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1. Introduction

Before entering into a technical description of the free cyclic algebras with
the Solovay modality let us indicate some motivation for bringing up this
topic.

In [8] Robert Solovay, among other things, presented a set-theoretical
translation of modal formulas by putting 2p to mean “p is true in every
transitive model of Zermelo-Fraenkel Set Theory ZF”. By defining an inter-
pretation as a function s sending modal formulas to sentences of ZF which
commutes with the Boolean connectives and putting s(2p) to be equal to
the statement “s(p) is true in every transitive model of ZF”, Solovay for-
mulated a modal system, which we call here SOL, and announced its ZF-
completeness.
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SOL is the classical modal system which results from the Gödel-Löb
system GL (alias, the provability logic) by adding the formula

2(2p → 2q) ∨ 2(2q → 2p ∧ p)

as a new axiom.

ZF-completeness: For any modal formula p, SOL ⊢ p iff ZF ⊢ s(p) for any
Solovay’s interpretation s. (For a proof, see [2, Chapt. 13, p. 166].)

Now we shall formulate a simple system I .SOL, which is an intuitionistic
“companion” of SOL: the composition of the well-known Gödel’s modal
translation of Heyting Calculus and split-map (= splitting a formula 2p
into the formula p∧2p) provides the needed embedding of I .SOL into SOL.

Definition 1. An intuitionistic modal system I .SOL is an extension of the
proof-intuitionistic logic KM obtained by postulating the formula

(2p → 2q) ∨ (2q → p)

as a new axiom [4].

We recall that the proof-intuitionistic logic KM (=Kuznetsov-Muravit-
sky [7]) is the Heyting propositional calculus HC enriched by 2 as Prov
modality satisfying the following conditions:

p → 2p, 2p → (q ∨ (q → p)), (2p → p) → p .

The purpose of this paper is to investigate the set of formulas of one
propositional variable of the system I .SOL, that is in algebraic terms it
means the description of the free cyclic algebra in the variety corresponding
to the system I .SOL. We introduce some algebraic and relational back-
ground. We choose the formulations below because they seem to be appro-
priate to our aim. The algebraic semantics for the system I.SOL is based
on the notion of Heyting algebra with an operator.

Definition 2. A Heyting algebra with an operator 2 is called Solovay

algebra, if the following conditions are satisfied:

p ≤ 2p, 2p ≤ q ∨ (q → p), 2p → p = p ,

(2p → 2q) ∨ (2q → p) = ⊤ .
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The class of all Solovay algebras forms a variety, which we denote by
SA. It is known that the variety SA is finitely approximated and that if
(H,2) ∈ SA then the Heyting algebra H is cascade Heyting algebra [4]. A
Heyting algebra H is called a cascade Heyting algebra, if H belongs to the
variety generated by the class of all finite Boolean cascades. A finite Heyting
algebra H is a Boolean cascade, if there exist Boolean lattices B1, . . . , Bk

such that H = B1 + · · · + Bk, where each Bi is a convex sublattice of H
and Bi + Bi+1 denotes the ordinal sum of Bi and Bi+1 in which the smallest
element of Bi and the largest element of Bi+1 are identified.

2. Preliminaries

Let (P, R) be a partially ordered set (for short, a poset) and Q ⊆ P . Then
we say that Q is a down cone if, whenever x ∈ Q, y ∈ P and R(y, x), it
follows that y ∈ Q. Dually, W ⊆ P is called an upper cone (or simply cone)
if whenever x ∈ W , y ∈ P and R(x, y), then y ∈ W . The smallest down
cone (upper cone) containing a given subset U of P we denote by

R−1(U) := {y ∈ P : R(y, x) & x ∈ U} ,

R(U) := {y ∈ P : R(x, y) & x ∈ U} .

Instead of R−1({x}) (R({x})) we write R−1(x) (R(x)). The same notation
we have if binary relation R, defined on P , is transitive and irreflexive. We
say that x covers y, and write y ≺ x, if R(y, x) and y 6= x and there is
no z such that z 6= y, z 6= x and R(y, z) and R(z, x). In the case when
R is transitive we denote its reflexive closure by R◦. Often, we shall use
the symbol < for transitive and irreflexive relation, and do ≤ for reflexive
closure of <.

Let (X; R) be a poset and x ∈ X. A chain out of x is a lineary ordered
subset (i.e. for every y, z from the subset either yRz or zRy) of X with
the least element x; d(x) (the depth of x) denotes the largest cardinality of
chains out of x.

A topological space X with binary relation R is said to be GL-frame if:

(1) X is a Stone space (i.e. 0-dimensional, Hausdorf and compact topological
space);

(2) R(x) and R−1(x) are closed sets for every x ∈ X and R−1(A) is a clopen
for every clopen A of X;

(3) for every clopen A of X and every element x ∈ A there is an element
y ∈ A \ R−1(A) such that either xRy or x ∈ A \ R−1(A).



114 Leo Esakia, Revaz Grigolia

A map f : X1 → X2 from a GL-frame X1 to a GL-frame X2 is said to
be strongly isotone if

f(x)R2y ⇔ (∃z ∈ X1)(xR1z & f(z) = y).

Let us denote by G the category of GL-frames and continuous strongly
isotone maps.

An algebra (A; ∨, ∧,3, −, 0, 1) is said to be diagonalizable algebra if
(A; ∨,
∧, −, 0, 1) is Boolean algebra and 3 satisfies the following conditions:

(1) 3(a ∨ b) = 3(a) ∨ 3(b),

(2) 3(0) = 0,

(3) 3(a) ≤ 3(a ∨ −3(a)).

Let us denote by D the category of diagonalizable algebras with diagonaliz-
able algebra homomorphisms.

Let X ∈ G and A ∈ D. The set D(X) of all clopen subsets of X is closed
under the set union, intersection, complementation and the operator R−1.
So D((X; R)) = (D(X); ∪, ∩, −, R−1, ∅, X) is an object of D; the set G(A) of
all ultrafilters of A ∈ D with a relation xRy ⇔ (∀a ∈ A)(a ∈ y ⇒ 3(a) ∈ x),
topologized by taking the family of sets h(a) = {F ∈ G(A) : a ∈ F} as a
base, is an object of G. Furthermore, setting G(h) = h−1 : G(B) → G(A) for
every morphism h : A → B of D, and D(f) = f−1 : D(Y ) → D(X) for every
morphism f : X → Y of G, we obtain contravariant functors D : D → G

and G : G → D. In [1] it is proved, that these functors establish a dual
equivalence between the categories D and G.

On every diagonalizable algebra A is defined a unary operator 2 which
is dual to 3: 2(x) = −3−(x). The sublattice H = {2(a)∧a : a ∈ A} forms
Heyting algebra, where a → b = 2(−a ∨ b) ∧ (−a ∨ b). Let us note, that the
set H is closed under the operation 2. Moreover the operation 2 on elements
of H satisfies the following conditions: (a) p ≤ 2p, (b) 2p ≤ (q ∨ (q → p)),
(c) (2p → p) = p. As we see the class of all algebras (H, ∨, ∧, →,2, ⊥, ⊤),
where (H, ∨, ∧, →, ⊥, ⊤) is Heyting algebra and 2 satisfies the conditions
(a), (b), (c), forms a variety which we denote by H2. The variety of Solovay
algebras SA is a subvariety of H2 determined by the additional identity
(2p → 2q) ∨ (2q → p) = ⊤.

A pair (X; R) is said to be S-frame if:
(1) (X; R) is GL-frame;

(2) (X, R◦) is a poset;

(3) for every x, y, z, u ∈ X if uRx, uRz, xRy and ¬(xRz), then zRy.
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Let S be the category of S-frames and continuous strongly isotone maps.
The duality between the category of Solovay algebras and the category of
S-frames is obtained by specialization of the duality between the categories
D and G on the case of Solovay algebras. For any S-frame (X; R) and
U, V ∈ SA(X) (= the set of all clopen cones of X) define:

U → V = X \ (R−1(U \ V ) ∪ (U \ V )), 2U = X \ R−1(X \ U).

Then the algebra SA((X; R)) = (SA(X); ∨, ∧, →,2, 0, 1) is a Solovay alge-
bra. Furthemore, for any morphism f : (X1; R1) → (X2; R2) in S, SA(f) =
G(f) is a Solovay algebra homomorphism from SA(X2; R2) into SA(X1; R1).
On the other hand, for each Solovay algebra A, the set S(A) of all prime
filters of A with the binary relation R on it, defined by the following way:
xRy ⇔ (∀a ∈ A)(2a ∈ x ⇒ a ∈ y), and topologised by taking the family of
β(a) = {F ∈ S(A) : a ∈ F}, for a ∈ A, and their complements as a subbase,
denote it by S(A), is an object of S; and for each Solovay algebra homo-
morphism h : A → B, S(h) = G(h) is a morphism of S. Therefore we have
two contravariant functors S : SA → S and SA : S → SA. These functors
establish a dual equivalence between the categories SA and S.

As follows from a duality there is one-to-one correspondence between
homomorphic images of a Solovay algebra A and closed cones of S(A), and
between subalgebras of a SA-algebra A and correct partitions of S(A), where
a correct partition [6] of a (X; R) ∈ S is such an equivalence relation E on
X that

• E is a closed equivalence relation, i.e. E-saturation1 of any closed subset
is closed;

• E-saturation of any upper cone is an upper cone;

• (∀x ∈ X)(E(x) ∩ R−1(E(x)) 6= ∅ ⇒ E(x) ⊆ R−1(E(x));

• there is S-frame (Y ; Q) and strongly isotone map f : X → Y such that
Ker f = E.

Suppose (X; R) is an S-frame, A = SA((X; R)) and g1, . . . , gn ∈ A. Now
we will present a criterion deciding whether or not A is generated by g1, . . . ,
gn. Our criterion extends the analogous one for descriptive intuitionistic
frames from [5] to S-frames.

1If V ⊆ X then E-saturation of V is E(V ) =
⋃

x∈X
E(x).
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Denote by n the set {1, . . . , n}. Let Gp = gε1

1 ∩· · ·∩gεn
n , where εi ∈ {0, 1},

p = {i : εi = 1} and

gεi

i =

{

gi, εi = 1 ,

−gi, εi = 0 .

It is obvious that {Gp}p⊆n is a partition of X which we call the colouring of
X.2 A point x ∈ Gp is said to have the colour p, written as Col(x) = p. Let
us remark that gi =

⋃

i∈p Gp.

Lemma 3. Suppose E is a correct partition of X. The following two condi-
tions are mutually equivalent:

(i) every gi is E-saturated, that is E(gi) = gi (1 ≤ i ≤ n),

(ii) every class Gp is E-saturated, that is E(Gp) = Gp (p ⊆ n).

Proof. Easy. ⊣

Theorem 4 (Coloring theorem). A Solovay algebra A is generated by g1,
. . . , gn iff for every non-trivial correct partition E of X (= S(A)), there
exists an equivalence class of E containing points of different colors.

Proof. Suppose A is generated by g1, . . . , gn and E is a non-trivial correct
partition of X. Consider the set AE of E-saturated elements of A. Since
g1, . . . , gn generate A, there exists i ≤ n such that gi /∈ AE . Therefore there
exists p ⊆ n such that Gp is not E-saturated. But then there exists x ∈ Gp

such that E(x) ∩ Gp 6= ∅ and E(x) ∩ −Gp 6= ∅. Hence E(x) contains points
of different colour.

Conversely, suppose A is not generated by g1, . . . , gn. Denote by A0

the least subalgebra of A containing g1, . . . , gn. Obviously A0 is a proper
subalgebra of A and the correct partition E of X corresponding to A0 is
non-trivial3. Moreover, since g1, . . . , gn ∈ A0, E(gi) = gi (1 ¬ i ¬ n) and
hence E(Gp) = Gp (p ⊆ n). But then every equivalence class of E contains
points of the same colour. ⊣

3. Cyclic Free Solovay Algebra

Now we are going to describe the free Solovay algebra H(G) of one generator
G. For description of cyclic free Solovay algebra we shall use a sequence of

2It is also clear that Gp are the atoms of the Boolean algebra B(g1, . . . , gn) generated
(in the set of all subsets of X) by g1, . . . , gn.

3E is defined on X by putting: xEy iff x ∈ U ⇔ y ∈ U , for every U ∈ A0.
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finite S-frames (Xi, <i), i = 1, 2, . . . , directed by inclusion. In other words,
such S-frames (Xi, <i), that Xi ⊆ Xi+1, <i ⊆ <i+1. As we mentioned above
color is defined as any subset of {1, . . . , n}. In our case n = 1, so there exist
exactly 2 colors: {1} and ∅. We shall define Xi recurrently by levels (i.e. by
elements of fixed depth), every element of which is colored with one of the
2 colors.

Let X1 = {(∆0, t) : ∆0 = ∅, t ⊆ {1}}. On X1 we define a relation <1:
x 6<1 y for every x, y ∈ X1. Thus we have constructed S-frame (X1, <1)
of the first level (i.e. the elements of X1 have the depth 1 with respect
to the relation ≤1), which will be contained in the universal frame (X, R)
that is constructed by induction. X1 (the elements of depth 1) consists of
2 different incomparable elements (two pairs), the second components of
which are the colors of the elements: (∅, ∅) and (∅, {1}), and Col((∅, ∅)) = ∅
and Col((∅, {1})) = {1}. Let X2 = X1 ∪ {(∆1, t) : ∆1 ⊆ X1, |∆1| =
1, t ⊆ Col(∆1)} ∪ {(∆1, ∅) : ∆1 = {(a, ∅), (a, {1})} ⊆ X1}. In our notation
X2 = {(∅, ∅), (∅, {1}), ({(∅, ∅), (∅, {1})}, ∅), ({(∅, ∅)}, ∅), ({(∅, {1})}, {1}),
({(∅, {1})}, ∅)}. On X2 define the relation <2 as follows: for every x, y ∈ X1

x <2 y iff x <1 y; (∆1, t) <2 x for every x ∈ ∆1 ⊆ X1; x 6<2 x for every
x ∈ X2 \ X1. Let (Xi, <i) have already been constructed for i ≥ 2. Then
Xi+1 = Xi∪{(∆i, t) : ∆i ⊆ Xi\Xi−1, |∆i| = 1, t ⊆ Col(∆i)}∪{(∆i, ∅) : ∆i =
{(a, ∅), (a, {1})} ⊆ Xi \ Xi−1}. Xi consists of elements of depth ≤ i.Let us
note that for every element (a, b) ∈ Xi b is its color, i.e. Col((a, b)) = b. On
Xi+1 define binary the relation <i+1 as follows: for every x, y ∈ Xi x <′i+1 y
iff x <i y; (∆i, t) <′i+1 x for every x ∈ ∆i ⊆ Xi \ Xi−1; x 6<′i+1 x for every
x ∈ Xi+1 \ Xi. Let <i+1 be the transitive closure of <′i+1. The elements of
i + 1 depth are exhausted by these described above elements. Xi+1 is the
set of all elements of depth j ≤ i + 1. (Xi+1, <i+1) is S-frame determined
by the construction.

Let (X, R) =
⋃∞

i=1(Xi, <i), g1 = {x ∈ X1 : Col(x) = {1}} = {(∅, {1})}
and gi = {x ∈ Xi \ Xi−1 : Col(x) = {1}} for i > 1.

It is possible to represent Kripke frames graphically by the following
device. Represent the points of the Kripke frame (X, R) by small circles (or
nodes) in such a way that if R(x, y), then the node representing x is lower (in
the Figure) than that representing y. Below is depicted the Figure “Pine-
tree” of the Kripke frame (κX, κR) which will be of subsequent interest.
The Figure requires some explanation. First of all notice that the sets gi are
singletons and are identified with their elements.

A black-node z of our Pine-tree is an irreflexive point (κR(z, z) is false).
A white-node z is a reflexive point (κR(z, z) is true). The whole Pine-tree
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represents the Kripke frame (κX, κR), whereas the frame (X, R) represents
some “subtree”; namely, X is the set of black-points x ∈ κX such that there
is no white-point y with κR(x, y). The relation R on X is the restriction
of the relation κR to X (i.e. R = κR ∩ X2). An inspection of Figure 1
shows that κR and R are transitive relations satisfying the ascending chain
condition. Moreover, the relation R is irreflexive. Recall that we use R◦
(resp., κR◦) to denote the reflexive closure of R (resp. κR). It is well-know
that the ring Con(X) of R◦-cones of X is a Heyting algebra in which ∧ and
∨ are the set-theoretical intersection and union and for A, B ∈ Con(X)

A → B = {x ∈ X : (∀y)(xR◦y&y ∈ A ⇒ y ∈ B}.

Define the operation 2 on the Heyting algebra Con(X) by putting

2A = {x ∈ X : (∀y)(xRy ⇒ y ∈ A)}.

Observation. The algebra (Con(X),2) is a Solovay algebra.

One more notation: we denote 2(2kp) by 2
k+1p. Given subsets A, B ⊆

X, denote by A − B their set-theoretical difference. We shall consider a ring
of cones K0(X) of X obtained from the finite sets 2

k∅ (k-storied pyramid
of the figure, k ∈ ω) and the sets X − R−1

◦ (x) (x ∈ X) by applying the
operations of union and intersection. We remark that the cones X − R−1

◦ (x)
may be of two types: 1)X − R−1

◦ (x) for x ∈ Trunk(=
⋃∞

i=1{gi}), i.e. x = gi

for some i ≥ 1, and 2) X − R−1
◦ (x) for x /∈ Trunk, i.e. x 6= gi, i ∈ ω. A set

of the first type contains a finite number of branches, whereas a set of the
second type contains infinite number of branches.

Theorem 5. The ring of cones K0(X) is closed under the implication →
and the box-operation 2 of the Solovay algebra (Con(X),2). Thus the ring
K0(X) is itself a Solovay algebra.

Proof. By direct inspection. ⊣

Denote by G the cone {gi ∈ X : i ∈ ω}(= Trunk) and by Gk the cone
{gi ∈ X : i ¬ k ∈ ω}. Denote by K(X) the smallest subring of Con(X)
which contains the ring K0(X) and the cones 2

kG (k ∈ ω). It should be
noted that 2G = {ai : i ∈ ω} ∪ G, where the elements of {ai : i ∈ ω} are
maximal elements of the set X \ G with respect to the relation R◦. In our
notation a1 = (∅, ∅).
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Figure 1. Pine-tree of (κX, κR)

An analysis of the Pine-tree confirms (by direct inspection)

Theorem 6. The ring K(X) is also closed under operations → and 2 of the
algebra Con(X) and hence is a Solovay algebra, which we denote by H(G).

Now we can formulate the following

Theorem 7. The Solovay algebra H(G) is the free cyclic algebra with gen-
erator G over the variety SA.

For the proof of the theorem we need some auxiliary assertions.

Let us define a sequence (SAk; k ∈ ω) of subvarieties of SA: the pyramid
variety SAk is described by equation: 2

k⊥ = ⊤. Obviously SAk ⊆ SAk+1,
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for an arbitrary k ≥ 1 and k ∈ ω. Say that a Solovay algebra has height k if
k is the least integer such that 2

k⊥ = ⊤.
It is well known that every interval [p, q] of a Heyting algebra is a Heyting

algebra. Let H(Gk) is the interval [∅,2k∅] of the algebra H(G) and define
an operator 2k on H(Gk) to be 2kA = 2A ∧ 2

k∅. Observe that H(Gk)
coincides with the Solovay algebra of all cones of S-frame (Xk, <k).

Let (Z1, <1), (Z2, <2) be finite S-frames such that x 6<i y for every x, y ∈
Zi, 1 ¬ i ¬ 2. By the ordinal sum Z1 ⊕ Z2 of S-frames Z1 and Z2 we
mean S-frame consisting of all elements x ∈ Z1 and all elements y ∈ Z2 in
which the relation R is defined as follows: xRy if and only if x ∈ Z1 and
y ∈ Z2. It is clear that the ordinal sum of S-frames can be easily extended
to the case of more than two S-frames. We shall consider ordinal sums
Z

(i,i′)
k = Z1 ⊕ Z2 ⊕ · · · ⊕ Zk such that 1 < k ∈ ω and |Zi| = 2 at most for

one i > 1, where Zj = {j} for j 6= i (> 1) and Zi = {i, i′}. Let us denote

by C
(i,i′)
k , 1 < i ¬ k, the Solovay algebra (of all cones) of the ordinal sum

Z
(i,i′)
k = Z1 ⊕ Z2 ⊕ · · · ⊕ Zk, and by C

(i)
k , 0 ¬ i ¬ k, Solovay algebras of all

cones Z
(i)
k = Z1 ⊕ Z2 ⊕ · · · ⊕ Zk with the generator R(i), where Zi = {i} for

all i ∈ {1, . . . , k} and R(0) = ∅.

Lemma 8. C
(0)
k , C

(1)
k , . . . , C

(k)
k , C

(2,2′)
k , . . . , C

(k,k′)
k are the only (up to

isomorphism) cyclic subdirect irreducible Solovay algebras of height k, where

∅ (= ⊥) is a generator of C
(0)
k and R(i) is a generator of C

(i)
k for 1 ¬ i ¬ k,

and R(i) is a generator of C
(i,i′)
k for 1 < i ¬ k.

Proof. Since the condition p ↔ q ≤ 2p ↔ 2q holds in Solovay algebras,
we have that the lattice of congruences of Heyting algebra H coincides with
the lattice of congruences of Solovay algebra (H,2). So, since the S-frames
of the algebras contain the least element, it is evident that the algebras are
subdirect irreducible. According to Theorem 4 (Coloring theorem) it is easy
to check the algebras are cyclic. Let us suppose that A is a finite cyclic
subdirect irreducible Solovay algebra of height k which are differ from the
ones mentioned in the lemma. Then the S-frame of A coincides with an
ordinal sum Z1 ⊕ Z2 ⊕ · · · ⊕ Zk, where either (1) |Zi| > 2 for some i > 1 or
(2) there are i1, i2 > 1 such that |Zi1

| = |Zi2
| = 2. Let Z = Z1 ⊕Z2 ⊕· · ·⊕Zk

and a ⊆ Z be a generator of A which is identified with the set of all cones
of Z. Since A is cyclic, Z is colored with two colors: the elements which
belong to a and the elements which belong to Z \ a. In the case (1) at least
two elements, say z1 and z2, of Zi have the same color. Then the partition,
which has the only non-trivial class {z1, z2}, is correct. Therefore, according
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to Coloring theorem, a does not generate A. In the case (2), supposing that
i1 < i2, either i1 or i′1 belong to a or i1, i′1 /∈ a. In the first case the partition,
the only non-trivial class of which is {i2, i′2}, is correct and i2, i′2 ∈ a. In
the second case the partition, the only non-trivial class of which is {i1, i′1},
is correct. In both cases according to Coloring theorem A is not generated
by a. ⊣

Lemma 9. Let x be arbitrary element of Xk+1 \ Xk. The Solovay algebra
Ax (which is a homomorphic image of (H(Gk)) of all cones of S-frame R◦(x)

with generator Gk ∩R◦(x) is isomorphic to the one of the algebras C
(0)
k , C

(1)
k ,

. . . , C
(k)
k , C

(2,2′)
k , . . . , C

(k,k′)
k , where the isomorphism sends the generator of

Ax to the corresponding generator of the algebra from this list of algebras.

Proof. By direct inspection. It is also easy to see from the Fig. 1. ⊣

Theorem 10. Every pyramid variety SAk (k ∈ ω) is locally finite and the
algebra H(Gk) (k ∈ ω) is the free cyclic Solovay algebra with the generator
Gk over the variety SAk.

Proof. First, we shall show that the free Solovay algebra FSA(n) on n
generators over the variety SAk is finite. Let us consider n-generated sub-
directly irreducible algebra from SAk. Then K(A) can have not more than
2n elements every of which has color t ⊆ {1, . . . , n} (according to Coloring
Theorem 4). Then K(A) has only one element of depth 2. Let us suppose
that K(A) has less than 2n maximal elements, say a1, . . . , ap, with corre-
sponding colours. Then the number of elements of K(A) having depth 2
is not more than |{t : t ⊆

⋂p
i=1 Col(ai)|. Continuing this process we ob-

serve that the cardinality of the set of elements of depth i ≤ k is bounded.
In consequence of this observation we conclude that the number of non-
isomorphic n-generated subdirectly irreducible Solovay algebras from SAk

is finite. Consequently the free n-generated Solovay algebra FSA(n) is finite
and therefore SAk is locally finite.

Now we shall show that H(Gk) is the free cyclic Solovay algebra with the
free generator Gk over the variety SAk. It is evident that (H1,21) is a free
cyclic diagonalizable algebra over D(1)(= SA1). Let k > 1. It is sufficient to
show that if an identity p = q, containing only one variable, does not hold in
SAk then p = q does not hold in H(Gk) on the generator Gk. Let us suppose
that an identity p = q, containing only one variable, does not hold in SAk.
Then there is a finite subdirectly irreducible one generated Solovay algebra
A ∈ SAk such that P (a) 6= Q(a), where P, Q are polynomials corresponding
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to polynomial symbols p, q respectively and a ∈ A is a generator of A. Then,
according to Lemma 8, there is an isomorphism ϕ : C → A and ϕ(c) = a,

where C ∈ {C
(0)
k , C

(1)
k , . . . , C

(k)
k , C

(2,2′)
k , . . . , C

(k,k′)
k } and c ∈ C is the

generator of C. But, according to Lemma 9, there exists homomorphism
h : H(Gk) → C such that h(Gk) = c. Therefore there is a homomorphism
u = hϕ : Hk → A such that u(Gk) = a and, consequently, P (Gk) 6= Q(Gk)
in H(Gk). ⊣

Lemma 11 ([4]). The variety SA is generated by their finite members. More-
over SA is generated by

⋃∞
k=1 SAk.

Proof. Here we give a sketch of a proof. First of all observe that the vari-
ety of all cascade Heyting algebras is locally finite. Indeed, observe that in
any finite subdirectly irreducible Boolean cascade H = B1 + · · · + Bk hold
the formulas (∃x)(x ≺ ⊤ & (∀y)(y ≺ ⊤ ⇒ x = y)), (∀x, y, z)(x 6≤ z & z 6≤
x & x ≤ y ⇒ y ≤ z), (∀x, y, z)(x 6≤ z & z 6≤ x ⇒ ((x → z) ∨ x) ≤ y

∨

y ≤
((x → z) ∨ x). The first formula points out that the algebra is subdirectly
irreducible, the second one that the algebra is cascade type and the third
that there exist nodes in the algebra. Since every subdirectly irreducible
cascade Heyting algebra is a homomorphic image of a subalgebra of a ultra-
product of subdirectly irreducible finite Boolean cascades, any subdirectly
irreducible cascade Heyting algebra contains Boolean lattices as a convex
sublattices (according to second formula). Let us observe that if subdirectly
irreducible cascade Heyting algebra is n-generated, then the number of con-
vex Boolean sublattices not more that n. For any n-generated subdirect
irreducible cascade Heyting algebra H = B1 + · · · + Bk (k ≤ n) if a1, . . . ,
an ∈ Bi then either P (a1, . . . , an) ∈ Bi or P (a1, . . . , an) ∈ {⊤, ⊥}, where
P (x1, . . . , xn) is arbitrary n-ary Heyting polynomial. Moreover, the set of
elements {⊥Bk

, x ∈ H : x = ⊤Bi
, 1 ≤ i ≤ k} forms a Heyting subalgebra of

H which is a chain. Therefore the cardinality of Bi is at least 22n

. From here
we conclude that the cardinality of subdirect irreducible cascade Heyting al-
gebras which are generated by n generators is bounded. Therefore the variety
of Heyting algebras generated by cascade Heyting algebras is locally finite.

Now suppose that p = q does not hold in SA. Then there is a Solo-
vay algebra A such that P (a1, . . . , an) 6= Q(a1, . . . , an) for some elements
a1, . . . , an ∈ A, where P and Q are polynomials corresponding to the poly-
nomial symbols p and q respectively. Let P1(x1, . . . , xn), . . . , Pm(x1, . . . , xn)
be all subpolynomials of P (x1, . . . , xn). Then, since A, as a Heyting algebra,
belongs to the variety of cascade Heyting algebras, the Heyting subalgebra
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of A generated by P1(a1, . . . , an), . . . , Pm(a1, . . . , an) will be finite. Let us
denote the subalgebra by Afin.On the Heyting algebra Afin we can define
unique operator 2 as follows:

2p =
∧

q∈Afin

(q ∨ (q → p)).

Then (Afin,2) will be a Solovay algebra such that P (a1, . . . , an) 6= Q(a1, . . . ,
an) in (Afin,2). It is evident that since Afin ∈ SAk for some k ∈ ω, p = q

does not hold in SAk. From here we conclude that SA is generated by
⋃∞

k=1 SAk. ⊣

Now we can give

Proof of Theorem 7. It is enough to show that if an identity p = q, con-
taining only one variable, does not hold in SA then p = q does not hold in
H(G) on the generator G. Let us suppose that an identity p = q, containing
only one variable, does not hold in SA. Then there is a finite subdirectly
irreducible one generated Solovay algebra A ∈ SAk such that P (a) 6= Q(a),
where P , Q are polynomials corresponding to polynomial symbols p, q re-
spectively and a ∈ A is a generator of A. Then there is homomorphism
h : H(Gk) → A, where h(Gk) = a. But H(Gk) is a homomorphic image of
H(G), where the homomorphism ϕ : H(G) → Hk sends the generator G to
the generator Gk. Therefore there is a homomorphism hϕ : H(G) → A such
that h(ϕ(G)) = a. It means that P (G) 6= Q(G). ⊣

Theorem 12. The algebra H(G) is isomorphic to the subalgebra of the
inverse limit lim←{H(Gk)}k∈ω generated by the generator (G1, G2, . . . ) = G.

Proof. Observe that the family {H(Gk), πnm : n ­ m ­ 1} forms an
inverse system. Indeed, πnm : H(Gn) → H(Gm) is homomorphism onto for
n ­ m. In the dual picture we have corresponding embedding S(πnm) : (Xm,
<m) → (Xn, <n) (n ­ m), where (Xm, <m) ∼= S(H(Gm)) and (Xn, <n) ∼=
S(H(Gn)). Identifying the elements of an algebras with the corresponding
upper cones the homomorphism πnm is defined as follows: πnm(a) = a ∩ Xm

for every a ∈ H(Gn). Then πml ◦ πnm = πnl, for n ­ m ≥ l ­ 1. Recall that
the inverse limit

lim
←

{H(Gk)}k∈ω = {(xk)k ∈
∞
∏

k=1

H(Gk) : πlm(xl) = xm, l ≥ m ≥ 1}.
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Let πn :
∏∞

k=1 H(Gk) → H(Gn) be the canonical projection. Let G =
(G1, G2, . . . ). G is an element of the inverse limit and let F (G) be the
subalgebra of the inverse limit generated by G. It is well known that be-
cause of the fact that SA is generated by

⋃∞
k=1 SAk we only need to show

that every map G → a to an algebra A, generated by a, belonging to some
SAk can be extended to a homomorphism from F (G) to that algebra. Since
A ∈ SAk, there exists a homomorphism h : H(Gk) → A such that h(Gk) = a
and hπk : H(G) → A is needed homomorphism extending the map G → a.
It means that F (G) is the free cyclic Solovay algebra whence it follows that
F (G) ∼= H(G). Indeed, the map

f : (a1, a2, . . . ) →
∞
⋃

i=1
ai

establishes the isomorphism between F (G) and H(G). ⊣

Theorem 13. Finite upper cones of the kind R◦(x) ⊆ X, for every x ∈ X,
is join irreducible elements of the free cyclic algebra H(G).

Proof. Let x ∈ X be an element of some finite depth k ­ 1. Since
R◦(x) is an upper cone of (X, R), R◦(x) is an element of H(Gk) and, conse-
quently, H(Gk+1). Therefore there is a polynomial P (x) such that R◦(x) =
P (Gk+1) ∈ H(Gk+1). Then πk+1(P (G)) = P (πk+1(G)) = P (Gk+1) =
R◦(x), where πk+1 : H(G) → H(Gk+1) is the canonical homomorphism
which is defined as the map V → V ∩ Xk+1, for every V ∈ H(G). Since
R◦(x) ∩ (Xk+1 \ Xk) = ∅ and R◦(x) is an upper cone, P (G) = R◦(x). ⊣

4. Analysis of S-frame (κX, κR)

In conclusion, we outline a portion of the duality theory of the relationship
between the free algebra H(G) and the S-frame S(H(G)) = (κX, κR) (see
Pine-tree). Based on the duality between Solovay algebras and S-frames
the algebra H(G) can (and henceforth will) be identified with the lattice
of clopen cones of its dual topological Kripke frame (κX, κR). We want to
associate with the algebra H(G) our Pine-tree. To this end define κX to be
a topological space whose points are prime filters of H(G) with the topology
determined by the subbase {x ∈ κX : A ∈ x} and {x ∈ κX : A /∈ x} (A ∈
H(G)). Then κX is a Stone space (=a compact, Hausdorff, zero-dimensional
space). The dual of 2-operation is the relation κR on X defined by κR(x, y)
iff for every A ∈ H(G), if 2A ∈ x then A ∈ y. Moreover, (κX, κR◦) is a poset
and κR◦ coincides with the inclusion relation between prime filters of H(G).
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Let U be the set of all principal prime filters of the algebra H(G) gen-
erated by R◦(x) for x ∈ X. It is evident that, according to Theorem 13,
since R◦(x) is join irreducible, the filter generated by R◦(x) will be prime.
Let us identify U with X: identify x with the prime filter generated by
R◦(x). Then X ⊆ κX and (X, κR) ∼= (X, R). Since R◦(x) ∈ H(G) for
every x ∈ X, R◦(x) is a clopen subset of the space κX. Arbitrary ele-
ment x ∈ X is covered at least by two-element set, say {y1, y2} ⊆ X, i.e.
x ≺ {y1, y2}, and R◦(yi) is a clopen subset of κX (i = 1, 2). Therefore
{x} = R◦(x) ∩ (κX \ (R◦(y1) ∪ R◦(y2))) is a clopen, i.e. arbitrary element
x ∈ X ⊆ κX is an isolated point of the space κX. Let us remark that (X, R◦)
has only two maximal elements a1 and g1, and {a1, g1} ⊆ X ⊆ κX is a clopen
of κX and it is an element of H(G). Then −R−1

◦ {a1, g1} = ∅. Therefore
−κR−1

◦ {a1, g1} = ∅. Consequently the limit,i.e. not isolated, points of κX
are “below” (with respect to the order κR◦) the elements of X. From these
observations we can prove the following theorems.

Theorem 14. X is an increasing open dense subset of κX and thus κX is
an order compactification of X.

Proof. The family {R◦(x)}x∈X has the least upper bound ⊤ ∈ H(G). It
means that cl

⋃

x∈X R◦(x) = κX and
⋃

x∈X R◦(x) (= X) is an upper open
cone of κX. ⊣

Theorem 15. A point x is an isolated point of the topological space κX iff
x ∈ X.

Proof. As we have shown above any point x ∈ X is an isolated point of
κX. But X is a dense subset of κX (Theorem 14). Hence any isolated point
belongs to X. ⊣

Now we shall describe the prime filters of H(G) which belong to the
growth κX−X. Let us denote by gω the prime filter generated by G ∈ H(G).
gω is a prime because G is a chain. It is evident that gω is contained in all
prime filters gk (k ∈ ω) generated by Gk, which are linearly ordered by
inclusion. Notice that if A ∈ H(G) is a proper subset of G then A is finite,
i.e. coincides with Gk for some k ∈ ω. Therefore for any A ∈ H(G) if
2A ∈ gω then A ∈ gω. Indeed, suppose that for some A ∈ H(G) 2A ∈ gω

and A /∈ gω. It means A ∩ G = Gk for some k ∈ ω. Then gk+1 is a
maximal element of X \ A and therefore gk+2 /∈ 2A which contradicts to
the supposition 2A ⊇ G. Consequently gω is a reflexive point of κX, i.e.
κR(gω, gω).
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Recall that 2G = G ∪ {ai : i ∈ ω} where {ai : i ∈ ω} is the set of all
maximal elements (with respect to R◦) of X\G. 22G = 2G∪{ni, mi : i ∈ ω}
where {ni, mi : i ∈ ω} is the set of all maximal elements (with respect to R◦)
of X \2G. In our notations n1 = ({(∅, ∅)}, ∅) and m1 = ({(∅, ∅), (∅, {1}}, ∅).
It is easy to see that R(ni, ai), R(mi, ai) and R(mi, gi) (i ∈ ω)(see Pine-tree).
It is evident that Cni

= R−1
◦ (ni) ∪ R◦(ni) and Cmi

= R−1
◦ (mi) ∪ R◦(mi) are

elements of H(G) and Cni
and R−1

◦ (mi) are infinite chains. Moreover Cni

and Cmi
are join irreducible. Therefore the filters generated by Cni

, Cmi
,

denote them by νi, µi (i ∈ ω) respectively, will be prime (see Pine-tree). By
the same reasons as in the case of the prime filter gω we conclude that νi, µi

are reflexive points of κX, i.e. κR(νi, νi) and κR(µi, µi).
Further, analogically as in the case of the principal prime filter gω,we can

show that the filters generated by {2kG, −R−1
◦ (x) : x ∈ X \ G}, for some

k ­ 1, are prime which we denote by αk (see Pine-tree). Let us observe that
for the element 2(2k−1G) ∈ αk (k ­ 1) 2

k−1G /∈ αk, whence it follows that
αk is irreflexive point of κX, i.e. ¬κR(αk, αk). The filter generated by the
set of elements −R−1

◦ (x), where x /∈ G, is a non-principal prime filter which
we denote by αω. It is enough to observe that αω contains the elements of
H(G) with co-finite number of branches. It is evident that αω ⊆ . . . α2 ⊆ α1

and for any i, j, t ∈ ω all νi, µj, αt are incomparable. Let us note that the
elements of the kind −R−1

◦ − (V ) is a finite set for any finite set V ⊆ X \ G.
Therefore 2V \V is a finite set. Consequently for any A ∈ H(G) if 2A ∈ αω

then A ∈ αω, whence it follows that αω is a reflexive point of κX, i.e.
κR(αω, αω).

Proceeding from the structure of H(G) which coincides with the ring
of cones K(X) and the fact that the intersection of all elements of H(G),
represented as clopen cones of κX, belonging to some prime filter F of H(G)
coincides with a closed cone, which is either chain or contains no more than
two incomparable elements, with the least element, which is isolated if F ∈ X
and is not isolated if F /∈ X. Therefore we have

Theorem 16. The set κX of all prime filters of H(G) coincides with the
set X ∪ {νi, µi : i ∈ ω} ∪ {gi : i ∈ ω + 1} ∪ {αi : i ∈ ω + 1}. Moreover, the
set X ∪ {αi : i ∈ ω} coincides with the set of all irreflexive points of κX and
{gω, νi, µi : i ∈ ω} coincides with the set of all reflexive points of κX.

We conclude with

Theorem 17. The Heyting lattice of clopen cones of the topological Kripke
frame (κX, κR) is isomorphic to the free cyclic Solovay algebra H(G).
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Remark. We associate with every clopen cone A of κX the trace ϕA = X ∩A
of A on X. The map ϕ establishes the necessary isomorphism. Moreover,
the trace of the clopen cone κR(gω) on X is equal to the generator G =
{gi ∈ X : i ∈ ω} of H(G).
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