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NATURAL DEDUCTION SYSTEMS

FOR SOME NON-COMMUTATIVE LOGICS

Abstract. Varieties of natural deduction systems are introduced for Wans-
ing’s paraconsistent non-commutative substructural logic, called a construc-
tive sequential propositional logic (COSPL), and its fragments. Normaliza-
tion, strong normalization and Church-Rosser theorems are proved for these
systems. These results include some new results on full Lambek logic (FL)
and its fragments, because FL is a fragment of COSPL.
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1. Introduction

Wansing’s paraconsistent non-commutative substructural logic, called a con-
structive sequential propositional logic (COSPL) in [15], is a conservative ex-
tension of full Lambek logic (FL) by adding the strong negation connective
∼, and is a structural rule-free variant (i.e., without any structural rules) of
Nelson’s paraconsistent logic N4. In this paper, various Gentzen-type nat-
ural deduction systems are introduced for COSPL and its fragments. Nor-
malization, strong normalization and Church-Rosser theorems are shown for
some such proposed systems. The results of this paper include some new
results on FL and its fragments.

Natural deduction systems (and typed λ-calculi) for some fragments of
FL have been proposed by several researchers [5, 12, 14, 15, 16]. A detailed
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presentation of Curry-Howard correspondences for some fragments of vari-
ous sybsystems of intuitionistic logic (including some fragments of FL) was
studied by Wansing [14, 15] in order to consider the relationship between
cut-elimination and normalization. It was also shown in [14, 15] that the
strong normalization theorem holds for a two-directional typed λ-calculus
for the {/, \, ∗}-fragment of FL, where / and \ denote the two kinds of
implication connectives, and ∗ denotes the multiplicative conjunction (or fu-
sion) connective. Some natural deduction systems for the {/, \}-fragments
of (the original) Lambek calculus and FL were studied by van Benthem
[1] and Tiede [12] to deal with some applications to formal grammars. In
[1, 12], sequence-type assumptions were adopted for the underlying natural
deduction systems. Some natural deduction systems for FL were studied by
Watari et al. [16] to investigate normalization. Varieties of natural deduc-
tion systems for substructural logics including the {/, ∗, ∧}-fragment of FL
were introduced systematically by Mouri [5] based on the notion of labeled
assumptions. Until now, a natural deduction system for COSPL has not
been proposed.

The contents of the present paper are then summarized as follows.
In Section 2, a sequent calculus COSPL is introduced, and some basic

properties for COSPL are reviewed. Three sequent calculi FL, C and L are
also introduced as the ∼-free, {/, \, ∗, ∼}- and {/, \, ∗}-fragments of COSPL,
respectively. An illustrative example for medical reasoning based on COSPL
is shown by the virtue of non-commutativity and paraconsistency.

In Section 3, three natural deduction systems NL, NC and N2
C are intro-

duced for L, C and also C, respectively. In these systems, the construction by
Mouri [5] using labelled assumptions is adopted. The equivalences between
NL and L, between NC and C, and between N2

C and NC are proved.
In Section 4, in order to prove the strong normalization and Church-

Rosser theorems for NL, NC and N2
C , the corresponding typed λ-calculi λL,

λC and λ2
C are introduced based on the Curry-Howard correspondences.

The definition of the two-directional λ-term using two kinds of abstraction
operators by Wansing [14, 15] is adopted to these calculi. The strong nor-
malization theorems for λL, λC and λ2

C are proved, and hence the same
theorems for NL, NC and N2

C are shown. The Church-Rosser theorems for
λL, λC , λ2

C , NL, NC and N2
C are shown as a corollary. In addition, two

alternative typed calculi λ3
C and λ4

C , which are nearly equal to λC and λ2
C ,

respectively, are introduced. The strong normalization and Church-Rosser
theorems are proved for these calculi. The results in Sections 3 and 4 are
considered to be difficult to extend to the full system COSPL, and hence
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other frameworks are needed to give some natural deduction systems for
COSPL and also for FL.

In Section 5, firstly, a general natural deduction system N-COSPL (with
general elimination rules) for COSPL is introduced based on the framework
by Negri [6] for intuitionistic linear logic. Secondly, a uniform natural de-
duction system U-COSPL (with general elimination and introduction rules)
are introduced following the framework by Negri [7]. The normalization
theorems for N-COSPL and U-COSPL are proved by using the relationships
between cut-free COSPL, N-COSPL and U-COSPL. It is known that the
frameworks by Negri [6, 7] have a simple definition of normalization, and
can obtain a natural correspondence between normal proofs and cut-free
proofs. The discussion of this section obviously include the same results for
FL, and hence such a discussion on FL is omitted.

In Section 6, some remarks on the proposed systems are given.
In Section 7, the conclusion of this paper is addressed.

2. Sequent calculus and illustrative example

2.1. Sequent calculus

Formulas are constructed from propositional variables, propositional con-
stants: 1 (multiplicative truth), ⊤ (additive truth) and ⊥ (additive falsity),
two kinds of implications: / and \, ∗ (fusion), ∧ (conjunction), ∨ (disjunc-
tion) and ∼ (strong negation). Lower-case letters p, q, ... are used to denote
propositional variables, Greek lower-case letters α, β, ... are used to denote
formulas, and Greek capital letters Γ, ∆, ... are used to represent finite (pos-
sibly empty) sequences of formulas. Parentheses for ∗ are sometimes omitted
because ∗ is associative. A sequent is an expression of the form Γ ⇒ γ. The
symbol ≡ is used to denote equality of sequences of symbols. Since all logics
discussed in this paper are formulated as sequent calculi, a sequent calculus
will occasionally be identified with the logic determined by it.

Definition 2.1 (COSPL, FL, C and L). The initial sequents of COSPL are
of the form:

α ⇒ α ⇒ 1 Γ ⇒ ⊤ Γ, ⊥, ∆ ⇒ γ

Γ, ∼1, ∆ ⇒ γ Γ, ∼⊤, ∆ ⇒ γ Γ ⇒ ∼⊥.

The inference rules of COSPL are of the form:

Γ ⇒ α ∆, α, Σ ⇒ γ

∆, Γ, Σ ⇒ γ
(cut)

Γ, ∆ ⇒ γ

Γ, 1, ∆ ⇒ γ
(1we)
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Γ ⇒ α ∆, β, Σ ⇒ γ

∆, β/α, Γ, Σ ⇒ γ
(/left)

Γ, α ⇒ β

Γ ⇒ β/α
(/right)

Γ ⇒ α ∆, β, Σ ⇒ γ

∆, Γ, α\β, Σ ⇒ γ
(\left)

α, Γ ⇒ β

Γ ⇒ α\β
(\right)

Γ, α, β, ∆ ⇒ γ

Γ, α ∗ β, ∆ ⇒ γ
(∗left)

Γ ⇒ α ∆ ⇒ β

Γ, ∆ ⇒ α ∗ β
(∗right)

Γ, α, ∆ ⇒ γ

Γ, α ∧ β, ∆ ⇒ γ
(∧left1)

Γ, β, ∆ ⇒ γ

Γ, α ∧ β, ∆ ⇒ γ
(∧left2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(∧right)

Γ, α, ∆ ⇒ γ Γ, β, ∆ ⇒ γ

Γ, α ∨ β, ∆ ⇒ γ
(∨left)

Γ ⇒ α
Γ ⇒ α ∨ β

(∨right1)
Γ ⇒ β

Γ ⇒ α ∨ β
(∨right2)

Γ, α, ∆ ⇒ γ

Γ, ∼∼α, ∆ ⇒ γ
(∼left) Γ ⇒ α

Γ ⇒ ∼∼α
(∼right)

Γ, α, ∼β, ∆ ⇒ γ

Γ, ∼(β/α), ∆ ⇒ γ
(∼/left)

Γ ⇒ α ∆ ⇒ ∼β

Γ, ∆ ⇒ ∼(β/α)
(∼/right)

Γ, ∼β, α, ∆ ⇒ γ

Γ, ∼(α\β), ∆ ⇒ γ
(∼\left)

Γ ⇒ ∼β ∆ ⇒ α

Γ, ∆ ⇒ ∼(α\β)
(∼\right)

Γ, ∼α, ∼β, ∆ ⇒ γ

Γ, ∼(α ∗ β), ∆ ⇒ γ
(∼ ∗ left)

Γ ⇒ ∼α ∆ ⇒ ∼β

Γ, ∆ ⇒ ∼(α ∗ β)
(∼ ∗ right)

Γ ⇒ ∼α
Γ ⇒ ∼(α ∧ β)

(∼ ∧ right1)
Γ ⇒ ∼β

Γ ⇒ ∼(α ∧ β)
(∼ ∧ right2)

Γ, ∼α, ∆ ⇒ γ Γ, ∼β, ∆ ⇒ γ

Γ, ∼(α ∧ β), ∆ ⇒ γ
(∼ ∧ left)

Γ ⇒ ∼α Γ ⇒ ∼β

Γ ⇒ ∼(α ∨ β)
(∼ ∨ right)

Γ, ∼α, ∆ ⇒ γ

Γ, ∼(α ∨ β), ∆ ⇒ γ
(∼ ∨ left1)

Γ, ∼β, ∆ ⇒ γ

Γ, ∼(α ∨ β), ∆ ⇒ γ
(∼ ∨ left2).

The ∼-free fragment of COSPL is called FL (full Lambek logic). The
{/, \, ∗}-fragment of FL and the {/, \, ∗, ∼}-fragment of COSPL are called
here L and C, respectively.

It can be observed that Nelson’s logic N4 is obtained from the {/, ∧, ∨,
∼}-fragment of COSPL by adding the exchange, contraction and weakening
rules respectively of the form:

Γ, α, β, ∆ ⇒ γ

Γ, β, α, ∆ ⇒ γ
(ex)

Γ, α, α, ∆ ⇒ γ

Γ, α, ∆ ⇒ γ
(co)

Γ, ∆ ⇒ γ

Γ, α, ∆ ⇒ γ
(we).
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The (non-modal propositional) intuitionistic linear logic is obtained from FL
by adding (ex).

The following theorem is known [15].

Theorem 2.2 (Cut-Elimination for COSPL). The rule (cut) is admissible
in cut-free COSPL.

The same theorem holds for FL, L and C.

Using Theorem 2.2, we can derive the following property [15].

Corollary 2.3 (Constructible Falsity). If ⇒ ∼(α ∧ β) is provable in
COSPL, then either ⇒ ∼α or ⇒ ∼β is provable in COSPL.

Definition 2.4. A logic L is called explosive if for any formulas α and β,
the sequent α, ∼α ⇒ β or ∼α, α ⇒ β is provable in L. A logic L is called
paraconsistent if L is not explosive1.

Corollary 2.5 (Paraconsistency). COSPL is paraconsistent.

2.2. Illustrative example

In the following, it is shown that COSPL can be used in medical reasoning
by the virtue of non-commutativity and paraconsistency.

Paraconsistency. It is known that logics with paraconsistency can deal
with inconsistency-tolerant reasoning more appropriately. An example us-
ing paraconsistency is briefly explained below. Assume a large medical
knowledge-base MKB of symptoms and diseases, such as an expert system
based on COSPL. It can also be assumed that MKB is inconsistent in the
sense that there is a symptom predicate s(x) such that ∼s(x), s(x) ∈ MKB,
where ∼s(x) means “a person x does not have a symptom s.” This as-
sumption is very realistic, because symptom is a vague concept, which is
difficult to determine by any diagnosis. Then, MKB does not derive ar-
bitrary disease d(x), which means “a person x suffers form a disease d”,
since paraconsistency ensures the fact that for some formulas α and β, both
the sequents ∼α, α ⇒ β and α, ∼α ⇒ β are not provable. The paracon-
sistent COSPL-based MKB is thus inconsistency-tolerant. In the classical
and intuitionistic logics, the sequent ∼s(x), s(x) ⇒ d(x) is provable for any

1 Paraconsistency is usually defined with respect to consequence relations instead of
sequents [11], and the definition presented here is for a non-commutative version. Thus,
this definition is not a standard one.
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disease d, and hence the non-paraconsistent formulation based on the logics
are regarded as inappropriate to the application of medical knowledge base.

Constructible falsity. It is known that the property of constructible fal-
sity guarantees the constructiveness of the underlying negation connective
[9]. The disjunction connective ∨ of the intuitionistic logic is known to be
constructive, since it has the disjunction property: if ⇒ α ∨ β is provable,
then either ⇒ α or ⇒ β is provable. The property of constructible fal-
sity, which does not hold for the intuitionistic logic, is regarded as the dual
notion of the disjunction property. It is also known that logics with this
property can allow to express inexact predicates. An inexact predicate is
an incomplete predicate in an empirical domain. An example of an inexact
predicate is a disease or symptom predicate such as melancholia(x), which
means “a person x suffers from the first-stage melancholia.” This predicate is
incomplete in the sense that we can not determine exactly that the formula
∼melancholia(x) ∨ melancholia(x) is true. For more detailed discussions
and examples, see e.g. [13].

Resource-sensitivity. It is known that logics without the contraction
rule (co) can elegantly represent the concept of “resource consumption”. For
example, we consider a sequent: coin, coin ⇒ coffee, which means “if we
consume two coins, then we can take a cup of coffee.” Then, if assuming
the classical or intuitionistic logic, this sequent is logically equivalent to the
sequent: coin ⇒ coffee, because of the presence of the contraction rule.
On the other hand, we desire to distinguish such two sequents in the sense
of the “resource-sensitivity”, i.e., one coin and two coins have the different
effect as resources. It is noted that COSPL is one of such resource-sensitive
logics, since it has no contraction rule.

An appropriate resource consumption example is medicine consumption
in medical reasoning. Consider a medicine m as a resource. An expression
m(x) ⇒ recover(x) means “if a person x uses a medicine m to recover
from a disease, then x makes a recovery from the disease with the medicine.”
In this case, m(x), m(x) ⇒ recover(x) and m(x) ⇒ recover(x) have the
completely different meaning in the real world, because two medicines and
one medicine have the different effect in general.

Priority. In the case of medicine consumption discussed above, it may
not be sufficient to consider the effects of medicines. For example, if we con-
sider two distinct medicines m1 and m2, then the meanings of the following
two expressions are regarded as different: m1(x), m2(x) ⇒ recover(x) and
m2(x), m1(x) ⇒ recover(x), because the order of using medicines change
the effect of the medicines. In other words, the time priority of using
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medicines is more important in general. A more detailed example is ex-
pressed as follows. An expression meal(x) means “a person x have a meal."
Then, m(x), meal(x) ⇒ recover(x) and meal(x), m(x) ⇒ recover(x) have
the different meaning, i.e., the effect of the medicine m is different whether
the medicine is used after or before the meal.

To express such fine-grained medical reasoning, we have to use a non-
commutative logic, such as COSPL, because, for example, logics with the
exchange rule (ex) can not express the priority of the use of medicines. It
can be known that in a sequent expression γ1, γ2, ..., γn ⇒ β in COSPL,
the antecedent (γ1, γ2, ..., γn) can express the time priority of consuming
the resources γ1, γ2, ..., γn, in fact, (γ1, γ2, ..., γn) is a sequence of formulas
in COSPL, since COSPL has no exchange rule. It is remarked that two
sequents γ1, γ2, ..., γn ⇒ β and γ1 ∗γ2 ∗· · ·∗γn ⇒ β are logically equivalent
in COSPL, and hence an expression γ1 ∗ γ2 means “first γ1 is consumed,
next so is γ2.” It is also noted that in two expressions β/α and α\β, the
implications / and \ represent resource consumption with priority, e.g. /
means the consumption of (subscription) ascending order priority, and \
means the consumption of descending order priority.

In order to give an intuitive and natural formulation for the prioritized
(or ordered) human reasoning as discussed above, some natural deduction
systems using labelled assumptions will be introduced in the next section.

3. Natural deduction systems for L and C

3.1. NL, NC and equivalences

In order to formulate natural deduction systems for L and C, the notion of
labeled assumptions is introduced.

Definition 3.1. If α is a formula and n is a natural number, then αn is called
an assumption (with respect to the underlying natural deduction system).

Let α, β be formulas and n, m be natural numbers. Let < and ≤ be strict
partial order and partial order, respectively, on the set of natural numbers.
Then, the strict partial and partial orders on the set of assumptions are
defined as follows:

1. αn = βm iff α ≡ β and n = m,

2. αn < βm iff n < m,

3. αn ≤ βm iff n < m or αn = βm.
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Let Γ, ∆ be sets of assumptions. Then, the strict partial and partial
orders on the powerset of the set of assumptions are defined as follows:

1. Γ < ∆ iff ∀αn ∈ Γ, ∀βm ∈ ∆ [αn < βm],

2. Γ ≤ ∆ iff ∀αn ∈ Γ, ∀βm ∈ ∆ [αn ≤ βm].

It is remarked that if α and β are different as symbols, i.e., not(α ≡ β),
then αn and βn are incomparable.

Definition 3.2 (NL). Let Γ, ∆ be sets of assumptions. The inference rules
of NL (a natural deduction system for L) are of the form:

Γ − {αn}
....
β

β/α
(/I)n

where αn ∈ Γ and Γ ≤ {αn},

Γ....
β/α

∆....
α

β
(/E)

where Γ ∩ ∆ = ∅ and Γ ≤ ∆,

Γ − {αn}
....
β

α\β
(\I)n

where αn ∈ Γ and {αn} ≤ Γ,

Γ....
α\β

∆....
α

β
(\E)

where Γ ∩ ∆ = ∅ and ∆ ≤ Γ,

Γ....
α

∆....
β

α ∗ β
(∗I)

where Γ ∩ ∆ = ∅ and Γ ≤ ∆,

Γ....
(γ/β)/α

∆....
α ∗ β

γ (∗E1) where Γ ∩ ∆ = ∅ and Γ ≤ ∆,

Γ....
α\(β\γ)

∆....
β ∗ α

γ (∗E2) where Γ ∩ ∆ = ∅ and ∆ ≤ Γ.
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It is remarked that although inference rules in NL may be applied to
assumptions, yet labels are not inherited by conclusions of these rules appli-
cations.

Definition 3.3 (NC). NC (a natural deduction system for C) is obtained
from NL by adding the inference rules of the form:

α
∼∼α (∼I) ∼∼α

α (∼E)
α ∗ ∼β

∼(β/α)
(∼/I)

∼(β/α)

α ∗ ∼β
(∼/E)

∼β ∗ α

∼(α\β)
(∼\I)

∼(α\β)

∼β ∗ α
(∼\E)

∼α ∗ ∼β

∼(α ∗ β)
(∼ ∗ I)

∼(α ∗ β)

∼α ∗ ∼β
(∼ ∗ E).

The inference rules (/I), (\I), (∗I), (∼I), (∼/I), (∼\I) and (∼ ∗ I) are
called introduction rules, and the inference rules (/E), (\E), (∗E1), (∗E2),
(∼E), (∼/E), (∼\E) and (∼ ∗ E) are called elimination rules. The usual
terminologies of major or minor premise of some inference rules are used in
the following. In particular, the right premises of the rules (∗E1) and (∗E2)
are called the major premises of the rules. The notion of proof, assumptions
of proof, and end-formula of proof are defined as usual. It is remarked that
an assumption αn is itself a proof. A formula α is said to be provable in
a natural deduction system if there is a proof in the system with no open
assumption whose end-formula is α.

In the definitions of NL and NC , the condition αn ∈ Γ of (/I) and (\I)
corresponds to the fact that the underlying logics have no weakening rule
(we). The condition Γ ∩ ∆ = ∅ of (/E), (\E), (∗I), (∗E1) and (∗E2) corre-
sponds to the fact that the underlying logics have no contraction rule (co).
The conditions Γ ≤ {αn} and {αn} ≤ Γ of (/I) and (\I), respectively,
and the conditions Γ ≤ ∆ and ∆ ≤ Γ of {(/E), (∗E1)} and {(\E), (∗E2)},
respectively, correspond to the fact that the underlying logics have no ex-
change rule (ex). We call the conditions concerning (we), (co) and (ex), the
weakening, contraction and exchange conditions, respectively. By deleting
any of these conditions, we can obtain the corresponding natural deduction
system, systematically. For example, a natural deduction system for L+(ex),
i.e., the {/, ∗}-fragment of intuitionistic linear logic, is obtained from NL by
deleting the exchange conditions.

Definition 3.4. Let P be a proof in a natural deduction system. An ex-
pression oa(P ) denotes the set of open assumptions of P , and an expression
end(P ) denotes the end-formula of P .

To prove the equivalence between NC and C (and also between NL and L),
we need the following lemma.
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Lemma 3.5 (Label shift). Let Γ be a (possibly empty) set of assumptions.
If P is a proof in NC such that oa(P ) = Γ ∪ {αn1

1 , ..., αnk

k } (Γ < {αn1

1 } <
· · · < {αnk

k }) and end(P ) = β, then for any natural number m ≥ 0, there
is a proof P ′ in NC such that oa(P ′) = Γ ∪ {αn1+m

1 , ..., αnk+m
k } and end(P ′)

= β.

Proof. By induction on P .

Using Lemma 3.5, we will prove Lemma 3.7. In the proofs of Lemmas
3.6 and 3.7, we use the notation Γ′ for a corresponding labelled assumption
set for a sequence Γ of formulas. We also use an expression Γ′+m which
means that Γ′+m is obtained from a set Γ′ of assumptions by m shifting to
the labels of all the assumptions in Γ′.

Lemma 3.6. If P is a proof in NC such that oa(P ) = {αn1

1 , · · · , αnk

k } (αn1

1 <
· · · < αnk

k ) (0 ≤ k)2 and end(P ) = β, then the sequent α1, ..., αk ⇒ β is
provable in C.

Proof. We prove this lemma by induction on P . We distinguish the cases
according to the last inference in P . We only show the following case.

Case (∗E1): P is of the form:

Γ′
....

(γ/β)/α

∆′
....

α ∗ β
γ (∗E1)

where Γ′ ∩ ∆′ = ∅ and Γ′ ≤ ∆′. By the hypothesis of induction, we have
that the sequents Γ ⇒ (γ/β)/α and ∆ ⇒ α ∗ β are provable in C. Then,
we obtain:

∆ ⇒ α ∗ β

Γ ⇒ (γ/β)/α

α ⇒ α

β ⇒ β γ ⇒ γ

γ/β, β ⇒ γ
(/left)

(γ/β)/α, α, β ⇒ γ
(/left)

Γ, α, β ⇒ γ
(cut)

Γ, α ∗ β ⇒ γ
(∗left)

Γ, ∆ ⇒ γ
(cut).

Lemma 3.7. If a sequent α1, ..., αk ⇒ β (0 ≤ k) is provable in C, then there
is a proof Q in NC such that oa(Q) = {αn1

1 , ...., αnk

k } (αn1

1 < · · · < αnk

k ) and
end(Q) = β.

2 The case for k = 0 means oa(P ) = {βn} = end(P ) = P .
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Proof. We prove this lemma by induction on a proof P of α1, ..., αk ⇒ β
in C. We distinguish the cases according to the last inference in P . We show
some cases.

Case (\left): P is of the form:

....
Γ ⇒ γ

....
∆, δ, Σ ⇒ β

∆, Γ, γ\δ, Σ ⇒ β
(\left).

By the hypothesis of induction, there are proofs in NC such that

Γ′
....

γ,

∆′ ∪ {δn} ∪ Σ′

....
β

where ∆′ < {δn} < Σ′. Let Γ be {γn1

1 , ..., γnm

m } (0 ≤ m). By Lemma 3.5, we
have proofs in NC such that

Γ′+r
....

γ,

∆′ ∪ {δn} ∪ Σ′+z

....
β

where n < r and nm + r < z, and hence ∆′ < Γ′+r < Σ′+z. Then, we have
a required proof in NC :

∆′
(γ\δ)nm+r

Γ′+r
....
γ

δ
(\E)

Σ′+z
....
β

where Γ′+r < {(γ\δ)nm+r}. It is remarked that the required condition
∆′ < Γ′+r < {(γ\δ)nm+r} < Σ′+z holds for this proof.

Case (∼/left): P is of the form:

....
Γ, γ, ∼δ, ∆ ⇒ β

Γ, ∼(δ/γ), ∆ ⇒ β
(∼/left).
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By the hypothesis of induction, we have that there is a proof in NC of the
form:

Γ′ ∪ {γm} ∪ {∼δn} ∪ ∆′

....
β

where Γ′ < {γm} < {∼δn} < ∆′. In the following, β/∆ denotes (· · · ((β/δn)/
δn−1)/ · · · /δ1) if ∆ is a sequence (δ1, ..., δn) where 1 ≤ n, and also denotes
β if ∆ = ∅. Then, we obtain a required proof:

Γ′[γm][∼δn][∆′]
....
β.... (/I)

β/∆

(β/∆)/∼δ
(/I)n

((β/∆)/∼δ)/γ
(/I)m ∼(δ/γ)m

γ ∗ ∼δ
(∼/E)

β/∆
(∗E1)

∆′

.... (/E)
β

where Γ′ < {∼(δ/γ)m} < ∆′.

Lemmas 3.6 and 3.7 imply the following theorem.

Theorem 3.8 (Equivalence between NC and C). A formula α is provable in
NC if and only if the sequent ⇒ α is provable in C.

We also have the following theorem as the subproof of Theorem 3.8.

Theorem 3.9 (Equivalence between NL and L). A formula α is provable in
NL if and only if the sequent ⇒ α is provable in L.

In order to define a reduction relation ⊲ on the set of proofs in NL

(and NC), we assume the usual definition of substitution for proofs, i.e., an
assumption αn occurring in a proof P is replaced by a proof D with end(D)
= α. This substitution can be defined exactly, and can also be observed that
the set of proofs in NL (and NC) is closed under the substitution3.

3 Strictly speaking, this fact is presented as follows. Let D be a proof such that oa(D)
= Γ ∪ {αn}, end(D) = β, αn /∈ Γ and Γ < {αn}. Let E be a proof such that oa(E) =
∆ and end(E) = α. If Γ < ∆, i.e., Γ ∩ ∆ = ∅ and Γ ≤ ∆, then the figure F which is
obtained from D by substituting E for αn in D is a proof such that oa(F ) = Γ ∪ ∆ and
end(F) = β.
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Definition 3.10. Let α be a formula occurring in a proof P . Then, α is
called a maximum formula in P if α satisfies the following conditions: (1)
α is a conclusion of an introduction rule and (2) α is the major premise of
an elimination rule. A proof is said to be normal if it contains no maximum
formula.

Definition 3.11 (Reduction for NL). Let δ be a maximum formula in a
proof which is the conclusion of an inference rule R and is the major premise
of an elimination rule R′. The reduction relation (for NL) ⊲ at δ is defined
as follows.

1. R is (/I)n and δ is β/α:

Γ − {αn}
.... D
β

β/α
R

.... E
α

β ⊲

.... E

Γ′, α.... D
β

where Γ′ ∪ {αn} = Γ.

2. R is (\I)n and δ is α\β:

Γ − {αn}
.... D
β

α\β
R

.... E
α

β ⊲

.... E

α, Γ′
.... D
β

where Γ′ ∪ {αn} = Γ.

3. R is (∗I), R′ is (∗E1), and δ is α ∗ β:

Γ....
(γ/β)/α

∆....
α

Σ....
β

α ∗ β
R

γ R′
⊲

Γ....
(γ/β)/α

∆....
α

γ/β
(/E)

Σ....
β

γ (/E).
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4. R is (∗I), R′ is (∗E2), and δ is β ∗ α:

Γ....
α\(β\γ)

∆....
β

Σ....
α

β ∗ α
R

γ R′
⊲

Γ....
α\(β\γ)

Σ....
α

β\γ
(\E)

∆....
β

γ (\E).

5. Let D, D′, E be proofs. If D ⊲ D′, then

D
α (I)

⊲

D′

α (I),

D E
α (R)

⊲

D′ E
α (R), E D

α (R)
⊲

E D′

α (R)

where I ∈ {/I, \I} and R ∈ {/E, \E, ∗I, ∗E1, ∗E2}.

It is remarked that in this definition, the conditions of proofs are pre-
served with respect to ⊲, e.g., for the case 4, the conditions Γ ∩ ∆ ∩ Π = ∅
and ∆ ≤ Σ ≤ Γ of the left hand side of ⊲ are preserved in the right hand
side of ⊲. Thus, the set of proofs in NL is closed under ⊲

4.

Definition 3.12 (Reduction for NC). Let γ be a maximum formula in a
proof which is the conclusion of an inference rule R. The reduction relation
⊲ of NC at γ is obtained from those of NL by adding the following conditions.

6. R is (∼I), and γ is ∼∼α:

.... D
α

∼∼α R
α ⊲

.... D
α.

7. R is (∼/I), and γ is ∼(β/α):

.... D
α ∗ ∼β

∼(β/α)
R

α ∗ ∼β ⊲

.... D
α ∗ ∼β.

4 Strictly speaking, this fact is presented as follows. Let D be a proof in NL such that
oa(D) = Γ and end(D) = α. If D ⊲ E, then E is also a proof in NL such that oa(E) = Γ
and end(E) = α.
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8. R is (∼\I), and γ is ∼(α\β):

.... D
∼β ∗ α

∼(α\β)
R

∼β ∗ α ⊲

.... D
∼β ∗ α.

9. R is (∼ ∗ I), and γ is ∼(α ∗ β):

.... D
∼α ∗ ∼β

∼(α ∗ β)
R

∼α ∗ ∼β. ⊲

.... D
∼α ∗ ∼β.

10. Let D, D′, E be proofs. If D ⊲ D′, then

D
α (I)

⊲

D′

α (I)

where I ∈ {∼I, ∼E, ∼/I, ∼/E, ∼\I, ∼\E, ∼ ∗ I, ∼ ∗ E}.

It is remarked that the set of proofs in NC is closed under ⊲.

Definition 3.13. A sequence D0, D1, ... of proofs is called a reduction se-
quence if it satisfies the following conditions (1) Di ⊲ Di+1 for all 0 ≤ i and
(2) the last proof in the sequence is normal if the sequence is finite. A proof
D is called strongly normalizable if each reduction sequence starting from D
terminates.

3.2. N2
C and equivalence

Definition 3.14 (N2
C). N2

C is obtained from NC by replacing the inference
rules (∼/I), (∼/E), (∼\I), (∼\E), (∼∗I) and (∼∗E) by the inference rules
of the form: for Γ ∩ ∆ = ∅ and Γ ≤ ∆,

Γ....
α

∆....
∼β

∼(β/α)
(∼/I∗)

Γ....
(γ/∼β)/α

∆....
∼(β/α)

γ (∼/E1∗)

∆....
∼β\(α\γ)

Γ....
∼(β/α)

γ (∼/E2∗)

Γ....
∼β

∆....
α

∼(α\β)
(∼\I∗)

∆....
α\(∼β\γ)

Γ....
∼(α\β)

γ (∼\E1∗)

Γ....
(γ/α)/∼β

∆....
∼(α\β)

γ (∼\E2∗)
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Γ....
∼α

∆....
∼β

∼(α ∗ β)
(∼ ∗ I∗)

Γ....
(γ/∼β)/∼α

∆....
∼α ∗ ∼β

γ (∼ ∗ E1∗)

∆....
∼β\(∼α\γ)

Γ....
∼α ∗ ∼β

γ (∼ ∗ E2∗).

Theorem 3.15 (Equivalence between N2
C and NC). A formula γ is provable

in N2
C if and only if γ is provable in NC .

Proof. (⇐=): We prove the statement by induction on a proof P of γ in
NC . We distinguish the cases according to the last inference in P . We show
some cases.

Case (∼/I): P is of the form:

.... Q
α ∗ ∼β

∼(β/α)
(∼/I).

By the hypothesis of induction, we get a proof of α ∗ ∼β in N2
C such that

.... Q′

α ∗ ∼β.

Then, we obtain a required proof in N2
C :

[α1] [∼β2]

∼(β/α)
(∼/I∗)

∼(β/α)/∼β
(/I)2

(∼(β/α)/∼β)/α
(/I)1

.... Q′

α ∗ ∼β

∼(β/α)
(∗E1).

Case (∼/E): P is of the form

.... Q

∼(β/α)

α ∗ ∼β
(∼/E).

By the hypothesis of induction, we get a proof of ∼(β/α) in N2
C such that

.... Q′

∼(β/α).
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Then, we obtain a required proof in N2
C :

[α1] [∼β2]

α ∗ ∼β
(∗I)

(α ∗ ∼β)/∼β
(/I)2

((α ∗ ∼β)/∼β)/α
(/I)1

.... Q′

∼(β/α)

α ∗ ∼β
(∼/E1∗).

(=⇒): We prove the statement by induction on a proof P of γ in N2
C .

We distinguish the cases according to the last inference in P . We only show
the following case.

Case (∼/E1∗): P is of the form:

.... Q1

(γ/∼β)/α

.... Q2

∼(β/α)
γ (∼/E1∗).

By the hypothsis of induction, we obtain the proofs in NC of the form:

.... Q′
1

(γ/∼β)/α

.... Q′
2

∼(β/α)

and hence a required proof is

.... Q′
1

(γ/∼β)/α

.... Q′
2

∼(β/α)

α ∗ ∼β
(∼/E)

γ (∗E1).

Definition 3.16 (Reduction for N2
C). Let δ be a maximum formula in a

proof which is the conclusion of an inference rule R. The reduction relation
⊲ of N2

C at δ is obtained from that of NL by adding the following conditions.

6. R is (∼I), and δ is ∼∼α:

.... D
α

∼∼α R
α ⊲

.... D
α.



122 Norihiro Kamide and Motohiko Mouri

7. R is (∼/I∗), R′ is (∼/E1∗), and δ is ∼(β/α):

Γ....
(γ/∼β)/α

∆....
α

Σ....
∼β

∼(β/α)
R

γ R′

⊲

Γ....
(γ/∼β)/α

∆....
α

γ/∼β
(/E)

Σ....
∼β

γ (/E).

8. R is (∼/I∗), R′ is (∼/E2∗), and δ is ∼(β/α):

Γ....
∼β\(α\γ)

∆....
α

Σ....
∼β

∼(β/α)
R

γ R′

⊲

Γ....
∼β\(α\γ)

Σ....
∼β

α\γ
(\E)

∆....
α

γ (\E).

9. R is (∼\I∗), R′ is (∼\E1∗), and δ is ∼(α\β):

Γ....
α\(∼β\γ)

∆....
∼β

Σ....
α

∼(α\β)
R

γ R′

⊲

Γ....
α\(∼β\γ)

Σ....
α

∼β\γ
(\E)

∆....
∼β

γ (\E).

10. R is (∼\I∗), R′ is (∼\E2∗), and δ is ∼(α\β):

Γ....
(γ/α)/∼β

∆....
∼β

Σ....
α

∼(α\β)
R

γ R′

⊲

Γ....
(γ/α)/∼β

∆....
∼β

γ/α
(/E)

Σ....
α

γ (/E).

11. R is (∼ ∗ I∗), R′ is (∼ ∗ E1∗), and δ is ∼(α ∗ β):

Γ....
(γ/∼β)/∼α

∆....
∼α

Σ....
∼β

∼(α ∗ β)
R

γ R′

⊲

Γ....
(γ/∼β)/∼α

∆....
∼α

γ/∼β
(/E)

Σ....
∼β

γ (/E).

12. R is (∼ ∗ I∗), R′ is (∼ ∗ E2∗), and δ is ∼(β ∗ α):

Γ....
∼α\(∼β\γ)

∆....
∼β

Σ....
∼α

∼(β ∗ α)
R

γ R′

⊲

Γ....
∼α\(∼β\γ)

Σ....
∼α

∼β\γ
(\E)

∆....
∼β

γ (\E).
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13. Let D, D′, E be proofs. If D ⊲ D′, then

D
α (I)

⊲

D′

α (I),

D E
α (R)

⊲

D′ E
α (R), E D

α (R)
⊲

E D′

α (R)

where I ∈ {∼I, ∼E} and R ∈ {∼/I∗, ∼/E1∗, ∼/E2∗, ∼\I∗, ∼\E1∗,
∼\E2∗, ∼ ∗ I∗, ∼ ∗ E1∗, ∼ ∗ E2∗}.

The set of proofs in N2
C is closed under ⊲.

The notions of reduction sequence and strong normalizability are the
same as in the Definition 3.13.

The strong normalizability for NL, NC and N2
C will be proved in the

next section, by using the corresponding typed λ-calculi based on the Curry-
Howard correspondences.

4. Typed λ-calculus and strong normalization

4.1. λL and strong normalization

Terms are constructed from variables, two kinds of λ-abstractions λr, λl con-
cerning the two directional implication connectives /, \ in L, usual (left and
right) applications, an application operator ◦ concerning the fusion connec-
tive ∗, and a pairing function [ , ] concerning ∗. Types are constructed
from atomic types, /, \, and ∗. Variables are denoted as x, xn, y, ..., untyped
terms are denoted as M, Mn, N, ..., types are denoted as α, β, γ, ..., and typed

terms are denoted as Mα, Nβ, Lγ, .... Typed terms are sometimes denoted
as M, N, L, ... by omitting the types. It is assumed that in a λ-term, the
same variables do not occur simultaneously as both free and bound variables.
It is also assumed that in a λ-term, there are no iterated occurrences of the
same bound variable x, such as · · · λrxα.(· · · λrxα.(· · · ) · · · ) · · · . An expres-
sion FV (Mα) means the set of all (typed) free variables in the typed term

Mα. An expression [Nα/xα]Mβmeans, in a usual sense, the substitution

of Nα to a free variable xα in Mβ . To avoid the clash of bound variables
by substitutions, α-conversions are occasionally assumed.

Definition 4.1. Assume that the set of variables is countable. Then, an
expression xα denotes a typed variable if x is a variable and α is a type.

Let x, y be variables, and α, β be types. Suppose that the strict partial
and partial orders <, ≤, respectively, on the set of variables are defined.
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Then, the strict partial and partial orders on the set of typed variables are
defined as follows:

1. xα = yβ iff x = y and α ≡ β,

2. xα < yβ iff x < y,

3. xα ≤ yβ iff x < y or xα = yβ .

Let Γ, ∆ be sets of typed variables. Then, the strict partial and partial
orders on the powerset of the set of typed variables are defined as follows:

1. Γ < ∆ iff ∀xα ∈ Γ, ∀yβ ∈ ∆ [xα < yβ ],

2. Γ ≤ ∆ iff ∀xα ∈ Γ, ∀yβ ∈ ∆ [xα ≤ yβ ].

Definition 4.2 (Typed λ-term for λL). Suppose that types and terms are
defined as usual. Then, typed λ-terms (for λL) are inductively defined as
follows.

1. if xα is a typed variable, then it is a typed λ-term.

2. if xα and Mβ are typed λ-terms, FV (Mβ) ≤ {xα}, and xα ∈

FV (Mβ), then (λrxα.Mβ)β/α is a typed λ-term.

3. if xα and Mβ are typed λ-terms, {xα} ≤ FV (Mβ), and xα ∈

FV (Mβ), then (λlxα.Mβ)α\β is a typed λ-term.

4. if Mβ/α and Nα are typed λ-terms, FV (Mβ/α) ≤ FV (Nα) and

FV (Mβ/α) ∩ FV (Nα) = ∅, then (Mβ/αNα)β is a typed λ-term.

5. if Mα\β and Nα are typed λ-terms, FV (Nα) ≤ FV (Mα\β) and

FV (Mα\β) ∩ FV (Nα) = ∅, then (NαMα\β)β is a typed λ-term.

6. if Mα and Nβ are typed λ-terms, FV (Mα) ≤ FV (Nβ) and

FV (Mα) ∩ FV (Nβ) = ∅, then [Mα, Nβ ]α∗β is a typed λ-term.

7. if M (γ/β)/α and Nα∗β are typed λ-terms, FV (M (γ/β)/α) ≤

FV (Nα∗β) and FV (M (γ/β)/α)∩FV (Nα∗β) = ∅, then (M (γ/β)/α ◦

Nα∗β)γ is a typed λ-term.
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8. if Mα\(β\γ) and Nβ∗α are typed λ-terms, FV (Nβ∗α) ≤

FV (Mα\(β\γ)) and FV (Mα\(β\γ))∩FV (Nβ∗α) = ∅, then (Nβ∗α ◦

Mα\(β\γ))γ is a typed λ-term.

It is observed that, in Definition 4.2, the items 2—8 correspond to
the inference rules (/I), (\I), (/E), (\E), (∗I), (∗E1) and (∗E2), respec-

tively. Hence, in Definition 4.2, the assumptions FV (Mβ) ≤ {xα}, {xα} ≤

FV (Mβ), FV (Mβ/α) ≤ FV (Nα), FV (Nα) ≤ FV (Mα\β), FV (Mα) ≤

FV (Nβ), FV (M (γ/β)/α) ≤ FV (Nα∗β) and FV (Nβ∗α) ≤ FV (Mα\(β\γ))
in the conditions 2—8 correspond to the fact that the underlying logic has

no exchange rule. The assumption xα ∈ FV (Mβ) in the conditions 2 and
3 corresponds to the fact that the underlying logic has no weakening rule.

The empty-variable assumptions such as FV (Mβ/α) ∩ FV (Nα) = ∅ in the
conditions 4—8 correspond to the fact that the underlying logic has no con-
traction rule. These empty-variable assumptions concerning the contraction
rule have a crucial role in the simplicity of the strong normalization proof.
The definition discussed is based on the definition of linear λ-term by Hind-
ley [3], and on the definition of two directional λ-term using two kinds of
abstractions by Wansing [14, 15]. Hence the Curry-Howard correspondence
can naturally be obtained.

Definition 4.3 (λL). In the following, a typed λ-calculus for L, called λL,
is defined by the reductions for the typed λ-terms defined in Definition 4.2.
The transformation process from the left hand side of ⊲ to the right hand
side of ⊲ is called a reduction, and the term of the left hand side of ⊲ is
called a redex.

1. ((λrxα.Mβ)β/αNα)β ⊲ [Nα/xα]Mβ .

2. (Nα(λlxα.Mβ)α\β)β ⊲ [Nα/xα]Mβ .

3. (M (γ/β)/α ◦ [Nα, Lβ ]α∗β)γ ⊲ ((M (γ/β)/αNα)γ/βLβ)γ .

4. ([Lβ, Nα]β∗α ◦ Mα\(β\γ))γ ⊲ (Lβ(NαMα\(β\γ))β\γ)γ .

5.5 if M ⊲ N , then λrx.M ⊲ λrx.N , λlx.M ⊲ λlx.N , ML ⊲ NL, LM
⊲ LN , [M, L] ⊲ [N, L], [L, M ] ⊲ [L, N ], M ◦ L ⊲ N ◦ L and L ◦ M
⊲ L ◦ N .

5For the sake of simplicity of the expressions, types are omitted in 5, but the corre-
sponding types can be attached appropriately.
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It can be observed that the set of typed λ-terms for λL is closed under ⊲.

Definition 4.4. A typed λ-term is said to be normal if it contains no redex.
A sequence Mα0

0 , Mα1

1 , · · · of typed λ-terms is called a reduction sequence if
it satisfies the following conditions (1) Mαi

i ⊲ M
αi+1

i+1 for all 0 ≤ i and (2)
the last typed λ-term in the sequence is normal if the sequence is finite. A
typed λ-term Mα is called strongly normalizable if each reduction sequence
starting from Mα terminates.

It is known that the strong normalization theorem for the linear λ-terms
for the implicational fragment can be proved using the function l from the
set of terms to the set of natural numbers defined inductively by l(x) = 0,
l(λx.M) = l(M)+1 and l(MN) = l(M)+l(N). Since the linear λ-terms have
the restriction related to the absence of the contraction rule, the fact “M
⊲ N implies l(M) > l(N)” can be obtained, and using this fact, the strong
normalization theorem can be proved. To prove the strong normalization
for λL, the function l is extended with the addition of the cases for ◦ and
[ , ].

Definition 4.5. A function f from the set of all typed λ-terms to the set
of natural numbers is inductively defined by

1. f(x) = 0,

2. f(MN) = f([M, N ]) = f(M) + f(N),

3. f(λrx.M) = f(λlx.M) = f(M) + 1,

4. f(M ◦ N) = f(M) + f(N) + 1.

Lemma 4.6. Let (λrx.M)N , N(λlx.M) be typed λ-terms for λL.

(1) f((λrx.M)N) > f([N/x]M).

(2) f(N(λlx.M)) > f([N/x]M).

Proof. We only prove (1) of this lemma by induction on M . (2) can be
proved similarly. We show some cases. Let n = f(N), p = f(P ) and
q = f(Q).

(Case M ≡ x): The left hand side of the inequality is f((λrx.x)N)
= f(λrx.x) + f(N) = f(x) + 1 + f(N) = n + 1. The right hand side is
f([N/x]x) = f(N) = n. Therefore we have the required fact.
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(Case M ≡ [P, Q]): The left hand side is L = f((λrx.[P, Q])N) =
f(λrx.[P, Q]) + f(N) = f(P ) + f(Q) + 1 + f(N) = p + q + n + 1. The right
hand side is R = f([N/x][P, Q]) = f([[N/x]P, Q]) or f([P, [N/x]Q])6. We
only consider the former case: f([[N/x]P, Q]). The latter case can be treated
similarly. By the hypothesis of induction, we have R = f([N/x]P )+ f(Q) <
f((λrx.P )N) + f(Q) = f(λrx.P ) + f(N) + f(Q) = p + q + n + 1. Therefore
L > R.

(Case M ≡ λry.P where y 6= x and y /∈ FV (N)): The left hand side is
L = f((λrx.(λry.P ))N) = f(λrx.(λry.P )) + f(N) = f(λry.P ) + 1 + f(N) =
f(P )+1+1+f(N) = p+n+2. The right hand side is R = f([N/x](λry.P ))
= f(λry.[N/x]P ) = f([N/x]P )+1 < f((λrx.P )N)+1 = f(λrx.P )+f(N)+1
= f(P )+1+f(N)+1 = p+n+2 by the hypothesis of induction7. Therefore
L > R.

(Case M ≡ P ◦ Q): The left hand side is L = f((λrx.(P ◦ Q))N) =
f(P ◦ Q) + 1 + f(N) = f(P ) + f(Q) + 1 + 1 + f(N) = p + q + n + 2. The
right hand side is R = f([N/x](P ◦ Q)) = f([N/x]P ◦ Q) or f(P ◦ [N/x]Q).
We only consider the former case. By the hypothesis of induction, we have
f([N/x]P ◦Q) = f([N/x]P )+f(Q)+1 < f((λrx.P )N)+f(Q)+1 = f(P )+
1 + f(N) + f(Q) + 1 = p + q + n + 2. Therefore L > R.

Using this lemma, we can prove the following lemma.

Lemma 4.7. Let M be a typed λ-term for λL. Then, M ⊲ N implies f(M)
> f(N).

Proof. We prove this lemma by induction on M . We show some cases.

(Case M ≡ ((λrx.P )Q), N ≡ [Q/x]P ): By Lemma 4.6, we obtain
f(M) > f(N).

(Case M ≡ (P ◦ [Q, R]), N ≡ ((PQ)R)): We have f(M) = f(P ◦ [Q, R])
= f(P ) + f([Q, R]) + 1 = f(P ) + f(Q) + f(R) + 1, and f(N) = f((PQ)R)
= f(P ) + f(Q) + f(R). Therefore f(M) > f(N).

Using this lemma, we obtain the following theorem.

Theorem 4.8 (Strong normalization for λL). All typed λ-terms for λL are
strongly normalizable.

6 This is because of the restriction F V (P ) ∩ F V (Q) = ∅ concerning the absence of the
contraction rule.

7 We assume the restriction x ∈ F V (λry.P ) concerning the absence of the weakening
rule.
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Proof. Suppose that there is an infinite reduction sequence starting form
M0 such that M0 ⊲ M1 ⊲ · · · . Then, by Lemma 4.7, we have the fact that
f(M0) > f(M1) > · · · is infinite. However this is the contradiction for the
fact that f(M0) is a natural number, and hence the reductions terminate.

Using this theorem, we obtain the following theorem.

Theorem 4.9 (Strong normalization for NL). All proofs for NL are strongly
normalizable.

Proof. We only give a sketch of the proof. First, we consider a usual type-
assignment system TANL

8 which has appropriate typed inference rules such
as ....

M (γ/β)/α : (γ/β)/α

....
Nα∗β : α ∗ β

(M ◦ N)γ : γ

where FV (M (γ/β)/α) ∩ FV (Nα∗β) = ∅ and FV (M (γ/β)/α) ≤ FV (Nα∗β).
By introducing such a system, we can clarify the Curry-Howard correspon-
dence as a result. It is noted that a figure which is obtained from a proof of
(Mα : α) in TANL by deleting all typed λ-terms is a proof of α in NL, and
conversely, for a proof of α in NL, there is an appropriate proof of (Mα : α)
in TANL. If D is a proof of (Mα : α) in TANL, and D′ is the proof in NL

obtained from D by deleting all typed λ-terms, then Mα in λL is said to be
assignable to D′. We then have the following fact, because the reductions of
NL just correspond to the reductions of λL.

(∗) Let D be a proof of a formula α in NL, and Mα be assignable to D.

If D ⊲D′, then there is an assignable typed λ-term Nβ in λL to D′

such that Mα
⊲ Nβ .

Let D0 be a proof of NL. Suppose that there is an infinite reduction
sequence starting from D0 with assignable Mα0

0 such that D0 ⊲ D1 ⊲ D2

⊲ · · · . Then, by the statement (∗), there are typed λ-terms Mα1

1 , Mα2

2 , ...
assignable respectively to D1, D2, ... such that Mα0

0 ⊲ Mα1

1 ⊲ Mα2

2 · · · is
an infinite reduction sequence. This contradicts Theorem 4.8.

Theorem 4.10 (Church-Rosser property). Let ⊲ be the reduction relation
on the set of terms (or proofs) in λL (or NL, respectively). Let ⊲β be the

8The precise definition of TANL can be given by combining the way of defining NL and
λL, but such a way is just a repetition of the same thing.
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reflexive transitive closure of ⊲. For any terms (or proofs) M, M1 and M2,
if M ⊲β M1 and M ⊲β M2, then there is a term (or proof) N such that
M1 ⊲β N and M2 ⊲β N .

Proof. We only consider the case for NL. By Newman’s Lemma, it suffices
to show the following weak Church-Rosser property, since we have already
established the strong normalization theorem (Theorem 4.9).

(Weak Church-Rosser property): For any proofs M, M1 and M2,
if M⊲M1 and M⊲M2, then there is a proof N such that M1⊲βN
and M2 ⊲β N .

This can straightforwardly be proved.

4.2. λC and strong normalization

First, a typed λ-calculus with strong negation type, denoted λC , is in-
troduced, and next the strong normalization theorem for λC is proved.
Terms for λC are obtained from that for λL by adding eight new func-
tions ι1, ι2, ι3, ι4, ι−1

1 , ι−1
2 , ι−1

3 and ι−1
4 . The functions ιj and ι−1

j are ana-
logues of the pairing function 〈, 〉 and projection functions π1, π2 for the
conjunction type, respectively, which appear in a usual typed λ-calculus
with the conjunction type. For example, the intended meaning of ι1 and
ι−1
1 can be presented as the equations: (ι−1

1 (ι1Mα)∼∼α)α = Mα and
(ι1(ι−1

1 M∼∼α)α)∼∼α = M∼∼α, which are analogues of the equations:

(π1〈Mα, Nβ〉α∧β)α = Mα and 〈(π1Mα∧β)α, (π2Mα∧β)β〉α∧β = Mα∧β .
Types for λC are obtained from that for λL by adding the strong nega-

tion symbol ∼. The notion of substitution, denoted as [Nα/xα]Mβ , is

extended for λC . For example, we have [Nα/xα](ι1Mβ)∼∼β = (ι1[Nα/

xα]Mβ)∼∼β .

Definition 4.11 (Typed λ-term for λC). Let a pair 〈δ, δ′〉 of types be
〈α, ∼∼α〉, 〈∼(β/α), α ∗ ∼β〉, 〈∼(α\β), ∼β ∗ α〉 or 〈∼(α ∗ β), ∼α ∗ ∼β〉. Let
j be 1, 2, 3 or 4. Typed λ-terms for λC are obtained from Definition 4.2 by
adding the following conditions.

9. if Mδ is a typed λ-term, then (ιjMδ)δ
′

is a typed λ-term.

10. if Mδ′

is a typed λ-term, then (ι−1
j Mδ′

)δ is a typed λ-term.
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Definition 4.12 (λC). Let a pair 〈δ, δ′〉 of types be 〈α, ∼∼α〉, 〈∼(β/α), α ∗
∼β〉, 〈∼(α\β), ∼β ∗ α〉 or 〈∼(α ∗ β), ∼α ∗ ∼β〉. The reduction relation ⊲

with respect to λC is obtained from Definition 4.3 by adding the following
conditions.

6. (ι−1
j (ιjMδ)δ

′

)δ ⊲ Mδ for any j ∈ {1, 2, 3, 4}.

7. if M ⊲N , then ιjM ⊲ ιjN and ι−1
j M ⊲ ι−1

j N for any j ∈ {1, 2, 3, 4}.

It can be observed that the set of typed λ-terms for λC is closed under ⊲.

It is remarked that the Curry-Howard correspondence with respect to λC

and NC can naturally be obtained. We can thus introduce a type-assignment
system TANC with respect to λC and NC in an appropriate way. For exam-
ple, the following rules are used for TANC :

Mα : α
(ι1Mα)∼∼α : ∼∼α

M∼∼α : ∼∼α

(ι−1
1 M∼∼α)α : α

and the following reduction condition can also be presented:

.... D

Mα : α
(ι1Mα)∼∼α : ∼∼α

(ι−1
1 (ι1Mα)∼∼α)α : α ⊲

.... D

Mα : α.

In order to prove the strong normalization theorem for λC , the function
f defined in Definition 4.5 is modified as follows.

Definition 4.13. A function k from the set of all untyped λ-terms to the
set of natural numbers is obtained from the same conditions as 1–4 for f in
Definition 4.5 by adding the following condition.

5. k(ιjM) = k(ι−1
j M) = k(M) + 1 for any j ∈ {1, 2, 3, 4}.

The following lemma, which is the same as Lemma 4.6, holds for k.

Lemma 4.14. Let (λrx.M)N , N(λlx.M) be typed λ-terms for λC .

(1) k((λrx.M)N) > k([N/x]M).

(2) k(N(λlx.M)) > k([N/x]M).
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Proof. We only prove (1) of this lemma by induction on M . (2) can be
proved similarly. The proof of the subpart which is just related to λL is the
same as those in Lemma 4.6. Thus, it is enough to prove the cases for the
ιj, ι−1

j -functions. We only show the case for the ιj-functions. The case for

ι−1
j -functions can be proved similarly. Let n = k(N) and p = k(P ).

(Case M ≡ ιjP for j ∈ {1, 2, 3, 4}): The left hand side of the inequality is
L = k((λrx.ιjP )N) = k(λrx.ιjP )+k(N) = k(ιjP )+1+k(N) = k(P )+1+1+
k(N) = p + n + 2. The right hand side of the inequality is R = k([N/x]ιjP )
= k(ιj [N/x]P ) = k([N/x]P ) + 1. By the hypothesis of induction, we have
k([N/x]P ) < k((λrx.P )N) = k(P ) + 1 + f(N) = p + n + 1. Therefore
L > R.

Lemma 4.15. Let M be a typed λ-term for λC . Then, M ⊲ N implies k(M)
> k(N).

Proof. By induction on M . By using Lemma 4.14, the λL-cases are proved
by the same way as in Lemma 4.7. Thus, it is enough to show k(ι−1

j ιjM) >
k(M). This is obvious by the definition of k.

Using this lemma, we obtain the following theorem.

Theorem 4.16 (Strong normalization for λC). All typed λ-terms for λC are
strongly normalizable.

We also obtain the following theorems.

Theorem 4.17 (Strong normalization for NC). All proofs for NC are strongly
normalizable.

Theorem 4.18 (Church-Rosser property). Let ⊲ be the reduction relation
on the set of terms (or proofs) in λC (or NC , respectively). Let ⊲β be the

reflexive transitive closure of ⊲. For any terms (or proofs) M, M1 and M2,
if M ⊲β M1 and M ⊲β M2, then there is a term (or proof) N such that
M1 ⊲β N and M2 ⊲β N .

4.3. λ2
C and strong normalization

Next, we introduce a typed λ-calculus, denoted λ2
C . In λ2

C , the functions
ι1 and ι−1

1 are also used, but the other functions ιj , ι−1
j for j ∈ {2, 3, 4} are

needless. The Curry-Howard correspondence with respect to λ2
C and N2

C can
also be obtained. Since the proof of the strong normalization theorems for
λ2

C and N2
C is similar to that of λC and NC , the proof will be omitted.
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Definition 4.19 (Typed λ-term for λ2
C). Typed λ-termes for λ2

C are ob-
tained from Definition 4.2 by adding the following conditions.

9. if Mα is a typed λ-term, then (ι1Mα)∼∼α is a typed λ-term.

10. if M∼∼α is a typed λ-term, then (ι−1
1 M∼∼α)α is a typed λ-term.

11. if Mα and N∼β are typed λ-terms, FV (Mα) ≤ FV (N∼β) and

FV (Mα) ∩ FV (N∼β) = ∅, then [Mα, N∼β ]∼(β/α) is a typed λ-
term.

12. if M (γ/∼β)/α and N∼(β/α) are typed λ-terms, FV (M (γ/∼β)/α) ≤

FV (N∼(β/α)) and FV (M (γ/∼β)/α) ∩ FV (N∼(β/α)) = ∅, then

(M (γ/∼β)/α ◦ N∼(β/α))γ is a typed λ-term.

13. if M∼(β/α) and N∼β\(α\γ) are typed λ-terms, FV (M∼(β/α)) ≤

FV (N∼β\(α\γ)) and FV (M∼(β/α)) ∩ FV (N∼β\(α\γ)) = ∅, then

(M∼(β/α) ◦ N∼β\(α\γ))γ is a typed λ-term.

14. if M∼β and Nα are typed λ-terms, FV (M∼β) ≤ FV (Nα) and

FV (M∼β) ∩ FV (Nα) = ∅, then [M∼β, Nα]∼(α\β) is a typed λ-
term.

15. if M (γ/α)/∼β and N∼(α\β) are typed λ-terms, FV (M (γ/α)/∼β) ≤

FV (N∼(α\β)) and FV (M (γ/α)/∼β) ∩ FV (N∼(α\β)) = ∅, then

(M (γ/α)/∼β ◦ N∼(α\β))γ is a typed λ-term.

16. if Mα\(∼β\γ) and N∼(α\β) are typed λ-terms, FV (N∼(α\β)) ≤

FV (Mα\(∼β\γ)) and FV (Mα\(∼β\γ)) ∩ FV (N∼(α\β)) = ∅, then

(N∼(α\β) ◦ Mα\(∼β\γ))γ is a typed λ-term.

17. if M∼α and N∼β are typed λ-terms, FV (M∼α) ≤ FV (N∼β) and

FV (M∼α) ∩ FV (N∼β) = ∅, then [M∼α, N∼β ]∼(α∗β) is a typed
λ-term.

18. if M (γ/∼β)/∼α and N∼(α∗β) are typed λ-terms,

FV (M (γ/∼β)/∼α) ≤ FV (N∼(α∗β)) and FV (M (γ/∼β)/∼α) ∩

FV (N∼(α∗β)) = ∅, then (M (γ/∼β)/∼α ◦ N∼(α∗β))γ is a typed
λ-term.
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19. if M∼β\(∼α\γ) and N∼(α∗β) are typed λ-terms, FV (N∼(α∗β)) ≤

FV (M∼β\(∼α\γ)) and FV (M∼β\(∼α\γ)) ∩ FV (N∼(α∗β)) = ∅,

then (N∼(α∗β) ◦ M∼β\(∼α\γ))γ is a typed λ-term.

Definition 4.20 (λ2
C). The reduction relation ⊲ with respect to λ2

C is ob-
tained from Definition 4.3 by adding the following conditions.

6. (ι−1
1 (ι1Mα)∼∼α)α ⊲ Mα.

7. (M (γ/∼β)/α ◦[Nα, L∼β ]∼(β/α))γ ⊲ ((M (γ/∼β)/αNα)γ/∼βL∼β)γ .

8. ([Nα, L∼β ]∼(β/α) ◦ M∼β\(α\γ))γ ⊲ (Nα(L∼βM∼β\(α\γ))α\γ)γ .

9. ([L∼β, Nα]∼(α\β) ◦Mα\(∼β\γ))γ ⊲ (L∼β(NαMα\(∼β\γ))∼β\γ)γ .

10. (M (γ/α)/∼β ◦ [L∼β, Nα]∼(α\β))γ ⊲ ((M (γ/α)/∼βL∼β)γ/αNα)γ .

11. (M (γ/∼β)/∼α ◦ [N∼α, L∼β ]∼(α∗β))γ

⊲ ((M (γ/∼β)/∼αN∼α)γ/∼βL∼β)γ .

12. ([L∼β, N∼α]∼(β∗α) ◦ M∼α\(∼β\γ))γ

⊲ (L∼β(N∼αM∼α\(∼β\γ))∼β\γ)γ .

13. if M ⊲ N , then ι1M ⊲ ι1N and ι−1
1 M ⊲ ι−1

1 N .

Theorem 4.21 (Strong normalization for λ2
C and N2

C). All typed λ-terms
for λ2

C and all proofs for N2
C are strongly normalizable.

Theorem 4.22 (Church-Rosser property). Let ⊲ be the reduction relation
on the set of terms (or proofs) in λ2

C (or N2
C , respectively). Let ⊲β be the

reflexive transitive closure of ⊲. For any terms (or proofs) M, M1 and M2,
if M ⊲β M1 and M ⊲β M2, then there is a term (or proof) N such that
M1 ⊲β N and M2 ⊲β N .

4.4. Alternative calculi and strong normalization

In the previous subsections, we considered two typed λ-calculi with the
ιj, ι−1

j -functions. These systems, for example, have the following type as-
signment rules:

M : α
ι1M : ∼∼α

M : ∼∼α

ι−1
1 M : α

.
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On the other hand, we can consider another forms of the simple type assign-
ment rules:

M : α
M : ∼∼α

M : ∼∼α
M : α

.

The latter rules are regarded as analogues of the intersection type rules
of certain intersection type assignment systems. A usual intersection type
assignment system has the following simple rules for the intersection type ∩:

M : α M : β

M : α ∩ β

M : α ∩ β

M : α

M : α ∩ β

M : β
.

A type assignment system which corresponds to a logic has the following
rules for the conjunction type ∧:

M : α N : β

〈M, N〉 : α ∧ β

M : α ∧ β

π1M : α

M : α ∧ β

π2M : β

where 〈M, N〉 denotes the pairing function and πi denotes the projection
functions.

In the following, we introduce two calculi λ3
C and λ4

C which are analogues
of the intersection type assignment system. The calculi λ3

C and λ4
C are nearly

equal to λC and λ2
C , respectively, but the equivalences have not yet been

clarified. Types for λ3
C and λ4

C are obtained from those of λL by adding the
strong negation symbol ∼.

Definition 4.23 (Typed λ-term for λ3
C). Typed λ-termes for λ3

C are ob-
tained from Definition 4.2 by adding the following conditions.

9′. M∼∼α is a typed λ-term iff Mα is a typed λ-term.

10′. M∼(β/α) is a typed λ-term iff Mα∗∼β is a typed λ-term.

11′. M∼(α\β) is a typed λ-term iff M∼β∗α is a typed λ-term.

12′. M∼(α∗β) is a typed λ-term iff M∼α∗∼β is a typed λ-term.

The definition with respect to ∼ is from the definition of the λc-terms
(w.r.t. Nelson’s logic N4) posed by Wansing [15].

Definition 4.24 (λ3
C). Let a pair 〈δ, δ′〉 of types be 〈α, ∼∼α〉, 〈∼(β/α), α ∗

∼β〉, 〈∼(α\β), ∼β ∗ α〉 or 〈∼(α ∗ β), ∼α ∗ ∼β〉. The reduction relation ⊲

with respect to λ3
C is obtained from Definition 4.3 by adding the following

conditions.
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7′. Mδ
⊲ Mδ′

.

8′. If Mδ
⊲Mδ′

, then (λrxγ.Mδ)δ/γ
⊲ (λrxγ.Mδ′

)δ
′

/γ , (λlxγ.Mδ)γ\δ

⊲ (λlxγ.Mδ′

)γ\δ′

, [Mδ, Lγ ]δ∗γ
⊲ [Mδ′

, Lγ ]δ
′

∗γ , [Lγ, Mδ ]γ∗δ
⊲

[Lγ, Mδ′

]γ∗δ′

.

It can be observed that the set of typed λ-terms for λ3
C is closed under ⊲.

In order to prove the strong normalization theorem for λ3
C , the function

f defined in Definition 4.5 is modified with the addition of the cases for

∼. For example, for the case of M∼(α∗β)
⊲ M∼α∗∼β , we have to show

h(M∼(α∗β)) > h(M∼α∗∼β) for an appropriate function h.

Definition 4.25. Let f be the function from the set of all untyped λ-terms
to the set of natural numbers which is defined in Definition 4.5. A function g
from the set of all types to the set of natural numbers is inductively defined
by

1. if p is atomic type, then g(p) = g(∼p) = 1,

2. g(β/α) = g(α\β) = g(α ∗ β) = g(α) + g(β),

3. g(∼∼α) = g(∼α) + 1,

4. g(∼(β/α)) = g(∼(α\β)) = g(α) + g(∼β) + 1,

5. g(∼(α ∗ β)) = g(∼α) + g(∼β) + 1.

A function from the set of all typed λ-terms to the set of natural numbers
is defined by h(Mα) = f(M) + g(α).

The lemma similar to Lemma 4.6 holds for f , and using this lemma, we
can prove the following lemma.

Lemma 4.26. Let Mα be a typed λ-term for λ3
C . Then, Mα

⊲ Nβ implies

h(Mα) > h(Nβ).

Proof. By induction on Mα. We show some cases.

(Case Mα ≡ ((λxγ.Pα)α/γQγ)α, Nβ ≡ Nα ≡ [Qγ/xγ ]Pα): By the
lemma similar to Lemma 4.6, we obtain (∗): f(M) > f(N). Then, we can
obtain h(Mα) = f(M) + g(α) > f(N) + g(α) = h(Nα) by (∗).

(Case Mα ≡ M∼∼γ and Nβ ≡ Mγ): We have h(M∼∼γ) = f(M) +
g(∼∼γ) = f(M) + g(∼γ) + 1, and h(Mγ) = f(M) + g(γ). Here we have
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g(∼γ) ≥ g(γ), because for the case that γ is atomic, g(∼γ) = g(γ) = 1,
otherwise g(∼γ) ≥ g(γ) + 1. Therefore h(M∼∼γ) > h(Mγ).

(Case Mα ≡ M∼(δ/γ) and Nβ ≡ Mγ∗∼δ): We have h(M∼(δ/γ)) =

f(M) + g(∼(δ/γ)) = f(M) + g(γ) + g(∼δ) + 1, and h(Mγ∗∼δ) = f(M) +

g(γ) + g(∼δ). Therefore h(M∼(δ/γ)) > h(Mγ∗∼δ).

(Case Mα ≡ (λrxγ.P∼∼δ)∼∼δ/γ and Nβ ≡ (λrxγ.Pδ)δ/γ): We have

h((λrxγ. P∼∼δ)∼∼δ/γ) = f(λrx.P ) + g(∼∼δ/γ) = f(λrx.P ) + g(∼∼δ) +

g(γ) = f(λrx.P )+g(∼δ)+1+g(γ), and h((λrxγ.Pδ)δ/γ) = f(λrx.P )+g(δ/γ)
= f(λrx.P )+g(δ)+g(γ). Since g(∼δ) ≥ g(δ), we have the required fact.

Using this lemma, we obtain the following theorem.

Theorem 4.27 (Strong normalization for λ3
C). All typed λ-terms for λ3

C are
strongly normalizable.

Theorem 4.28 (Church-Rosser property for λ3
C). Let ⊲ be the reduction

relation on the set of terms for λ3
C . Let ⊲β be the reflexive transitive closure

of ⊲. For any terms M, M1 and M2, if M ⊲β M1 and M ⊲β M2, then there
is a term N such that M1 ⊲β N and M2 ⊲β N .

Next, we introduce the typed λ-calculus λ4
C . Since the proof of the strong

normalization theorem for λ4
C is similar to that for λ3

C , the proof is omitted.

Definition 4.29 (Typed λ-term for λ4
C). Typed λ-terms for λ4

C are obtained
from Definition 4.19 by replacing the conditions 9 and 10 by the following
condition.

9′′. M∼∼α is a typed λ-term iff Mα is a typed λ-term.

Definition 4.30 (λ4
C). The reduction relation ⊲ with respect to λ4

C is ob-
tained from Definition 4.20 by replacing the conditions 6 and 13 by the
following condition 6′′, and moreover add the condition 7′ in Definition 4.24
for λ3

C .

6′′. M∼∼α
⊲ Mα.

Theorem 4.31 (Strong normalization for λ4
C). All typed λ-terms for λ4

C are
strongly normalizable.

Theorem 4.32 (Church-Rosser property for λ4
C). Let ⊲ be the reduction

relation on the set of terms in λ4
C . Let ⊲β be the reflexive transitive closure

of ⊲. For any terms M, M1 and M2, if M ⊲β M1 and M ⊲β M2, then there
is a term N such that M1 ⊲β N and M2 ⊲β N .
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5. Natural deduction systems for COSPL

5.1. N-COSPL and normalization

We introduce a natural deduction system N-COSPL in sequent calculus style,
following the framework by Negri [6] for intuitionistic linear logic. The
notations used in Section 2 are also adopted in this section. In N-COSPL,
a derivability relation ⊢ is used instead of the vertical expression in a usual
natural deduction system. Although the forms of inference rules are different
from those of NC , the same names such as (/E) and (∗E) are used in N-
COSPL.

Definition 5.1 (N-COSPL). The axioms of N-COSPL are of the form:

α ⊢ α ⊢ 1 Γ ⊢ ⊤ Γ ⊢ ∼⊥.

The inference rules of N-COSPL are of the form:

Π ⊢ 1 Γ, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(1E) Π ⊢ ⊥

Γ, Π, ∆ ⊢ γ
(⊥E)

Π ⊢ ∼1

Γ, Π, ∆ ⊢ γ
(∼1E) Π ⊢ ∼⊤

Γ, Π, ∆ ⊢ γ
(∼⊤E)

Γ, α ⊢ β

Γ ⊢ β/α
(/I)

Π ⊢ β/α Γ ⊢ α ∆, β, Σ ⊢ γ

∆, Π, Γ, Σ ⊢ γ
(/E)

α, Γ ⊢ β

Γ ⊢ α\β
(\I)

Π ⊢ α\β Γ ⊢ α ∆, β, Σ ⊢ γ

∆, Γ, Π, Σ ⊢ γ
(\E)

Γ ⊢ α ∆ ⊢ β

Γ, ∆ ⊢ α ∗ β
(∗I)

Π ⊢ α ∗ β Γ, α, β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∗E)

Π ⊢ α ∧ β Γ, α, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∧E1)

Π ⊢ α ∧ β Γ, β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∧E2)

Γ ⊢ α Γ ⊢ β

Γ ⊢ α ∧ β
(∧I) Γ ⊢ α

Γ ⊢ α ∨ β
(∨I1)

Γ ⊢ β

Γ ⊢ α ∨ β
(∨I2)

Π ⊢ α ∨ β Γ, α, ∆ ⊢ γ Γ, β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∨E)

Γ ⊢ α
Γ ⊢ ∼∼α

(∼I)
Π ⊢ ∼∼α Γ, α, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼E)

Γ ⊢ α ∆ ⊢ ∼β

Γ, ∆ ⊢ ∼(β/α)
(∼/I)

Π ⊢ ∼(β/α) Γ, α, ∼β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼/E)

Γ ⊢ ∼β ∆ ⊢ α

Γ, ∆ ⊢ ∼(α\β)
(∼\I)

Π ⊢ ∼(α\β) Γ, ∼β, α, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼\E)
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Γ ⊢ ∼α ∆ ⊢ ∼β

Γ, ∆ ⊢ ∼(α ∗ β)
(∼ ∗ I)

Π ⊢ ∼(α ∗ β) Γ, ∼α, ∼β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼ ∗ E)

Π ⊢ ∼(α ∧ β) Γ, ∼α, ∆ ⊢ γ Γ, ∼β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼ ∧ E)

Γ ⊢ ∼α
Γ ⊢ ∼(α ∧ β)

(∼ ∧ I1)
Γ ⊢ ∼β

Γ ⊢ ∼(α ∧ β)
(∼ ∧ I2)

Γ ⊢ ∼α Γ ⊢ ∼β

Γ ⊢ ∼(α ∨ β)
(∼ ∨ I)

Π ⊢ ∼(α ∨ β) Γ, ∼α, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼ ∨ E1)

Π ⊢ ∼(α ∨ β) Γ, ∼β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼ ∨ E2).

The inference rules (1E), (⊥E), (∼1E), (∼⊤E), (/E), (\E), (∗E),
(∧E1), (∧E2), (∨E), (∼E), (∼/E), (∼\E), (∼ ∗ E), (∼ ∧ E), (∼ ∨ E1)
and (∼ ∨ E2) are called elimination rules, and the other inference rules are
called introduction rules. These elimination rules presented here are called
in [6] general elimination rules. In elimination rules, the premise contain-
ing the logical connective or constant is called major premise. The other
premises are called minor premises. It is remarked that the rule of the form:

Γ ⊢ α ∆, α, Σ ⊢ γ

∆, Γ, Σ ⊢ γ
(subst)

is admissible in N-COSPL.

Definition 5.2. A proof in N-COSPL is in general normal form if all major
premises of the elimination rules in the proof are assumptions.

In order to distinguish it from the usual notion of (weak) normalization
with respect to reduction, the term “general normal form” in this definition
is used.

Theorem 5.3 (Equivalence between N-COSPL and COSPL). (1) If Γ ⇒ γ
is provable in cut-free COSPL, then there is a general normal proof of Γ ⊢ γ
in N-COSPL. (2) If there is a proof of Γ ⊢ γ in N-COSPL, then Γ ⇒ γ is
provable in COSPL.

Proof. We prove (1) by induction on the cut-free proof P of Γ ⇒ γ in
COSPL. We distinguish the cases according to the last inference of P . We
show some cases.

Case (/left): P is of the form:

.... P1

Γ ⇒ α

.... P2

∆, β, Σ ⇒ γ

∆, β/α, Γ, Σ ⇒ γ
(/left).
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By the hypothesis of induction, there are general normal proofs P ′
1 and P ′

2

of Γ ⊢ α and ∆, β, Σ ⊢ γ, respectively, in N-COSPL, and hence a required
proof is

β/α ⊢ β/α

.... P ′
1

Γ ⊢ α

.... P ′
2

∆, β, Σ ⊢ γ

∆, β/α, Γ, Σ ⊢ γ
(/E).

Case (∼/left): P is of the form:

.... P1

Γ, α, ∼β, ∆ ⇒ γ

Γ, ∼(β/α), ∆ ⇒ γ
(∼/left).

By the hypothesis of induction, there is a general normal proof P ′
1 of Γ, α, ∼β,

∆ ⊢ γ in N-COSPL, and hence a required proof is

∼(β/α) ⊢ ∼(β/α)

.... P ′
1

Γ, α, ∼β, ∆ ⊢ γ

Γ, ∼(β/α), ∆ ⊢ γ
(∼/E).

Next, we prove (2) by induction on a proof Q of Γ ⊢ γ in N-COSPL. We
distinguish the cases according to the last inference of Q. We show some
cases.

Case (/E): Q is of the form:

.... Q1

Π ⊢ β/α

.... Q2

Γ ⊢ α

.... Q3

∆, β, Σ ⊢ γ

∆, Π, Γ, Σ ⊢ γ
(/E).

By the hypothesis of induction, the sequents (Π ⇒ β/α), (Γ ⇒ α) and
(∆, β, Σ ⇒ γ) are provable in COSPL, and hence a required proof is

.... Q′
1

Π ⇒ β/α

.... Q′
2

Γ ⇒ α

.... Q′
3

∆, β, Σ ⇒ γ

∆, β/α, Γ, Σ ⇒ γ
(/left)

∆, Π, Γ, Σ ⇒ γ
(cut).

Case (∼/E): Q is of the form:

.... Q1

Π ⊢ ∼(β/α)

.... Q2

Γ, α, ∼β, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼/E).
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By the hypothesis of induction, the sequents Π ⇒ ∼(β/α) and Γ, α, ∼β,
∆ ⇒ γ are provable in COSPL, and hence a required proof is

.... Q′
1

Π ⇒ ∼(β/α)

.... Q′
2

Γ, α, ∼β, ∆ ⇒ γ

Γ, ∼(β/α), ∆ ⇒ γ
(∼/left)

Γ, Π, ∆ ⇒ γ
(cut).

Theorem 5.4 (Normalization for N-COSPL). Every proof P of Γ ⊢ γ in
N-COSPL can be transformed into a general normal proof P ′ of Γ ⊢ γ in
N-COSPL.

Proof. Let P be a proof of Γ ⊢ γ in N-COSPL. Then, the sequent Γ ⇒ γ
is provable in COSPL by Theorem 5.3 (2), and hence Γ ⇒ γ is provable
in cut-free COSPL by Theorem 2.2. By Theorem 5.3 (1), there is a general
normal proof P ′ of Γ ⊢ γ in N-COSPL.

5.2. U-COSPL and normalization

We introduce a uniform calculus U-COSPL for COSPL, following the frame-
work by Negri [7]. U-COSPL has not only general elimination rules, but also
general introduction rules.

Definition 5.5 (U-COSPL). U-COSPL is obtained from N-COSPL by re-
placing the introduction rules and axioms (⊢ 1), (Γ ⊢ ⊤), (Γ ⊢ ∼⊥) by the
general introduction rules of the form:

Γ, 1, ∆ ⊢ γ

Γ, ∆ ⊢ γ
(1I)

Γ, ⊤, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(⊤I)

Γ, ∼⊥, ∆ ⊢ γ

Γ, Π, ∆ ⊢ γ
(∼⊥I)

Γ, β/α, ∆ ⊢ γ Π, α ⊢ β

Γ, Π, ∆ ⊢ γ
(/Iu)

Γ, α\β, ∆ ⊢ γ α, Π ⊢ β

Γ, Π, ∆ ⊢ γ
(\Iu)

Γ, α ∗ β, ∆ ⊢ γ Π ⊢ α Σ ⊢ β

Γ, Π, Σ, ∆ ⊢ γ
(∗Iu)

Γ, α ∧ β, ∆ ⊢ γ Π ⊢ α Π ⊢ β

Γ, Π, ∆ ⊢ γ
(∧Iu)

Γ, α ∨ β, ∆ ⊢ γ Π ⊢ α

Γ, Π, ∆ ⊢ γ
(∨I1u)

Γ, α ∨ β, ∆ ⊢ γ Π ⊢ β

Γ, Π, ∆ ⊢ γ
(∨I2u)

Γ, ∼∼α, ∆ ⊢ γ Π ⊢ α

Γ, Π, ∆ ⊢ γ
(∼Iu)

Γ, ∼(β/α), ∆ ⊢ γ Π ⊢ α Σ ⊢ ∼β

Γ, Π, Σ, ∆ ⊢ γ
(∼/Iu)
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Γ, ∼(α\β), ∆ ⊢ γ Π ⊢ ∼β Σ ⊢ α

Γ, Π, Σ, ∆ ⊢ γ
(∼\Iu)

Γ, ∼(α ∗ β), ∆ ⊢ γ Π ⊢ ∼α Σ ⊢ ∼β

Γ, Π, Σ, ∆ ⊢ γ
(∼ ∗ Iu)

Γ, ∼(α ∧ β), ∆ ⊢ γ Π ⊢ ∼α

Γ, Π, ∆ ⊢ γ
(∼ ∧ I1u)

Γ, ∼(α ∧ β), ∆ ⊢ γ Π ⊢ ∼β

Γ, Π, ∆ ⊢ γ
(∼ ∧ I2u)

Γ, ∼(α ∨ β), ∆ ⊢ γ Π ⊢ ∼α Π ⊢ ∼β

Γ, Π, ∆ ⊢ γ
(∼ ∨ Iu).

It is remarked that the rule (subst) is also admissible in U-COSPL. In the
inference rules of U-COSPL, the premise containing the logical connective
or constant is called major premise.

We must modify the notion of general normal form as follows.

Definition 5.6. A proof in U-COSPL is in general normal form if all major
premises of all the inference rules in the proof are assumptions.

Theorem 5.7 (Equivalence between U-COSPL and COSPL). (1) If Γ ⇒ γ
is provable in cut-free COSPL, then there is a general normal proof of Γ ⊢ γ
in U-COSPL. (2) If there is a proof of Γ ⊢ γ in U-COSPL, then Γ ⇒ γ is
provable in COSPL.

Theorem 5.8 (Normalization for U-COSPL). Every proof P of Γ ⊢ γ in
U-COSPL can be transformed into a general normal proof P ′ of Γ ⊢ γ in
U-COSPL.

6. Remarks

6.1. Adding structural rules

As mentioned in Section 3, in the framework of NL, NC and N2
C , we can

define the natural deduction systems for any logics over L and C by adding
any combinations of the structural rules (ex), (we) and (co). We can also
show, in a similar way as in Section 4, the strong normalization theorems for
the natural deduction systems for L+(ex), L+(we), L+(ex)+(we), C+(ex),
C+(we) and C+(ex)+(we). On the other hand, we cannot prove the strong
normalization theorems for the systems for L+(co), L+(we)+(co), C+(co)
and C+(we)+(co), because the set of proofs in these systems is not closed
under substitution, i.e., the set of proofs is not closed under ⊲. Also the
strong normalization theorems for the natural deduction systems for the
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other logics with (co) cannot be proved in the same way as discussed in
this paper. But, by using the method of Mouri [5], we can prove the strong
normalization theorems for the corresponding natural deduction systems for
L+(ex)+(co) and L+(ex)+(co)+(we). In fact, a systematic proof for the
{/, ∗, ∧}-fragments of intuitionistic substructural logics was proposed in [5].
The strong normalization theorems for the corresponding natural deduction
systems for C+(ex)+(co) and C+(ex)+(co)+(we) have not been proved yet.

In the framework related to N-COSPL and U-COSPL, we can give some
normalizing natural deduction systems for other substructural logics. In-
deed, the natural deduction systems for intuitionistic and classical full linear
logics were introduced by Negri [6, 7]. In the same framework, natural de-
duction systems for intuitionistic and classical logics were studied by Negri
and von Plato [8]. The framework by Negri and von Plato [8] was extended
to Nelson’s logic N4 by Kamide [4].

6.2. Adding ∧ and ∨ to NC

The {/, \, ∗, ∧, ∨, ∼}-fragment of COSPL is denoted as COSPL−.

A set Γ of assumptions is called total if ∀αn, βm ∈ Γ [αn < βm or βm < αn

or αn = βm]. Let Γ and ∆ be sets of assumptions. A natural deduction
system N−

C for COSPL− is obtained from NC by adding the inference rules
of the form:

Γ....
α

Γ....
β

α ∧ β

where Γ is total,

α1 ∧ α2
α1

, α1 ∧ α2
α2

, α1

α1 ∨ α2

, α2

α1 ∨ α2

,

Σ....
α1 ∨ α2

Γ − {αn
1 }

....
β

∆ − {αn
2 }

....
β

β

with the conditions that Γ = Γ1 ∪ {αn
1 } ∪ Γ2, Γ1 < {αn

1 } < Γ2, ∆ = Γ1 ∪
{αn

2} ∪ Γ2, Γ1 < {αn
2 } < Γ2, Γ1 < Σ < Γ2, and Γ1 ∪ Σ ∪ Γ2 is total,

∼α ∨ ∼β

∼(α ∧ β)
, ∼(α ∧ β)

∼α ∨ ∼β
, ∼α ∧ ∼β

∼(α ∨ β)
, ∼(α ∨ β)

∼α ∧ ∼β
.
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We then have the following facts. (1) If P is a proof in N−
C such that

oa(P ) = {αn1

1 , · · · , αnk

k } (αn1

1 < · · · < αnk

k ) (0 ≤ k) and end(P ) = β, then the
sequent α1, ..., αk ⇒ β is provable in COSPL−. (2) If a sequent α1, ..., αk ⇒
β (0 ≤ k) is provable in COSPL−, then there is a proof Q in N−

C such that
oa(Q) = {αn1

1 , ...., αnk

k } (αn1

1 < · · · < αnk

k ) and end(Q) = β. (3) A formula
α is provable in N−

C if and only if the sequent ⇒ α is provable in COSPL−.

We have not yet obtained a (strong) normalization theorem for N−
C be-

cause of the following reasons. In general, it is difficult to obtain a direct
proof of (strong) normalization theorem with ∨. For example, it is known
that the permutation conversion with respect to ∨ makes difficult the proof.
Moreover, the conditions for labelled assumptions in N−

C are very complex
to define a reduction relation. If we try to prove a weak normalization the-
orem with respect to N−

C indirectly using a correspondence between N−
C and

cut-free COSPL−, then we have to modify the words “COSPL−” and “proof
Q” in the item (2) in the facts discussed above to “cut-free COSPL−” and
“normal proof Q”, respectively. But, this cannot be proved easily, because
the corresponding “label shift lemma” is not proved for such a formulation.

6.3. Related works

Introducing the exchange conditions in NL is essentially the same as intro-
ducing the sequence-type assumptions instead of the set-type labeled as-
sumptions. If we adopt such sequence-type assumptions, then we have to
modify the formulation of the inference rules. For example, (\E) is modified
as

∆....
α

Γ....
α\β

β

where (∆, Γ) is a sequence of assumptions. Also, (\I) is modified as

[α]Γ
....
β

α\β

where the cancelled assumption [α] was the leftmost uncancelled assump-
tion before applying this rule. Such a formulation using the sequence-type
assumptions has already been studied by van Benthem [1] and Tiede [12].
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The following inference rules for ∗ were also considered [1, 12]:

Γ....
α

∆....
β

α ∗ β

Γ....
α ∗ β

[α][β]∆
....
γ

γ (∗Eg)

where α and β in (∗Eg) have to be the two left-most uncancelled assumptions
of the proof of γ.

A natural deduction system for intuitionistic non-commutative linear
logic was studied by Polakow and Pfenning [10]. Some systematic treatments
of the Curry-Howard correspondences for various substructural logics were
established by Gabbay and de Queiroz [2] and by Wansing [14].

7. Conclusion

In this paper, firstly, the natural deduction systems NL, NC and N2
C for the

{/, \, ∗}-fragment L of FL (full Lambek logic), the {/, \, ∗, ∼}-fragment C of
COSPL (constructive sequential propositional logic) and also C, respectively,
were introduced. The strong normalization and Church-Rosser theorems for
these systems were proved using the corresponding typed λ-calculi λL, λC

and λ2
C via Curry-Howard correspondences. Two alternative calculi λ3

C and
λ4

C were also discussed. Secondly, the natural deduction systems N-COSPL
and U-COSPL for COSPL were introduced, and the normalization theorems
for these systems were proved. The framework for COSPL also works for FL.

The merits of the framework of NL, NC and N2
C are summarized as fol-

lows. (1) The corresponding typed λ-calculi λL, λC and λ2
C can be obtained

via the Curry-Howard correspondences. (2) A simple proof of the strong
normalization theorems can be given. (3) A systematic treatment of other
substructural logics is available by deleting the labelled assumption condi-
tions concerning the structural rules. (4) A natural and intuitive formulation
for prioritized (or ordered) human reasoning as discussed in Section 2 can be
given. The demerits of the framework of NL, NC and N2

C are as follows. (1)
The subformula property does not hold. (2) Extending the framework both
with ∧ and ∨ is not easy. To improve such demerits, the systems N-COSPL
and U-COSPL are introduced, i.e., the merits of the framework of N-COSPL
and U-COSPL are as follows. (1) The full set of connectives can be treated.
Indeed, the quantifiers ∀ and ∃ can also be handled, although such exten-
sions are not discussed in this paper. (2) The subformula property holds
for the corresponding systems for FL. On the other hand, the subformula
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property does not hold for N-COSPL and U-COSPL, e.g. ∼α or ∼β is not a
subformula of ∼(α ∧ β), but such a non-subformula can appear in a normal
proof.
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