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THE LAWS OF NON-BIVALENT

PROBABILITY

Abstract. Non-bivalent languages (languages containing sentences that can
be true, false or neither) are given a probabilitistic interpretation in terms
of betting quotients. Necessary and sufficient conditions for avoiding Dutch
books—the laws of non-bivalent probability—in such a setting are provided.

Consider a language L that contains sentences that under some interpreta-
tions are neither true nor false.1 Say that L, amongst other things, is closed
under the two unary connectives ∼ (‘not’) and T r (‘it is true that’) (so that
if A is a sentence of L, then so are ∼A and T r(A)) and the binary connec-
tive ∨ (‘or’) (so if A and B are sentences of L, then so is A ∨ B), with the
following truth tables (‘−’ means that the sentence lacks a truth value, ∗
means that it doesn’t matter for the results below whether the sentence is
true, false, or neither):

A ∼A T r(A)

T F T
F T F
- - F

A ∨ B T F -

T T T T
F T F *
- T * *

1Examples of linguistic phenomena that have been thought to give rise to non-bivalence
include: non-referring singular terms (Strawson (1950), van Frassen (1966)), vagueness
(Fine (1975), Kamp (1975)), and indicative conditionals (McGee (1989), McDermott
(1996)). The claim that these phenomena introduce non-bivalence is, of course, highly
controversial.
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With the notions ∼, T r and ∨ in place we can define T V (A) (‘A has a
truth-value’) as T r(A) ∨ T r(∼A).

Let I be the class of possible assignments of truth values to the sentences
of L. A sentence A is truth-determinate if it is either true or false in every
assignment. A and B are logically equivalent if every assignment that makes
A true (false) makes B true (false) and vice versa. A and B are mutually
incompatible if there is no assignment where both A and B are true.

The following is a complete axiomatisation of the notion of probability
for this language L, which is a function Pr with domain L such that:

For any truth-determinate sentences A and B:

1. 0 ≤ Pr(A) ≤ 1.

2. If A and B are logically equivalent, then Pr(A) = Pr(B).

3. Pr(∼A) = 1 − Pr(A).

4. Pr(A∨B) = Pr(A)+Pr(B), if A and B are mutually incompatible.

For every sentence A:

5. Pr(A) = Pr(T r(A))/Pr(T V (A)), if Pr(T V (A)) > 0.

The first four are the standard laws of probability, restricted to truth-
determinate sentences only. The fifth is the law of non-bivalent probability;
in a more relaxed vernacular it reads ‘the probability of A is the probabil-
ity that A is true, given that A has a truth value’.2 Together they will be
called the laws of non-bivalent probability. Their soundness and complete-
ness can be established by a Dutch Book argument based on the betting
interpretation of probability.

A (betting) book B consists of two real-valued functions Q and S. Q(A)
is the betting quotient for the sentence A and S(A) is the stake for the bet
on A. S is restricted so that it can assign a non-zero stake to only a finite
number of sentences.

Books work as follows. The subject whose degrees of belief are to be
measured sets the betting quotients Q while the bookie sets the stakes S.
When the stake S(A) is positive, this amounts to a bet on A (from the
subject’s perspective): the subject wins money if A is true and looses if A is

2McDermott (1996) comes close to stating the law of non-bivalent probability when
he holds (p.4) that the “degree of assertability” of A is given by the probability Pr(A is
true|A has truth value). For reasons that are not made entirely clear, McDermott does
not consider degrees of assertability, thus defined, to be subjective probabilities.
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false. When S(A) is negative, this amounts to a bet against A: the subject
looses money if A is true and wins money if A is false. If A is neither true
nor false, any bets on or against A will be canceled. That is, a bet on a
sentence A that may turn out to lack truth value is a conditional bet.3

The net result of a book B with regard to an assignment I is:

V (B, I) =
∑

I(A)=T

((1 − Q(A)) × S(A)) −
∑

I(A)=F

(Q(A) × S(A))

For instance, if you have set the betting quotient .75 to A and the bettor has
assigned the stake $10, then you will win $2.50 if I(A) = T and loose $7.50
if I(A) = F . If the bettor has instead assigned the negative stake $ − 5,
then you will loose $1.25 if I(A) = T and you will win $3.75 if I(A) = F .
So if you have set the betting quotient for A to the same value as your
subjective probability that A, then whatever stake the bettor places on A
(be it negative or positive), the resulting bet will for you have an expected
monetary outcome of $0.

A Dutch book is a betting book B such that for every interpretation I,
V (B, I) < 0, that is, if a Dutch book can be made against an assignment
of betting quotients Q, this guarantees that the subject will loose whatever
happens. The betting quotients Q can be Dutch booked if the bettor can set
the stakes in such a way that the resulting book is a Dutch book.4

Theorem 1. Any set of betting quotients that violate the laws of non-
bivalent probability can be Dutch booked.

Theorem 2. No set of betting quotients that satisfies the laws of non-
bivalent probability can be Dutch booked.

Theorem 3. If Pr is a standard bivalent probability measure (i.e. satisfies
laws 1-4) on the truth determinate fragment of the language L, then there
exists a non-bivalent probability measure Pr′ on the full language L such that
Pr′(A) = Pr(A) for every truth determinate sentence A (i.e. Pr′ extends Pr),
furthermore, if two measures Pr′ and Pr′′ extend Pr in this fashion, then for
every A such that Pr(T V (A)) > 0, Pr′(A) = Pr′′(A).5

3De Finetti (1937) used conditional bets to give an interpretation of conditional prob-
ability, see also Milne (1997).

4De Finetti (1937) and Ramsey (1931) used the idea of a Dutch book as a means of
justifying the standard laws of probability. They, however, were working with bivalent
languages.

5Note that the laws say nothing about Pr(A) when A is not truth determinate and
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Non-bivalent probability carries with it a kind of ‘probability logic’ (for
pairs of sentences A and B). Define:

A |= B if and only if either (i) A and B are logically equivalent,
or (ii) B is true in every assignment where A is not false.

Theorem 4. A |= B if and only if for every Pr satisfying laws (1-5): Pr(A) ≤
Pr(B).

It is mildly ironic that the original Dutch book argument was designed to
establish the coherence and completeness of the standard laws of probability,
but here it can be used to establish the incoherence of one of the laws in
its unrestricted form. Consider the non truth-determinate sentences A and
B and say that the probabilities are distributed among the different logical
possibilities as follows:

A

B
T F -

T 0 1/6 0
F 1/6 1/6 1/6
- 0 1/6 1/6

Note that Pr(B) = Pr(A) = Pr(T r(A))/Pr(T V (A)) = 1/6
2/3 = 1/4. So

Pr(A)+Pr(B) = 1/2. The value of Pr(A∨B) will vary depending on how we
select the truth conditions for disjunction (the values for ∗ in the truth ta-
ble). If we adopt the plausible assumption that they are symmetric (so that
A∨B is equivalent to B ∨A) there are three possibilities. (i) The disjunction
A∨B lacks truth value if one of the disjuncts is false and the other lacks truth
value. In this case Pr(A ∨ B) = Pr(T r(A ∨ B))/Pr(T V (A ∨ B)) = 1/3

1/2 = 2/3

so additivity (law 4 above) does not hold. (ii) If A ∨ B is instead false as
soon as neither disjunct is true we have Pr(A ∨ B) = 1/3, still contradicting
law 4. (iii) If, instead, A ∨ B is false if one disjunct is false and the other
lacks truth value, while A ∨ B lacks truth value when both disjuncts lacks
truth value, then Pr(A ∨ B) = 6/15 and law 4 is still not valid.

The remaining standard laws, however, are valid also in unrestricted
form as long as we are dealing with sentences A such that Pr(T V (A)) 6= 0.
For T V (A) is defined as the truth-determinate T r(A) ∨ T r(∼ A) so, by

Pr(T V (A)) = 0. A generalisation to a non-bivalent ‘Popper-style’-measure (whereby the
conditional probability Pr(A|B) is defined even when Pr(B) = 0) could remedy this, but
such a measure does not seem to have any interpretation in terms of betting quotients.
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law 4 (which still holds for truth-determinate sentences), 0 < Pr(T r(A))/
Pr(T V (A)) ≤ 1 and so 0 < Pr(A) ≤ 1 (law 1). Furthermore, if A and
B are logically equivalent, then T r(A) and T r(B) are logically equivalent
and T V (A) and T V (B) are logically equivalent. But then Pr(T r(A))/
Pr(T V (A)) = Pr(T r(B))/Pr(T V (A)) and so Pr(A) = Pr(B) (law 2).

Finally, note that T r(A)∨T r(∼A)∨ ∼T V (A) is always true so Pr(T r(A)
∨T r(∼A)∨ ∼T V (A)) = Pr(T r(A)) + Pr(T r(∼A)) + Pr(∼T V (A)) = 1. So
Pr(T r(∼ A)) = 1 − (Pr(T r(A)) + Pr(∼ T V (A))) (note also that
Pr(T V (∼A)) = Pr(T V (A))). Thus (law 3)

Pr(∼A) = Pr(T r(∼A))/Pr(T V (∼A)) =
1 − (Pr(T r(A)) + Pr(∼T V (A)))

Pr(T V (A))

=
1 − (Pr(T r(A)) + 1 − Pr(T V (A)))

Pr(T V (A))
=

Pr(T V (A)) − Pr(T r(A))

Pr(T V (A))

= 1 −
Pr(T r(A))

Pr(T V (A))
= 1 − Pr(A)

David Lewis, voicing a complaint against the idea that the standard laws
of probability be modified to circumvent his “impossibility theorem” for
conditionals, writes:

But if it be granted that “probabilities” of conditionals do not
obey the standard laws, I do not see what is to be gained by
insisting on calling them “probabilities”. (1976, p. 304)

I think Lewis here ties the concept of probability too closely to a particular
set of laws. If betting dispositions provide a reasonable model for degrees of
belief, it is reasonable to call the result a measure of “subjective probability”.
If the underlying model does not validate the standard laws of probability—
and it will not if the language contains sentences that can lack truth value—
one should have serious qualms about letting the standard laws of probability
override the model. The laws of probability evolved in a bivalent context
and we should not presuppose that they will remain intact when the context
is not bivalent.

Proof of theorems

Proof of Theorem 1: Note that as long as A and B are truth-determinate,
we know that violation of any of the laws 1-4 can be Dutch Booked. Thus
we only need to establish that a violation of law 5 can be Dutch booked.
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Assume that Q(T V (A)) 6= 0 (as T V (A) is a truth-determinate sentence
this means that 0 < Q(T V (A)) ≤ 1.

Case 1. Assume that Q(A) < Q(T r(A))/Q(T V (A). Set S(A) = −1,
S(T r(A)) = 1 and S(T V (A)) = −Q(A). The payoffs are as follows:

A A T r(A) T V (A)

T (1 − Q(A))(−1) 1 − Q(T r(A)) (1 − Q(T V (A)))(−Q(A))
F −Q(A)(−1) −Q(T r(A)) (1 − Q(T V (A)))(−Q(A))
- 0 −Q(T r(A)) −Q(T V (A))(−Q(A))

Note that the sum of the each row is equal to Q(A)Q(T V (A)) − Q(T r(A))
and, as Q(A) < Q(T r(A))/Q(T V (A), this is less than 0.

Case 2. Assume that Q(A) > Q(T r(A))/Q(T V (A)). Set S(A) = 1,
S(T r(A)) = −1 and S(T V (A)) = Q(A).

A A T r(A) T V (A)

T 1 − Q(A) (1 − Q(T r(A))(−1) (1 − Q(T V (A)))Q(A)
F −Q(A) −Q(T r(A))(−1) (1 − Q(T V (A)))Q(A)
- 0 −Q(T r(A))(−1) −Q(T V (A))Q(A)

Note that the sum of each row is Q(T r(A))−Q(A)Q(T V (A)) and, as Q(A) >
Q(T r(A))/Q(T V (A)), this will always be less than 0.

Proof of Theorem 2: Assume that the betting quotients satisfy the laws
of non-bivalent probability. The proof proceeds by establishing that if there
is a Dutch book on sentences containing non-truth-determinate sentences,
then a Dutch book on can be made on truth-determinate sentences only,
and this cannot happen as these satisfy the standard laws of probability.

So assume that there is an assignment of stakes S such that for ev-
ery assignment I, V (S, I) < 0. By assumption there must be some non-
truth-determinate sentence A such that S(A) 6= 0 (as otherwise only truth-
determinate sentences would be involved in the Dutch Book). Two cases:
(1) Q(A) > 0, and (2) Q(A) = 0.

Consider the first case. Let x = Q(A), y = Q(T r(A)) and z = Q(∼
T V (A)). Let S′ be an assignment of stakes that is just like S except that
S′(A) = 0, S′(T r(A)) = S(A)+S(T r(A)) and S′(∼T V (A)) = x×S(A)+S(∼
T V (A)). One can now show that for every assignment I: V (S, I) = V (S′, I).
As S and S′ differ only on the values assigned to A, T r(A) and ∼T V (A) we
can concentrate on them.
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S

A T r(A) ∼T V (A) A

T (1 − y)S(T r(A)) −zS(∼T V (A)) (1 − x)S(A)
F −yS(T r(A)) −zS(∼T V (A)) −xS(A)
− −yS(T r(A)) (1 − z)S(∼T V (A)) 0

S′

A T r(A) ∼T V (A) A

T (1 − y)(S(A) + S(T r(A))) −z(xS(A) + S(∼T V (A))) 0
F −y(S(A) + S(T r(A))) −z(xS(A) + S(∼T V (A))) 0
- −y(S(A) + S(T r(A))) (1 − z)(xS(A) + S(∼T V (A))) 0

Note first that x = y/(1 − z) (as Q(A) = Q(T r(A))/Q(T V (A))), i.e. that
x−zx = y, x = y+zx and −x = −y−zx. Note that (1−y)S(A)−zxS(A) =
S(A)−yS(A)−zxS(A) = S(A)(1−y−zx) = S(A)(1−x). From this it follows
that S and S′ give the same payoffs when I(A) = T . Next (for I(A) = F )
note that −yS(A) − zxS(A) = S(A)(−y − zx) = S(A)(−x). Finally, (for
I(A) = −) note that −yS(A) + (1 − z)S(A)x = −yS(A) + (x − zx)S(A) =
−yS(A) + yS(A) = 0.

Now to the second case (Q(T V (A)) = 0). Note that in this case
Q(T r(A)) = 0. Let x = S(A), y = S(T r(A)) and z = S(∼T V (A)). The
strategy is the same: to find an assignment of stakes S′ that (i) coincides
with S on every sentence except A, T r(A) and T V (A), that (ii) contrary to
S, assigns stake 0 to A, and (iii) the payoff from S′ is the same as the payoff
from S for every assignment I. Let S′(A) = 0, S′(T V (A)) = z − Q(A)x and
S′(T r(A)) = x + y. The payoffs for S and S′ are:

S

A T r(A) ∼T V (A) A

T y z (1 − Q(A))x
F 0 z −Q(A)x
− 0 0 0

S′

A T r(A) ∼T V (A) A

T x + y z − Q(A)x 0
F 0 z − Q(A)x 0
- 0 0 0

Note that if A is true then the payoff for S is y + z + x − Q(A)x which is the
same as the payoff for S′. Similarly if A is false the payoff for S is z −Q(A)x
which is the same as the payoff for S′. When A lacks truth value the payoffs
are both 0.

So in both the above cases S′ contains one non-zero assignment less
to non-truth-determinate sentences than S. Thus, by iterating the above
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procedure any setting of stakes S that assigns non-zero stakes to a finite
number of sentences, is equivalent to a setting of stakes S′ that assigns non-
zero stakes to truth-determinate sentences only.

Proof of Theorem 3: The result is more or less trivial given law 5. Let
Pr be the bivalent probability measure. Define:

Pr′(A) =

{

Pr(T r(A))/Pr(T V (A)), if Pr(T V (A)) > 0,

0, otherwise.

Clearly Pr′, thus defined, is a non-bivalent probability measure that ex-
tends Pr (note that when A is truth determinate Pr(T r(A)) = Pr(A) and
Pr(T V (A)) = 1), furthermore, due to law 5, any other extension Pr′′ must
coincide with Pr′ on every sentence A such that Pr(T V (A)) > 0.

Proof of Theorem 4: Right-to-left. If A and B are logically equivalent
then by law 2 Pr(A) = Pr(B). So assume that B is true in every assignment
where A is not false. Take any probability measure Pr. From the assumption,
Pr(¬F (A)) ≤ Pr(T r(B)) (where F (A) is defined: T V (A)∧ ∼T r(A)). Two
cases. (i) Pr(T V (A)) = 0. In this case Pr(¬F (A)) = 1 and so Pr(T r(B)) = 1
and Pr(B) = 1. Thus Pr(A) ≤ Pr(B) (I am assuming here that a general
constraint on probability measures is that Pr(X) ≤ 1–this does not follow
(when Pr(T V (X)) = 0) from the laws of probability but must be seen as
an extra purely conventional postulate). (ii) Pr(T V (A)) > 0. By law 5,
Pr(A) = Pr(T r(A))/Pr(T V (A)). As T V (A) is truth determinate we have,
by law 4, Pr(A) = Pr(T r(A))/(Pr(T r(A)) + Pr(F (A))). As Pr(T r(A)) ≤
Pr(T r(B)), Pr(T r(A))/(Pr(T r(A))+Pr(F (A))) ≤ Pr(T r(B))/(Pr(T r(B))+
Pr(F (A))) and as Pr(F (B)) ≤ Pr(F (A)), Pr(T r(B))/(Pr(T r(B)) +
Pr(F (B))) = Pr(B) (by law 5). So Pr(A) ≤ Pr(B).

Left-to-right. Assume that Pr(A) ≤ Pr(B) for all Pr satisfying laws 1-5.
Assume for reductio that there is some assignment I where A is non-false
and B is false. Define, for any truth-determinate C:

Pr∗(C) =

{

1, if C is true at I

0, otherwise.

Pr∗ can be extended to a full probability measure Pr by (for any C):

Pr(C) =

{

Pr∗(T r(C))/Pr∗(T V (C)), if Pr∗(T V (C)) > 0,

1, otherwise.
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We know that Pr(B) = 0 (as Pr∗(F (B)) = 1). Now, either A is true at I,
in which case Pr∗(T r(A)) = 1 and so Pr(A) = 1. Or A lacks truth value
at I, in which case Pr∗(T V (A)) = 0 and so Pr(A) = 1. In either case:
Pr(B) < Pr(A) which contradicts our initial assumption.
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