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1. Introduction

In [9] it is studied the effect of adding the K rule to relevance logics in
the presence of a constructive negation and in respect of the paradoxes of
consistency. The aim of this paper is to study the effect of adding the same
rule to the same group of logics now in the presence of a non-constructive
negation.

As it is known, paradoxes of implication are generally classified in “para-
doxes of material implication” and “paradoxes of strict implication”. Charles
I. Lewis, the first author in drawing this classification, accurately distin-
guishes both classes ([4], p. 511).

In material implication, the key paradoxes, implicating all the others
are: A false proposition implies any proposition; a true proposition
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is implied by any; any two false propositions are equivalent; any two
true propositions are equivalent. Correspondingly, the key paradoxes of
strict implication are: A contradictory (self inconsistent) proposition
implies any proposition; an analytic proposition is implied by any;
any two contradictory propositions are equivalent; any two analytic
propositions are equivalent.

Characteristic exemplars of the class of paradoxes of material implication
are the K axiom

(i) ⊢ A → (B → A)

or the following two versions of the EFQ axiom (“E falso quodlibet” axiom)

(ii) ⊢ ¬A → (A → B)

and

(iii) ⊢ A → (¬A → B)

Typical members of the class of paradoxes of strict implication are the K
rule

(iv) ⊢ A ⇒ ⊢ B → A

or the ECQ (“E contradictione quodlibet”) axiom

(v) ⊢ (A ∧ ¬A) → B

Both classes of paradoxes are, of course, paradoxes (fallacies) of relevance in
Anderson and Belnap’s sense (see [1]).

But we are here also interested in another way of classifying the para-
doxes of implication that cut across Lewis’s classification. In [2] (p. 349),
Urquhart note

To those who have taken the trouble to read the literature on relevance
logic rather than fulminate against it, it has been a familiar fact that
there are two conceptually distinct classes of “paradoxes of material
implication”. The archetype of the first class (paradox of consistency)
is (A & ∼ A) → B. The archetype of the second (paradox of relevance)
is A → (B → A).

In addition to the schemes pointed out by Urquhart, scheme (iv) noted
above is a characteristic paradox of relevance (in fact, the rule originates a
potentially infinite number of them); on the other hand, typical members of
paradoxes of consistency are (ii), (iii) and (v).
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(It should be noted, in passing, that Lewis—in so many ways a precur-
sor of relevance logics—was not unaware of the distinction as it is readily
deducible from the following remark on the paradoxes of strict implication
([4], p. 513).

It remains to suggest why these paradoxes of strict implication are
paradoxical. Let us observe that they concern two questions: what is
to be taken as consequence of an assumption which, being self contra-
dictory, could not possibly be the case; and what is to be taken as
sufficient premise for that which being analytic, could not possibly fail
to be the case).

Note that, as a matter of fact, paradoxes of consistency constitute a
subclass of the class of paradoxes of relevance: that formed by those theses
stating, in one way or another, that given a contradiction (a proposition and
its negation), any proposition whatsoever is derivable. Relevance logicians
have been especially interested (and so are we) in the possibilities of adding
paradoxes of consistency to relevance logics without having, in general, the
“other class”, i.e., paradoxes of relevance. On the part of relevance logi-
cians this interest is included in a more general one: that of exploring the
frontiers between relevance and non-relevance logics, a task pursued since
the beginning of the relevance enterprise. Notorious examples of these bor-
derline cases are the well known logic R Mingle (see [1]) or the logics KR,
CR and CE (see [5], [7], [8], [10]). The logic KR is the result of adding
the axiom ECQ (v) to the logic of relevance R, and, on the other hand, the
logic CR and the logic CE are obtained by adding a boolean negation to
R and to the logic of entailment E, respectively. The present investigation
can be viewed in a similar way. As it was remarked above, it is shown in [9]
what kind of logics we have when the K rule is added to relevance logics in
the context of constructive negation. The purpose of this paper is to study
what happens if the context is a relatively strong non-constructive negation.
Now, B+ is Routley and Meyer’s basic positive logic (see [10]). Then BK+

is obtained by adding the K rule to B+ and BK ′+ is an S4-type extension of
BK+. Next, the logics BKc and BK ′c are the extensions of BK+ and BK ′+

with the contraposition axioms

(vi) (A → ¬B) → (B → ¬A)

and

(vii) (¬A → B) → (¬B → A)

respectively. Finally, the logics BKci and BK ′ci are defined by adding the
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axiom

(viii) (A → B) ∨ ¬(A → B)

to BKc and BK ′c, respectively. Well, we shall prove that the theses (i), (ii),
(iii) and (v) are not provable in any of these logics. Moreover, the logics here
defined are subsystems of S4 as axiomatized by Hacking (see [3]). Therefore,
they all are modal logics (the arrow is some kind of strict implication).

So, let us try to formalize the definition of “paradox of strict implication”
given by Lewis in the passage quoted above. In a standard modal logic (and
in the logics treated in this paper as well) in which

(ix) A ↔ ¬¬A

is a theorem, an implicative formula A → B is a “paradox of strict implica-
tion” iff

a. B is a theorem (A 6= B) or

b. A is the negation of a theorem.

Now, given the K rule and the contraposition axioms (vi) and (vii) (also
present in any standard modal logic and in the logics present in this paper),
we have for any theorems A, B

(a) ⊢ A ↔ B

(b) ⊢ ¬A ↔ ¬B

But, as it was noted above, in our logics (v), i.e. ‘(A ∧ ¬A) → B’, (which is
provable even in Lewis’s S1) is not derivable. Therefore, though

(c) If B is a theorem, ⊢ ¬B ↔ (A ∧ ¬A)

is provable in all Lewis’s systems, it is, however, not derivable in any of the
logics we study here. In consequence, for the logics in this paper, we have:

a. None of them contains paradoxes of material implication: all are included
in Lewis’s S4 (as axiomatized by Hacking [3]) which does not contain this
class of paradoxes.

b. All of them have, of course, standard paradoxes of strict implication (they
all have the K rule) except the ECQ axiom (v).

c. All of them have paradoxes of relevance: they all have the K rule.
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d. None of them has, of course, the standard paradoxes of consistency of
material implication (ii) and (iii). Moreover,

e. None has the standard paradox of strict implication (v).

But note that,

f. In BKci and BK ′ci, (v) is derivable when A is an implicative formula (see
§9) and, most of all, if formulas of the form A → B (A is the negation of
a theorem) are considered paradoxes of consistency of strict implication,
all have paradoxes of consistency of strict implication.

The structure of the paper is as follows. In sections 2–5, the logics B+,
BK+ and BK ′+ are studied. Sections 6–8 are devoted to BKc and 9–10 to
BKci. Finally, in sections 11–12 some possibilities for extending the logics
previously defined are treated. A final Appendix provides simple matrix
proofs of some important facts claimed throughout the paper.

2. The positive logic BK+

BK+ is axiomatized with

Axioms

A1. A → A

A2. (A ∧ B) → A / (A ∧ B) → B

A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A4. A → (A ∨ B) / B → (A ∨ B)

A5. [(A → C) ∧ (B → C)] → [(A ∨ B) → C]

A6. [A ∧ (B ∨ C)] → [(A ∧ B) ∨ (A ∧ C)]

The rules of derivation are

Modus ponens (MP): (⊢ A & ⊢ A → B) ⇒ ⊢ B

Adjunction (Adj.): (⊢ A & ⊢ B) ⇒ ⊢ A ∧ B

Suffixing (Suf.): ⊢ A → B ⇒ ⊢ (B → C) → (A → C)

Prefixing (Pref.): ⊢ A → B ⇒ ⊢ (C → A) → (C → B)

K: ⊢ A ⇒ ⊢ B → A

Therefore, BK+ is B+ with the addition of the K rule.
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3. Semantics for BK+

A BK+ model is a triple 〈K, R,�〉 where K is a non-empty set, and R is a
ternary relation on K subject to the following definitions and postulates for
all a, b, c, d ∈ K with quantifiers ranging over K:

d1. a ≤ b =df ∃xRxab

d2. R2abcd =df ∃x(Rabx & Rxcd)

P1. a ≤ a

P2. (a ≤ b & Rbcd) ⇒ Racd

P3. (b ≤ d & Radc) ⇒ Rabc

Finally, � is a valuation relation from K to the sentences of the positive
language satisfying the following conditions for all propositional variables p,
wff A, B and a ∈ K:

(i) (a ≤ b & a � p) ⇒ b � p

(ii) a � A ∧ B iff a � A and a � B

(iii) a � A ∨ B iff a � A or a � B

(iv) a � A → B iff for all b, c ∈ K, (Rabc & b � A) ⇒ c � B

A formula A is BK+ valid (�Bk+
A) iff a � A for all a ∈ K in all models.

Note that the postulates

P4. Rabc ⇒ b ≤ c

P5. (a ≤ b & b ≤ c) ⇒ a ≤ c

and

P6. R2abcd ⇒ Rbcd

are immediate in all BK+ models.
Regarding semantic consistency (soundness), the proof that all theorems

of BK+ are valid is left to the reader (see, for example, [2] or [6] for a general
strategy).

A final note. As it is known, there is a set of “designated points” in the
standard semantics for relevance logics (see the two items just quoted above).
It is in respect of this set that d1 is introduced and wff are evaluated. The
absence of this set in BK+ semantics (and the corresponding changes in d1
and the definition of validity are the only (but crucial) differences between
B+ models and BK+ models.
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4. Completeness of BK+

We begin by recalling some definitions:

A theory is a set of formulas closed under adjunction and provable en-
tailment (that is, a is a theory if whenever A, B ∈ a, then A ∧ B ∈ a; and if
whenever A → B is a theorem and A ∈ a, then B ∈ a); a theory a is prime

if whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; a theory a is regular iff all the
theorems of BK+ belong to a. Finally, a is null iff no wff belong to a.

Now, we define the BK+ canonical model. Let KT be the set of all
theories and RT be defined on KT as follows: for all formulas A, B and a, b,
c ∈ KT , RT abc iff if A → B ∈ a and A ∈ b, then B ∈ c. Further, let KC be
the set of all prime non-null theories and RC be the restriction of RT to KC .
Finally, let �

C be defined as follows: for any wff A and a ∈ KC , a �
C A iff

A ∈ a. Then, the BK+ canonical model is the triple 〈KC , RC ,�C〉.

Next, we sketch a proof of the completeness theorem.

Lemma 1. If a is a non-null theory, then a is regular.

Proof. Let A ∈ a and B be a theorem. By the K rule, A → B is a theorem.
So, B ∈ a.

Lemmas 2–6 below are an easy adaptation of the corresponding B+ lem-
mas (see, e.g., [6]) to the case of non-null theories (as it is known, theories
are not necessarily non-null in the B+ canonical model and, in fact, in the
canonical model of any standard relevance logic).

Lemma 2. Let A be any wff, a a non-null element in KT and A /∈ a. Then,
A /∈ x for some x ∈ KC such that a ⊆ x.

Lemma 3. Let a be a non-null element in KT , b ∈ KT and c a prime member
in KT such that RT abc. Then, RT xbc for some x ∈ KC such that a ⊆ x.

Lemma 4. Let a ∈ KT , b a non-null element in KT and c a prime member
in KT such that RT abc. Then, RT axc for some x ∈ KC such that b ⊆ x.

Now, we set

Definition 1. Let a, b ∈ KT . Then, a ≤T b iff RT xab and x ∈ KC .

We have

Lemma 5. a ≤T b iff a ⊆ b.
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And consequently,

Lemma 6. a ≤C b iff a ⊆ b.

Note that b and c in Lemma 3 and a and c in lemma 4 need not be
non-null. On the other hand, Lemma 7 below follows immediately from
Lemma 2.

Lemma 7. If 0BK+
A, then there is some x ∈ KC such that A /∈ x.

Lemma 8. Let a, b be non-null theories. The set x = {B | ∃A[A → B ∈ a
and A ∈ b]} is a non-null theory such that RT abx.

Proof. It is easy to prove that x is a theory such that RT abx. We prove
that x is non-null. Let A ∈ b. By Lemma 1, A → A ∈ a. So, A ∈ x by
RT abx.

The following three lemmas are proved similarly as in the standard se-
mantics (use Lemma 8 in the proof of the canonical adequacy of clause (iv)).

Lemma 9. The canonical postulates hold in the BK+ canonical model.

Lemma 10. �
C is a valuation relation satisfying conditions (i)–(iv) above.

Lemma 11. The canonical model BK+ is in fact a model.

By lemmas 7 and 11, we have

Theorem 1 (Completeness of BK+). If �BK+
A, then ⊢BK+

A.

5. The logic BK′+

The logic BK ′+ is the result of adding the axiom

A7. (A → B) → [C → (A → B)]

to BK+ (we note that BK+ and BK ′+ are different logics. See Appendix).
A BK ′+ model is defined similarly as a BK+ model save for the addition of
the postulate

P7. R2abcd ⇒ Racd

In order to prove semantic consistency, it remains to prove that A7 is
valid (use P7). On the other hand, to prove completeness, it remains to
prove that P7 is canonically valid. So, suppose R2abcd, i.e., RCabx and
RCxcd for some x ∈ KC . Further, suppose A → B ∈ a, A ∈ c for some wff
A, B. We have to prove B ∈ d. Now, let C ∈ b. By A7, C → (A → B) ∈ a.
So, A → B ∈ x (RCabx, C ∈ b). Therefore, B ∈ d (RCxcd, A ∈ c).
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6. The logic BKc

The logic BKc (BK+ with the contraposition axioms) is the result of adding

A8. (A → ¬B) → (B → ¬A)

and

A9. (¬A → B) → (¬B → A)

to BK+. Some theorems of BKc are, for example, the following

T1. A → ¬¬A A1, A8

T2. ¬¬A → A A1, A9

T3. (A → B) → (¬B → ¬A) A8, T1

T4. (¬A → ¬B) → (B → A) A9, T1

T5. ¬ (A ∨ B) ↔ (¬A ∧ ¬B) A8, T3

T6. ¬ (A ∧ B) ↔ (¬A ∨ ¬B) A9, T3

T7. (A ∨ B) ↔ ¬ (¬A ∧ ¬B) A8, A9, T5

T8. (A ∧ B) ↔ ¬ (¬A ∨ ¬B) A8, A9, T6

We also note the rule

Recq. ⊢ A ⇒ ⊢ ¬A → B K, A9

7. Semantics for BKc

A BKc model is a quadruple 〈K, R, ∗,�〉, where ∗ is an operation on K, and
K, R and � are defined like in BK+ models except that the following clause
and postulates are added

(v). a � ¬A iff a∗ 2 A

P8. a = a ∗ ∗

P9. Rabc ⇒ Rac ∗ b∗

�BKc
A (A is BKc valid) iff a � A for all a ∈ K in all models.

The easy proof of semantic consistency (soundness) is left to the reader
(see, e.g., [2]).

8. Completeness of BKc

The main difference between the proof to be developed and the standard
ones in normal relevance logics can be stated as follows. As it is known,
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canonical points need not be complete or consistent in normal relevance
logics. Though not necessarily complete, they must be consistent, however,
in BKc and any logic that includes it as in some of the exemplars we develop
in the following sections.

The canonical model is the quadruple 〈KC , RC , ∗C ,�C〉, where RC and
�

C are defined similarly as in the BK+ canonical model and KC is the set of
all consistent prime non-null theories (a theory is inconsistent if it contains
the negation of a theorem). Finally, let us define ∗T as follows: for any
a ∈ KT , a∗T = {A : ¬A /∈ a}. Well, ∗C is the restriction of ∗T to KC .

Now, let us define:

Definition 2. a is a degenerate theory iff every wff belongs to a.

We have:

Proposition 1. a is a degenerate theory iff a is inconsistent.

Proof. By Recq.

We note that, given that all theories are regular, if a is inconsistent, it
contains a contradiction. The converse, however, is not provable.

Now, it is clear that to prove the completeness of BKc, some of the
lemmas in Section 4 must be modified. In fact, lemmas 2–5 and the canonical
adequacy of clause (iv) in Lemma 10 must be modified. Well, by using
Proposition 1, it is not difficult to prove the required modifications. Let us,
for example, prove Lemma 2. It would now read:

Lemma 12. Let A be any wff, a, a consistent non-null theory in KT and
A /∈ a. Then, A /∈ x for some x ∈ KC such that a ⊆ x.

Proof. By Zorn’s Lemma there is a maximal consistent non-null theory x
such that a ⊆ x and A /∈ x. If x is not prime, then B ∨ C ∈ x, B /∈ x, C /∈ x
for some wff B, C. Define then

[x, B] = {D : ∃E[E ∈ x & ⊢BKc
(B ∧ D) → E]}

Define [x, C] similarly. It is not difficult to prove that [x, B] and [x, C]
are theories strictly including x. By the maximality of x there are three
possible situations:

1. [x, B] and [x, C] are inconsistent.

2. A ∈ [x, B] and A ∈ [x, C]
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3. [x, B] is inconsistent and A ∈ [x, C] or [x, C] is inconsistent and A ∈
[x, B].

By using Proposition 1, it is proved that from any of these possibilities
Situation 2 follows. But then it is easy to prove A ∈ x which contradicts the
hypothesis.

Next, we have

Proposition 2. For any wff A and a ∈ K, ¬A ∈ a∗T iff A /∈ a (for any wff
A and a ∈ K, ¬A ∈ a∗C iff A /∈ a).

Proof. Definitions and T1, T2.

Proposition 3. If a is a consistent theory, then a∗C is a non-null theory.

Proof. Let A be a theorem and A /∈ a∗C . Then, ¬A ∈ a contradicting the
consistency of a.

Proposition 4. If a is a regular theory, then a∗C is a consistent theory.

Proof. Let A be a theorem. Suppose ¬A ∈ a∗C . Then A /∈ a contradicting
the regularity of a.

The following proposition is proved similarly as in the standard semantics
for relevance logics (see, e.g., [2]).

Proposition 5. If a is a prime theory, then so is a∗C .

Proof. By using T3, T5 and T6.

From propositions 3–5 we have

Proposition 6. ∗C is an operation on K, that is, if a is a consistent prime
non-null theory, then so is a∗C .

In order to establish the completeness of BKc, it remains to prove that
postulates P7 and P8 and clause (v) are valid when read canonically. Well,
it can be accomplished as in standard semantics for relevance logics (see,
e.g., [2]).
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9. The logic BKci

In trying to extend BKc and BK ′c with more negation principles, the addition
of the “reductio axioms” such as

(a) (A → B) → [(A → ¬B) → ¬A]

(b) (¬A → B) → [(¬A → ¬B) → A]

(c) (A → ¬A) → ¬A

(d) (¬A → A) → A

suggests itself by similarity with relevance logics. Unfortunately, the stan-
dard paradox of consistency

(v) (A ∧ ¬A) → B

would then be immediate. Moreover, (v) would still be derivable if instead
of (a)–(d), we introduce the considerable more weak

(e) A ∨ ¬A

(f) ¬(A ∧ ¬A)

(g) If ⊢ B → A and ⊢ B → ¬A, then ⊢ ¬B

(h) If ⊢ A → ¬A, then ⊢ ¬A

(i) If ⊢ ¬B → A and ⊢ ¬B → ¬A, then ⊢ B

(j) If ⊢ ¬A → A, then ⊢ A

(k) If ⊢ A → B and ⊢ ¬A → B, then ⊢ B

In fact, they are equivalent to (v) given BKc. Nevertheless, we prove that
if (e)–(k) are restricted to the case where A is an implicative formula (A is
implicative if A is of the form B → C), then they can be added to BKc, the
paradox of consistency (v) being unprovable. Thus, the logic BKci is the
result of adding the axiom

A10 (A → B) ∨ ¬ (A → B)

to BKc. In addition to T1–T8 and Recq, the following theses are also theo-
rems of BKci.

T10. ¬ [(A → B) ∧ ¬ (A → B)] A10, T1, T2, T5

T11. [(A → B) ∧ ¬ (A → B)] → C K, T4, T10
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T12. If ⊢ A → (B → C) and ⊢ A → ¬(B → C), then ⊢ ¬A
T3, T10

T13. If ⊢ (A → B) → ¬(A → B), then ⊢ ¬(A → B) T12

T14. If ⊢ ¬A → (B → C) and ⊢ ¬A → ¬(B → C), then ⊢ A
T2, T12

T15. If ⊢ ¬ (A → B) → (A → B), then ⊢ (A → B) T2,T14

T16. If ⊢ (A → B) → C and ⊢ ¬(A → B) → C, then ⊢ C A10

We note that A10, T10, T12–T16 are, respectively, (e)–(k) restricted to the
case where A is an implicative formula; T11 is (v) restricted in the same
way. Finally, we remark that A10 and T10–T16 are equivalent given BKc

(proof is left to the reader).

10. Semantics of BKci

A BKci model is similar as a BKc model save for the addition of the postulate

P10. Rabc ⇒ Ra ∗ bc

�BKci
A (A is BKci valid) iff a � A for all a ∈ K in all models.

The proof that BKci is semantically consistent is left to the reader (A10
is proved valid with P10). Regarding completeness, it is obvious that we
have to prove only that P10 is valid when read canonically. This follows
immediately from

Proposition 7. For any prime non-null a in KT and b, c ∈ KT , RT abc ⇒
RT a ∗ bc.

Proof. Let RT abc for some prime non-null a in KT . Suppose further A →
B ∈ a∗T , A ∈ b and B /∈ c for some wff A, B, C. By Proposition 2 and
definitions, ¬(A → B) /∈ a, ¬A /∈ b∗T , ¬B ∈ c∗T ; by P9, RT ac ∗T b∗T . By
A10 and the primeness of a, A → B ∈ a or ¬(A → B) ∈ a. So, A → B ∈ a.
By T3, ¬B → ¬A ∈ a, whence, by RT ac ∗T b∗T and ¬A /∈ b∗T , we have
¬B /∈ c∗ contradicting ¬B ∈ c∗T supra.

11. The logics BK′c and BK′ci

The logics BK ′c and BK ′ci are axiomatized by adding A7 to the logics BKc

and BKci, respectively. BK ′c models and BK ′ci models are defined similarly
as BKc and BKci models, respectively, save for the addition of P7.
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12. Strengthening the logics

The logic BKci can be strengthened without the K axiom and the different
versions of ECQ being derivable. Let us briefly discuss some possibilities.

Consider the axioms prefixing

A11. (B → C) → [(A → B) → (A → C)]

suffixing

A12. (A → B) → [(B → C) → (A → C)]

contraction

A13. [A → (A → B)] → (A → B)

and the rule of derivation assertion

A14. If ⊢ A, then ⊢ (A → B) → B

We note the following proposition, whose proof is left to the reader.

Proposition 8. Given A11, BK+ and BK ′+ are equivalent. So, BKc and
BK ′c, BKci and BK ′ci are equivalent.

On the other hand, we recall the following positive logics. TW+ (“Con-
tractionless positive Ticket Entailment”) is B+ plus A11 and A12. The logic
T+ (“Positive Ticket Entailment”) is TW+ plus A13 and the logic E+ (“Pos-
itive Logic of Entailment”) is T+ plus A14 (cf. about these logics [2]). So,
TWK+, TK+, EK+ are TW+, T+ and E+ plus the K rule, respectively.

Next, the logics TWKc, TKc and EKc are defined by adding the axioms
A8 and A9 to TWK+, TK+ and EK+, respectively. And on the other hand,
the logics TWKci, TKci and EKci are the result of adding A10 to TWKc,
TKc and EKc, respectively.

Now, though TWKc and TWKci are different logics (see Appendix), we
remark the following

Proposition 9. TKc and TKci (and so, EKc and EKci) are equivalent logics.

Proof. Derive (A → B) → [¬(A → B) → C] (A7, A9). Then, T11 follows
by [A → (B → C)] → [(A ∧ B) → C]. But T11 and A10 are equivalent given
BKc.

Let us define now the semantics. Consider the following postulates
(see [2])

P11. R2abcd ⇒ (∃x ∈ K) (Rbcx & Raxd)
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P12. R2abcd ⇒ (∃x ∈ K) (Racx & Rbxd)

P13. Rabc ⇒ R2abbc

P14. (∃x ∈ K) Raxa

Given BK+ semantics, the postulates P11, P12, P13 and P14 are the
corresponding postulates for A11, A12, A13 and A14 (that is, the axiom
is proved valid with the respective postulate, and the postulate is proved
canonically valid with the respective axiom, given the logic BK+ and BK+

semantics). Consequently, TWKc models are defined similarly as BKc models
save for the addition of postulates P11 and P12. And TWKci models, TKci

models and EKci models are defined similarly as BKci models except for the
addition of the postulates P11 and P12, the postulate P13, and the postulate
P14, respectively. Therefore, soundness and completeness of TWKc, TWKci,
TKci and EKci are immediate from those of BKc or BKci and the fact that
P11, P12, P13 and P14 are the corresponding postulates for A11, A12, A13
and A14 respectively.

13. Appendix

1. Consider the following set of matrices where the only designated value
is 3.

→ 0 1 2 3 ¬

0 3 3 3 3 3
1 0 3 0 3 2
2 2 2 3 3 1
3 0 2 0 3 0

∧ 0 1 2 3

0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

This set satisfies the axioms and rules of BKci but falsifies A7 (e.g., v(A) = 2,
v(B) = 1, v(C) = 3) thus showing that BKci and BK ′ci are different systems.

2. Consider the following set of matrices where the only designated value
is 2.

→ 0 1 2 ¬

0 2 2 2 2
1 1 2 2 1
2 0 1 2 0

∧ 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

This set satisfies the axioms and rules of TWKc but falsifies A∨¬A when
v(A) = 1 thus proving that TWKc and TWKci are different systems.
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3. Consider the following set of matrices where the only designated value
is 2.

→ 0 1 2 ¬

0 2 2 2 2
1 0 2 2 1
2 0 0 2 0

∧ 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

This set satisfies the axioms and rules of EKci but falsifies A → (B → A)
when v(A) = 1, v(B) = 2; (A ∧ ¬A) → B, A → (¬A → B), ¬A → (A → B)
when v(A) = 1, v(B) = 0; and A ∨ ¬A when v(A) = 1.
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