V εϕ.

If (NC , a) 1V 2u(ϕ) then, for any b ∈ NC(a)s, (NC , b) 1V 2u(ϕ) and

consequently (NC , b) 
V εxi ≡ σxi. Therefore from σϕ ∈ TL(N2
+−

w

C ) we
conclude for any b ∈ NC(a)s, (NC , b) 
V εϕ, in particular, (NC , a) 
V εϕ.

Thus, we proved εϕ ∈ TL(N2
+−

w

C ).

From NC 1 ϕ/ψ for some NC , we have, for a valuation V1, NC 
V1
ϕ and

(NC , a) 1V1
ψ for an a ∈ NC . Then NC(a)s


V1
ϕ, and, for any b ∈ NC(a)s,

(NC , b) 
V1
2u(ϕ), and (NC , b) 
V1

εxi ≡ xi, so (NC , a) 1V1
εψ, hence

εψ 6∈ TL(N2
+−

w

C ). ⊣

In the light of this lemma, we only need to recognize valid consecutions
and unifiable formulas. For a multi-modal logic L, L is said to have no
irreflexive terminal points if ¬2i⊥ ∈ L holds for all modal operations 2i.

Lemma 20. If a logic L has no irreflexive terminal points then unification
in L is recognizable in exponential time (NP-complete).

Proof. This is trivial. Indeed, if ε : xi → ψi is a unifier for ϕ in L, then
for the substitution ε1 : pj → ⊤, the composition ε1ε is again a unifier for ϕ.
Since ¬2i⊥ ∈ L, ε1ψi ≡ ⊤ ∈ L or ε1ψi ≡ ⊥ ∈ L. So, it is sufficient to check
as unifiers for ϕ only substitutions in {⊤,⊥}. Computation of values of such
substitutions is polynomial, again since ¬2i⊥ ∈ L. Thus, overall complexity
is the same as satisfiability in PC, i.e. the tack is NP-complete. ⊣
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This lemma evidently works for our logic TL(N2
+−

w

C ) also. Therefore the
Theorem 21 below immediately follows from Theorem 16 and Lemma 19.

Theorem 21. The logic TL(N2
+−

w

C ) is decidable with respect to admissible
inference rules. There is an algorithm recognizing inference rules admissible

in TL(N2
+−

w

C ).

Conclusion. The logic TL(N2
+−

w

C ) is seemed to be rather interesting because
it possesses features which are problematic to model in conventional modal

or temporal languages. This is because TL(N2
+−

w

C ) express the properties of
the second order logic. We propose an algorithm for recognizing logical laws

of TL(N2
+−

w

C ) (so, we proved that TL(N2
+−

w

C ) is decidable) but there is a good
avenue for future research. Say, it would be interesting to find axiomatization

for TL(N2
+−

w

C ). The study of the strong unification problem for TL(N2
+−

w

C )
is interesting and important, it is an open problem now whether there is an

algorithm verifying strong unifiability in TL(N2
+−

w

C ).
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