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1. Introduction

1.1. Full computation-tree logic and bisimulation

Model checking [10, 29, 12] is an automatic technique for verifying whether a
system model M , represented as a Kripke structure, satisfies a specification
α, written as a temporal logic formula. Temporal logics are modal logics for
describing the temporal ordering of events. Two possible views ragarding
the nature of time induce two types of temporal logics: linear-time tempo-
ral logics such as LTL (linear-time temporal logic) [28] and branching-time
temporal logics such as CTL (computation-tree logic) [10]. It is known that
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the full computation-tree logic CTL∗ [17, 16], which is a result of integrat-
ing LTL and CTL, is an important base logic for model checking. Since
concrete system models tend to be very large, the state explosion problem

is arised, and abstraction techniques are needed for reducing a large con-
crete model to a small abstract one. As presented in [6, 12], the following
bisimulation theorem for CTL∗, which is useful for abstraction in model
checking, is well-known: If two Kripke structures M and M ′ are bisimula-
tion equivalent, then for every CTL∗ formula α, M satisfies α if and only if
M ′ satisfies α. This theorem guarantees that we can use an efficient small
abstract structure which is bisimular to the given concrete large structure.
The logic CTL∗ and the bisimulation result addressed above are not suffi-
cient for dealing with inconsistency-tolerant and spatio-temporal reasoning
more appropriately. The aim of this paper is thus to extend the framework
of CTL∗ in order to obtain logical foundations for inconsistency-tolerant and
spatio-temporal model checking.

1.2. Present paper’s results

In this paper, two paraconsistent four-valued extensions 4CTL∗ and 4LCTL∗

of both CTL∗ and Nelson’s paraconsistent logic N4 with strong negation [1]
are introduced, and the bisimulation theorems for 4CTL∗ and 4LCTL∗ are
shown. A translation from 4CTL∗ into CTL∗ is also presented as an ex-
tension of Rautenberg’s embedding [31] for Nelson’s logics [26]. By using
this translation, the existing model checking algorithms for CTL∗ can be
applied to 4CTL∗. The logic 4CTL∗ (four-valued CTL∗) is obtained from
CTL∗ by adding a strong negation operator ∼, and the logic 4LCTL∗ (loca-
tive 4CTL∗) is obtained from 4CTL∗ by adding a location operator [l]. By
using these logics, inconsistency-tolerant and spatio-temporal reasoning can
be expressed as a model checking framework.

1.3. Strong negation and paraconsistency

A remarkable feature of 4CTL∗ and 4LCTL∗ is that these logics have two
kinds of negations: ∼ (strong negation) and ¬ (usual classical negation in
CTL∗). The strong negation ∼, which was first introduced in [26], has
been studied by many researchers, and also applied to various non-classical
logics (see e.g. [24, 21, 33, 34] and the references therein). A reason why ∼ is
added to various logics is that it derives the property of paraconsistency [27].
Roughly speaking, a consequence relation |= is called paraconsistent with
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respect to a negation connective ∼ if the following condition holds: ∃α, β:
formulas, not-[M, s |= (α∧∼ α) → β] where s is a state of a Kripke structure
M . It is known that logical systems with paraconsistency can deal with
inconsistency-tolerant and uncertainty reasoning more appropriately. For
example, we do not desire the situation that (s(x)∧∼ s(x)) → d(x) is satisfied
for any symptom s and disease d where ∼ s(x) means “a person x does not
have a symptom s” and d(x) means “a person x suffers from a disease d”,
because symptoms and diseases are vague and uncertain concepts. For more
information on paraconsistency, see e.g. [3, 7, 13]. A promising application
of 4CTL∗ and 4LCTL∗ for paraconsistent reasoning may be model checking
for requirements elicitation in software engineering. An application of multi-
valued and paraconsistent model-checking for requirements elicitation was
first studied in [14]. In requirements elicitation, different stakeholders often
hold different views of how a proposed system should behave, resulting in
inconsistencies between their descriptions [14].

1.4. Verification and refutation

Another remarkable feature of 4CTL∗ and 4LCTL∗ is that these logics have
two kinds of consequence relations |=+ (verification) and |=− (refutation),
which are a new device for model checking. By using these consequence
relations, the notion of the ‘verification’ and the ‘refutation or falsification’
can simultaneously be represented. We believe that a model-cheker based
on such consequence relations can appropriately combine over- and under-
approximating abstractions. In software model-checking, typical model-
checkers are used for refutation as well as verification, because of their high
bug-finding abilities. A software model-checker Yasm [19, 20] which is based
on Belnap’s 4-valued logic is the first approach to combine verification and
refutation based on the abstraction technique CEGAR [11]. Since Belnap’s
4-valued logic is regarded as a sublogic of Nelson’s logic N4 [1], 4CTL∗ and
4LCTL∗ may obtain logical justification of such combining approaches.

1.5. Location operator

A peculiarity of the locative version 4LCTL∗ is that it has the location
operator [l] which indicates the location of propositions, e.g. a formula [l]α
means “proposition α holds at location l.” This operator is the same setting
as in [22, 23], which is regarded as a refinement of the original proposal
of Kobayashi et al. [25]. In [25], such a location operator was introduced
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using a structural congruence relation in formalizing a distributed concurrent

linear logic programming language. In [22, 23], the framework of this original
operator was improved in order to obtain pure logical foundations without
any structural congruence relation. Assuming a space domain Loc and the
operator [l] with l ∈ Loc, a consequence relation (s, l) |=+ α of 4LCTL∗

can be interpreted as “proposition α holds at time (or state) s and location
l”. Various kinds of spatio-temporal situations can thus be expressed using
4LCTL∗. For example, a linevenss property: ‘If we input the login-password
of the host computer Comp3 at one of the mobile computers Comp1 and
Comp2, then we will eventually be able to login Comp3’ can directly be
expressed as

G([comp1 ]password ∨ [comp2 ]password → F[comp3 ]login)

where the space domain Loc is {comp1, comp2, comp3}, G represents ‘any-
time in the future’, and F represents ‘eventually in the future’.1

1.6. Paraconsistency-centric approaches

It is remarked that foundations and applications of multi-valued model
checking have been studied by many researchers (see e.g. [5, 8, 9, 14] and the
references therein). The present paper’s result is also an example of such
studies. Paraconsistency-centric approaches to multi-valued model check-
ing were studied in [14, 15]. In [14], multi-valued belief exploration logic

framework for merging and reasoning about inconsistent viewpoints were
presented. In [15], an automated tool for paraconsistent reasoning were in-
troduced using a multi-valued model checking framework. Both frameworks
were based on the multi-valued computation-tree logic χCTL with the al-
gebraic structures called quasi-Boolean logics. Kripke structures for these
frameworks were based on a multi-valued transition relation and a multi-
valued valuation (labeling) function. The multi-valued valuation function
was a very general setting because it can express n-valued truth values for
any natural number n. The present paper’s framework is regarded as a spe-
cial case of these multi-valued frameworks, since the two valuation functions
presented in this paper, which are inductively extended to |=− and |=+, can
be transformed into a four-valued valuation function.

1Strictly speaking, in a CTL∗ based framework, G and F must be replaced respectively
by AG and AF where A is the universal path quantifier.
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1.7. Organization of this paper

The contents of this paper are then summarized as follows. In Section 2, the
logic 4CTL∗ is introduced as a Kripke structure with |=+ and |=−, and the
bisimulation theorem for 4CTL∗ is shown using the method presented in [12].
In Section 3, a translation from 4CTL∗ into CTL∗, which is an extension
of Rautenberg’s embedding, is presented using an alternative (intermediate)
formulation of 4CTL∗ with a single consequence relation |=. In Section
4, the logic 4LCTL∗ is introduced as a locative Kripke structure with a
space domain Loc, and the bisimulation theorem for 4LCTL∗ is shown. In
Section 5, some illustrative examples such as bipolar preference modeling
are presented based on 4CTL∗ and 4LCTL∗. In Section 6, this paper is
concluded with some remarks.

2. 4CTL∗ and bisimulation

2.1. 4CTL∗

An expression ATOM means the set of atomic formulas. In the following ex-
planation, we will follow [12]. Formulas of 4CTL∗ are defined by combining
two types of formulas: state formulas and path formulas.

Definition 2.1. State formulas are obtained by the following rules.

1. If p ∈ ATOM, then p is a state formula.

2. If α1 and α2 are state formulas, then ∼ α1, ¬α1, α1 ∧ α2, α1 ∨ α2 and
α1 → α2 are state formulas.

3. If α is a path formula, then Eα and Aα are state formulas.

Path formulas are obtained by the following rules.

1. If β is a state formula, then path(β) is a path formula where path is
an auxiliary function from the set of state formulas to the set of path
formulas.2

2. If β1 and β2 are path formulas, then ∼ β1, ¬β1, β1 ∧β2, β1 ∨β2, β1 → β2,
Xβ1, Fβ1, Gβ1, β1Uβ2 and β1Rβ2 are path formulas.

State formulas and path formulas are 4CTL∗ formulas.

2Since the function ‘path’ is usually omitted [12], this rule is interpreted as follows: A
state formula is a path formula.
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In this definition, E (“some computation path”) and A (“all computation
paths”) are called the “path quantifiers”, and X (“next”), F (“eventually”), G
(“always”), U (“until”) and R (“release”) are called the “temporal operators”.

In the following, the logic 4CTL∗ is defined as a Kripke structure with
two consequence relations |=+ and |=−.

Definition 2.2. A Kripke structure is a structure 〈S, S0, R, L+, L−〉 such
that

S is the set of states,

S0 is a set of initial states and S0 ⊆ S,

R is a binary relation on S which satisfies the condition: ∀s ∈
S ∃s′ ∈ S [(s, s′) ∈ R], and

L+ and L− are functions from S to the power set of AT ⊆ ATOM.

Definition 2.3. A path in a Kripke structure is an infinite sequence of
states, π = s0, s1, s2, . . . such that ∀i ­ 0 [(si, si+1) ∈ R]. An expression πi

means the suffix of π starting at si.

Definition 2.4. Let AT be a nonempty subset of ATOM. Let α1 and α2 be
state formulas and β1 and β2 be path formulas. Consequence relations |=+

and |=− on a Kripke structure M = 〈S, S0, R, L+, L−〉 are defined inductively
as follows (π represents a path constructed from S, and s represents a state
in S):

1. M, s |=+ p iff p ∈ L+(s) for p ∈ AT,

2. M, s |=− p iff p ∈ L−(s) for p ∈ AT,

3. M, s |=+ ∼ α1 iff M, s |=− α1,

4. M, s |=+ ¬α1 iff not-[M, s |=+ α1],

5. M, s |=+ α1 ∧ α2 iff M, s |=+ α1 and M, s |=+ α2,

6. M, s |=+ α1 ∨ α2 iff M, s |=+ α1 or M, s |=+ α2,

7. M, s |=+ α1 → α2 iff M, s |=+ α1 implies M, s |=+ α2,

8. M, s |=+ Eβ1 iff there exists a path π from s such that M, π |=+ β1,

9. M, s |=+ Aβ1 iff for every path π starting from s, M, π |=+ β1,

10. M, π |=+ path(α1) iff s is the first state of π and M, s |=+ α1,

11. M, π |=+ ∼ β1 iff M, π |=− β1,

12. M, π |=+ ¬β1 iff not-[M, π |=+ β1],
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13. M, π |=+ β1 ∧ β2 iff M, π |=+ β1 and M, π |=+ β2,

14. M, π |=+ β1 ∨ β2 iff M, π |=+ β1 or M, π |=+ β2,

15. M, π |=+ β1 → β2 iff M, π |=+ β1 implies M, π |=+ β2,

16. M, π |=+ Xβ1 iff M, π1 |=+ β1,

17. M, π |=+ Fβ1 iff ∃k ­ 0 [M, πk |=+ β1],

18. M, π |=+ Gβ1 iff ∀k ­ 0 [M, πk |=+ β1],

19. M, π |=+ β1Uβ2 iff ∃k ­ 0 [(M, πk |=+ β2) and ∀j (0 ¬ j < k implies
M, πj |=+ β1)]

20. M, π |=+ β1Rβ2 iff ∀j ­ 0 [∀i < j not-[M, πi |=+ β1] implies
M, πj |=+ β2]

21. M, s |=− ∼ α1 iff M, s |=+ α1,

22. M, s |=− ¬α1 iff not-[M, s |=− α1],

23. M, s |=− α1 ∧ α2 iff M, s |=− α1 or M, s |=− α2,

24. M, s |=− α1 ∨ α2 iff M, s |=− α1 and M, s |=− α2,

25. M, s |=− α1 → α2 iff M, s |=+ α1 and M, s |=− α2,

26. M, s |=− Eβ1 iff for every path π starting from s, M, π |=− β1,

27. M, s |=− Aβ1 iff there exists a path π from s such that M, π |=− β1,

28. M, π |=− path(α1) iff s is the first state of π and M, s |=− α1,

29. M, π |=− ∼ β1 iff M, π |=+ β1,

30. M, π |=− ¬β1 iff not-[M, π |=− β1],

31. M, π |=− β1 ∧ β2 iff M, π |=− β1 or M, π |=− β2,

32. M, π |=− β1 ∨ β2 iff M, π |=− β1 and M, π |=− β2,

33. M, π |=− β1 → β2 iff M, π |=+ β1 and M, π |=− β2,

34. M, π |=− Xβ1 iff M, π1 |=− β1,

35. M, π |=− Fβ1 iff ∀k ­ 0 [M, πk |=− β1],

36. M, π |=− Gβ1 iff ∃k ­ 0 [M, πk |=− β1],

37. M, π |=− β1Uβ2 iff ∀j ­ 0 [∀i < j not-[M, πi |=− β1] implies
M, πj |=− β2],

38. M, π |=− β1Rβ2 iff ∃k ­ 0 [(M, πk |=− β2) and ∀j (0 ¬ j < k implies
M, πj |=− β1)].

The notation |=∗ is used for |=+ or |=−. M |=∗ α is defined by ∀s ∈ S
[M, s |=∗ α].
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Since |=+ is the usual consequence relation |= of CTL∗ and |=− is the De
Morgan dual of |=+,3 the intuitive interpretations of |=+ and |=− are “verifi-
cation” and “refutation or falsification”, respectively. Roughly speaking, to
introduce |=− is thus allow to obtain the following axiom schemes w.r.t. ∼,
where α ↔ β means (α → β) ∧ (β → α).

∼ ∼ α ↔ α,

∼ ¬α ↔ ¬ ∼ α,

∼(α ∧ β) ↔ ∼ α ∨ ∼ β,

∼(α ∨ β) ↔ ∼ α ∧ ∼ β,

∼(α → β) ↔ α ∧ ∼ β,

∼ Xα ↔ X ∼ α,

∼ Fα ↔ G ∼ α,

∼ Gα ↔ F ∼ α,

∼ Eα ↔ A ∼ α,

∼ Aα ↔ E ∼ α,

∼ path(α) ↔ path(∼ α),

∼(α1Uα2) ↔ (∼ α1)R(∼ α2),

∼(α1Rα2) ↔ (∼ α1)U(∼ α2).

For each state s and each formula α, we can take one of the following
four cases: (1) α is verified at s (i.e. M, s |=+ α), (2) α is falsified at s (i.e.
M, s |=− α), (3) α is both verified and falsified at s, and (4) α is neither
verified nor falsified at s. Thus, 4CTL∗ is regarded as a four-valued logic.

Assume a Kripke structure M = 〈S, S0, R, L+, L−〉 such that p ∈ L+(s),
p ∈ L−(s) and q /∈ L+(s) for any distinct atomic formulas p and q. Then,
M, s |=+ (p ∧ ∼ p) → q does not hold, and hence |=+ in 4CTL∗ is paracon-
sistent with respect to ∼.

2.2. Bisimulation

Definition 2.5. Let M = 〈S, S0, R, L+, L−〉 and M ′ = 〈S′, S′

0, R′, L′+, L′−〉
be Kripke structures with the same nonempty set AT ⊆ ATOM.

A relation B ⊆ S × S′ is a bisimulation relation between M and M ′ if
and only if for all s and s′, if B(s, s′) then the following conditions hold.

1. L+(s) = L′+(s′),

3Except the cases for X, path and ¬. These cases are adapted to be the self-dual.
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2. L−(s) = L′−(s′),

3. ∀s1[R(s, s1) implies ∃s′

1[R′(s′, s′

1) and B(s1, s′

1)]],

4. ∀s′

1[R′(s′, s′

1) implies ∃s1[R(s, s1) and B(s1, s′

1)]].

The structures M and M ′ are bisimulation equivalent if there exists a
bisimulation relation B such that (1) ∀s0 ∈ S0 ∃s′

0 ∈ S′

0 [B(s0, s′

0)] and (2)
∀s′

0 ∈ S′

0 ∃s0 ∈ S0 [B(s0, s′

0)].

Definition 2.6. Two paths π = s0, s1, s2, . . . in a Kripke structure M and
π′ = s′

0, s′

1, s′

2, ... in a Kripke structure M ′ are called corresponding paths if
∀i ­ 0 [B(si, s′

i)].

Lemma 2.7. Let s and s′ be two states such that B(s, s′). Then for every
path starting from s there is a corresponding path starting from s′, and for
every path starting from s′ there is a corresponding path starting from s.

Proof. See [12].

Lemma 2.8. Let M and M ′ be Kripke structures with the same nonempty
set AT ⊆ ATOM, and B be a bisimulation relation between M and M ′. Let
α be a 4CTL∗ formula. Assume that B(s, s′) and that π in M and π′ in M ′

are corresponding paths.
If α is a state formula, then

(1) M, s |=+ α iff M ′, s′ |=+ α,

(2) M, s |=− α iff M ′, s′ |=− α,

and if α is a path formula, then

(1) M, π |=+ α iff M ′, π′ |=+ α,

(2) M, π |=− α iff M ′, π′ |=− α.

Proof. This lemma is proved by (simultaneous) induction on the complex-
ity of α. In the following, the Kripke structures M and M ′ are omitted in
the expressions, since the structures are clear from the context.

Base step: α ≡ p for p ∈ AT. By the assumption B(s, s′), we have
L+(s) = L′+(s′) and L−(s) = L′−(s′), and hence obtain (1) s |=+ p iff s′ |=+

p and (2) s |=− p iff s′ |=− p.
Induction step: We show only some cases.
(Case α ≡ α1 ∨ α2 is a state formula): (1) s |=+ α1 ∨ α2 iff s |=+ α1 or

s |=+ α2 iff s′ |=+ α1 or s′ |=+ α2 (induction hypothesis) iff s′ |=+ α1 ∨α2.
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(2) s |=− α1 ∨ α2 iff s |=− α1 and s |=− α2 iff s′ |=− α1 and s′ |=− α2

(induction hypothesis) iff s′ |=− α1 ∨ α2.
(Case α ≡ α1 ∨ α2 is a path formula): Similar to the above case.
(Case α ≡ ∼ α1 is a state formula)4: (1) s |=+ ∼ α1 iff s |=− α1 iff

s′ |=− α1 (induction hypothesis) iff s′ |=+ ∼ α1. (2) s |=− ∼ α1 iff s |=+ α1

iff s′ |=+ α1 (induction hypothesis) iff s′ |=− ∼ α1.
(Case α ≡ ∼ α1 is a path formula): Similar to the above case.
(Case α ≡ Aα1, a state formula): We only show: s |=∗ α implies s′ |=∗ α.

The converse direction can be proved in a similar way, and hence omitted.
We only consider the case for ∗ = −. Suppose s |=− Aα1. Then we have
that ∃π1: path starting form s [π1 |=− α1]. By Lemma 2.7, we have that
(*): there exists a corresponding path π′

1 starting from s′, i.e. π1 and π′

1 are
corresponding paths. By (*) and the induction hypothesis, we obtain (**):
π1 |=− α1 iff π′

1 |=− α1. By (*) and (**), we obtain that ∃π′

1: path starting
from s′ [π′

1 |=− α1]. Therefore s′ |=− Aα1.
(Case α ≡ path(α1), a path formula): Let s0 and s′

0 be the first states of
π and π′, respectively. π |=∗ path(α1) iff s0 |=∗ α1 iff s′

0 |=∗ α1 (induction
hypothesis) iff π′ |=∗ path(α1).

(Case α ≡ Xα1, a path formula): We only show: π |=∗ α1 implies
π′ |=∗ α1. The converse direction can be shown in a similar way. Suppose
π |=∗ Xα1. Then we have π1 |= α1. Since π and π′ are corresponding paths
by the assumption, so are π1 and π′1. Thus we obtain π′1 |=∗ α1 by the
induction hypothesis, and hence π′ |=∗ Xα1.

(Case α ≡ α1Rα2, a path formula): We only show: π |=∗ α implies
π′ |=∗ α. The converse direction can be shown in a similar way. We only
consider the case for ∗ = −. Suppose π |=− α1Rα2. Then we have ∃k ­ 0
[(πk |=− α2) and ∀j(0 ¬ j < k implies πj |=− α1)]. Since by the assumption,
π and π′ are corresponding paths, πj and π′j are corresponding paths for any
j. Thus, by the induction hypothesis, we obtain π′k |=− α2 and ∀j(0 ¬ j < k
implies π′j |=− α1). Therefore π′ |=− α1Rα2.

The next theorem is a consequence of the preceding lemma.

Theorem 2.9. Let M and M ′ be Kripke structures and B be bisimulation
relation between M and M ′. If B(s, s′), then for every 4CTL∗ formula α,

(1) M, s |=+ α iff M ′, s′ |=+ α,

(2) M, s |=− α iff M ′, s′ |=− α.

4In this case, we use the simultaneous induction hypothesis with respect to both |=+

and |=−.
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We then obtain the following theorem.

Theorem 2.10. Suppose that Kripke structures M and M ′ are bisimulation
equivalent. For every 4CTL∗ formula α,

(1) M |=+ α iff M ′ |=+ α,

(2) M |=− α iff M ′ |=− α.

3. Translation from 4CTL∗ into CTL∗

In order to obtain a translation from 4CTL∗ into CTL∗, an alternative for-
mulation of 4CTL∗ is defined as a Kripke structure with a single consequence
relation |=.

Definition 3.11. Let AT1 and AT2 be nonempty subsets of ATOM and
AT2∼ = {∼ p | p ∈ AT2}. A single-consequence Kripke structure is a struc-
ture 〈S, S0, R, L〉 such that S, S0 and R are the same as that in Definition 2.2,
and

L is a function from S to the power set of AT1 ∪ AT2∼.

A path in a single-consequence Kripke structure is defined in a similar
way as in Definition 2.3.

Definition 3.12. Let α1 and α2 be state formulas and β1 and β2 be path
formulas. A consequence relation |= on a single-consequence Kripke struc-
ture M = 〈S, S0, R, L〉 is defined inductively as follows (π represents a path
constructed from S, and s represents a state in S):

1. M, s |= p iff p ∈ L(s) for p ∈ AT1,

2. M, s |= ¬α1 iff not-[M, s |= α1],

3. M, s |= α1 ∧ α2 iff M, s |= α1 and M, s |= α2,

4. M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2,

5. M, s |= α1 → α2 iff M, s |= α1 implies M, s |= α2,

6. M, s |= Eβ1 iff there exists a path π from s such that M, π |= β1,

7. M, s |= Aβ1 iff for every path π starting from s, M, π |= β1,

8. M, π |= path(α1) iff s is the first state of π and M, s |= α1,

9. M, π |= ¬β1 iff not-[M, π |= β1],
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10. M, π |= β1 ∧ β2 iff M, π |= β1 and M, π |= β2,

11. M, π |= β1 ∨ β2 iff M, π |= β1 or M, π |= β2,

12. M, π |= β1 → β2 iff M, π |= β1 implies M, π |= β2,

13. M, π |= Xβ1 iff M, π1 |= β1,

14. M, π |= Fβ1 iff ∃k ­ 0 [M, πk |= β1],

15. M, π |= Gβ1 iff ∀k ­ 0 [M, πk |= β1],

16. M, π |= β1Uβ2 iff ∃k ­ 0 [(M, πk |= β2) and ∀j (0 ¬ j < k implies
M, πj |= β1)],

17. M, π |= β1Rβ2 iff ∀j ­ 0 [∀i < j not-[M, πi |= β1] implies M, πj |= β2],

18. M, s |= ∼ p iff ∼ p ∈ L(s) for ∼ p ∈ AT2∼,

19. M, s |= ∼ ∼ α1 iff M, s |= α1,

20. M, s |= ∼ ¬α1 iff not-[M, s |= ∼ α1],

21. M, s |= ∼(α1 ∧ α2) iff M, s |= ∼ α1 or M, s |= ∼ α2,

22. M, s |= ∼(α1 ∨ α2) iff M, s |= ∼ α1 and M, s |= ∼ α2,

23. M, s |= ∼(α1 → α2) iff M, s |= α1 and M, s |= ∼ α2,

24. M, s |= ∼Eβ1 iff for every path π starting from s, M, π |= ∼ β1,

25. M, s |= ∼Aβ1 iff there exists a path π from s such that M, π |= ∼ β1,

26. M, π |= ∼path(α1) iff s is the first state of π and M, s |= ∼ α1,

27. M, π |= ∼ ∼ β1 iff M, π |= β1,

28. M, π |= ∼ ¬β1 iff not-[M, π |= ∼ β1],

29. M, π |= ∼(β1 ∧ β2) iff M, π |= ∼ β1 or M, π |= ∼ β2,

30. M, π |= ∼(β1 ∨ β2) iff M, π |= ∼ β1 and M, π |= ∼ β2,

31. M, π |= ∼(β1 → β2) iff M, π |= β1 and M, π |= ∼ β2,

32. M, π |= ∼Xβ1 iff M, π1 |= ∼ β1,

33. M, π |= ∼Fβ1 iff ∀k ­ 0 [M, πk |= ∼ β1],

34. M, π |= ∼Gβ1 iff ∃k ­ 0 [M, πk |= ∼ β1],

35. M, π |= ∼(β1Uβ2) iff ∀j ­ 0 [∀i < j not-[M, πi |= ∼ β1] implies M, πj |=
∼ β2],

36. M, π |= ∼(β1Rβ2) iff ∃k ­ 0 [(M, πk |= ∼ β2) and ∀j (0 ¬ j < k implies
M, πj |= ∼ β1)].
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An equivalence between the single-consequence Kripke structure with |=
and the Kripke structure with |=+ and |=− is shown below.

Theorem 3.13. Let AT, AT1 and AT2 be nonempty subset of ATOM
and AT2∼ := {∼ p | p ∈ AT2}. Suppose that M is a Kripke structure
〈S, S0, R, L+, L−〉 with L+, L− : S → 2AT, N is a single-consequence Kripke
structure 〈S, S0, R, L〉 with L : S → 2AT1 ∪ AT2∼, and moreover satisfyning
that for any s ∈ S, [p ∈ L(s) iff p ∈ L+(s)] and [∼ p ∈ L(s) iff p ∈ L−(s)].
Let s be a state in S or a path in M and N . For any 4CTL∗ formula α,

(1) M, s |=+ α iff N, s |= α,

(2) M, s |=− α iff N, s |= ∼ α.

Proof. This theorem is proved by (simultaneous) induction on the com-
plexity of α.

Base step:

(Case α ≡ p for p ∈ ATOM): (1): M, s |=+ p iff p ∈ L+(s) iff p ∈ L(s)
iff N, s |= p. (2): M, s |=− p iff p ∈ L−(s) iff ∼ p ∈ L(s) iff N, s |= ∼ p.

(Case α ≡ ∼ p for p ∈ ATOM): (1): M, s |=+ ∼ p iff M, s |=− p iff
p ∈ L−(s) iff ∼ p ∈ L(s) iff N, s |= ∼ p. (2): M, s |=− ∼ p iff M, s |=+ p iff
p ∈ L+(s) iff p ∈ L(s) iff N, s |= p iff N, s |= ∼ ∼ p.

Induction step: We show only some cases.

(Case α ≡ ∼ β): (1): M, s |=+ ∼ β iff M, s |=− β iff N, s |= ∼ β (induc-
tion hypothesis). (2): M, s |=− ∼ β iff M, s |=+ β iff N, s |= β (induction
hypothesis) iff N, s |= ∼ ∼ β.

(Case α ≡ α1∧α2): (1): M, s |=+ α1∧α2 iff M, s |=+ α1 and M, s |=+ α2

iff N, s |= α1 and N, s |= α2 (induction hypothesis) iff N, s |= α1 ∧ α2. (2):
M, s |=− α1∧α2 iff M, s |=− α1 or M, s |=− α2 iff N, s |= ∼ α1 or N, s |= ∼ α2

(induction hypothesis) iff N, s |= ∼(α1 ∧ α2).

(Case α ≡ Aβ): (1): M, s |=+ Aβ iff ∀π: path starting from s [M, π |=+

β] iff ∀π: path starting from s [N, π |= β] (induction hypothesis) iff N, s |=
Aβ. (2): M, s |=− Aβ iff ∃π: path starting from s [M, π |=− β] iff ∃π: path
starting from s [N, π |= ∼ β] (induction hypothesis) iff N, s |= ∼Aβ.

(Case α ≡ β1Uβ2 and s is a path π): (1): M, π |=+ β1Uβ2 iff ∃k ­ 0
[(M, πk |=+ β2) and ∀j (0 ¬ j < k implies M, πj |=+ β1)] iff ∃k ­ 0
[(N, πk |= β2) and ∀j (0 ¬ j < k implies N, πj |= β1)] (induction hypothesis)
iff N, π |= β1Uβ2. (2): M, π |=− β1Uβ2 iff ∀j ­ 0 [∀i < j not-[M, πi |=− β1]
implies M, πj |=− β2] iff ∀j ­ 0 [∀i < j not-[N, πi |= ∼ β1] implies N, πj |=
∼ β2] (induction hypothesis) iff N, π |= ∼(β1Uβ2).
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Next, the logic CTL∗ is defined.

Definition 3.14. Let AT be a nonempty subset of ATOM. A Kripke struc-
ture for CTL∗ is a single-consequence Kripke structure 〈S, S0, R, L〉, where
L is a function from S to the power set of AT. The consequence relation |=
on a Kripke structure for CTL∗ is obtained from Definition 3.12 by deleting
the conditions 18–36.

In order to distinguish the consequence relations, expressions |=4CTL∗

and |=CTL∗ are used for 4CTL∗ and CTL∗, respectively.

In the following, a translation function from 4CTL∗ into CTL∗ is intro-
dued. This is an extension of the translation function originally presented
by Rautenberg [31].

Definition 3.15. Let AT be a nonempty subset of ATOM and AT′ :=
{p′ | p ∈ AT}. The language L∼ (the set of formulas) of 4CTL∗ is defined
by using AT, ∼, ¬, →, ∧, ∨, E, A, path, X, F, G, U and R. The language L
of CTL∗ is obtained from L∼ by adding AT′ and by deleting ∼.

A function f from L∼ to L is defined as follows.

f(p) := p and f(∼ p) := p′ ∈ AT′, for any p ∈ AT,

f(α ◦ β) := f(α) ◦ f(β), where ◦ ∈ {∧, ∨, →, U, R},

f(∼ ∼ α) := f(α),

f(∼(◦α)) := ◦f(∼ α), where ◦ ∈ {¬, X},

f(∼(α ∧ β)) := f(∼ α) ∨ f(∼ β),

f(∼(α ∨ β)) := f(∼ α) ∧ f(∼ β),

f(∼(α → β)) := f(α) ∧ f(∼ β),

f(∼(Eα)) := Af(∼ α),

f(∼(Aα)) := Ef(∼ α),

f(∼(Fα)) := Gf(∼ α),

f(∼(Gα)) := Ff(∼ α),

f(∼(αUβ)) := f(∼ α)Rf(∼ β),

f(∼(αRβ)) := f(∼ α)Uf(∼ β).

Theorem 3.16. Let AT be a nonempty subset of ATOM, AT∼ := {∼ p
∣

∣ p ∈
AT} and AT′ := {p′

∣

∣ p ∈ AT}. Let α be a 4CTL∗ formula in L∼, and f be a
function defined in Definition 3.15. Suppose that M is a single-consequence
Kripke structure 〈S, S0, R, L〉 for 4CTL∗ with L : S → 2AT ∪ AT∼, and that



Extended Full Computation-tree Logics. . . 265

N is a Kripke structure 〈S, S0, R, L′〉 for CTL∗ with L′ : S → 2AT∪AT′

such
that L′ is obtained from L by replacing AT∼ by AT′ satisfying that [p ∈ L(s)
iff p ∈ L′(s)] and [∼ p ∈ L(s) iff p′ ∈ L′(s)]. Let s be a state in S or a path
in M and N .

M, s |=4CTL∗ α iff N, s |=CTL∗ f(α).

Proof. This theorem is proved by induction on the complexity of α.
Base step:
(Case α ≡ p ∈ AT): M, s |=4CTL∗ p iff p ∈ L(s) iff p ∈ L′(s) iff N, s |=CTL∗

p iff N, s |=CTL∗ f(p).
(Case α ≡ ∼ p ∈ AT∼): M, s |=4CTL∗ ∼ p iff ∼ p ∈ L(s) iff p′ ∈ L′(s) iff

N, s |=CTL∗ p′ ∈ AT′ iff N, s |=CTL∗ f(∼ p).
Induction step: We show only some cases.
(Case α ≡ ∼ ∼ α1): M, s |=4CTL∗ ∼ ∼ α1 iff M, s |=4CTL∗ α1 iff

N, s |=CTL∗ f(α1) (induction hypothesis) iff N, s |=CTL∗ f(∼ ∼ α1).
(Case α ≡ ∼(α1 ∧ α2)): M, s |=4CTL∗ ∼(α1 ∧ α2) iff M, s |=4CTL∗ ∼ α1 or

M, s |=4CTL∗ ∼ α2 iff N, s |=CTL∗ f(∼ α1) or N, s |=CTL∗ f(∼ α2) (induction
hypothesis) iff N, s |=CTL∗ f(∼ α1) ∨ f(∼ α2) iff N, s |=CTL∗ f(∼(α1 ∧ α2)).

(Case α ≡ ∼Eβ): M, s |=4CTL∗ ∼Eβ iff ∀π: path starting from s
[M, π |=4CTL∗ ∼ β] iff ∀π: path starting from s [N, π |=CTL∗ f(∼ β)] (in-
duction hypothesis) iff N, s |=CTL∗ Af(∼ β) iff N, s |=CTL∗ f(∼Eβ).

(Case α ≡ ∼(β1Rβ2) and s is a path π): M, π |=4CTL∗ ∼(β1Rβ2) iff ∃k ­
0 [(M, πk |=4CTL∗ ∼ β2) and ∀j (0 ¬ j < k implies M, πj |=4CTL∗ ∼ β1)]
iff ∃k ­ 0 [(N, πk |=CTL∗ f(∼ β2)) and ∀j (0 ¬ j < k implies N, πj |=CTL∗

f(∼ β1))] (induction hypothesis) iff N, π |=CTL∗ f(∼ β1)Uf(∼ β2) iff
N, π |=CTL∗ f(∼(β1Rβ2)).

By using Theorem 3.16, the existing model checking algorithms for CTL∗

can be used for 4CTL∗: Assuming AT′ = {p′ | p ∈ AT ⊆ ATOM}, the
translation function f interpretes formulas with ∼.

4. 4LCTL∗ and bisimulation

4.1. 4LCTL∗

Definition 4.17. Let Loc be a finite nonempty set of locations, and l ∈ Loc.
State and path formulas of 4LCTL∗ are obtained from Definition 2.1 by
adding the following rules. (1) if α is a state formula, then so is [l]α. (2) if
β is a path formula, then so is [l]β. State and path formulas of 4LCTL∗ are
4LCTL∗ formulas.
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Definition 4.18. A locative Kripke structure is a structure 〈Loc, S, S0, R,
L+, L−〉 such that S, S0, R are the same as those in Definition 2.2, L+, L−

are functions from S ×Loc to the power set of the nonempty AT (⊆ ATOM),
and Loc is a finite nonempty set of locations.

A path in a locative Kripke structure can be defined similarly in Defini-
tion 2.3, which is independent of Loc.

Definition 4.19. Let AT be a nonempty subset of ATOM. Let α1 and α2

be state formulas of 4LCTL∗ and, β1 and β2 be path formulas of 4LCTL∗.
Consequence relations |=+ and |=− on a locative Kripke structure M =
〈Loc, S, S0, R, L+, L−〉 is defined inductively as follows (π represents a path
constructed from S, s represents a state in S, and l ∈ Loc):

1. M, (s, l) |=+ p iff p ∈ L+(s, l) for p ∈ AT and l ∈ Loc,

2. M, (s, l) |=− p iff p ∈ L−(s, l) for p ∈ AT and l ∈ Loc,

3. M, (s, l) |= [k]α1 iff M, (s, k) |= α1,

4. M, (s, l) |=+ ∼ α1 iff M, (s, l) |=− α1,

5. M, (s, l) |=+ ¬α1 iff not-[M, (s, l) |=+ α1],

6. M, (s, l) |=+ α1 ∧ α2 iff M, (s, l) |=+ α1 and M, (s, l) |=+ α2,

7. M, (s, l) |=+ α1 ∨ α2 iff M, (s, l) |=+ α1 or M, (s, l) |=+ α2,

8. M, (s, l) |=+ α1 → α2 iff M, (s, l) |=+ α1 implies M, (s, l) |=+ α2,

9. M, (s, l) |=+ Eβ1 iff there exists a path π from s such that
M, (π, l) |=+ β1,

10. M, (s, l) |=+ Aβ1 iff for every path π starting from s, M, (π, l) |=+ β1,

11. M, (π, l) |=+ path(α1) iff s is the first state of π and M, (s, l) |=+ α1,

12. M, (π, l) |= [k]β1 iff M, (π, k) |= β1,

13. M, (π, l) |=+ ∼ β1 iff M, (π, l) |=− β1,

14. M, (π, l) |=+ ¬β1 iff not-[M, (π, l) |=+ β1],

15. M, (π, l) |=+ β1 ∧ β2 iff M, (π, l) |=+ β1 and M, (π, l) |=+ β2,

16. M, (π, l) |=+ β1 ∨ β2 iff M, (π, l) |=+ β1 or M, (π, l) |=+ β2,

17. M, (π, l) |=+ β1 → β2 iff M, (π, l) |=+ β1 implies M, (π, l) |=+ β2,

18. M, (π, l) |=+ Xβ1 iff M, (π1, l) |=+ β1,

19. M, (π, l) |=+ Fβ1 iff ∃k ­ 0 [M, (πk , l) |=+ β1],
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20. M, (π, l) |=+ Gβ1 iff ∀k ­ 0 [M, (πk , l) |=+ β1],

21. M, (π, l) |=+ β1Uβ2 iff ∃k ­ 0 [[M, (πk, l) |=+ β2] and ∀j [0 ¬ j < k
implies M, (πj , l) |=+ β1]]

22. M, (π, l) |=+ β1Rβ2 iff ∀j ­ 0 [∀i < j not-[M, (πi, l) |=+ β1] implies
M, (πj , l) |=+ β2]

23. M, (s, l) |=− ∼ α1 iff M, (s, l) |=+ α1,

24. M, (s, l) |=− ¬α1 iff not-[M, (s, l) |=− α1],

25. M, (s, l) |=− α1 ∧ α2 iff M, (s, l) |=− α1 or M, (s, l) |=− α2,

26. M, (s, l) |=− α1 ∨ α2 iff M, (s, l) |=− α1 and M, (s, l) |=− α2,

27. M, (s, l) |=− α1 → α2 iff M, (s, l) |=+ α1 and M, (s, l) |=− α2,

28. M, (s, l) |=− Eβ1 iff for every path π starting from s, M, (π, l) |=− β1,

29. M, (s, l) |=− Aβ1 iff there exists a path π from s such that
M, (π, l) |=− β1,

30. M, (π, l) |=− path(α1) iff s is the first state of π and M, (s, l) |=− α1,

31. M, (π, l) |=− ∼ β1 iff M, (π, l) |=+ β1,

32. M, (π, l) |=− ¬β1 iff not-[M, (π, l) |=− β1],

33. M, (π, l) |=− β1 ∧ β2 iff M, (π, l) |=− β1 or M, (π, l) |=− β2,

34. M, (π, l) |=− β1 ∨ β2 iff M, (π, l) |=− β1 and M, (π, l) |=− β2,

35. M, (π, l) |=− β1 → β2 iff M, (π, l) |=+ β1 and M, (π, l) |=− β2,

36. M, (π, l) |=− Xβ1 iff M, (π1, l) |=− β1,

37. M, (π, l) |=− Fβ1 iff ∀k ­ 0 [M, (πk , l) |=− β1],

38. M, (π, l) |=− Gβ1 iff ∃k ­ 0 [M, (πk , l) |=− β1],

39. M, (π, l) |=− β1Uβ2 iff ∀j ­ 0 [∀i < j not-[M, (πi, l) |=− β1] implies
M, (πj , l) |=− β2],

40. M, (π, l) |=− β1Rβ2 iff ∃k ­ 0 [[M, (πk , l) |=− β2] and ∀j [0 ¬ j < k
implies M, (πj , l) |=− β1]].

M |=∗ α is defined by ∀s ∈ S ∀l ∈ Loc [M, (s, l) |=∗ α].

An expression M |=∗ α can intuitively be interpreted as “If a proposition
α can be verified (or refuted) at any time in the future for all spaces in
a world M , then the proposition is the eternal truth (or falsehood) in the
world” [22]. The proposed setting of the location operator [l] represents the
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discrete space interpretation in which a location is regarded as a point and
is independent of other locations.

To introduce [l] is to allow the following axiom schemes with respect to
[l]: for any l, li, lj ∈ Loc,

[li][lj ]α ↔ [li]α,

[l](α ♯ β) ↔ ([l]α) ♯ ([l]β), ♯ ∈ {∧, ∨, →, U, R},

[l](♯ α) ↔ ♯([l]α), ♯ ∈ {∼, ¬, E, A, X, F, G},

where an expression α ↔ β means (α → β) ∧ (β → α). The first axiom
scheme [li][lj ]α ↔ [li]α intuitively means that each location l is the absolute
address of locations, i.e. the location l refers to the same location anywhere
[25]. The second and third axiom schemes intuitively mean that the truth is
time- and space-independent, i.e. “space” is almost independent of “time”.
As mentioned in [23, 22], the following inference rule called space induction

rule is also true:

(∀l ∈ Loc)([l]α)
α

.

In this rule, for example, if [l1]α, [l2]α and [l3]α with Loc = {l1, l2, l3} hold,
then α holds. It is also remarked that if Loc = {l}, then [l] derives the modal
logic S4-like axiom schemes:

[l](α → β) → ([l]α → [l]β),

[l]α → [l][l]α,

[l]α → α,

and hence [l] is more expressive (or stronger) than the S4-type modal op-
erator. Since the case that Loc is empty corresponds to the 4CTL∗ case,
4LCTL∗ is regarded as a natural generalization or extension of both CTL∗

and 4CTL∗.

4.2. Bisimulation

Definition 4.20. Let M = 〈Loc, S, S0, R, L+, L−〉 and M ′ = 〈Loc, S′, S′

0,
R′, L′+, L′−〉 be locative Kripke structures with the common (nonempty) sets
AT (⊆ ATOM) and Loc. The definition of bisimulation w.r.t. M and M ′

is almost the same as that in Definition 2.5, since the space domain Loc is
independent of this definition.5 The notion of the ‘corresponding paths’ in
locative Kripke structures is the same as that in Definition 2.6.

5Of course, the conditions L+(s) = L′+(s′) and L−(s) = L′−(s′) in Definition 2.5 must
be replaced by L+(s, l) = L′+(s′, l) and L−(s, l) = L′−(s′, l), respectively.
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The lemma concerning the notion of the ‘corresponding paths’ also holds
for the same setting as Lemma 2.7.

Lemma 4.21. Let M and M ′ be locative Kripke structures with the common
(nonempty) sets AT (⊆ ATOM) and Loc, and B be a bisimulation relation
between M and M ′. Let α be a 4LCTL∗ formula and l ∈ Loc. Assume that
B(s, s′) and that π in M and π′ in M ′ are corresponding paths.

If α is a state formula, then

(1) M, (s, l) |=+ α iff M ′, (s′, l) |=+ α,

(2) M, (s, l) |=− α iff M ′, (s′, l) |=− α,

and if α is a path formula, then

(1) M, (π, l) |=+ α iff M ′, (π′, l) |=+ α,

(2) M, (π, l) |=− α iff M ′, (π′, l) |=− α.

Proof. This lemma is proved by induction on the complexity of α. The
proof is almost the same as that in Lemma 2.8. In the following, the locative
Kripke structures M and M ′ are omitted in the expressions. The base step
is obvious. We only consider the following cases for the induction step.

(Case α ≡ [k]α1 is a state formula or a path formula): (s, l) |=∗ [k]α1 iff
(s, k) |=∗ α1 iff (s′, k) |=∗ α1 (induction hypothesis) iff (s′, l) |=∗ [k]α1.

(Case α ≡ α1Uα2, a path formula): We only show: (π, l) |=∗ α implies
(π′, l) |=∗ α. The converse direction can be shown in a similar way. We only
consider the case for ∗ = +. Suppose (π, l) |=+ α1Uα2. Then we have ∃k ­ 0
[[(πk, l) |=+ α2] and ∀j[0 ¬ j < k implies (πj, l) |=+ α1]]. Since by the
assumption, π and π′ are corresponding paths, πj and π′j are corresponding
paths for any j. Thus, by the induction hypothesis, we obtain (π′k, l) |=+ α2

and ∀j[0 ¬ j < k implies (π′j , l) |=+ α1]. Therefore (π′, l) |=+ α1Uα2.

Theorem 4.22. Let M and M ′ be locative Kripke structures and B be a
bisimulation relation between M and M ′. If B(s, s′), then for every 4LCTL∗

formula α and any l ∈ Loc,

(1) M, (s, l) |=+ α iff M ′, (s′, l) |=+ α,

(2) M, (s, l) |=− α iff M ′, (s′, l) |=− α.

Theorem 4.23. Suppose that locative Kripke structures M and M ′ are
bisimulation equivalent. For every 4LCTL∗ formula α,

(1) M |=+ α iff M ′ |=+ α,

(2) M |=− α iff M ′ |=− α.
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5. Illustrative examples

5.1. Bipolar preferences

It is known that preference modeling is a basic activity for any type of
decision aiding process. Classical logic is used as a description language in
traditional preference modeling. On the other hand, the classical logic is not
always suitable to formalize real-life situations, since it is unable to handle
inconsistent and uncertain information. A issue in preference modeling is
to represent preference statements of the types ‘I prefer α to β’, which is
called a positive preference, and ‘I disprefer α to β’, which is called a negative

preference.6 It is remarked that the negative preference is not always the
converse of the positive preference, since the notion ‘preferences’ in our real
life is uncertain and inconsistent. Both positive and negative preferences,
which are also called bipolar preferences, have recently been modelled based
on some non-classical logics (see e.g. [2, 4] and the references therein).

In the framework based on 4CTL∗, the bipolar preference statements
‘I prefer α to β’ and ‘I disprefer α to β’ can respectively be expressed in
a Kripke structure as single-step transitions si → si+1 with β ∈ L+(si)
and α ∈ L+(si+1), and tj → tj+1 with β ∈ L−(tj) and α ∈ L−(tj+1). A
generalization of positive (or negative) preference expressions: s1 → s2 →
s3 → · · · → sn where L+(si) = αi (or L−(si) = αi) means an ascending
order α1 ¬ α2 ¬ α3 ¬ · · · ¬ αn of positive (or negative) preferences.

In the framework based on the located version 4LCTL∗, information on
locations can be added to the preference descriptions. For example, the
statement ‘Japanease people disprefer apple to orange in general’ can be
expressed as si → si+1 with orange ∈ L−(si, Japan) and apple ∈ L−(si+1,
Japan), where Loc = {Japan, China, . . .}.

5.2. Taxonomic trees

An example for taxonomic hierarchies with bipolar preferences for foods is
addressed based on the following two taxonomic trees.

Negative ____ food ____
/ \

fruit vegetable
/ | \ / | \

apple orange banana tomato carrot cucumber

6It is explained in [4] that a positive preference is a statement of the type ‘I like α, and
I like β even more than α’, and a negative preference is a statement of the type ‘I don’t
like α, and I really don’t like β’.
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Positive ______ food ______
/ \

vegetable fruit
/ | \ / | \

cucumber tomato carrot orange apple banana

In these expressions, the negative preference orders are presented as

fruit ≤ vegetable,

apple ≤ orange ≤ banana ≤ tomato ≤ carrot ≤ cucumber ,

and the positive preference orders are presented as

vegetable ≤ fruit,

cucumber ≤ tomato ≤ carrot ≤ orange ≤ apple ≤ banana.

In order to represent the taxonomic trees using a Kripke structure, the fol-
lowing set of atomic formulas are assumed.

AT = {food , fruit, vegetable, apple, orange, banana,

cucumber , tomato, carrot}.

A Kripke structure M = 〈S, S0, R, L+, L−〉 for the taxonomic trees can be
defined as

S = {s0, s1, s2, s3, s4, s5}, S0 = {s0},

R = {(s0, s1), (s1, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s5)},

L−(s0) = {food , fruit, apple},

L−(s1) = {food , fruit, orange},

L−(s2) = {food , fruit, banana},

L−(s3) = {food , vegetable, tomato},

L−(s4) = {food , vegetable, carrot},

L−(s5) = {food , vegetable, cucumber},

L+(s0) = {food , vegetable, cucumber},

L+(s1) = {food , vegetable, tomato},

L+(s2) = {food , vegetable, carrot},

L+(s3) = {food , fruit, orange},

L+(s4) = {food , fruit, apple},

L+(s5) = {food , fruit, banana}.
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By using this structure, for example, the statement ‘I prefer banana to
apple’ is expressed as s4 → s5 with apple ∈ L(s4) and banana ∈ L(s5), and
the statement ‘I disprefer vegetable to fruit’ is expressed as s2 → s3 with
fruit ∈ L−(s2) and vegetable ∈ L−(s3). This Kripke structure is regarded
as a database representing the taxonomic trees for food preferences. Then
we can check some properties for this database. For example, consider the
following statements.

(1) There is ‘orange’ in this database, i.e. there is a state si such that
orange ∈ L+(si).

(2) ‘Orange’ is ‘fruite’, i.e. there is a state si such that {orange, fruite} ⊆
L+(si).

(3) The root of the underlying taxonomic trees is ‘food’, i.e. the proposition
food holds for all states.

These statements are respectively expressed as M |=+ AForange, M |=+

AF(orange ∧ fruit), and M |=+ AGfood.

It is remarked that by using the framework based on a locative Kripke
structure for 4LCTL∗, location information can be added to the expression
defined above.

5.3. Biomedical ontologies

It is known that biomedical ontology constructions are important issues of
life science, and various ontologies such as the Open Biomedical Ontologies
(OBO) and the Gene Ontologies (GO) have been proposed by many re-
searchers (see e.g. [18, 32] and the references therein). Biomedical ontologies

are a kind of knowledge representation models with hierarchies of biomedical
vocabularies, called controlled vocabularies, and are usually represented as
trees or directed acyclic graphs with some relations labelled by is-a (sub-
type relation), part-of (inclusion relation), located-in (spatial relation) and
preceded-by (temporal relation) [32].

Tree and directed acyclic graph structures can appropriately be described
by a (locative) Kripke structure, and the reasoning about time, space and un-
certainty can naturally be represented by the virtue of 4CTL∗ and 4LCTL∗.
A data base using such ontologies can thus be represented using a model
checking framework based on the logics. A verification (or search) for a
biological process called pathway can be performed by finding a path in a
(locative) Kripke structure.
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6. Concluding remarks

In this paper, the bisimulation theorems for 4CTL∗ and 4LCTL∗ were shown,
and the translation from 4CTL∗ into CTL∗ was presented using the single-
consequence Kripke structure for 4CTL∗. In addition, some illustrative ex-
amples including bipolar preference modeling and taxonomic tree represen-
tation were presented based on 4CTL∗ and 4LCTL∗. It was thus shown
that 4CTL∗ and 4LCTL∗ are useful as base logics for paraconsistent model
checking: The bisimulation results guarantee to be able to apply abstrac-
tion, and the translation result allows us to use the existing CTL∗ model
checking algorithms.

It is pointed out that although the idea of using two kinds of consequence
relations |=+ and |=− in Kripke structures is originally due to Routley [30],
the idea of using a single consequence relation |= with respect to ∼ is a
new idea introduced in this paper, and the natural translation technique
can thus be realized using the single-consequence Kripke structure. The
single-consequence Kripke structure-based bisimulation theorem can also be
shown for 4CTL∗.

It is remarked that in a Kripke structure 〈S, S0, R, L+, L−〉 for 4CTL∗, to
adopt the condition ∀s ∈ S [L+(s)∩L+(s) = ∅] is equivalent to the fact that
the underlying logic becomes a three-valued logic which is called here 3CTL∗.
Although 3CTL∗ is not paraconsistent, the corresponding bisimulation and
translation results can be obtained. These results for 3CTL∗ can also be
adapted for the locative version 3LCTL∗. In addition, the bisimulation result
with Loc can be adapted for the ∼-free part LCTL∗ of 3LCTL∗ (or 4LCTL∗),
i.e. CTL∗ with the location operator.
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