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CONSTRUCTION OF TABLEAUX

FOR CLASSICAL LOGIC:

Tableaux as Combinations of Branches,

Branches as Chains of Sets

Abstract. The paper is devoted to an approach to analytic tableaux for
propositional logic, but can be successfully extended to other logics. The
distinguishing features of the presented approach are:

(i) a precise set-theoretical description of tableau method;

(ii) a notion of tableau consequence relation is defined without help of a
notion of tableau, in our universe of discourse the basic notion is a
branch;

(iii) we define a tableau as a finite set of some chosen branches which is
enough to check; hence, in our approach a tableau is only a way of
choosing a minimal set of closed branches;

(iv) a choice of tableau can be arbitrary, it means that if one tableau start-
ing with some set of premisses is closed in the defined sense, then every
branch in the power set of the set of formulas, that starts with the same
set, is closed.

Keywords: Analytic tableaux, propositional logic, set-theoretical approach
to a description of tableaux, branches as chains of sets of formulas, tableaux
consequence relation, choice of branches, tableau combined with branches.

1. Introduction

Tableau methods are very convenient way of proving theorems and checking
correctness of inferences. They are a kind of analytic procedure of proof.
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But their main property is that they are refutation methods. Using tableau
methods we begin by negating a conclusion of an inference under research
and analyze consequences by researching a tree structure of possibilities. If
every possibility provides a contradiction of some kind, we conclude that the
initial inference is correct.

The above idea seems to be very intuitive and, as it is easy to observe, it
has many beneficial features. The basic one is that thanks to tableau pro-
cedures we can usually find out a model or a counter-model for an inference
we are examining.

Maybe this advantage is a reason for which in many books the presenta-
tion begins and ends only at the intuitive level, without developing formal
and precise notions (see for example [4]).

However, tableau methods can be treated as a syntactical counterpart
of axiomatic approach or natural deduction and then, as a kind of a formal
tool, they need to be presented in a formal and clear way. It means that
their use does have to depend neither on intuitions of any sort nor additional
assumptions concerning the way we understand how they work in practice.
Tableau methods understood as a kind of syntactic operations should be
only rules of transformations of expressions of a language we work with.

Although there are many approaches to tableau methods, in this presen-
tation we shall concentrate only on the approach and metatheorems proof
style presented in the book of Graham Priest [5], but this book is a kind of
inspiration. The main aim is not only to define the precise set-theoretical de-
scription of basic notions of this approach and to present how they work for
propositional logic. Such descriptions—less or more precise and formal—are
available almost since the beginning of tableau approach [6]. We will make
some effective and basic modifications.

Here we are working in the domain of power set of a set of all formulas.
The start point are precise definitions of rules of inference. Rules are un-
derstood as ways of enriching initial sets of formulas. Thanks to them we
can give a very precise definition of a branch. Our construction of branches
excludes trivial extensions (applying still the same rule to decompose the
same formula) and has an internal mechanism of stopping an extension of
contradictory sets. Next, we define a notion of logical consequence relation.
It is based only on a notion of branch and in fact at this level we do not
need a notion of tableau as a kind of tree structure. The defined relation
is equal to classical consequence. The proofs are in Henkin’s manner. The
interesting property of the presented strategy is that its key point lemmas
are very easy lemmas 1, 3. Both of them describe connections between rules



Construction of tableaux. . . 87

and semantics. If this framework is generalized to rules for non-classical log-
ics (where we meet an additional problem, the problem of infinite branches),
to prove metatheorems (soundness and completeness) it is enough to check
those lemmas. The extended framework we present in the paper [1].

The notion of a tableau is required only in a practical perspective. We
show that if one wants to check whether some inference is correct, he can
choose a set of a relatively small number of branches, here called a tableau.
(Hence, a tableau is a combination of branches that are independent objects
of considerations. We construct a tableau of branches. Usually, branches are
treated as parts of a tree structure [2], [3].) Next, we prove that it is enough
to build only one tableau to decide correctness of inference under research.
One of the differences is also that we are extending a tableau inference to
infinite sets of premisses.

The distinguishing feature of the presented approach is that we shall treat
a tableau as a special kind of family of sets ordered by inclusion relation ⊂.
Intuitively, as a start point we take a certain set of formulas and extend
it by use of rules of some kind, obtaining a set of chains under inclusion.
If any maximal subset contains a contradiction, then the inference under
examination is correct; if not, it is incorrect.

2. Bases

Language and grammar. The alphabet of propositional logic (in short: PL)
can be in an usual way described as the union of separate sets: logical
connectives: Con = {¬,∧,∨,→,↔}, sentential letters: Sl = {p1, q1, r1, p2,

q2, r2, . . . }, moreover, we need some auxiliary signs: {), (}. Obviously, we
assume also that the set Sl is infinite, but countable. Furthermore, we define
a notion of a PL formula:

Definition 1. To the set of formulas For belong all and only such expres-
sions that satisfy one of the following conditions:

1. are members of Sl,

2. have one of the forms: p¬(A)q, p(A) ∧ (B)q, p(A) ∨ (B)q, p(A) → (B)q,
p(A) ↔ (B)q, where A,B ∈ For.

Members of For are called formulas.

Semantics. An interpretation of the sentential letters is any function V : Sl

−→ {0, 1}. Any V can be extended in a classical way to a Boolean inter-
pretation or valuation of the language V ′ : For −→ {0, 1}. With help of this
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notion we define in an usual way the notions of classical consequence relation
|= and tautology.

Tableau approach to deductive tools. A standard tableau approach to the
relation of classical inference is usually presented graphically, by diagrams
of the following kinds:

A ∧B

?
A

?

B

A ∨B

��	 @@R
A B

A → B

��	 @@R
¬A B

A ↔ B

��	 @@R
A ¬A

?

B

?

¬B

¬¬A

?
A

¬(A ∧B)

��	 @@R
¬A ¬B

¬(A ∨B)

?
¬A

?

¬B

¬(A → B)

?
A

?

¬B

¬(A ↔ B)

��	 @@R
A ¬A

?

¬B

?

B

A formula is a tableau consequence of a set of formulas, if we can built a
tableau which starts with this set and a negation of the formula, whose all
branches end with contradictions. This is the basic and very intuitive idea
of tableau inference. The problem is that as a kind of deduction it should
depend only on shapes of expressions, not on the intuitions. Simultaneously,
in the literature often we do not find any precise definitions of objects like
a tableau, a branch, a leaf, a complete branch etc. Consequently, omitting
our intuition, we can still ask about them, which provides another questions
like: for how long should we apply tableau rules?, when should we stop?,
etc. These questions grow and are of great importance, when we are trying
to prove metatheorems and are made to apply the tableau notions.

Basic notions. We need some very basic notions. They will be presented in
turn.

Definition 2. A set X ⊆ For is called contradictory iff ∃A∈For A, ¬(A) ∈ X.
If a set is not contradictory, we call it non-contradictory.

Definition 3. A set X ⊆ For is called negative iff ∃A∈For ¬(A) ∈ X.
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By a rule we mean any set of ordered pairs or triples defined on the set
2For. The first member of it is called an initial set, while the second and
third ones are called result sets.

Definition 4. Let the initial sets be non-contradictory and negative. A
rule of extending Ri (1 6 i 6 9) has one of the following forms:

R1 :
X∪{(A)∧(B)}

X∪{(A)∧(B), A,B} R2 :
X∪{(A)∨(B)}

X∪{(A)∨(B), A},X∪{(A)∨(B), B}

R3 :
X∪{(A)→(B)}

X∪{(A)→(B),¬(A)}, X∪{(A)→(B), B}

R4 :
X∪{(A)↔(B)}

X∪{(A)↔(B), A,B}, X∪{(A)↔(B),¬(A),¬(B)}

R5 :
X∪{¬(¬(A))}
X∪{¬(¬(A)), A}

R6 :
X∪{¬((A)∧(B))}

X∪{¬((A)∧(B)),¬(A)}, X∪{¬((A)∧(B)),¬(B)}

R7 :
X∪{¬((A)∨(B))}

X∪{¬((A)∨(B)),¬(A),¬(B)} R8 :
X∪{¬((A)→(B))}

X∪{¬((A)→(B)), A,¬(B)}

R9 :
X∪{¬((A)↔(B))}

X∪{¬((A)↔(B)),¬(A), B}, X∪{¬((A)↔(B)), A,¬(B)}

Definition 5. Let X, Y ⊆ For. We say that Y is an extension of X iff
there is 1 6 i 6 9 and a set of formulas Z, such that one of the conditions
is satisfied:

1. 〈X,Y 〉 ∈ Ri,

2. 〈X,Y,Z〉 ∈ Ri,

3. 〈X,Z, Y 〉 ∈ Ri.

In the cases 2. and 3. we say that Y , Z are indirect extensions of X by the
rule Ri (1 6 i 6 9).

Definition 6. Let K ⊆ N be such a subset of natural numbers that: 1 ∈ K

and for any i, j ∈ K, if i < j, then i+ 1 ∈ K. Let X be a negative set. Any
function f : K −→ 2For which satisfies the conditions:
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1. f(1) = X,

2. for every i < j ∈ K: if ¬∃k∈K i < k < j, then f(j) is an extension
of f(i).

we call a sequence of extensions of X.

We see that any sequence of extensions f is a monotonic function, i.e.,
for any i < j in a domain of f : f(i) ⊆ f(j). If a context is clear we write for
sequences f or 〈X1, . . . ,Xn〉n∈N, where {1, . . . , n} is a domain K of f and
{X1, . . . ,Xn} is an image {1, . . . , n} under f , sometimes omitting brackets.

Definition 7 (Maximal branch complexity of formulas). Function of com-

plexity we call the function ∗ : For −→ N, defined for any x ∈ Sl and for any
A, B ∈ For by the following conditions:

1. ∗(x) = 1,

2. ∗(¬(x)) = 1,

3. ∗((A) ∧ (B)) = ∗(A) + ∗(B),

4. ∗((A) ∨ (B)) = max{∗(A), ∗(B)} + 1,

5. ∗((A) → (B)) = max{∗(¬(A)), ∗(B)} + 1,

6. ∗((A) ↔ (B)) = max{∗(A) + ∗(B), ∗(¬(A)) + ∗(¬(B))},

7. ∗(¬(¬(A))) = ∗(A) + 1,

8. ∗(¬((A) ∧ (B))) = max{∗(¬(A)), ∗(¬(B))} + 1,

9. ∗(¬((A) ∨ (B))) = ∗(¬(A)) + ∗(¬(B)),

10. ∗(¬((A) → (B))) = ∗(A) + ∗(¬(B)),

11. ∗(¬((A) ↔ (B))) = max{∗(¬(A)) + ∗(B), ∗(A) + ∗(¬(B))}.

Fact 1. Let 〈X ∪ {A1
1}, X ∪ {A1

1, A
1
2, A

k2
2 }, . . . , X ∪ {A1

1, A
1
2, A

k2
2 , . . . ,

A1
n, A

kn
n }〉n∈N, 16k2,...,kn62 be an injective sequence of extensions f (i.e., such

that ¬∃ i6=j ∈ K f(i) = f(j)). Then n 6 ∗(A1
1).

Proof. Let a sequence 〈X∪{A1
1}, X∪{A1

1, A
1
2, A

k2
2 }, . . . , X∪{A1

1, A
1
2, A

k2
2 ,

. . . ,A1
n, Akn

n }〉n∈N, 1<k2,...,kn62 be an injective sequence of extensions f . We
see, that since it is an injective sequence, so for any natural numbers i < j

6 n and 1 6 ki, . . . , kj 6 2:

1. X ∪ {A1
1, . . . , A1

i , A
ki

i } ⊂ X ∪ {A1, . . . , A1
i , A

ki

i , . . . , A
1
j , A

kj

j },

2. there is a rule of extending Rm (1 6 m 6 9) and a set of formulas Z,
such that one of the following conditions is satisfied:
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(a) 〈X ∪ {A1
1, . . . , A

1
i , A

ki

i },X ∪ {A1
1, . . . , A

1
i , A

ki

i , A
1
i+1, A

ki+1

i+1 }〉 ∈ Rm,

(b) 〈X ∪ {A1
1, . . . , A

1
i , A

ki

i },X ∪ {A1
1, . . . , A

1
i , A

ki

i , A
1
i+1, A

ki+1

i+1 }, Z〉 ∈ Rm,

(c) 〈X ∪ {A1
1, . . . , A

1
i , A

ki

i }, Z,X ∪ {A1
1, . . . , A

1
i , A

ki

i , A
1
i+1, A

ki+1

i+1 }〉 ∈ Rm.

The proof is by induction based on complexity of formulas.

Initial step. i) Let A1
1 = x, for some x ∈ Sl. Then there is no rule to be

applied and n = 1. Since ∗(x) = 1, hence n 6 ∗(x). When A1
1 = ¬(x), for

some x ∈ Sl, this part of the proof is almost identical.

Inductive step. We assume that the hypothesis holds for any such a
formula B, that ∗(A1

1) > ∗(B). Hence, by induction hypothesis, if ∗(A1
1) >

∗(B), then for any injective sequence of extensions: 〈X ∪{B1
1}, X∪{B1

1 , B
1
2 ,

Bk2
2 }, . . . , X ∪ {B1

1 , B
1
2 , B

k2
2 . . . , B1

m, Bkm
m }〉m∈N, 16k2,...,km62, where B1

1 = B:
m 6 ∗(B). Such a sequence we will call B-sequence. To simplify notations
in our proof, m will be called a length of B-sequence.

i) Let A1
1 = ¬(¬(B)). Therefore, by definition of function ∗, ∗(A1

1) >
∗(B). By induction hypothesis, ∗(B) > m, where m is a length of any B-
sequence. Since n = m1 +1, for some m1, so ∗(A1

1) = ∗(B)+1 > m1 +1 = n.

ii) Let A1
1 = (B) ∧ (C). Hence, by definition of function ∗, ∗(A1

1) >
∗(B), ∗(C). By induction hypothesis, ∗(B) > m, where m is a length of any
B-sequence and ∗(C) > k, where k is a length of any C-sequence. As a
consequence, since n = m1 +k1, for some m1, k1, so ∗(A1

1) = ∗((B)∧ (C)) =
∗(B) + ∗(C) > m1 + k1 = n.

iii) Let A1
1 = (B) ∨ (C). Hence, by definition of function ∗, ∗(A1

1) >
∗(B), ∗(C). By induction hypothesis, ∗(B) > m, where m is a length of
any B-sequence and ∗(C) > k, where k is a length of any C-sequence. As
a consequence, since n = m1 + 1 or n = k1 + 1, for some m1, k1, so: if
max{∗(B), ∗(C)} = ∗(B), then ∗(A1

1) = ∗((B)∨ (C)) = ∗(B)+1 > m1 +1 =
n, if max{∗(B), ∗(C)} = ∗(C), then ∗(A1

1) = ∗((B) ∨ (C)) = ∗(C) + 1 >

k1 + 1 = n.

iv) Let A1
1 = (B) → (C). Consequently, by definition of function ∗,

∗(A1
1) > ∗(¬(B)), ∗(C). By induction hypothesis, ∗(¬(B)) > m, where m

is a length of any ¬(B)-sequence and ∗(C) > k, where k is a length of
any C-sequence. As a consequence, since n = m1 + 1 or n = k1 + 1, for
some m1, k1, so: if max{∗(¬(B)), ∗(C)} = ∗(¬(B)), then ∗(A1

1) = ∗((B) →
(C)) = ∗(¬(B)) + 1 > m1 + 1 = n, if max{∗(¬(B)), ∗(C)} = ∗(C), then
∗(A1

1) = ∗((B) → (C)) = ∗(C) + 1 > k1 + 1 = n.

v) Let A1
1 = (B) ↔ (C). Hence, by definition of function ∗, ∗(A1

1) >
∗(B), ∗(C), ∗(¬(B)), ∗(¬(C)). By induction hypothesis, ∗(B) > m, where
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m is a length of any B-sequence, ∗(C) > k, where k is a length of any C-
sequence, ∗(¬(B)) > l, where l is a length of any ¬(B)-sequence, ∗(¬(C)) >
o, where o is a length of any ¬(C)-sequence. As a consequence, since
n = m1 + k1 or n = l1 + o1, for some m1, k1, l1, o1, so: if max{∗(B) +
∗(C), ∗(¬(B)) + ∗(¬(C))} = ∗(B) + ∗(C), then ∗(A1

1) = ∗((B) ↔ (C)) =
∗(B) + ∗(C) > m1 + k1 = n, if max{∗(B) + ∗(C), ∗(¬(B)) + ∗(¬(C))} =
∗(¬(B)) + ∗(¬(C)), then ∗(A1

1) = ∗((B) ↔ (C)) = ∗(¬(B)) + ∗(¬(C)) >

l1 + o1 = n.

vi) Let A1
1 = ¬((B) ∧ (C)). So, by definition of function ∗, ∗(A1

1) >
∗(¬(B)), ∗(¬(C)). By induction hypothesis, ∗(¬(B)) > m, where m is a
length of any ¬(B)-sequence and ∗(¬(C)) > k, where k is a length of any
¬(C)-sequence. As a consequence, since n = m1 + 1 or n = k1 + 1, for some
m1, k1, so: if max{∗(¬(B)), ∗(¬(C))} = ∗(¬(B)), then ∗(A1

1) = ∗(¬((B) ∧
(C))) = ∗(¬(B)) + 1 > m1 + 1 = n, if max{∗(¬(B)), ∗(¬(C))} = ∗(¬(C)),
then ∗(A1

1) = ∗(¬((B) ∧ (C))) = ∗(¬(C)) + 1 > k1 + 1 = n.

vii) Let A1
1 = ¬((B) ∨ (C)). Hence, by definition of function ∗, ∗(A1

1) >
∗(¬(B)), ∗(¬(C)). By induction hypothesis, ∗(¬(B)) > m, where m is a
length of any ¬(B)-sequence and ∗(¬(C)) > k, where k is a length of any
¬(C)-sequence. As a consequence, since n = m1 + k1, for some m1, k1, so
∗(A1

1) = ∗(¬((B) ∨ (C))) = ∗(¬(B)) + ∗(¬(C)) > m1 + k1 = n.

viii) Let A1
1 = ¬((B) → (C)). Hence, by definition of function ∗, ∗(A1

1) >
∗(B), ∗(¬(C)). By induction hypothesis, ∗(B) > m, where m is a length of
any B-sequence and ∗(¬(C)) > k, where k is a length of any ¬(C)-sequence.
As a consequence, since n = m1 + k1, for some m1, k1, so ∗(A1

1) = ∗((B) →
(C)) = ∗(B) + ∗(¬(C)) > m1 + k1 = n.

ix) Let A1
1 = ¬((B) ↔ (C)). Since, by definition of function ∗, ∗(A1

1) >
∗(B), ∗(C), ∗(¬(B)), ∗(¬(C)), so by induction hypothesis, ∗(B) > m, where
m is a length of any B-sequence, ∗(C) > k, where k is a length of any C-
sequence, ∗(¬(B)) > l, where l is a length of any ¬(B)-sequence, ∗(¬(C)) >
o, where o is a length of any ¬(C)-sequence. As a consequence, since n =
l1 + k1 or n = m1 + o1, for some m1, k1, l1, o1, so: if max{∗(¬(B)) +
∗(C), ∗(B) + ∗(¬(C))} = ∗(¬(B)) + ∗(C), then ∗(A1

1) = ∗(¬((B) ↔ (C))) =
∗(¬(B)) + ∗(C) > l1 + k1 = n, if max{∗(¬(B)) + ∗(C), ∗(B) + ∗(¬(C))} =
∗(B) + ∗(¬(C)), then ∗(A1

1) = ∗(¬((B) ↔ (C))) = ∗(B) + ∗(¬(C)) > m1 +
o1 = n.

Remark 1. If we decompose any formula A, step by step using rules of
extending to its components, then any injective sequence of results is at
most ∗(A) long.
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Example 1. Let us consider a set Y ∪ {¬((p) ↔ (¬(q)))}. We decompose
the formula ¬((p) ↔ (¬(q))) applying to the set Y ∪ {¬((p) ↔ (¬(q)))}
the rule R9 and obtain two sequences of extensions: X ′

1 = Y ∪ {¬((p) ↔
(¬(q)))},X ′

2 = Y ∪ {¬((p) ↔ (¬(q))),¬(p),¬(q)} and X ′′
1 = Y ∪ {¬((p) ↔

(¬(q)))},X ′′
2 = Y ∪{¬((p) ↔ (¬(q))), p,¬(¬(q))}. In the first case we cannot

already decompose the components of the initial formula, but in the case of
X ′′

2 it is still possible to apply the rule R5, obtaining X ′′
3 = Y ∪ {¬((p) ↔

(¬(q))), p,¬(¬(q)), q}. The last sequence is the longest one among those
based on decomposing of the initial formula. It is at most ∗(¬((p) ↔ (¬(q))))
long. We count: ∗(p) = ∗(¬(q)) = ∗(¬(p)) = 1, ∗(¬(¬(q)) = 1 + ∗(q) = 2.
Hence max{∗(¬(p))+∗(¬(q)), ∗(p)+∗(¬(¬(q))} = max{2, 3}. Consequently,
∗(¬((p) ↔ (¬(q)))) = 3.

Fact 2. If X is a finite, negative set, then every injective sequence f : K −→
2For of extensions of X is finite.

Proof. By double induction on the number of members of X, their com-
plexity, and by use of Fact 1. Let X be any negative, finite set and f : K −→
2For be any injective sequence of extensions of X

Initial step. We assume |X| = 1, so some formula A ∈ X. i) Let
∗(A) = 1. Hence, A = ¬(x), for some x ∈ Sl, since X is negative. Then,
by Fact 1, |K| 6 ∗(A) = 1, and f is finite. ii) Let ∗(A) 6= 1. By Fact 1
|K| 6 ∗(A) and f is finite.

Inductive step. Let A ∈ X and |X \{A}| = n 6= 0. We assume that for a
negative set X \ {A} any injective sequence f ′ : K ′ −→ 2For of extensions of
X\{A} is finite, and hence |K ′| 6 k, for some k ∈ N. Obviously, |X| = n+1.

i) Let ∗(A) = 1. If {A} ∪ f ′(i) is contradictory, for some i ∈ K ′, then
|K| 6 j, where j is the smallest number in K ′, such that {A} ∪ f ′(j) is
contradictory, |K| 6 k and f is finite. If {A} ∪ f ′(i) is non-contradictory,
for any i ∈ K ′, then, by 1, |K| 6 k, since ∗(A) = 1, so f is finite.

ii) Let ∗(A) 6= 1. If {A} ∪ f ′(i) is contradictory, for some i ∈ K ′, then
|K| 6 j, where j is the smallest number in K ′, such that {A} ∪ f ′(j) is
contradictory, and |K| 6 k. If {A} ∪ f ′(i) is non-contradictory, for any
i ∈ K ′, then, by 1, |K| 6 k + ∗(A), so f is finite.

Definition 8. A sequence of extensions f : K −→ 2For is called a branch iff

1. f is injection,

2. for any j > 1 and any Y ⊆ For, if j ∈ K and Y are indirect extensions
of f(j − 1) by some rule of extending Ri (i ∈ {2, 3, 4, 6, 7, 9}), then Y 6=
f(j − 1).
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Example 2. Consider a negative set {¬p,¬p ∨ q} = X1. Applying the rule
R2 we obtain two sequences: X1, X ′

2 = {¬p,¬p∨q} and X1, X ′′
2 = {¬p,¬p∨

q, q}, but neither branch, since X1 = X ′
2.

Henceforth, speaking about branches, for convenience we will use: 1)
sequences: X1, . . . .,Xn, where n > 1, 2) abbreviations for functions: fM

(where M is a domain of f , i.e., f : M −→ 2For), or, in order to designate
them, 3) small Greek letters: φ, ψ, etc.

Fact 3. Let X1 be a finite negative set. Then there is no branch of the form
X1, . . . , Xn, . . . (no infinite branch).

Proof. By the previous fact and the definition of a branch.

Definition 9. A branch X1, . . . ,Xn, where n > 1, is called complete iff
there is no branch of the form X1, . . . , Xn, Xn+1.

Fact 4. Let X1 be a finite negative set. Then there is a branch of the form
X1, . . . , Xn, where n > 1, which is complete.

Proof. By the definition of being complete and Fact 3.

Fact 5. If X1 is a finite, negative set, then for every branch of the form X1,
. . . , Xn, where n > 1, there is a complete branch of the form: X1, . . . , Xn,
. . . , Xn+m, where m > 0.

Proof. Let X1 be any finite, negative set. Let φ be any branch of the form
X1, . . . .,Xn with n > 1. Hence, Xn is a finite extension. Because by Fact 4
there is a complete branch X1

n, . . . , X1+m
n+m, so there is a complete branch of

the form: X1, . . . , Xn, . . . , Xn+m, where m > 0.

Definition 10. A branch X1, . . . ,Xn, where n > 1, is called closed iff Xn

is contradictory. A branch is called open iff it is not closed.

At the end of this paragraph we point at the obvious fact, which follows
from Definition 4 and the definition of a branch and a complete branch.

Fact 6. For any branch φ: if φ is closed, then it is complete.

Definition 11. Let Φ be a set of branches and a branch X1, . . . , Xm, where
m > 1, belong to Φ. We call it maximal in Φ iff there is no branch Y1, . . . ,
Yk in Φ, where k > m > 1. Simultaneously, by B(X1) we mean the set of all
branches of the form X1, . . . , Xn, where n > 1, and by MB(X1) the set of
all maximal branches of the form X1, . . . , Xn, where n > 1.
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Fact 7. Let X1 be a finite, negative set and B(X1) be a set of all branches
of the form X1, . . . , Xn, where n > 1. Then in B(X1) there is a non-empty
subset of the maximal branches MB(X1).

Proof. Let X1 be an arbitrary, finite and negative set of formulas. For any
A ∈ X1, ∗(A) ∈ N. Since X1 is negative, so also non-empty, and B(X1) is
non-empty, too.

Initial step. Let |X1| = 1. Then, there is a formula ¬(A) ∈ X. Conse-
quently, by Fact 1, for any branch X1, . . . ,Xm with 1 6 m, m 6 ∗(¬(A)).
Hence, there is at least one branch X1, . . . ,Xk, for some 1 6 k 6 ∗(¬(A)),
which is maximal one and the set MB(X1) is non-empty.

Inductive step. Let for any negative set Y with |Y | 6 |X1| our hypothesis
be satisfied. So we assume that MB(Y ) is non-empty. Let the branches in
MB(Y ) be k-long and A be any formula such that X1 = Y ∪ {A}. We need
to consider two cases.

i) Let ∗(A) = 1. Then for all branches of the form X1 = Y ∪ {A}, . . . ,
Xm = Ym ∪ {A}, where 1 6 m 6 k. If f(i) ∪ {A} is non-contradictory for
some f ∈ MB(Y ) and any i 6 k, then the branches in MB(X1) are those
which again are k-long. If not, then there is a branch f in B(Y ), such that
for some i < k, f(i)∪{A} is contradictory and there is no branch g in B(Y ),
such that g(i + 1) ∪ {A} is non-contradictory. Hence, the set MB(X1) is
non-empty and branches which contains are i-long.

ii) Let ∗(A) 6= 1. Then for all branches of the form X1 = Y ∪ {A},
. . . , Xm = Ym ∪ {A}, where m > 1, m 6 k + ∗(A). If f(i) ∪ {A} is
non-contradictory for some f ∈ MB(Y ) and any i 6 k, then the branches
in MB(X1) are among those which are at most k + ∗(A)-long. Precisely
speaking, there is at least one branch f , which is l-long, for some k < l 6

k+ ∗(A). It is either k+ ∗(A)-long or for some k < i < k+ ∗(A), f(i) ∪ {A}
is a contradictory set. If f(i) ∪ {A} is contradictory for any f ∈ MB(Y ) for
some i 6 k, then branches in MB(X1) are among those which are at most
k, and in MB(X1) is at least one branch i-long with 1 6 i 6 k.

Tableau inference. Now, we are coming to the most important notion:
tableau inference.

Definition 12. We say that a formula A is a tableau consequence of a set
X ⊆ For (in short: X ⊲ A) iff there is a finite Y ⊆ X and every complete
branch of the form: X1 = Y ∪ {¬(A)}, X2, . . . , Xn, where n > 1, is closed.

Example 3. Here is a simple example of tableau inference: {p} ⊲ (p) ∨ (q)
is a correct tableau inference, because every complete branch of the form
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X1 = {p,¬((p) ∨ (q))}, . . . ,Xn is closed. In fact, there is only one complete
branch of the form: {p,¬((p) ∨ (q))} ⊂ {p,¬((p) ∨ (q)),¬(p),¬(q)}, and it is
obviously closed.

Soundness Theorem. Now, having the formal definitions, we can prove the
basic metatheorems. We start with soundness theorem, but at the beginning
we need some auxiliary lemmas.

Lemma 1. Let V ′ be any Boolean valuation and X be any negative set. Let
E(X) be a set of all extensions of X different of it. If E(X) is not empty
and V ′(X) = 1, then there is at least one extension Y ∈ E(X), such that
V ′(Y ) = 1.

Proof. By inspection of the rules of extending. For example, if (A) ∨
(B) ∈ X, then V ′((A) ∨ (B)) = 1, for some assumed V ′. Let X ∪ {A},
X ∪ {B} ∈ E(X) (by application of the rule R2). Hence, V ′(X ∪ {A}) = 1
or V ′(X ∪ {B}) = 1.

Lemma 2. Let V ′ be any Boolean valuation and X1 be a finite negative
set. If V ′(X1) = 1, then there is at least one complete and open branch
X1, . . . ,Xn, where n > 1.

Proof. We take some finite negative set X1 and a Boolean valuation V ′(X1)
= 1. From Fact 5 we know that for every branch X1, . . . , Xn, where X1 is
finite and n > 1, there is at least one complete branch: X1, . . . , Xn, . . . ,
Xn+m, where m > 0. By Fact 3 we know also that there are not infinite
branches, so we take only finite and complete branches X1, . . . , Xj , where
1 6 j. By Fact 7, some of them belong to the set of the maximal branches
MB(X1), having the same length k. We assume they all are closed. Hence,
for every contradictory extension Xk, V ′(Xk) = 0. Let us take any n > 2
and assume that for any branch fM under consideration, if n ∈ M , then
V ′(Xn) = 0. Any Xn−1 on any branch is either a contradictory extension,
and then V ′(Xn−1) = 0, or every its extension V ′(Xn) = 0, and then by the
previous lemma V ′(Xn−1) = 0. Therefore, for any Xn, where 1 6 n 6 k,
V ′(Xn) = 0. But it contradicts the assumption that V ′(X1) = 1, when
n = 1. In consequence, there is at least one complete, open branch X1, . . . ,
Xn, where n > 1.

Theorem 1 (Soundness). For any X ⊆ For, A ∈ For, if X ⊲ A, then X |= A.

Proof. We take some X, A and assume that X ⊲ A, but X 6|= A, i.e.,
there is a Boolean valuation V ′(X ∪ {¬(A)}) = 1. On the other hand
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there is a finite set Y ⊆ X, such that every complete branch of the form
X1 = Y ∪ {¬(A)}, X2, . . . , Xn, where n > 1, is closed. But because we
know that V ′(Y ∪ {¬(A)}) = 1, there must be, by Lemma 2, at least one
complete, open branch X1 = Y ∪ {¬(A)}, X2, . . . , Xn, where n > 1, which
provides a contradiction. Hence, X |= A.

Completeness Theorem. At first we remaind the compactness property of a
classical consequence.

Fact 8. For any X ⊆ For, A ∈ For, X |= A iff there is a finite Y ⊆ X, such
that Y |= A.

Moreover, we still need one important lemma.

Lemma 3. Let X1, . . . , Xn, where n > 1, be any complete and open branch.
Let L(Xn) be a set defined as follows: L(Xn) = {x ∈ Xn : x = y or x = ¬(y),
where y ∈ SL}. Let V ′ be any Boolean valuation. If V ′(L(Xn)) = 1, then
V ′(Xn) = 1.

Proof. By inspection of the rules of extending.

Lemma 4. Let X1 be an extension and X1, . . . ,Xn, where n > 1, be a
complete and open branch. Then there is a Boolean valuation V ′, such that
V ′(X1) = 1.

Proof. Since X1, . . . ,Xn is a complete and open branch, so for every i 6 n,
Xi is non-contradictory. Furthermore, there is no rule to apply to Xn. We
define the set L(Xn) to which belong all and only these formulas of the form
x or ¬(x) that belong to Xn, where x ∈ Sl. The L(Xn) is a non-contradictory
and non-empty set, otherwise the branch would be not complete or closed.
Using L(Xn) we define a valuation V : Sl −→ {1, 0}, such that for every x :
V (x) = 1, if x ∈ L(Xn) and V (x) = 0, if ¬x ∈ L(Xn) and extend it to
a Boolean valuation V ′. By Lemma 3 we obtain that V ′(Xn) = 1, hence
V ′(X1) = 1.

Theorem 2 (Completeness). For any X ⊆ For, A ∈ For, if X |= A, then
X ⊲ A.

Proof. We take some X and A and assume that X |= A, but not X ⊲

A. By Fact 8 we know that there is a finite Y ⊆ X and Y |= A. From
the second hypothesis we have that for neither Z, finite subset of X, all
complete branches of the form: X1 = Z ∪ {¬(A)}, . . . , Xn, where n > 1,
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are closed. It means that for any Z there is a complete and open branch
X1 = Z ∪ {¬(A)}, . . . , Xn. In particular for Y there is a complete and open
branch X1 = Y ∪ {¬(A)}, . . . , Xn. By Lemma 4 we have that there is a
Boolean valuation V ′(Y ∪ {¬(A)}) = 1. In consequence, it contradicts the
crucial hypothesis, Y 6|= A, so, by Fact 8, X 6|= A. Hence, X ⊲ A.

3. How these notions work

The described notions are very inconvenient in practice. We cannot usually
check, if all complete branches, even starting with a finite, negative set, are
closed. It provides a question how to choose a quite small set of privileged
branches that is enough to check. To define this shortened way of establish-
ing the correctness of an inference we shall use a notion of a tableau. All
the following auxiliary notions will be introduced in turn. We begin with
the most basic ones.

Definition 13. Let X be a negative extension and Y ⊆ X. Let Ri, with
1 6 i 6 9, be a rule of extending. By Ri(Y ) we shall mean a set of all
extensions of X by use of a rule of extending Ri applied to all elements of
Y , to which it is possible to apply it. More formally, Z ∈ Ri(Y ) iff there is a
formula A ∈ Y for which exactly one of the following conditions is satisfied:

1. 〈X,Z〉 ∈ Ri and 〈X \ {A}, Z \ {A}〉 6∈ Ri,

2. 〈X,Z,U〉 ∈ Ri and 〈X \ {A}, Z \ {A}, U \ {A}〉 6∈ Ri, for some U ⊆ For,

3. 〈X,U,Z〉 ∈ Ri and 〈X \ {A}, U \ {A}, Z \ {A}〉 6∈ Ri, for some U ⊆ For.

Example 4. Let X ⊇ Y be a negative set of formulas. Let Y = {(A) ∨ (B)}.
If i = 1, then Ri(Y ) = ∅. But, if i = 2, then Ri(Y ) = {X ∪ {A},X ∪ {B}}.

We can introduce the next notion. Further considerations require, among
others, a notion of a relation of being subbranch ⊑.

Definition 14. Let fM , f ′
K be branches. fM ⊑ f ′

K iff M ⊆ K and
∀i∈M f(i) = f ′(i).

Now we may define a general notion of a tableau for classical proposi-
tional logic.

Definition 15. Let X ⊆ For, A ∈ For. Let Φ be a set of branches. Φ is
called a tableau for 〈X,A〉 (in short: 〈X, A,Φ〉 iff:

1. ∀f ∈ Φ f(1) = X ∪ {¬(A)},
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2. ∀i ∈N ∀f ′
N

, f ′′
O

, f ′′′
P

∈ Φ (i, i+ 1 ∈ N,O,P & f ′(i)=f ′′(i)=f ′′′(i) ⇒

f(i+ 1) = f ′(i+ 1) or f(i+ 1) = f ′′(i+ 1) or f ′(i+ 1) = f ′′(i+ 1)),

3. ∀i ∈N ∀f ′
N

, f ′′
O

∈ Φ (i, i + 1 ∈ N,O& f ′(i) = f ′′(i) & f ′(i + 1) 6= f ′′(i + 1) ⇒
∃B ∈ f ′(i) ∃Rk(k∈{2,3,4,6,7,9})

∃X 6=Y ⊆ For(X, Y ∈ Rk({B}) &

X ∪ f ′(i) = f ′(i+ 1) &Y ∪ f ′′(i) = f ′′(i+ 1))),

4. ∀fM ∈ Φ∀j ∈ M ∀Xj+1∈f(M)∀Rk(k∈{2,3,4,6,7,9})
∀B ∈ Xj

(Xj+1 ∈ Rk(Xj) ⇒

∀Y ∈Rk(Xj)∀f ′
K

(f{x∈N:x6j} ⊑ f ′
K &Y = f ′(j + 1) &

Φ ∪ {f ′
K} satisfies conditions 1-3 ⇒ f ′

K ∈ Φ)).

Definition 16. Let 〈X,A,Φ〉 be a tableau and φ be a branch. We say that
φ is 〈X,A,Φ〉 complete iff φ is complete and φ ∈ Φ.

Definition 17. Let 〈X,A,Φ〉 be any tableau. We say that 〈X,A,Φ〉 is
complete iff for every branch φ ∈ Φ there is a 〈X,A,Φ〉 complete branch ψ,
such that φ ⊑ ψ.

Definition 18. Let 〈X,A,Φ〉 be any tableau. We say that 〈X,A,Φ〉 is
closed iff:

1. it is complete,

2. every 〈X,A,Φ〉 complete branch is closed.

Definition 19. Let 〈X,A,Φ〉 be any tableau. We say that 〈X,A,Φ〉 is open

iff it is not closed.

Fact 9. Let X, {A} ⊆ For and X be finite. Then, there is at least one
complete tableau 〈X,A,Φ〉.

Proof. Obvious, by the definition of a tableau, a complete tableau, and
Fact 5.

Now, we have another helpful lemmas.

Lemma 5. Let X, {A} ⊆ For and X be finite. Then, (1) there is a closed
tableau 〈X,A,Φ′〉 iff (2) every complete tableau 〈X,A,Φ′′〉 is closed.

Proof. Let X, {A} ⊆ For and X be finite. We assume (2). By the previous
fact, for every finite X ∪ {A} ⊂ For, there is a complete tableau 〈X,A,Φ〉.
Hence, by (2), there is a closed tableau 〈X,A,Φ′〉. We assume (1), so we have
a closed tableau 〈X,A,Φ′〉. We take any 〈X,A,Φ′′〉 which is complete and
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any 〈X,A,Φ′′〉 complete branch φ. It is either closed or not. We consider
the case, when it is not closed (∗). Let φ = X1, . . . ,Xn, where n > 1.
Consequently, (∗∗) Xn is closed under the rules of extending in this sense,
that after one of them is applied, neither extension Xn+1 different than Xn,
such that φ ∪ {Xn+1} is still a branch, is obtained. Moreover, we know
that for any closed branch in 〈X,A,Φ′〉, Y1 = X ∪ {¬(A)} ⊆ Xn. If Y1 is
not contradictory, then there can be two branches ψ′, ψ′′ ∈ 〈X,A,Φ′〉 with
extensions Y ′

2 6= Y ′′
2 . Hence, by (∗∗), Y ′

2 or Y ′′
2 ⊆ Xn. We assume that

there is a branch ψl ∈ 〈X,A,Φ′〉 such that Y l
k ∈ ψl and Y l

k ⊆ Xn. If Y l
k

is not contradictory, then there can be two branches ψ′
l, ψ

′′
l ∈ 〈X,A,Φ′〉

with Y l′

k+1 6= Y l′′

k+1. Hence, by (∗∗), Y l′

k+1 or Y l′′

k+1 ∈ Xn. In consequence, for
some closed tableau 〈X,A,Φ′〉 and its closed branch ψ = Y1, . . . , Yi with
1 6 i, a contradictory set Yi is contained in Xn. Consequently, φ is closed,
which contradicts the assumption (∗). Therefore, every complete branch in
〈X,A,Φ′′〉 is closed, so 〈X,A,Φ′′〉 is closed.

Lemma 6. Let X be a subset of For and A be a formula. Then, there is a
finite Y ⊆ X, such that every complete tableau 〈Y,A,Φ〉 is closed iff X ⊲ A.

Proof. We take some X ⊆ For, A ∈ For, starting the proof from right to
left. Let X ⊲ A. Hence, there is a finite Y ⊆ X, such that every complete
branch of the form: X1 = Y ∪ {¬(A)}, X2, . . . , Xn, where n > 1, is closed.
Therefore, every complete tableau 〈Y,A,Φ〉 is closed, otherwise there would
be at least one complete, but not closed tableau 〈Y,A,Φ′〉, and hence, at least
one complete, but not closed branch X1 = Y ∪ {¬(A)}, X2, . . . , Xn, where
n > 1. Now, we assume that there is a finite Y0 ⊆ X and every complete
tableau 〈Y0, A,Φ

′′〉 is closed. If not X ⊲ A, then for each finite Y ⊆ X

there is a complete and open branch. But this contradicts the assumption,
because for Y0 at least one of tableaux must be complete and not closed.

Going further, we have a theorem that really simplifies the process of
checking whether an inference is correct. By the above lemmas:

Theorem 3. Let X ⊆ For and A ∈ For. Then there is a finite Y ⊆ X and
a complete, closed tableau 〈Y,A,Φ〉 iff X ⊲ A.

Thanks to it, to check the correctness of an inference it is enough to
build only one complete and closed tableau.

The presented approach can be also applied to first order logic as well
as to modal logic, and especially to first order modal logic. However, in
these cases we should cope with the problem of infinite branches, because
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we add additional symbols (called labels) to designate elements of domain,
e.g. possible worlds. Hence, the application must be more general and the
tableaux for propositional logic are only a specialization of a wider pattern.
This pattern is a subject of a further presentation [1].

References

[1] Jarmużek, T., “Tableaux for non-classical propositional logic. General pattern
of completeness and correctness” (in preparation).

[2] Fitting, M., and R. Mendelson, First-Order Modal Logic. Kluwer Academic
Publishers, Dordrecht/Boston/London, 1998.

[3] Fitting, M., Intuitionistic Logic. Model Theory and Forcing. North-Holland Pub-
lishing Company, Amsterdam/London, 1969.

[4] Girle, R., Modal Logics and Philosophy. McGill-Queen’s University Press, Mon-
treal & Kingston, London, Ithaca, 2000.

[5] Priest, G., An Introduction to Non-Classical Logic. Cambridge University Press,
Cambridge, 2001.

[6] Smullyan, R. M., First-Order Logic. Dover Publications, New York, 1995.

Tomasz Jarmużek

Departament of Logic
Nicolaus Copernicus University
ul. Asnyka 2
87-100 Toruń, Poland
jarmuzek@umk.pl


	
	
	

