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1. Introduction

A. V. Kuznetsov was one of the pioneers in the study of extensions of in-
tuitionistic propositional calculus IPC. He coined them as (propositional)
superintuitionistic logics and undertook a systematic study of their struc-
ture (see, e.g., the survey articles [15, 16, 18, 17]). Kuznetsov was especially
interested whether a logical system is decidable. A theorem by Harrop [11]
states that if a propositional logical system is finitely axiomatizable and has
the fmp, then it is decidable. This led Kuznetsov to study systematically the
fmp and finite axiomatizability of superintuitionistic logics. In collaboration
with his student V. Ja. Gerčiu, Kuznetsov introduced a superintuitionis-
tic logic—we call it the Kuznetsov-Gerčiu logic and denote it by KG—and
studied the fmp and finite axiomatizability of extensions of KG [14, 10].
Kuznetsov and Gerčiu proved that there are extensions of KG which do not
have the fmp and that there are extensions of KG which are not finitely
axiomatizable.

The logic KG is defined as the logic of sums of cyclic Heyting algebras.
Dually they correspond to sums of cyclic intuitionistic descriptive frames.
It follows that KG is contained in the logic of the free cyclic Heyting alge-
bra, known as the Rieger-Nishimura lattice. The dual frame of the Rieger-
Nishimura lattice is the well-known Rieger-Nishimura ladder. We call this
logic the Rieger-Nishimura logic and denote it by RN. It turns out that RN

is the greatest 1-conservative extension of IPC. In this paper we introduce
a new technique of gluing of cyclic intuitionistic descriptive frames and give
a new simple proof of a result of Gerčiu [9, 8] that all extensions of RN

have the fmp. We also show that each extension of RN has the poly-size
model property, thus improving on [9]. On the other hand, for each function
f : ω → ω, we construct an extension Lf of KG such that Lf has the fmp,
but does not have the f -size model property. Moreover, we give a systematic
method of constructing extensions of KG without the fmp, and show that
there are continuum many such. We conclude the paper by giving a new
simple proof of another result of Gerčiu [9] characterizing the only exten-
sion of KG that bounds the fmp for extensions of KG, show that the logic
RN.KC—which is obtained by adding the law of weak excluded middle to
RN—is the only pre-locally tabular extension of KG, introduce the internal
depth of an extension L of RN, and prove that L is locally tabular if and
only if the internal depth of L is finite. This is in sharp contrast with the
general case, where it was shown by Mardaev [19] that there are continuum
many pre-locally tabular superintuitionistic logics.
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The paper is organized as follows. Section 2 consists of preliminaries to
make the paper as self-contained as possible. In Section 3 we introduce the
logics RN and KG, give a simple finite axiomatization of KG, and describe
finite and finitely generated rooted descriptive KG-frames. We also describe
finite rooted RN-frames. In Section 4 we introduce our technique of gluing,
describe finitely generated rooted descriptive RN-frames, and give a simple
finite axiomatization of RN. In Section 5 we prove that all extensions of RN

have the fmp, and construct continuum many extensions of KG that do not
have the fmp. In Section 6 we show that each extension of RN has the poly-
size model property, and for each function f : ω → ω, construct an extension
of KG with the fmp but without the f -size model property. In Section 7
we describe the extension of KG that bounds the fmp in extensions of KG.
Finally, in Section 8 we show that RN.KC is the only pre-locally tabular
extension of KG, define the internal depth of an extension L of RN, and
prove that L is locally tabular if and only if the internal depth of L is finite.

2. Preliminaries

We assume the reader’s familiarity with the intuitionistic propositional cal-
culus IPC and its Kripke semantics. For details we refer to [4, 3].

2.1. Descriptive frames and frame based formulas

We recall that an intuitionistic Kripke frame is a partially ordered set (poset)
F = (W,≤). For a poset F = (W,≤), w ∈ W , and U ⊆ W , let ↑w = {v ∈
W : w ≤ v}, ↑U = {w ∈ W : ∃u ∈ U with u ≤ w}, ↓w = {v ∈ W : v ≤ w},
and ↓U = {w ∈ W : ∃u ∈ U with w ≤ u}. We also recall that U ⊆ W is an
upset of W if u ∈ U and u ≤ v imply v ∈ U . Let Up(F) denote the set of
upsets of F.

Definition 2.1 ([4, Section 8.1]). An intuitionistic general frame or simply
a general frame is a triple F = (W,≤,P) such that (W,≤) is an intuitionistic
Kripke frame and P is a set of upsets of F such that ∅,W ∈ P and P is
closed under ∪, ∩, and →, where:

U → V = {w ∈ W : ↑w ∩ U ⊆ V } = W − ↓(U − V ).

Definition 2.2 ([4, Section 8.4]). Let F = (W,≤,P) be a general frame.

1. We call F refined if for each w, v ∈ W , from w � v it follows that there
is U ∈ P such that w ∈ U and v /∈ U .
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2. We call F compact if for each X ⊆ P and Y ⊆ {W−U : U ∈ P}, whenever
X ∪ Y has the finite intersection property (that is, finite intersections of
elements of X ∪ Y are nonempty), then

⋂
(X ∪ Y) 6= ∅.

3. We call F descriptive if F is refined and compact.

The elements of P are called admissible sets. A descriptive valuation is a
map ν from the set of propositional letters to P. A pair (F, ν), where F is
a descriptive frame and ν is a descriptive valuation, is called a descriptive
model.

For the definition of generated subframes and p-morphisms of descriptive
frames and models we refer to [4, Section 8.5], and for the definition of
subframes we refer to [4, Section 9.1]. An important property of generated
subframes and p-morphic images, which we will use frequently, is that they
preserve validity of formulas.

Definition 2.3 ([3, Definition 2.3.15]). A descriptive frame F = (W,≤,P)
is called rooted if there exists w ∈ W such that W = ↑w and W − {w} ∈ P.

It is well known (see, e.g., [3, Section 2.3.2]) that each superintuitionistic
logic is complete with respect to the class of its rooted descriptive frames.

Definition 2.4. Let F = (W,R,P) be a descriptive frame. We say that
F is n-generated if there exist G1, . . . , Gn ∈ P such that each E ∈ P is a
polynomial of G1, . . . , Gn in the signature ∧, ∨, →, ⊥. We say that F is
finitely generated if F is n-generated for some n ∈ ω.

It is well known that each superintuitionistic logic is complete with re-
spect to its finitely generated rooted descriptive frames [3, Corollary 3.4.3].
For a detailed description of the structure of finitely generated descriptive
frames we refer to [4, Section 8.7] and [3, Section 3.2].

Let F be a finite rooted frame. We recall that with F we can associate
the Jankov-de Jongh formula χ(F) and the subframe formula β(F) [4, Sec-
tion 9.4], [3, Section 3.3]. Although the actual shapes of χ(F) and β(F) do
not really matter, the following theorem is of fundamental importance.

Theorem 2.5. 1. Let F be a finite rooted frame and let χ(F) be the Jankov-

de Jongh formula of F. Then for each descriptive frame G we have:1

G 6|= χ(F) if and only if F is a p-morphic image

of a generated subframe of G.

1For two different proofs see [4, Proposition 9.41] and [3, Theorem 3.3.3].
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2. Let F be a finite rooted frame and let β(F) be the subframe formula of

F. Then for each descriptive frame G we have:2

G 6|= β(F) if and only if F is a p-morphic image of a subframe of G.

2.2. Sums of descriptive frames

Definition 2.6 (See, e.g., [6, p. 17 and p. 179]). Let F1 = (W1,≤1) and
F2 = (W2,≤2) be Kripke frames. The linear sum of F1 and F2 is the Kripke
frame F1 ⊕ F2 = (W1 ⊔ W2,≤) such that W1 ⊔ W2 is the disjoint union of
W1 and W2 and for each w, v ∈ W1 ⊔W2 we have:

w ≤ v iff w, v ∈ W1 and w ≤1 v, or
w, v ∈ W2 and w ≤2 v, or
w ∈ W2 and v ∈ W1.

We extend the definition of linear sum to descriptive frames.

Definition 2.7. [2, Sections 2.3 and 2.4]

1. Let F1 = (W1,≤1,P1) and F2 = (W2,≤2,P2) be descriptive frames. The
linear sum of F1 and F2 is the descriptive frame F1 ⊕F2 = (W,≤,P) such
that (W,≤) is the linear sum of (W1,≤1) and (W2,≤2), and U ∈ P if and
only if U ∈ P1 or U = W1 ∪ V , where V ∈ P2.

2. Let F1, . . . , Fn be descriptive frames. We define
⊕n

i=1 Fi = (
⊕n−1

i=1 Fi) ⊕
Fn. If each Fi is equal to F, then we simply write

⊕
n F.

3. Let {Fi : i ∈ ω} be a countable family of descriptive frames, where
Fi = (Wi,≤i,Pi) for each i ∈ ω. Let W =

∐
i∈ω Wi∪{∞}, where

∐
i∈ω Wi

is the disjoint union of {Wi : i ∈ ω} and ∞ /∈ Wi for each i ∈ ω. The
linear sum of {Fi : i ∈ ω} is the frame

⊕
i∈ω Fi = (W,≤,P) such that for

each w, v ∈
∐

i∈ω Wi we have:

w ≤ v iff w ∈ Wi, v ∈ Wj, and i > j, or
there is i ∈ ω such that w, v ∈ Wi and w ≤i v, or
w = ∞,

and U ∈ P if and only if U is an upset of W , U 6=
∐

i∈ω Wi, and U ∩Wi ∈
Pi for each i ∈ ω.

2For two different proofs see [4, Section 9.4] and [3, Theorem 3.3.16].
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Figure 1. The Rieger-Nishimura ladder L

It is obvious that up to isomorphism ⊕ is an associative operation, and
it is easy to verify that the linear sum of a countable family of descriptive
frames is again a descriptive frame [2, Section 2.4]. If each Fi is equal to
F, then we simply write

⊕
ω F. Figuratively speaking, the operation ⊕ puts

F2 below F1, and the operation
⊕

forms a tower of {Fi : i ∈ ω} by putting
the Fi below each other and then adjoining a new root to it. Note that the
complement of the new root is not admissible.

2.3. The Rieger-Nishimura ladder

Rieger [21] and Nishimura [20] described independently the free cyclic (1-
generated) Heyting algebra. The corresponding dual descriptive frame is
known as the Rieger-Nishimura ladder and is shown in Fig. 1. We denote
the Rieger-Nishimura ladder by L. Let PL denote the set of admissible
upsets of L, and let L0 = L − {ω}. Then L0 is the only non-admissible
upset of L. Consequently, Up(L0) is isomorphic to PL, and so one can work
with either L and the admissible upsets of L, or equivalently, with L0 and
all upsets of L0. As a result, some authors concentrate mostly on L0 (see,
e.g., [4, Section 8.7]). Since in this paper we mostly work with descriptive
frames, we prefer to work with L, and call it the Rieger-Nishimura ladder.
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Definition 2.8 ([20]). The Nishimura polynomials are given by the follow-
ing recursive definition, where n ∈ ω:

• g0(p) = p,

• g1(p) = ¬ p,

• f1(p) = p ∨ ¬p,

• g2(p) = ¬ ¬ p,

• g3(p) = ¬ ¬ p→ p,

• gn+4(p) = gn+3(p) → (gn(p) ∨ gn+1(p)),

• fn+2(p) = gn+2(p) ∨ gn+1(p).

For k ∈ ω let Lgk
= ↑wk, and for k > 1 let Lfk

= ↑wk ∪ ↑wk−1. Let
also ν(p) = {w0}. The next proposition, which is straightforward to verify,
shows that Lgk

and Lfk
are precisely the generated subframes of L satisfying

gk(p) and fk(p), respectively.

Proposition 2.9. 1. For k ∈ ω we have ↑wk = {w ∈ L : w |= gk(p)}.

2. For k ­ 1 we have ↑wk ∪ ↑wk−1 = {w ∈ L : w |= fk(p)}.

We conclude this brief survey of the Rieger-Nishimura ladder by men-
tioning a rather natural appearance of L0 in a different setting. Define 4 on
ω by

n 4 m if and only if n−m ­ 2.

As was observed by Esakia [7], the frame (ω,4) is isomorphic to L0.

3. Rieger-Nishimura and Kuznetsov-Gerčiu logics

In this section we introduce the Rieger-Nishimura logic RN and the Kuzne-
tsov-Gerčiu logic KG. We give a finite axiomatization of KG and describe
finite and finitely generated rooted descriptive KG-frames. We also describe
finite rooted RN-frames.

For a frame F, let Log(F) = {ϕ : F |= ϕ}; that is, Log(F) is the set of
formulas valid in F. For a class K of frames, let Log(K) =

⋂
{Log(F) : F ∈ K}.

It is well-known (see, e.g., [4, Theorem 4.3]) that both Log(F) and Log(K)
are superintuitionistic logics. We call Log(F) the logic of F, and we call
Log(K) the logic of K.

Definition 3.10. We set RN = Log(L); that is, RN is the logic of the
Rieger-Nishimura ladder.
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A purely syntactic motivation for studying RN comes from n-conser-
vative extensions and n-scheme logics. Let L and S be superintuitionistic
logics. We recall that S is an n-conservative extension of L if L ⊆ S and for
each formula ϕ(p1, . . . , pn) in n variables, we have L ⊢ ϕ if and only if S ⊢ ϕ.
We also recall that for a superintuitionistic logic L, a set of formulas L(n) is
called the n-scheme logic of L if for each k and each formula ψ(p1, . . . , pk)
in k variables, ψ(p1, . . . , pk) ∈ L(n) if and only if for all χ1(p1, . . . pn), . . . ,
χk(p1, . . . , pn), we have L ⊢ ψ(χ1, . . . , χk). It is easy to see that L(n) is a
superintuitionistic logic for each n ∈ ω. It follows from [3, Proposition 4.1.9]
that for each superintuitionistic logic L, a superintuitionistic logic S is an
n-conservative extension of L if and only if L ⊆ S ⊆ L(n), and that L(n)
is the greatest n-conservative extension of L. It turns out that RN is the
1-scheme logic of IPC and the greatest 1-conservative extension of IPC [3,
Theorem 4.1.10].

We call a descriptive frame F cyclic if it is isomorphic to L, Lgk
, or Lfk

for some k ∈ ω. Thus, F is cyclic if and only if it is a generated subframe
of L, and each cyclic frame is finite except L. Cyclic frames are exactly the
duals of cyclic Heyting algebras ([2, Proposition 4], [3, Section 4.1.1]), which
is the motivation for the definition. It follows that RN is the logic of the
cyclic frames. In fact, RN is the logic of the finite cyclic frames (see [14,
Section 4] and Section 5 below). A natural relative of RN is the logic of
finite linear sums of cyclic frames.

Definition 3.11. We set KG = Log({
⊕n

i=1 Fi : each Fi is cyclic}); that is,
KG is the logic of finite linear sums of cyclic frames.

It follows from the definition that KG ⊆ RN. In fact, as we will see
below, RN is a proper extension of KG, and there are continuum many log-
ics in the interval [KG,RN]. The logic KG was introduced and studied by
Kuznetsov and Gerčiu [14]. They showed that KG is finitely axiomatizable.
Consider the formula

ϕKG = (p → q) ∨ (q → r) ∨ ((q → r) → r) ∨ (r → (p ∨ q)).

Theorem 3.12 ([14, Corollary 4.3.9]). KG = IPC + ϕKG.

A more convenient axiomatization of KG was given in [13, Theorem 16]
and [3, Theorem 4.3.4] by means of subframe formulas. Consider the frames
K1, K2, and K3 shown in Fig. 2.

Theorem 3.13. KG = IPC + β(K1) ∧ β(K2) ∧ β(K3).
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K1 K2 K3

Figure 2. The frames K1,K2, and K3

Proof. It is shown in [13, Theorem 16] that the greatest modal companion
of KG is axiomatized by adding the subframe formulas of K1, K2, and K3

to the Grzegorczyk logic S4.Grz, which is the greatest modal companion of
IPC. It follows that KG = IPC + β(K1) ∧ β(K2) ∧ β(K3). A more detailed
direct proof can be found in [3, Theorem 4.3.4]. ⊣

Consequently, KG is a subframe logic. Finitely generated subdirectly
irreducible Heyting algebras that belong to the variety of Heyting algebras
corresponding to KG were characterized in [14, Lemma 4]. This gives the fol-
lowing characterization of rooted finitely generated descriptive KG-frames.
For a detailed proof, which is different from that in [14], we refer to [3,
Corollary 4.3.9]. A similar characterization was also established in [13, The-
orem 16] for the least modal companion of KG.

Theorem 3.14. A rooted descriptive KG-frame F is finitely generated if

and only if F is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is a cyclic

frame and n, k ∈ ω.

Remark 3.15. Here and below we assume that if n = 0, then (
⊕n

i=1 Fi)⊕G =
G for any frame G.

This theorem, in particular, implies that each finite rooted KG-frame
is isomorphic to (

⊕n
i=1 Fi) ⊕ Lgk

, where each Fi is a finite cyclic frame and
n, k ∈ ω. Our next task is to single out the class of finite rooted RN-frames
from the class of finite rooted KG-frames. We recall that a descriptive frame
F is a generated subframe of L if and only if F is isomorphic to L, Lgk

, or Lfk
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G2G1

Figure 3. The frames G1 and G2

for some k ∈ ω, and that each proper generated subframe of L is finite ([2,
Proposition 4], [3, Theorem 4.2.1]). Next we recall a characterization of the
p-morphic images of L. Up to isomorphism, there are three different types
of p-morphic images of L, which can be described by means of linear sums of
descriptive frames. Let G1 denote the frame consisting of a single point, and
let G2 denote the frame consisting of two distinct points that are not related
to each other (see Fig.3). The following result was established independently
in [13, Section 6] and [2, Proposition 4]. For a purely algebraic proof, we
refer to [3, Theorem 4.2.6 and Corollary 4.2.7].

Theorem 3.16. A descriptive frame F is a p-morphic image of L if and only

if F is isomorphic to one of the following frames:
⊕

i∈ω Fi, (
⊕n

i=1 Fi) ⊕ G1,

or (
⊕n

i=1 Fi)⊕L, where each Fi is isomorphic to either G1 or G2 and n ∈ ω.

We point out that when n = 0, then (
⊕n

i=1 Fi) ⊕ L = L. Theorem 3.16
enables us to characterize the generated subframes of p-morphic images of L.

Theorem 3.17. 1. An infinite descriptive frame F is a generated subframe

of a p-morphic image of L if and only if F is isomorphic to
⊕

i∈ω Fi or

(
⊕n

i=1 Fi) ⊕ L, where each Fi is isomorphic to G1 or G2 and n ∈ ω.

2. A finite frame F is a generated subframe of a p-morphic image of L if

and only if F is isomorphic to (
⊕n

i=1 Fi) ⊕Lgk
or (

⊕n
i=1 Fi) ⊕Lfk

, where

each Fi is isomorphic to G1 or G2 and n, k ∈ ω.

3. A finite rooted frame F is a generated subframe of a p-morphic image

of L if and only if F is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is

isomorphic to G1 or G2 and n, k ∈ ω.

Proof. 1. The right to left implication follows from Theorem 3.16. Con-
versely, suppose an infinite descriptive frame F is a generated subframe of a
p-morphic image of L. Then there exists an infinite descriptive frame G such
that F is a generated subframe of G and G is a p-morphic image of L. By
Theorem 3.16, G is isomorphic to

⊕
i∈ω Fi or (

⊕n
i=1 Fi) ⊕ L, where each Fi

is isomorphic to G1 or G2 and n ∈ ω. It is easy to see that neither
⊕

i∈ω Fi

nor (
⊕n

i=1 Fi) ⊕L contains a proper infinite generated subframe. Therefore,
F is isomorphic to either

⊕
i∈ω Fi or (

⊕n
i=1 Fi) ⊕ L.
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2. The right to left implication follows from Theorem 3.16. Conversely,
suppose G is a p-morphic image of L and F is a finite generated subframe
of G. By Theorem 3.16, G is isomorphic to

⊕
i∈ω Fi, (

⊕m
i=1 Fi) ⊕ G1, or

(
⊕m

i=1 Fi) ⊕ L, where each Fi is isomorphic to G1 or G2 and m ∈ ω. In
the first two cases F is isomorphic to

⊕n
i=1 Fi, and in the third case F is

isomorphic to
⊕n

i=1 Fi, (
⊕n

i=1 Fi) ⊕ Lgk
, or (

⊕n
i=1 Fi) ⊕ Lfk

, where each Fi

is isomorphic to G1 or G2 and n, k ∈ ω. Observe that whenever
⊕n

i=1 Fi

is rooted, then
⊕n

i=1 Fi = (
⊕n−1

i=1 Fi) ⊕ Lg0, and whenever
⊕n

i=1 Fi is not
rooted, then

⊕n
i=1 Fi = (

⊕n−1
i=1 Fi) ⊕ Lf1. The result follows.

3. It follows from 2. since Lfk
is not rooted for each k ­ 1. ⊣

Corollary 3.18. A finite rooted frame F is an RN-frame if and only if F

is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to G1 or G2

and n, k ∈ ω.

Proof. It follows from Theorem 3.17 that if a finite rooted frame F is
isomorphic to (

⊕n
i=1 Fi) ⊕Lgk

, where each Fi is isomorphic to G1 or G2 and
n, k ∈ ω, then F is an RN-frame. Conversely, suppose that F is a finite
rooted RN-frame. By Theorem 2.5.1, F is a generated subframe of a p-
morphic image of L. Thus, by Theorem 3.17.3, F is isomorphic to (

⊕n
i=1 Fi)⊕

Lgk
, where each Fi is isomorphic to G1 or G2 and n, k ∈ ω. ⊣

As an immediate consequence, we obtain that RN is a proper extension
of KG.

Theorem 3.19. KG $ RN.

Proof. That none of K1, K2, K3 is a p-morphic image of a subframe of L
is routine to check. Therefore, by Theorem 2.5.2, L |= β(K1), β(K2), β(K3).
This, by Theorem 3.13, means that L is a KG-frame, and so KG ⊆ Log(L) =
RN. Now we show that KG 6= RN. Consider the frame Lg4 ⊕ G1. By
Theorem 3.14, Lg4 ⊕ G1 is a rooted KG-frame. On the other hand, by
Corollary 3.18, Lg4 ⊕ G1 is not an RN-frame. Thus, by Theorem 2.5.1,
χ(Lg4 ⊕ G1) ∈ RN but χ(Lg4 ⊕ G1) /∈ KG, and so RN * KG. ⊣

Similar to KG, we have that RN is finitely axiomatizable. This was
first observed by Kuznetsov and Gerčiu [14, Theorem 1]. But their ax-
iomatization was rather complicated. In order to give a more convenient
axiomatization of RN, using a mixture of subframe and Jankov-de Jongh
formulas, we need to characterize finitely generated rooted RN-frames.
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4. Gluing and finitely generated rooted RN-frames

In this section we introduce our technique of gluing, characterize finitely
generated rooted RN-frames, and give a convenient finite axiomatization
of RN.

Theorem 4.20. Let F be a finitely generated rooted descriptive KG-frame.

If F is an RN-frame, then there exist k, n ∈ ω such that F is isomorphic to

(
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic to L, G1, or G2.

Proof. By Theorem 3.14, F is isomorphic to a linear sum (
⊕n

k=1 Fi) ⊕Lgk
,

where each Fi is a cyclic frame and k ∈ ω. If for each j ¬ n we have that Fj

is isomorphic to L, G1, or G2, then F satisfies the condition of the theorem.
Suppose that there exists j ¬ n such that Fj is isomorphic to Lgm for some
m ­ 4 or Fj is isomorphic to Lfl

for some l ­ 2. (For m < 4 and l < 2 the
frames Lgm and Lfl

are isomorphic to linear sums of G1 and G2.) Let j ¬ n
be the the least such j. If j > 1, then we define f : F → G1 ⊕ Fj ⊕ G1 by
mapping all the points above Fj onto the top node of G1 ⊕ Fj ⊕ G1, all the
points below Fj onto the bottom node of G1 ⊕ Fj ⊕ G1, and each point in
Fj to itself; and if j = 1, then we define f : F → Fj ⊕G1 by mapping all the
points below Fj onto the bottom node of Fj ⊕ G1, and each point in Fj to
itself. In either case it is easy to verify that f is a p-morphism. Thus, either
G1⊕Fj⊕G1 or Fj⊕G1 is a finite RN-frame, which contradicts Corollary 3.18.
The obtained contradiction proves that such a j does not exist. ⊣

To show that the converse of Theorem 4.20 holds, we introduce a new
technique of gluing. For a Kripke frame F let max(F) denote the set of
maximal points and min(F) denote the set of minimal points of F.

Definition 4.21. 1. Let F1 = (W1,≤1) and F2 = (W2,≤2) be Kripke
frames such that min(F1) and max(F2) are nonempty. Let x ∈ min(F1)
and y ∈ max(F2). The gluing sum of (F1, x) and (F2, y) is the frame
(F1, x)⊕̂(F2, y) = (W1 ⊔ W2,≤) such that W1 ⊔ W2 is the disjoint union
of W1 and W2, and ≤=≤1 ∪ ≤2 ∪[(W2 ×W1) − {(y, x)}].

2. Let F1 = (W1,≤1,P1) and F2 = (W2,≤2,P2) be descriptive frames and
let x ∈ min(F1) and y ∈ max(F2). The gluing sum of (F1, x) and (F2, y)
is the frame (F1, x)⊕̂(F2, y) = (W1 ⊔W2,≤,P), where (W1 ⊔W2,≤) is the
gluing sum of ((W1,≤1), x) and ((W2,≤2), y), and

P = {U ⊆ W1 ⊔W2 : U is a ≤-upset, U ∩W1 ∈ P1, and U ∩W2 ∈ P2}.
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Figuratively speaking, we take the linear sum of F1 and F2 and erase an
arrow going from y to x.

Lemma 4.22. Let k,m ∈ ω and let m be odd.

1. (Lfm
, wm)⊕̂(L, w0) is isomorphic to L.

2. (Lfm
, wm)⊕̂(Lgk

, w0) is isomorphic to Lgk+m+1
.

Next we recall the definition of the complexity of a formula.

Definition 4.23. The complexity c(ϕ) of a formula ϕ is defined inductively
as follows:

c(p) = 0,

c(⊥) = 0,

c(ϕ ∧ ψ) = max{c(ϕ), c(ψ)},

c(ϕ ∨ ψ) = max{c(ϕ), c(ψ)},

c(ϕ → ψ) = 1 + max{c(ϕ), c(ψ)}.

Now we recall the notion of the depth of a frame.

Definition 4.24. Let F be a frame.

1. We say that F is of depth n < ω, and write d(F) = n, if there is a chain
of n points in F and no other chain in F contains more than n points.

2. We say that F is of infinite depth, and write d(F) = ω, if F contains a
chain consisting of n points for each n ∈ ω.

3. We say that F is of finite depth if d(F) < ω.

4. The depth of a point w of F is the depth of the subframe of F generated
by w. We denote the depth of w by d(w).

5. For an upset U of F, the depth d(U) of U is defined as d(U) = sup{d(x) :
x ∈ U}.

Definition 4.25. Let p1, . . . , pn be propositional variables and let ν be a
descriptive valuation of p1, . . . , pn on L.

1. Let rank(ν) = max{d(ν(pi)) : ν(pi) ( L}.

2. For each formula ϕ(p1, . . . , pn), let Mν(ϕ) = rank(ν) + c(ϕ) + 1.
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Lemma 4.26. Let ν be a descriptive valuation on L. For each formula

ϕ(p1, . . . , pn) and for each x, y ∈ L with d(x),d(y) > Mν(ϕ), we have:

x |= ϕ if and only if y |= ϕ.

Proof. By induction on the complexity of ϕ. If c(ϕ) = 0; that is, if ϕ
is either ⊥ or a propositional letter, then the lemma is obvious. Suppose
that c(ϕ) = k and that the lemma holds for each formula ψ such that
c(ψ) < k. The cases when ϕ = ψ1 ∧ψ2 and ϕ = ψ1 ∨ψ2 are trivial. Suppose
that ϕ = ψ1 → ψ2. Then c(ψ1), c(ψ2) < k. Let x, y ∈ L be such that
d(x),d(y) > Mν(ϕ). Without loss of generality we may assume that x 6|= ϕ
and show that y 6|= ϕ. >From x 6|= ψ1 → ψ2 it follows that there exists
z ∈ L such that x ≤ z, z |= ψ1, and z 6|= ψ2. If d(z) < d(y) − 1, because of
the structure of L, we have that y ≤ z, and so y 6|= ϕ. If d(z) ­ d(y) − 1,
then d(z) > Mν(ϕ) − 1 = rank(ν) + c(ϕ) ­ rank(ν) + c(ψi) + 1 = Mν(ψi) for
each i = 1, 2. Thus, d(z),d(y) > Mν(ψi), and by the induction hypothesis,
y |= ψ1 and y 6|= ψ2, which again implies that y 6|= ϕ. ⊣

Lemma 4.27. 1. If L ⊕ L 6|= ϕ, then L 6|= ϕ.

2. If L ⊕ L ⊕ G 6|= ϕ for some frame G, then L ⊕ G 6|= ϕ.

3. If F ⊕ L ⊕ L 6|= ϕ for some frame F, then F ⊕ L 6|= ϕ.

4. If F ⊕ L ⊕ L ⊕ G 6|= ϕ for some frames F and G, then F ⊕ L ⊕ G 6|= ϕ.

5. If for some k ∈ ω we have L ⊕ Lgk
6|= ϕ, then Lgm 6|= ϕ for some m ­ k.

6. If for some k ∈ ω and some frame G we have L ⊕ Lgk
⊕ G 6|= ϕ, then

Lgm ⊕ G 6|= ϕ for some m ­ k.

7. If for some k ∈ ω and some frame F we have F ⊕ L ⊕ Lgk
6|= ϕ, then

F ⊕ Lgm 6|= ϕ for some m ­ k.

8. If for some k ∈ ω and some frames G and F we have F⊕L⊕Lgk
⊕F 6|= ϕ,

then F ⊕ Lgm ⊕ G 6|= ϕ for some m ­ k.

Proof. 1. Let ν be a descriptive valuation on L⊕L such that (L⊕L, ν) 6|= ϕ.
In order to make a distinction, we denote the copy of L on top by L1 and
the copy underneath by L2. Let ν1 and ν2 be the restrictions of ν to L1 and
L2, respectively; that is, νi(p) = ν(p) ∩ Li for each i = 1, 2. Let M1(ϕ) =
rank(ν1) + c(ϕ) + 1 and let m = 2 · M1(ϕ) + 1. Consider the gluing sum
(Lfm

, wm)⊕̂(L2, w0), and let µ be the restriction of ν to (Lfm
, wm)⊕̂(L2, w0).

By Lemma 4.22.1, (Lfm
, wm)⊕̂(L2, w0) is isomorphic to L. Thus, to finish

the proof we only need to show that ((Lfm
, wm)⊕̂(L2, w0), µ) 6|= ϕ, which we

do in the next claim.
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Claim 4.28. ((Lfm
, wm)⊕̂(L2, w0), µ) 6|= ϕ.

Proof. By induction on the complexity of ϕ. The cases when ϕ is ei-
ther ⊥, a propositional letter, a conjunction, or a disjunction of two for-
mulas are simple. Let ϕ = ψ → χ. Since (L1 ⊕ L2, ν) 6|= ϕ, there exists
x ∈ L1 ⊕ L2 such that (L1 ⊕ L2, ν), x |= ψ and (L1 ⊕ L2, ν), x 6|= χ. If
x belongs to (Lfm

, wm)⊕̂(L2, w0), then we are done. If x does not belong
to (Lfm

, wm)⊕̂(L2, w0), then we take a point y in Lfm
of depth M1(ϕ).

Since c(ψ), c(χ) < c(ϕ), we have M1(ψ),M1(χ) < M1(ϕ). It follows from
Lemma 4.26 that (L1 ⊕ L2, ν), y |= ψ and (L1 ⊕ L2, ν), y 6|= χ. Therefore,
((Lfm

, wm)⊕̂(L2, w0), µ), y |= ψ and ((Lfm
, wm)⊕̂(L2, w0), µ), y 6|= χ. Thus,

((Lfm
, wm)⊕̂(L2, w0), µ), y 6|= ϕ. ⊣

The proof of 2. is similar to that of 1. The proofs of 3. and 4. are similar
to those of 1. and 2. with the only difference that in these cases we should
consider F⊕Lfm

instead of Lfm
. The proof of (5) is similar to that of 1.: We

take the upset F consisting of Mν(ϕ) layers of L and then consider a gluing
sum of F with Lgk

. The proofs of 6., 7., and 8. are similar to that of 5. ⊣

We point out that a modal analogue of Lemma 4.27.1 can be found
in [13, Lemma 17]. We will also need the following auxiliary lemma [3,
Lemma 4.2.12], which is an analogue of Theorem 3.16.

Lemma 4.29. For each k, n ∈ ω, the frame (
⊕n

i=1 Fi) ⊕ Lgk
is a p-morphic

image of Lgk+3n
, where each Fi is isomorphic to G1 or G2.

We are now ready to characterize finitely generated rooted descriptive
RN-frames.

Theorem 4.30. A finitely generated rooted descriptive KG-frame F is an

RN-frame if and only if F is isomorphic to (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi

is isomorphic to L, G1, or G2 and n, k ∈ ω.

Proof. The direction from left to right is Theorem 4.20. For the other
direction, suppose that F is isomorphic to (

⊕n
i=1 Fi) ⊕ Lgk

, where each Fi

is isomorphic to L, G1, or G2 and n, k ∈ ω. Let m ∈ ω be the number of
copies of L occurring in

⊕n
i=1 Fi. Then F is isomorphic to [

⊕
m((

⊕mi

j=1 Hj)⊕
L)] ⊕ (

⊕s
j=1 Hj) ⊕Lgk

for some k,m,mi, s ∈ ω, where each Hj is isomorphic
to G1 or G2. By Theorem 3.16, (

⊕mi

j=1 Hj) ⊕ L is a p-morphic image of L.
By Lemma 4.29, (

⊕s
j=1 Hj) ⊕ Lgk

is a p-morphic image of Lgk+3s
. Thus, F

is a p-morphic image of (
⊕

m L) ⊕ Lgk+3s
. We show that (

⊕
m L) ⊕ Lgk+3s
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K4 K5 K6

Figure 4. The frames K4, K5, K6

is an RN-frame. If not, then there exists a formula ϕ(p1, . . . , pn) such that
RN ⊢ ϕ but (

⊕
m L) ⊕ Lgk+3s

6|= ϕ. Applying Lemma 4.27.2 m − 1 times,
we obtain that L ⊕ Lgk

6|= ϕ. By Lemma 4.27.5, there is t ­ k such that
Lgt 6|= ϕ. Therefore, we found an RN-frame H = Lgt such that H 6|= ϕ.
This contradicts the fact that RN ⊢ ϕ. Thus, such a ϕ does not exist, and
so (

⊕
m L) ⊕ Lgk+3s

is an RN-frame. Consequently, so is F as a p-morphic
image of (

⊕
m L) ⊕ Lgk+3s

. ⊣

Next we give yet another characterization of finitely generated rooted
descriptive RN-frames. Let K4 = Lg4 ⊕ G1, K5 = G1 ⊕ Lg4 ⊕ G1, and
K6 = Lg5 ⊕ G1. The frames K4,K5, and K6 are shown in Fig. 4.

Lemma 4.31. G1 ⊕ Lg4 ⊕ G1 is a p-morphic image of G1 ⊕ Lg5 ⊕ G1.

Proof. Let G1 ⊕Lg4 ⊕G1 and G1 ⊕Lg5 ⊕G1 be labeled as in Fig. 5. Define
f : G1 ⊕ Lg5 ⊕ G1 → G1 ⊕ Lg4 ⊕G1 by f(yi) = xi for each i = 1, . . . , 5, and
f(y6) = x5. Then it is easy to check that f is an onto p-morphism. ⊣

Theorem 4.32. A finitely generated rooted descriptive KG-frame F is an

RN-frame if and only if Ki is not a generated subframe of a p-morphic image

of F for each i = 4, 5, 6.

Proof. First suppose that F is a finitely generated rooted descriptive RN-
frame. If there is i = 4, 5, 6 such that Ki is a generated subframe of a
p-morphic image of F, then the Ki is also an RN-frame, which contradicts
Corollary 3.18. Thus, for no i = 4, 5, 6 we have Ki is a generated subframe
of a p-morphic image of F. Conversely, suppose that F is a finitely generated
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Figure 5. The frames G1 ⊕ Lg4
⊕ G1 and G1 ⊕ Lg5

⊕ G1 with the labels

rooted descriptive KG-frame such that for no i = 4, 5, 6 we have Ki is a
generated subframe of a p-morphic image of F. Since F is a KG-frame, by
Theorem 3.14, F is isomorphic to (

⊕n
i=1 Fi) ⊕ Lgk

, where each Fi is a cyclic
frame and n, k ∈ ω. Assume that F is not an RN-frame. By Theorem 4.30,
there exists i ¬ n such that Fi is isomorphic to Lgm or Lfl

for some m ­ 4
and l ­ 2. We take the least such i. There are two possible cases:

Case 1. Fi is isomorphic to Lgm for some m ­ 4. As in Theorem 4.20,
if i > 1, then we define f : F → G1 ⊕ Fi ⊕ G1 by mapping all the points
above Fi onto the top node of G1 ⊕Fi ⊕G1, all the points below Fi onto the
bottom node of G1 ⊕ Fi ⊕ G1, and each point in Fi to itself; and if i = 1,
then we define f : F → Fi ⊕ G1 by mapping all the points below Fi onto the
bottom node of Fi ⊕ G1, and each point in Fi to itself. In either case it is
easy to verify that f is a p-morphism. Looking at the structure of Lgm we
see that if m is even, then the subframe of Lgm consisting of the last three
layers of Lgm is isomorphic to Lg4; and if m is odd, then the subframe of Lgm

consisting of the last three layers of Lgm is isomorphic to Lg5. Therefore, if
m is even and m ­ 4, then by identifying all but the points of the last three
layers of Lgm we obtain a p-morphic image of Lgm which is isomorphic to
G1 ⊕ Lg4 or Lg4 (depending whether i > 1 or i = 1); and if m is odd and
m ­ 5, then by identifying all but the points of the last three layers of Lgm

we obtain a p-morphic image of Lgm which is isomorphic to G1 ⊕Lg5 or Lg5

(again depending whether i > 1 or i = 1). Thus, if m ­ 4 and m is even,
then K4 = Lg4 ⊕ G1 or K5 = G1 ⊕ Lg4 ⊕ G1 is a p-morphic image of F; and
if m ­ 5 and m is odd, then K6 = Lg5 ⊕G1 or G1 ⊕Lg5 ⊕G1 is a p-morphic
image of F. Since by Lemma 4.31, K5 is a p-morphic image of G1 ⊕Lg5 ⊕G1,
we obtain that one of K4, K5, K6 is a p-morphic image of F.
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Case 2. Fi is isomorphic to Lfl
for some l ­ 2. We show that this

case can be reduced to the previous one. Note that Lfl
⊕ G1 is isomorphic

to Lgl+2
. If i < n, then we define f : F → (

⊕i−1
j=1 Fj) ⊕ Fi ⊕ G1 ⊕ G1 by

mapping all the points in between Fi and Lgk
to the second to least element

of (
⊕i−1

j=1 Fj) ⊕ Fi ⊕ G1 ⊕ G1, all the points in Lgk
to the least element of

(
⊕i−1

j=1 Fj)⊕Fi⊕G1 ⊕G1, and each point of (
⊕i−1

j=1 Fj)⊕Fi to itself. It is easy
to check that f is a p-morphism. If i = n, then by Theorem 4.30, as F is not
an RN-frame, k ­ 2. If k = 2, then F is isomorphic to (

⊕i−1
j=1 Fj)⊕Lfl

⊕G1⊕

G1, and if k ­ 4, then (
⊕i−1

j=1 Fj) ⊕ Lfl
⊕ G1 ⊕ G1 is a generated subframe

of F (generated by w2 ∈ Lgk
). Finally, if k = 3, then we consider the p-

morphism f : F → (
⊕i−1

j=1 Fj) ⊕ Lfl
⊕ G1 ⊕ G1 that maps the two maximal

points of Lg3 to the second to least element of (
⊕i−1

j=1 Fj) ⊕ Lfl
⊕ G1 ⊕ G1

and is the identity on the rest. Thus, in all these cases we obtain that
(
⊕i−1

j=1 Fj)⊕Lfl
⊕G1⊕G1 is either a generated subframe or a p-morphic image

of F. But (
⊕i−1

j=1 Fj)⊕Lfl
⊕G1 ⊕G1 is isomorphic to (

⊕i−1
j=1 Fj)⊕Lgl+2

⊕G1.
Now apply the argument of case 1.

As a result, we obtain that if F is not an RN-frame, then one of K4, K5,
K6 is a p-morphic image of a generated subframe of F. ⊣

Now we are in a position to give a convenient axiomatization of RN.

Theorem 4.33. 1. RN = KG + χ(K4) ∧ χ(K5) ∧ χ(K6).

2. RN = IPC + β(K1) ∧ β(K2) ∧ β(K3) ∧ χ(K4) ∧ χ(K5) ∧ χ(K6).

Proof. 1. It follows from theorems 2.5.1, 4.30, and 4.32 that RN and KG+
χ(K4) ∧ χ(K5) ∧ χ(K6) have the same finitely generated rooted descriptive
frames. Now since each superintuitionistic logic is complete with respect to
its finitely generated rooted descriptive frames (see, e.g., [3, Corollary 3.4.3]),
we obtain that RN = KG + χ(K1) ∧ χ(K2) ∧ χ(K3).

2. It is an immediate consequence of (1) and Theorem 3.13. ⊣

We note that a similar axiomatization of the greatest modal companion
of RN was claimed in [13, Theorem 18]. However, the argument contained
a gap since the formula χ(K6) was missing from the axiomatization.

We conclude this section by showing that unlike KG, the logic RN is
not a subframe logic. For this, by [4, Theorem 11.21], it is sufficient to show
that descriptive RN-frames are not closed under the operation of taking
subframes.

Theorem 4.34. RN is not a subframe logic.
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Figure 6. K4, K5, and K6 as subframes of L

Proof. By Corollary 3.18, neither of K4, K5, K6 is an RN-frame. However,
as can be seen from Fig. 6, all three are subframes of L. Thus, RN is not a
subframe logic. ⊣

5. Extensions of KG with and without the fmp

In this section we use our gluing technique to give a systematic method
of constructing extensions of KG with and without the fmp. Our first
general theorem states that every extension of RN has the fmp. This result
was first established by Gerčiu [9] using algebraic technique (the gaps in
[9] were corrected in [8]). Kracht [13] claimed that every extension of the
greatest modal companion of KG has the fmp. This is not true as we will
see shortly. In fact, there are continuum many extensions of KG that lack
the fmp. Nevertheless, Kracht’s technique works for all extensions of the
greatest modal companion of RN.

Theorem 5.35. Every extension of RN has the fmp.

Proof. Let L be an extension of RN and let L 0 ϕ. Then there exists
a finitely generated rooted descriptive L-frame F such that F 6|= ϕ. By
Theorem 4.30, F is isomorphic to (

⊕n
i=1 Fi)⊕Lgk

, where each Fi is isomorphic
to L, G1, or G2. If there is no j ¬ n such that Fj is isomorphic to L, then
F is finite, and so ϕ is refuted on a finite L-frame. Suppose that j ¬ n
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Figure 7. The frame L ⊕ Lg4
⊕ G1

is the least index for which Fj is isomorphic to L. Let H denote the finite
frame F1 ⊕ · · · ⊕ Fj−1. Then F is isomorphic to H ⊕ Fj ⊕ · · · ⊕ Fn ⊕ Lgk

. It
follows from the proof of Theorem 4.30 that there exist s,m ∈ ω such that
Fj ⊕ · · · ⊕Fn ⊕Lgk

is a p-morphic image of
⊕

s L⊕Lgm. Therefore, F is a p-
morphic image of G = H⊕

⊕
s L⊕Lgm. Since p-morphisms preserve validity

of formulas, G 6|= ϕ. Applying Lemma 4.27.4 s − 1 times, we obtain that
H⊕L⊕Lgm 6|= ϕ. By Lemma 4.27.7, there is t ­ m such that H⊕Lgt 6|= ϕ.
As H⊕Lgt is a generated subframe of H⊕L, which is a generated subframe
of F, it follows that H ⊕ Lgt is an L-frame. Thus, ϕ is refuted on a finite
L-frame H ⊕ Lgt, so each non-theorem of L is refuted on a finite L-frame,
and so L has the fmp. ⊣

Now we show that there exist extensions of KG that lack the fmp. Let G
be a finite rooted KG-frame not isomorphic to an RN-frame. The simplest
such frame is Lg4 ⊕G1. Let H = L⊕G and let L = Log(H). The descriptive
frame L ⊕ Lg4 ⊕ G1 is shown in Fig. 7.

Lemma 5.36. Let G be a finite rooted KG-frame not isomorphic to an RN-

frame, H = L⊕G, and L = Log(H). Then a finite rooted KG-frame F is an

L-frame if and only if either of the following two conditions is satisfied:
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(i) F is an RN-frame.

(ii) F is isomorphic to a p-morphic image of a generated subframe of

(
⊕n

i=1 Fi)⊕ G1 ⊕ G, where each Fi is isomorphic to G1 or G2 and

n ∈ ω.

Proof. First we show that if a finite rooted frame satisfies the conditions of
the lemma, then it is an L-frame. Since L is a generated subframe of H, we
have that each RN-frame is an L-frame. By Theorem 3.16, (

⊕n
i=1 Fi) ⊕ G1

is a p-morphic image of L, where each Fi is isomorphic to G1 or G2 and
n ∈ ω. Therefore, (

⊕n
i=1 Fi) ⊕G1 ⊕G is a p-morphic image of L⊕G. Thus,

if F is a p-morphic image of a generated subframe of (
⊕n

i=1 Fi) ⊕ G1 ⊕ G,
then F is an L-frame. Conversely, let F be a finite rooted L-frame. By
Theorem 2.5.1, F is a p-morphic image of a generated subframe H′ of H. If
H′ is a generated subframe of L, then F is an RN-frame. Suppose that H′

is isomorphic to L⊕H′′, where H′′ is a generated subframe of G. Let f be a
p-morphism of L⊕H′′ onto F. We recall that ω denotes the least element of
L. For each x ∈ H′′ we have f(x) ≤ f(ω). Therefore, if f(x) < f(ω) for each
x ∈ H′′, then f(L ⊕ H′′) is isomorphic to f(L) ⊕ f(H′′), and if f(x) = f(ω)
for some x ∈ H′′, then f(L ⊕ H′′) is isomorphic to the frame obtained from
f(L) ⊕ f(H′′) by identifying the least element of f(L) with the top element
of f(H′′). In both cases f(L ⊕ H′′) is isomorphic to a p-morphic image of
f(L) ⊕ f(H′′). By Theorem 3.16, each finite p-morphic image of L has the
form (

⊕n
i=1 Fi) ⊕ G1, where each Fi is isomorphic to G1 or G2 and n ∈ ω.

Thus, if F is a p-morphic image of L ⊕ H′′, then F is a p-morphic image of
(
⊕n

i=1 Fi) ⊕ G1 ⊕ H′′, where each Fi is isomorphic to G1 or G2 and n ∈ ω.
Since H′′ is a generated subframe of G, the frame (

⊕n
i=1 Fi) ⊕ G1 ⊕ H′′ is a

generated subframe of (
⊕n

i=1 Fi)⊕G1 ⊕G. Thus, ŁF is a p-morphic image of
a generated subframe of (

⊕n
i=1 Fi) ⊕G1 ⊕G, which concludes the proof. ⊣

Theorem 5.37. Let G be a finite rooted KG-frame not isomorphic to an

RN-frame, H = L ⊕ G, and L = Log(H). Then L does not have the fmp.

Proof. Consider the Jankov-de Jongh formulas χ1 = χ(G1 ⊕ G) and χ2 =
χ(Lg4). Without loss of generality we may assume that χ1 and χ2 have no
variables in common. Let ϕ = χ1 ∨ χ2. It is easy to see that G1 ⊕ G is a
p-morphic image of H (simply map all the points in L to the top node of
G1⊕G). This by Theorem 2.5.1 means that H 6|= χ1. Also, Lg4 is a generated
subframe of H. Applying Theorem 2.5.1 again we obtain that H 6|= χ2.
Therefore, H 6|= ϕ, and so L 0 ϕ. Suppose that there is a finite rooted
L-frame F such that F 6|= ϕ. Then F 6|= χ1 and F 6|= χ2. By Theorem 2.5.1,
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Figure 8. The frames Lg4
⊕ G1, Lg6

⊕ G1, and Lg8
⊕ G1

F 6|= χ1 implies that G1 ⊕G is a p-morphic image of a generated subframe of
F. Thus, if F is an RN-frame, then G1 ⊕ G is also an RN-frame, which by
Corollary 3.18, is a contradiction. Consequently, F 6|= χ1 implies F is not an
RN-frame. By Theorem 5.36.2, this means that F is a p-morphic image of
some (

⊕n
i=1 Fi) ⊕G1 ⊕H′′, where H′′ is a generated subframe of G and each

Fi is isomorphic to G1 or G2. Next we show that Lg4 cannot be a p-morphic
image of a generated subframe of F. Let F′ be a generated subframe of F

and let f : F′ → Lg4 be an onto p-morphism. If |max(F′)| = 1, then clearly
Lg4 cannot be a p-morphic image of F′. Suppose that F′ has two maximal
points u1 and u2. Then f(u1) 6= f(u2) and f(u1) and f(u2) are the maximal
points of Lg4. Let u be a point of the second layer of F′. Since the top layers
of F′ are sums of G1 and G2, we have that u ≤ u1 and u ≤ u2. Therefore,
f(u) 6= f(u1) and f(u) 6= f(u2). But then u should be mapped to a point
of the second layer of Lg4, which consists of a single point. This point must
see both maximal points of Lg4, a contradiction. Therefore, no generated
subframe of F can be p-morphically mapped onto Lg4, and so F |= χ2, which
contradicts our assumption that F 6|= χ2. Thus, there is no finite L-frame
that refutes both χ1 and χ2. Consequently, ϕ can not be refuted on a finite
rooted L-frame, which means that L does not have the fmp. ⊣

Consequently, there are many extensions of KG that lack the fmp. Next
we show that there are in fact continuum many such. We use the standard
method (introduced by Jankov [12]) of constructing infinite anti-chains of
finite rooted KG-frames. Let K be the class of non-isomorphic finite rooted
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KG-frames. We define a partial order ⊑ on K as follows. For F,G ∈ K

we set:

F ⊑ G if and only if F is a p-morphic image of a generated subframe of G.

In the next lemma we show how to construct anti-chains of finite rooted KG-
frames and RN-frames. This, using Jankov’s technique, will allow us to show
that RN has continuum many extensions, and that there are continuum
many logics in the interval [KG, RN].

Lemma 5.38. 1. If k 6= m, then Lgk
is not a p-morphic image of Lgm.

2. The sequence Γ = {Lgk
⊕ G1 : k ­ 4} of rooted KG-frames forms an

anti-chain in (K,⊑).

3. The sequence ∆ = {G1 ⊕ Lf3 ⊕ Lgk
⊕ G1 : k ­ 4} of rooted KG-frames

forms an anti-chain in (K,⊑).

4. (
⊕n

i=1 Fi) ⊕ G1 ⊕ Lf3 ⊕ Lgk
⊕ G1 6⊑ (

⊕l
i=1 Fi) ⊕ G1 ⊕ Lf3 ⊕ Lgm ⊕ G1,

where each Fi is isomorphic to G1 or G2, l, n,m, k ∈ ω, and k 6= m.

5. The sequence Υ = {(
⊕k

i=1 G2)⊕Lg4 : k ∈ ω} of rooted RN-frames forms

an anti-chain in (K,⊑).

Proof. 1. is easy; for a short proof see [3, Lemma 4.2.13].
2. let Lgk

⊕G1,Lgm ⊕G1 ∈ Γ with m > k. Then |Lgk
⊕G1| < |Lgm ⊕G1|,

so Lgm⊕G1 cannot be a p-morphic image of a generated subframe of Lgk
⊕G1.

Suppose that there exists a generated subframe H of Lgm ⊕ G1 such that
Lgk

⊕ G1 is a p-morphic image of H. If H is a proper generated subframe of
Lgm ⊕ G1, then H is an RN-frame. By Corollary 3.18, Lgk

⊕ G1 is not an
RN-frame, so cannot be a p-morphic image of H. Thus, H is isomorphic to
Lgm ⊕G1, and so Lgk

⊕G1 is a p-morphic image of Lgm ⊕G1. Then the least
point of Lgm ⊕ G1 is mapped to the least point of Lgk

⊕ G1. If some other
point of Lgm ⊕G1 were mapped to the least point of Lgk

⊕G1, then Lk ⊕G1

would be a p-morphic image of a generated subframe of Lgm, so would be
an RN-frame, a contradiction. Therefore, no other point of Lgm ⊕ G1 is
mapped to the least point of Lgk

⊕ G1. Thus, Lgk
is a p-morphic image of

Lgm, which contradicts 1. Consequently, Γ forms an anti-chain in (K,⊑).
3. Suppose that m > k and that G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 is a p-morphic
image of a generated subframe of G1 ⊕ Lf3 ⊕ Lgm ⊕ G1. Then there exist
a generated subframe H of G1 ⊕ Lf3 ⊕ Lgm ⊕ G1 and an onto p-morphism
f : H → G1 ⊕ Lf3 ⊕ Lgk

⊕ G1. Obviously, H contains the first three layers
of G1 ⊕Lf3 ⊕Lgm ⊕G1; otherwise, the cardinality of H is smaller than that
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Figure 9. Some of the frames in ∆

of G1 ⊕ Lf3 ⊕ Lgk
⊕ G1. First we show that if x ∈ H is such that d(x) ¬ 3,

then d(f(x)) ¬ 3. If not, then |↑f(x)| > |G1 ⊕ Lf3|. On the other hand,
|↑x| < |G1 ⊕Lf3|. So |↑x| < |↑f(x)|, a contradiction. Therefore, the f -image
of the first three layers of H is contained in G1 ⊕ Lf3 . We show that it is
exactly G1 ⊕Lf3. If not, then it is a proper upset of G1 ⊕Lf3. If it is the top
node of G1 ⊕ Lf3, then Lf3 ⊕ Lgk

⊕ G1 is a p-morphic image of a generated
subframe of Lgm ⊕ G1, a contradiction. If it contains the top node and at
least one other point, then it is easy to see that there exist z ∈ H of depth ¬ 3
and u in G1 ⊕Lf3 minus the f -image of the first three layers of H such that
u � f(z). Since G1 ⊕Lf3 ⊕Lgk

⊕G1 is a p-morphic image of H, there exists
x ∈ H such that d(x) > 3 and f(x) = u. But then x ≤ z and f(x) � f(z),
a contradiction. Thus, the f -image of the first three layers of H is equal to
G1 ⊕Lf3. By (2), Lgk

⊕G1 is not a p-morphic image of a generated subframe
of Lgm ⊕ G1. Therefore, there is x ∈ H such that d(x) > 3 and d(f(x)) ¬ 3.
Let y ∈ H be such that d(y) ¬ 3. Then x ≤ y, and so f(x) ≤ f(y). This is
a contradiction since for each u ∈ G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 of depth ¬ 3, there
exists z ∈ H of depth ¬ 3 such that u � f(z). Thus, there is no generated
subframe of G1 ⊕ Lf3 ⊕ Lgm ⊕ G1 that can be mapped p-morphically onto
G1 ⊕ Lf3 ⊕ Lgk

⊕ G1. This proves that ∆ is an anti-chain in (K,⊑).
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Figure 10. The frames in Υ

The proof of 4. is a routine adaptation of that of 3. The proof of 5. is
similar to that of 2., and is based on the fact that for m 6= n there is no
p-morphism from

⊕n
i=1 G2 onto

⊕m
i=1 G2. ⊣

We point out that the anti-chain in Lemma 5.38.5 was first constructed
in [13, Lemma 20].

Theorem 5.39. 1. There are continuum many extensions of RN. Conse-

quently, there are continuum many extensions of KG with the fmp.

2. There are continuum many extensions of KG that are not contained

in RN.

3. There are continuum many logics in the interval [KG,RN].

Proof. 1. It follows from Lemma 5.38.5 that Υ is an infinite anti-chain
of finite rooted RN-frames. For ∆,Θ ⊆ Υ, if ∆ 6= Θ, then the standard
application of the Jankov-de Jongh formulas gives us that Log(∆) 6= Log(Θ)
[12]. Since there are continuum many subsets of Υ, the result follows.

2. It is similar to 1. We only need to observe that none of the frames
in Γ constructed in Lemma 5.38.2 is an RN-frame. Therefore, for ∆ ⊆ Γ,
Log(∆) is an extension of KG not contained in RN.

3. It is similar to 1. and 2. For each ∆ ⊆ Γ, the logic Log({L} ∪ ∆) is
an extension of KG that is properly contained in RN. ⊣

Now we show that there are continuum many extensions of KG without
the fmp. Let Hk = L ⊕ Lf3 ⊕ Lgk

⊕ G1, where k ­ 4 (see Fig. 11), and let
Θ = {Hk : k ­ 4}.
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Theorem 5.40. 1. For k ­ 4 the logic Log(Hk) lacks the fmp.

2. For each ∆ ⊆ Θ, the logic Log(∆) lacks the fmp.

3. For each ∆,Γ ⊆ Θ, if ∆ 6= Γ, then Log(∆) 6= Log(Γ).

Proof. 1. It is a consequence of Theorem 5.37 since Lf3 ⊕ Lgk
⊕ G1 is not

an RN-frame.

2. We first show that a finite rooted frame F is a Log(∆)-frame if and
only if F is a Log(Hk)-frame for some Hk ∈ ∆. Indeed, it is clear that if F is
a finite rooted Log(Hk)-frame for some Hk ∈ ∆, then F is a Log(∆)-frame.
Conversely, if F is a finite rooted Log(∆)-frame, then Log(F) ⊇ Log(∆) =⋂

{Log(Hk) : Hk ∈ ∆}. By Theorem 2.5.1, there is Hk ∈ ∆ such that
Log(F) ⊇ Log(Hk). Thus, F is a Log(Hk)-frame. Now the same technique
as in the proof of Theorem 5.37 shows that Log(∆) lacks the fmp for each
∆ ⊆ Θ.

3. Suppose that ∆,Γ ⊆ Θ and that ∆ 6= Γ. Without loss of generality
we may assume that there is Hk ∈ ∆ such that Hk /∈ Γ. Then it is easy
to see that Gk = G1 ⊕ Lf3 ⊕ Lgk

⊕ G1 is a p-morphic image of Hk, and so
Gk is a Log(∆)-frame. Suppose that Gk is a Log(Γ)-frame. Then, as was
shown in 2., there exists Hm ∈ Γ such that m 6= k and Gk is a Log(Hm)-
frame. Similar to Lemma 5.36, we can show that all finite rooted frames
of Log(Hm) are finite rooted RN-frames or p-morphic images of generated
subframes of (

⊕n
i=1 Fi) ⊕ G1 ⊕Lf3 ⊕ Lgm ⊕ G1, where each Fi is isomorphic

to G1 or G2 and n ∈ ω. Then Gk is a p-morphic image of a generated
subframe of (

⊕n
i=1 Fi)⊕G1⊕Lf3 ⊕Lgm ⊕G1, which contradicts Lemma 5.38.3

and 4. Therefore, Gk is not a Log(Γ)-frame. Then the Jankov-de Jongh
formula of Gk belongs to Log(Γ) but does not belong to Log(∆). Thus,
Log(∆) 6= Log(Γ). ⊣

As an immediate consequence, we obtain:

Corollary 5.41. There are continuum many extensions of KG without

the fmp.

6. Poly-size model property

In this section we strengthen Theorem 5.35 and show that every extension
of RN has the poly-size model property. We recall that a logic L has the
poly-size model property if for each formula ϕ with L 0 ϕ, there exists an
L-frame F such that F 6|= ϕ and the size of F is polynomial in the size of ϕ.



The Kuznetsov-Gerčiu and Rieger-Nishimura logics. . . 99

Figure 11. Some of the frames Hk

Theorem 6.42. Every extension of RN has the poly-size model property.

Proof. Let L be an extension of RN and let L 0 ϕ. By Theorem 5.35, there
exists a finite rooted L-frame F such that F 6|= ϕ. Since L is an extension
of RN, we have that F is an RN-frame. Therefore, by Corollary 3.18, F is
isomorphic to F1 ⊕F2, where F2 is a finite generated subframe of L and F1 is
a finite sum of the frames G1 and G2. It is our goal to find a finite L-frame
G such that G 6|= ϕ and the size of G is polynomial in the size of ϕ. We split
the proof in two parts. First we ‘compress’ F1 into a smaller frame and then
we ‘cut out’ some parts of F2 to make F even smaller.

Let ν be a valuation on F such that (F, ν) 6|= ϕ and let p1, . . . , pn be the
variables occurring in ϕ. Define an equivalence relation ∼ on F by w ∼ v
if w ∈ ν(pi) if and only if v ∈ ν(pi) for each i = 1, . . . , n. Since each ν(pi)
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is an upset, we have that each equivalence class is convex; that is, from
w ∼ v and w ≤ u ≤ v, it follows that u ∼ w. We show that there are
at most (n + 1) + 2n equivalence classes of F1. If there are w, v ∈ F1 such
that d(w) = d(v), w |= pi, and v 6|= pi for some pi, then for each u with
w, v ≤ u we have u |= pi, and for each u with u ≤ w, v we have u 6|= pi.
Looking at the structure of F1, we see that for each u different from w, v
we have w, v ≤ u or u ≤ w, v. Therefore, for each pi there is at most one
layer of F1 with points that have different values of pi. Since there are
n propositional variables, there are at most n non-equivalent layers of F1,
say l1, . . . , ln. Note that the number of equivalence classes of F1 is less
than or equal to the number of equivalence classes of F1 −

⋃n
i=1 li plus the

number of equivalence classes of
⋃n

i=1 li. The cardinality of
⋃n

i=1 li is 2n.
Therefore, there are at most 2n equivalence classes of

⋃n
i=1 li. Moreover, for

each i, j ¬ n we have that ν(pi) ∩ (F1 −
⋃n

i=1 li) ⊆ ν(pj) ∩ (F1 −
⋃n

i=1 li)
or ν(pj) ∩ (F1 −

⋃n
i=1 li) ⊆ ν(pi) ∩ (F1 −

⋃n
i=1 li). Thus, there are at most

n + 1 equivalence classes of F1 −
⋃n

i=1 li. Consequently, there are at most
(n+1)+2n equivalence classes of F1. We let H1 be the frame obtained from
F1 by replacing each equivalence class C in F1 −

⋃n
i=1 li by a single point

wC , and define a map f : F → H1 ⊕ F2 as follows. Let f be the identity on
all the points of F2 ∪

⋃n
i=1 li, and for each w ∈ F1 −

⋃n
i=1 li let f(w) = wC ,

where C is the equivalence class containing w. It is easy to check that f is
an onto p-morphism. We define a valuation µ on H1 ⊕F2 by µ(f(x)) = ν(x)
for each x ∈ F. It follows from the definition of f that µ is well-defined.
Therefore, the new model (H1 ⊕ F2, µ) is a p-morphic image of the model
(F, ν). Since the truth of a formula is preserved and reflected by p-morphisms
between models [4, Theorem 2.15], we have that (H1 ⊕ F2, µ) 6|= ϕ and that
|H1 ⊕ F2| ¬ |F2| + (n+ 1) + 2n.

Our next task is to make F2 smaller. Let D1, . . . , Ds be the partition of
F2 into the equivalence classes of ∼. We first show that s ¬ (n+ 1) + 2(2n).
The proof is similar to that for F1. It follows from the structure of F2 that
for each propositional variable pi there are at most two adjacent layers of
F2 with points that have different values of pi. Therefore, there are at most
2n layers of F2 with non-equivalent points. Let these layers be e1, . . . , e2n.
Then, as in the above, we can show that s ¬ (n + 1) + 2(2n). Therefore,
|F2| ¬ max({|Di| : i = 1, . . . , n}) · ((n + 1) + 2(2n)). Next we show that
without loss of generality we may assume that |Di| ¬ 2 · (c(ϕ) + 5). If there
is i such that Di has more than c(ϕ) + 5 layers, then let k′ = max{d(x) :
x ∈ Di} and let m′ = min{d(x) : x ∈ Di}. We also let k = k′ − 2 and
m′′ = m′ + 2. We add and subtract 2 to m′ and k′, respectively, to make
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sure that each layer in between k and m′′ is properly contained in Di. Lastly,
let m = m′′ + (c(ϕ) + 1). Similar to Lemma 4.26, we can show that if x, y
are such that m ¬ d(x),d(y) ¬ k, then for each subformula ψ of ϕ we have
x |= ψ if and only if y |= ψ. Now we ‘cut out’ all the layers in between m and
k as follows. Let K = F2 −Lft

, where t = 2k− 1; that is, K is obtained from
F2 by cutting out the first k layers. Then K is isomorphic to Lga for some
a. Consider the gluing sum (H1 ⊕ Lfr

, wr)⊕̂(K, w0), where r = 2m − 1. By
Lemma 4.22.2, (H1 ⊕ Lfr

, wr)⊕̂(K, w0) is isomorphic to H1 ⊕ H2, where H2

is isomorphic to Lgr+a+1. On the other hand, F2 is isomorphic to Lgb
, where

b = t+ a+ 1 = (r+ a+ 1) + (t− r) = (r+ a+ 1) + ((2k − 1) − (2m− 1)) =
(r+ a+ 1) + 2(k−m). Therefore, H2 is isomorphic to a generated subframe
of F2. As in Claim 4.28, we can show that (H1 ⊕ Lfr

, wr)⊕̂(K, w0) 6|= ϕ.
Continuing this process for each i such that Di contains more than c(ϕ) + 5
layers, we obtain a frame H1⊕H2 such that H1⊕H2 6|= ϕ and H2 is isomorphic
to a generated subframe of F2 of the size at most 2·(c(ϕ)+5)·((n+1)+2(2n)).
Thus, H1 ⊕ H2 is isomorphic to a generated subframe of a p-morphic image
of F1 ⊕ F2, so H1 ⊕ H2 is an L-frame, and the size of H1 ⊕H2 is bounded by
((n+ 1) + 2n) + 2 · (c(ϕ) + 5) · ((n+ 1) + 2(2n)). It follows that the size of
H1 ⊕ H2 is polynomial in the size of ϕ. Consequently, every non-theorem of
L is refuted on an L-frame whose size is polynomial in the size of ϕ, and so
L has the poly-size model property. ⊣

Next we show that although every extension of RN has the poly-size
model property, there exist extensions of KG that have the fmp, but do not
have the poly-size model property. In fact, for each function f : ω → ω, we
construct a logic Lf ⊃ KG such that Lf has the fmp, but it does not have
the f -size model property. We recall that for a given function f : ω → ω, a
logic L has the f -size model property if for each formula ϕ with L 0 ϕ, there
is a finite L-frame F such that F 6|= ϕ and |F| < f(|ϕ|), where |ϕ| is the size
of ϕ. Our construction is similar to that of [4, Theorem 18.20], however our
proof is different and uses the Jankov-de Jongh formulas.

Theorem 6.43. For each function f : ω → ω there is a an extension Lf

of KG such that Lf has the fmp, but Lf does not have the f -size model

property.

Proof. If f : ω → ω is not order-preserving, then we consider an order-
preserving function g : ω → ω such that f(n) < g(n) for each n ∈ ω. If the
theorem holds for g, it obviously holds for f as well. Thus, without loss of
generality we may assume that f : ω → ω is order-preserving. Let G be a
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finite rooted KG-frame which is not an RN-frame. For each k ∈ ω let Ck be
the chain of depth k and let Hk = G1 ⊕G⊕Ck. We set ϕk = χ(Hk)∨χ(Lg4).
Then |Hk| = k+ |G|+1 and |ϕk| = |χ(Hk)|+ |χ(Lg4)|+1. It follows from the
syntactic description of Jankov-de Jongh formulas (see, e.g., [3, Section 3.3])
that there is a function g such that |χ(Hk)| < g(|Hk |). Therefore, |ϕk| <
g(|Hk|)+c1 = g(k+c2)+c1 for some constants c1 and c2. Thus, without loss
of generality we may assume that there is a function h such that |ϕk| < h(k).
Since f is order-preserving, f(|ϕk|) ≤ f(h(k)). Consider Lgf(h(k))

consisting
of the first f(h(k)) layers of L. Clearly Lgf(h(k))

is a generated subframe
of L. For each k ∈ ω let Fk denote the frame Lgf(h(k))

⊕ G ⊕ Ck. We let
Lf = Log({Fk : k ∈ ω}). It follows from the definition of Lf that Lf has
the fmp.

Claim 6.44. Fk is the smallest Lf -frame that refutes ϕk.

Proof. The proof is similar to that of Theorem 5.37. We will be a bit
sketchy here. First note that an argument similar to that in the proof of
Lemma 5.36 shows that if a finite rooted frame F is an Lf -frame, then it is
isomorphic to one of the following frames:

(1) Fk for some k ∈ ω,

(2) Some RN-frame,

(3) A p-morphic image of a generated subframe of (
⊕n

i=1 Ki)⊕G1 ⊕G⊕Ck,
where each Ki is isomorphic to G1 or G2 and n ∈ ω.

As in the proof of Theorem 5.37, we can show that if F is isomorphic to some
RN-frame, then F |= χ(Hk) for each k ∈ ω, and if F is isomorphic to a frame
described in (3), then F |= χ(Lg4). Moreover, it is clear that Fn |= χ(Hk)
for each k > n. Therefore, F 6|= ϕk only if F is isomorphic to Fn for n ­ k.
Obviously the smallest among the Fn with n ­ k is the frame Fk. ⊣

To finish the proof we observe that |Fk| = (2f(h(k)) − 1) + |G| + k.
Moreover, |ϕk| < h(k) and f is order-preserving. Thus, |Fk| > f(|ϕk|), and
so Lf does not have the f -size model property. ⊣

7. Pre-finite model property

In this section we characterize the logic that bounds the fmp in extensions
of KG. This was first established by Gerčiu [9]. He gave a very sketchy
algebraic proof. We give a new detailed proof of this result using descriptive
frames instead of algebras.
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Figure 12. The frames T1 and T2

Definition 7.45. A logic L is said to have the pre-finite model property if
L does not have the fmp, but all proper extensions of L have the fmp.

Let T1 = G1 ⊕ L ⊕ Lg4 ⊕ G1 and T2 = G1 ⊕ L ⊕ Lg5 ⊕ G1. The frames
T1 and T2 are shown in Fig. 12.

Lemma 7.46. T1 is a p-morphic image of T2.

Proof. The proof is a simple adaptation of the proof of Lemma 4.31. ⊣

Theorem 7.47. Let L ⊇ KG.

1. If L does not have the fmp, then L ⊆ Log(T1).

2. Log(T1) is the only extension of KG with the pre-finite model property.

Proof. 1. Suppose that L ⊇ KG does not have the fmp. Then there
is a formula ϕ such that L 0 ϕ and for each finite L-frame G we have
G |= ϕ. Since each superintuitionistic logic is complete with respect to
its finitely generated rooted descriptive frames, there is a finitely generated
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rooted descriptive L-frame F such that F 6|= ϕ. By our assumption, F is
infinite. This implies that Log(F) does not have the fmp. Obviously we
have that L ⊆ Log(F). Thus, to prove that L ⊆ Log(T1), it is sufficient
to show that Log(F) ⊆ Log(T1). We prove this by showing that T1 is a
p-morphic image of F. By Theorem 3.14, F is isomorphic to (

⊕n
i=1 Fi)⊕Lgk

,
where k, n ∈ ω and each Fi is a cyclic frame. Since F is infinite, there is
j ¬ n such that Fj is isomorphic to L. Let j be the least such index. First
suppose that j > 1. Then F is isomorphic to G⊕Fj ⊕Fj+1 ⊕ · · · ⊕Fn ⊕Lgk

,
where Fj is isomorphic to L and G is finite. If there is no i with n ­ i ­ j+1
such that Fi is isomorphic to Lgm or Lfl

for some m ­ 4 and l ­ 2, then
the same argument as in the proof of Theorem 5.35 shows that Log(F) has
the fmp, which is a contradiction. Therefore, there is such i and we take the
least such i. Then there are two possible cases: (i) Fi is isomorphic to Lgm

for m ­ 4, or (ii) Fi is isomorphic to Lfl
for l ­ 2. We only consider the case

where Fi is isomorphic to Lgm for m ­ 4. The case where Fi is isomorphic
to Lfl

for l ­ 2 is treated the same way as in the proof of Theorem 4.32.
We define a p-morphism f from F to G1 ⊕ Fj ⊕ G1 ⊕ Fi ⊕ G1 (resp. to
G1 ⊕ Fj ⊕ Fi ⊕ G1 if i = j + 1) as follows: We send all the elements of G to
G1, each element of Fj to itself, all the elements of Fj+1 ⊕ · · · ⊕ Fi−1 to G1

(if i = j + 1, then Fj+1 ⊕ · · · ⊕ Fi−1 is empty), each element of Fi to itself,
and all the elements of Fi+1 ⊕· · ·⊕Lgk

to G1. It is easy to check that f is an
onto p-morphism, and so G1 ⊕Fj ⊕G1 ⊕Fi ⊕G1 (resp. G1 ⊕Fj ⊕Fi ⊕G1 if
i = j+1) is a p-morphic image of F. Moreover, Fj is isomorphic to L and Fi

is isomorphic to Lgm for m ­ 4. Next we apply the same argument as in the
proof of Theorem 4.32. If m > 4 is even, then G1 ⊕Lg4 is a p-morphic image
of Lgm; and if m > 4 is odd, then G1 ⊕ Lg5 is a p-morphic image of Lgm.
Therefore, if m > 4 and m is even, then H1 = G1 ⊕L ⊕G1 ⊕G1 ⊕Lg4 ⊕G1

(resp. H′

1 = G1 ⊕ L ⊕ G1 ⊕ Lg4 ⊕ G1 if i = j + 1) is a p-morphic image of F;
and if m > 4 is odd, then H2 = G1 ⊕ L ⊕ G1 ⊕ G1 ⊕ Lg5 ⊕ G1 (resp. H′

2 =
G1⊕L⊕G1⊕Lg5⊕G1 if i = j+1) is a p-morphic image of F. Clearly if m = 4,
then H′

1 = G1 ⊕L⊕G1 ⊕Lg4 ⊕G1 (resp. T1 = G1 ⊕L⊕Lg4 ⊕G1 if i = j+1)
is a p-morphic image of F; and if m = 5, then H′

2 = G1 ⊕L⊕G1 ⊕Lg5 ⊕G1

(resp. T2 = G1 ⊕ L ⊕ Lg5 ⊕ G1 if i = j + 1) is a p-morphic image of F. It is
easy to see that H′

1 is a p-morphic image of H1, and that H′

2 is a p-morphic
image of H2. Now by identifying the greatest element of G1 ⊕ Lg4 ⊕ G1

with the least element of L ⊕ G1, we obtain that T1 is a p-morphic image
of H′

1. Exactly the same argument shows that T2 is a p-morphic image
of H′

2. Finally, Lemma 7.46 ensures that T1 is a p-morphic image of T2,
which means that T1 is a p-morphic image of F. The proof in case j = 1 is
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analogous, with the only difference that we also need to use Theorem 3.16,
by which G1 ⊕ L is a p-morphic image of L, and so G1 ⊕ L ⊕ Lg4 ⊕ G1 is
a p-morphic image of L ⊕ Lg4 ⊕ G1, and G1 ⊕ L ⊕ Lg5 ⊕ G1 is a p-morphic
image of L ⊕ Lg5 ⊕ G1. Thus, in either case, T1 is a p-morphic image of F,
and so Log(T1) ⊇ Log(F).

2. Suppose that L has the pre-finite model property. Then L does not
have the fmp, so by (1), L ⊆ Log(T1). Moreover, since Log(T1) does not
have the fmp, L can not be properly contained in Log(T1). Thus, L =
Log(T1). ⊣

8. Locally tabular extensions of RN and KG

It follows from Mardaev [19] that there are continuum many pre-locally
tabular superintuitionistic logics. The situation becomes more tractable for
extensions of KG. Let RN.KC = RN + (¬p ∨ ¬¬p). It was shown by
Citkin [5] that RN.KC is a pre-locally tabular superintuitionistic logic. In
this section we show that RN.KC is the only pre-locally tabular extension of
KG. This gives a criterion for an extension of KG to be locally tabular. We
also introduce the internal depth of a descriptive RN-frame and prove that
an extension L of RN is locally tabular if and only if the internal depth of
L is finite. This provides another criterion of local tabularity for extensions
of RN.

Definition 8.48. 1. A logic L is called locally tabular if for each n ∈ ω there
are only finitely many pairwise non-L-equivalent formulas in n variables.

2. A logic L is called pre-locally tabular if L is not locally tabular but every
proper extension of L is locally tabular.

Let K = G1 ⊕ L, which is shown in Fig. 13. It is easy to see that K is
obtained from L by identifying the two maximal nodes of L.

Theorem 8.49. Log(K) is complete with respect to {G1 ⊕ Lgk
: k ∈ ω}.

Proof. Suppose that K 6|= ϕ for some formula ϕ. Then there exists a
descriptive valuation ν and a point x of K of finite depth such that (K, ν), x 6|=
ϕ. We consider the generated subframe F of K generated by x. It is easy
to see that F is isomorphic to G1 ⊕ Lgk

for some k ∈ ω and that F 6|= ϕ.
Therefore, Log(K) is complete with respect to {G1 ⊕ Lgk

: k ∈ ω}. ⊣

Definition 8.50. Let RN.KC = RN + (¬p ∨ ¬¬p).
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Figure 13. The frame K

Theorem 8.51. Log(K) = RN.KC.

Proof. Since K is a p-morphic image of L, it is an RN-frame. As K has a
greatest element, it follows from [4, Proposition 2.37] that K validates ¬p ∨
¬¬p, and so K is an RN.KC-frame. Thus, Log(K) ⊇ RN.KC. Conversely,
RN.KC is an extension of RN. By Theorem 5.35, RN.KC has the fmp.
Finite rooted RN.KC-frames are finite rooted RN-frames with a greatest
element. An argument similar to that in the proof of Theorem 3.17 shows
that each finite rooted RN.KC-frame is a p-morphic image of a generated
subframe of K. Thus, RN.KC ⊇ Log(K). ⊣

To prove a criterion of local tabularity for extensions of KG, we refor-
mulate the criterion for a variety of algebras to be locally finite established
in [1] for extensions of KG.

Theorem 8.52. An extension L of KG is locally tabular if and only if the

class of finitely generated rooted descriptive L-frames is uniformly locally
tabular; that is, for each n ∈ ω there is M(n) ∈ ω such that for each n-

generated rooted descriptive L-frame F we have |F| ¬ M(n).

In proving our criterion, we will use the following auxiliary lemma. For
a proof we refer to [3, Lemma 4.1.23].

Lemma 8.53. If F is an n-generated descriptive frame isomorphic to
⊕s

i=1 Fi,

then s ¬ 2n.
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Theorem 8.54. An extension L of KG is not locally tabular if and only if

L ⊆ Log(K).

Proof. We first show that Log(K) is not locally tabular. Observe that
for each point x of K of finite depth, the point-generated subframe Fx of
F is finite rooted 2-generated and sup({|Fx| : x is a point of F of finite
depth}) = ω. Thus, by Theorem 8.52, Log(K) is not locally tabular. It
follows that if L ⊆ Log(K), then L is not locally tabular. Now suppose that
L is not locally tabular. We show that L ⊆ Log(K). By Theorem 8.52, there
are two possible cases:

Case 1. There exists n ∈ ω such that there is an n-generated infinite
rooted descriptive L-frame F. By Theorem 3.14, F is isomorphic to

⊕m
i=1 Fi,

where each Fi is a cyclic frame. Since F is infinite, there is j ¬ m such that
Fj is isomorphic to L. We have that j > 1 or j = 1.

Case 1.1. If j > 1, then we define a p-morphism f from F onto G1⊕L⊕G1

as follows. We send all the points of Fj+1 ⊕ · · · ⊕ Fn to G1, each point of
Fj to itself, and all the points of F1 ⊕ · · · ⊕ Fj−1 to G1. It is easy to check
that f is a p-morphism. Finally, by identifying the least point of L with the
point of G1, we obtain a p-morphic image of G1 ⊕ L ⊕ G1 isomorphic to K.
Thus, K is a p-morphic image of F, and so L ⊆ Log(K).

Case 1.2. If j = 1, then a similar argument to that in Case 1.1 gives
us that L is a p-morphic image of F. But K is a p-morphic image of L.
Thus, in this case too, we obtain that K is a p-morphic image of F, and so
L ⊆ Log(K).

Case 2. There exists n ∈ ω such that sup({|H| : H is an n-generated
finite rooted L-frame}) = ω. This means that for each m ∈ ω there is a
finite rooted n-generated frame H such that |H| > m. Since each H is a
KG-frame, each H is isomorphic to

⊕s
i=1 Hi, where each Hi is finite and

cyclic. Then we have two possible cases.

Case 2.1. For each m ∈ ω there exists an n-generated finite rooted L-
frame H =

⊕s
i=1 Hi such that |Hi| > m for some i ¬ s. Then the same

argument as in Case 1 shows that for each k ∈ ω the frame G1 ⊕ Lgk
is an

L-frame. By Theorem 8.49, this implies that L ⊆ Log(K).

Case 2.2. There is m ∈ ω such that for each n-generated finite rooted
L-frame H =

⊕s
i=1 Hi, we have |Hi| ¬ m for i = 1, . . . , s. By Lemma 8.53,

s ¬ 2n. Therefore, |H| ¬ m · 2n, and by Theorem 8.52, L is locally tabular,
which contradicts our assumption.

Consequently, we obtain that L is not locally tabular if and only if L ⊆
Log(K). ⊣
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Corollary 8.55. 1. An extension L of KG is locally tabular if and only if

L * RN.KC.

2. If an extension L of KG is finitely axiomatizable, then it is decidable

whether L is locally tabular.

Proof. 1. It is an immediate consequence of theorems 8.51 and 8.54.
2. First note that since RN.KC is finitely axiomatizable and has the

fmp, it is decidable. Let Ax(L) be the finite axiomatization of L. Then L
is not locally tabular if and only if RN.KC ⊢ ϕ for each ϕ ∈ Ax(L). This
problem is clearly decidable since RN.KC is decidable. ⊣

We conclude the paper by giving another criterion of local tabularity
for extensions of RN. By Corollary 3.18, each finite rooted L-frame is iso-
morphic to (

⊕n
i=1 Fi) ⊕ Lgk

, where each Fi is isomorphic to G1 or G2 and
k, n ∈ ω.

Definition 8.56. 1. Let F = (
⊕n

i=1 Fi) ⊕ Lgk
, where each Fi is isomorphic

to G1 or G2 and k, n ∈ ω. The initial segment of F is the frame Lgk
.

2. The internal depth of a finite rooted RN-frame F is the depth of its initial
segment. Let dI(F) denote the internal depth of F.

3. The internal depth of a logic L ⊇ RN is sup{dI(F) : F is a finite rooted
L-frame}. Let dI(L) denote the internal depth of L.

Theorem 8.57. A logic L ⊇ RN is locally tabular if and only if dI(L) < ω.

Proof. First suppose that dI(L) = ω. Then for each m ∈ ω there exists
k > m such that (

⊕n
i=1 Fi) ⊕Lgk

is an L-frame, where each Fi is isomorphic
to G1 or G2 and k, n ∈ ω. By mapping all the points of

⊕n
i=1 Fi to G1, we

obtain that G1 ⊕ Lgk
is a p-morphic image of (

⊕n
i=1 Fi) ⊕ Lgk

. Therefore,
each G1 ⊕ Lgk

is an L-frame, and so L ⊆ Log(K), by Theorem 8.49. Now
apply Theorem 8.54 to obtain that L is not locally tabular. For the converse,
suppose that dI(L) = m < ω. Let F be an n-generated rooted descriptive
L-frame. By Theorem 4.30, F is isomorphic to (

⊕s
i=1 Fi) ⊕ Lgk

, where each
Fi is isomorphic to L, G1, or G2. We show that no Fi can be isomorphic to L.
If there is i such that Fi is isomorphic to L, then we consider the least such
i. For each x ∈ Fi of finite depth, the generated subframe of F generated
by x is a finite rooted L-frame. But the internal depth of such frames is
unbounded, contradicting the fact that dI(L) < ω. Therefore, no such Fi

exists. Thus, F is isomorphic to (
⊕s

i=1 Fi)⊕Lgk
, where each Fi is isomorphic

to G1 or G2. Since dI(L) = m, we have |Lgk
| ¬ 2m. By Lemma 8.53, s ¬ 2n.
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Therefore, |
⊕s

i=1 Fi| ¬ 2 · (2n) = 4n. It follows that |F| ¬ 4n + 2m. Thus,
the cardinality of each n-generated rooted L-frame is bounded by 4n+ 2m.
This, by Theorem 8.52, implies that L is locally tabular. ⊣
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