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ON THE DA COSTA, DUBIKAJTIS

AND KOTAS’ SYSTEM OF THE

DISCURSIVE LOGIC, D
∗

2

Abstract. In the late forties, Stanisław Jaśkowski published two papers on
the discursive (or discussive) sentential calculus, D2. He provided a defini-
tion of it by an interpretation in the language of S5 of Lewis. The known
axiomatization of D2 with discursive connectives as primitives was intro-
duced by da Costa, Dubikajtis and Kotas in 1977. It turns out, however,
that one of the axioms they used is not a thesis of the real Jaśkowski’s cal-
culus. In fact, they built a new system, D∗

2 for short, that differs from D2 in
many respects. The aim of this paper is to introduce a direct Kripke-type se-
mantics for the system, axiomatize it in a new way and prove soundness and
completeness theorems. Additionally, we present labelled tableaux for D∗

2 .1

Keywords: discursive (discussive) logic, D2, paraconsistent logic, labelled
tableaux.

1. Introduction

The language of D2 is not simply formed by extending, for example, the
classical propositional calculus with an extra operator (or operators) as it
is in a modal case, but by replacing some of the classical connectives with
their discursive counterparts, more explicitly:

1The main ideas of this paper were presented at the Logic-Philosophical Workshop,
Bierzgłowo Teutonic Castle near Toruń, September 5–8, 2005.
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Definition 1. Let var be a non-empty set of all propositional variables. The
symbols: ∼, ∨, ∧d, →d denote negation, disjunction, discursive conjunction
and discursive implication, respectively. ForD2

is defined to be the least set
such that:

(i) α ∈ var ⇒ α ∈ ForD2

(ii) α ∈ ForD2
⇒ ∼ α ∈ ForD2

(iii) α ∈ ForD2
and β ∈ ForD2

⇒ α • β ∈ ForD2
, where • ∈ {∨, ∧d, →d}.2

It seems very exotic at first sight that Jaśkowski applied a translation
procedure instead of just giving a direct semantics or a set of the syntactical
rules for D2. His choice, however, was not accidental.3

To give an insight into the procedure, we determine a translation function
of the language of D2 into the language of S5 of Lewis, f : ForD2

⇒ ForS5 ,
as follows:

(i) f (pi) = pi ifpi ∈ var and i = {1, 2, 3, . . . }

(ii) f (∼ α) = ∼ f (α)

(iii) f (α ∨ β) = f (α) ∨ f (β)

(iv) f (α ∧d β) = f (α) ∧ ♦f (β)

(v) f (α →d β) = ♦f (α) → f (β)

and additionally:

(vi) ∀α∈ForD2
: α ∈ D2 ⇔ ♦f (α) ∈ S5 .

By way of illustration, we demonstrate how the mechanism works in practice.
Suppose then that we check whether the formula ∼(∼(α ∧d β) ∨ γ) →d

(α ∧d ∼(∼ β ∨ γ)) is valid in D2. As a result, we are made to apply the
translation procedure and check if the formula ♦(♦∼(∼(α ∧ ♦β) ∨ γ) →
(α ∧ ♦∼(∼ β ∨ γ))) is valid in S5 . Unfortunately, it is a bit inconvenient to
use the translation rules whenever we want to check out if a formula is valid
in D2 or it is not.4

The question arises: Is D2 a finitely axiomatizable system? The year
1977 was a turning point. The well-known axiomatization presented by da

2The discursive equivalence is introduced as an abbreviation: α ↔d β = (α →d β) ∧d

(β →d α).
3For details, see [2], [3], [9] and [11].
4We solved this problem in [4] and [5].
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Costa, Dubikajtis and Kotas consists of the following axiom schemata and
rules:

(A1) α →d (β →d α)
(A2) (α →d (β →d γ)) →d ((α →d β) →d (α →d γ))
(A3) ((α →d β) →d α) →d α
(A4) α ∧d β →d α
(A5) α ∧d β →d β
(A6) α →d (β →d (α ∧d β))
(A7) α →d α ∨ β
(A8) β →d α ∨ β
(A9) (α →d γ) →d ((β →d γ) →d (α ∨ β →d γ))
(A10) α →d ∼ ∼ α
(A11) ∼ ∼ α →d α
(A12) ∼(α ∨ ∼ α) →d β
(A13) ∼(α ∨ β) →d ∼(β ∨ α)
(A14) ∼(α ∨ β) →d (∼ α ∧d ∼ β)
(A15) ∼(∼ ∼ α ∨ β) →d ∼(α ∨ β)
(A16) (∼(α ∨ β) →d γ) →d ((∼ α →d β) ∨ γ))
(A17) ∼((α ∨ β) ∨ γ) →d ∼(α ∨ (β ∨ γ))
(A18) ∼((α →d β) ∨ γ) →d (α ∧d ∼(β ∨ γ))
(A19) ∼((α ∧d β) ∨ γ) →d (α →d ∼(β ∨ γ))
(A20) ∼(∼(α ∨ β) ∨ γ) →d (∼(∼ α ∨ γ) ∨ ∼(∼ β ∨ γ))
(A21) ∼(∼(α →d β) ∨ γ) →d (α →d ∼(∼ β ∨ γ))
(A22) ∼(∼(α ∧d β) ∨ γ) →d (α ∧d ∼(∼ β ∨ γ))
(MP)∗ α, α →d β/β
(Rd1) α ↔d β = (α →d β) ∧d (β →d α)
(Rd2) α → β = ∼ α ∨ β
(Rd3) ◦α = ∼(α ∨ ∼ α)
(Rd4) �α = ∼ α →d ◦α
(Rd5) ♦α = ∼�∼ α
(Rd6) α ∧ β = ∼(∼ α ∨ ∼ β)
(Rd7) α ↔ β = (α → β) ∧ (β → α).5

It is amazing that their construction has been widely recognized as a
real axiomatization of D2. To shed some light on the point, take the axiom
schema:

(A19) ∼((α ∧d β) ∨ γ) →d (α →d ∼(β ∨ γ))

5See [1], [6] and [12]
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apply the translation procedure to obtain:

♦(♦∼((α ∧ ♦β) ∨ γ) → (♦α → ∼(β ∨ γ)))

and check if the translated formula is valid in S5 of Lewis.

Corollary 1. The formula is not valid in S5 of Lewis (for every α, β, γ ∈
ForS5 ).

We solve the problem defining a new function f∗ : ForD2
⇒ ForS5 in the

following way:

(i)’ f ∗(pi) = pi ifpi ∈ var and i = {1, 2, 3, . . . }

(ii)’ f ∗(∼ α) = ∼ f∗(α)

(iii)’ f ∗(α ∨ β) = f∗(α) ∨ f∗(β)

(iv)’ f ∗(α ∧d β) = ♦f∗(α) ∧ f∗(β)

(v)’ f ∗(α →d β) = ♦f∗(α) → f∗(β)

and introducing the key definition:

(vi)’ ∀α∈ForD2
: α ∈ D2 ⇔ ♦f∗(α) ∈ S5 .

Let D∗
2 denote the system defined by the new translation.

Corollary 2. All of the axiom schemata are valid in D∗
2 and (MP)∗ pre-

serves validity.

Note that despite their superficial similarities, the two systems (D2 and
D∗

2) are slightly different.6

2. Kripke-type Semantics for D
∗

2

Although we depicted how to translate any discursive formula into its modal
counterpart, the procedures introduced in Section 1 were a little unhandy
and time-consuming to handle in practice. The inconvenience results in the
search for a new semantic tool we could use trying to avoid passing through
the translation rules. In aid of it we present here a Kripke-type semantics
for D∗

2.
A frame (D∗

2-frame) is a pair 〈W, R〉 where W is a non-empty set (of
possible worlds) and R is a binary relation on W . Moreover, R is subject to
the conditions:

6See [4].
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(i) ∀x∈W (xRx)

(ii) ∀x,y∈W (xRy ⇒ yRx)

(iii) ∀x,y,z∈W (xRy and yRz ⇒ xRz).

The conditions define R as being the equivalence relation on W .

A model (D∗
2-model) is a triple 〈W, R, v〉 where v is a mapping from

propositional variables to sets of worlds, v : var ⇒ 2W . The satisfaction
relation |=m is inductively defined:

(var) x |=m pi ⇔ x ∈ v(pi) and i = {1, 2, 3, . . . }
(∼) x |=m ∼ α ⇔ x 6|=m α
(∨) x |=m α ∨ β ⇔ x |=m α or x |=m β
(∧d) x |=m α ∧d β ⇔ ∃y∈W (xRy and y |=m α) and x |=m β
(→d) x |=m α →d β ⇔ if ∃y∈W (xRy and y |=m α) then x |=m β.

We define the notion of a valid sentence as follows:

|= α ⇔ for any model 〈W, R, v〉, ∀x∈W , ∃y∈W (xRy and y |=m α).

Notice that the non-standard definition is a direct result of (vi)’. Further-
more, not only is the discursive equivalence definable in our semantics:

α ↔d β = (α →d β) ∧d (β →d α),

but also the discursive implication can be eliminated:

α →d β = ∼(α ∧d (p1 ∨ ∼ p1)) ∨ β.

Now we can establish a link between the translation rules and the se-
mantics in question.

Corollary 3. ∀α∈For
D∗

2

:|= α ⇔ α ∈ D∗
2 (⇔ ♦f∗(α) ∈ S5 ).

Proof. By induction. First, we have to prove that for every model 〈W, R, v〉
and every x ∈ W it is true that x |=m α ⇔ x |=# f∗(α), where |=#⊆
W × ForS5 is the satisfaction relation defined in any S5 -model 〈W, R, v〉.

Case (1): α = pi, i = {1, 2, 3, . . . }.

x |=m pi ⇔ x ∈ v(pi) ⇔ x |=# pi ⇔ x |=# f ∗(pi).

Case (2): α = ∼ γ.

x |=m ∼ γ ⇔ x 6|=m γ ⇔ x 6|=# f∗(γ) ⇔ x |=# ∼ f∗(γ) ⇔ x |=# f∗(∼ γ).
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Case (3): α = γ ∨ δ.
x |=m γ ∨ δ ⇔ [x |=m γ or x |=m δ] ⇔ [x |=# f∗(γ) or x |=# f∗(δ)] ⇔
⇔ x |=# f∗(γ) ∨ f∗(δ) ⇔ x |=# f∗(γ ∨ δ).

Case (4): α = γ ∧d δ,
x |=m γ ∧d δ ⇔ [(∃y∈W (xRy and y |=m γ) and x |=m δ)] ⇔
⇔ [∃y∈W (xRy and y |=# f∗(γ)) and x |=# f∗(δ))] ⇔
⇔ [x |=# ♦f∗(γ) and x |=# f∗(δ)] ⇔ x |=# ♦f∗(γ) ∧ f∗(δ) ⇔
⇔ x |=# f∗(γ ∧d δ).
Next we show that

|= α ⇔ in any model 〈W, R, v〉, ∀x∈W ∃y∈W (xRy and y |=m α)
⇔ in any model 〈W, R, v〉, ∀x∈W ∃y∈W (xRy and y |=# f∗(α))
⇔ in any model 〈W, R, v〉, ∀x∈W (x |=# ♦f∗(α))
⇔ ♦f∗(α) ∈ S5

⇔ α ∈ D2.

The translation procedure became redundant and we succeeded in con-
structing a new (direct) semantics for D∗

2. All the axiom schemata (A1)–
(A22) are valid in the modified semantics (and (MP)∗ preserves validity).

Since the accessibility relation defined on D∗
2-frames is reflexive, sym-

metric and transitive, it implies that any world is accessible from any other
and we might well considere the relation to be complete. Consequently, the
notion of D∗

2-model can be simplified to the form:
A model (D∗

2-model) is a pair 〈W, v〉 where W is a non-empty set (of
possible worlds, points, etc.) and v is a function that each pair consisting of
a formula and a point assigns an element of {1, 0}, v : ForD∗

2
× W ⇒ {1, 0},

defined as follows:

(∼) v(∼ α, x) = 1 ⇔ v(α, x) = 0
(∨) v(α ∨ β, x) = 1 ⇔ v(α, x) = 1 or v(β, x) = 1
(∧d) v(α ∧d β, x) = 1 ⇔ ∃y∈W (v(α, y) = 1) and v(β, x) = 1
(→d) v(α →d β, x) = 1 ⇔ ∀y∈W (v(α, y) = 0) or v(β, x) = 1.

The notion of a valid sentence also needs to be modified:

|= α ⇔ in any model 〈W, v〉, ∃y∈W (v(α, y) = 1).

It is worth mentioning that the most of the notorious, in a very real para-
consistent sense, formulas are not valid in D∗

2 , for instance:

(1) p →d (∼ p →d q)

(2) p →d (∼ p →d ∼ q)
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(3) (p →d q) →d (∼ q →d ∼ p)

(4) (∼ p →d ∼ q) →d (q →d p)

(5) (p →d q) →d (∼(p →d q) →d r)

(6) p →d (∼ p →d (∼ ∼ p →d q))

(7) (p ∧d ∼ p) →d q.

3. New Axiomatization of D
∗

2

In this section, we present a new axiomatization of D∗
2 making use of the

discursive connectives occurring directly in a set of axiom schemata. The
role of axiom schemata of D∗

2 can be taken on by the following:

(A1) α →d (β →d α)
(A2) (α →d (β →d γ)) →d ((α →d β) →d (α →d γ))
(A3) ((α →d β) →d α) →d α
(A4) α ∧d β →d α
(A5) α ∧d β →d β
(A6) α →d (β →d (α ∧d β))
(A7) α →d α ∨ β
(A8) β →d α ∨ β
(A9) (α →d γ) →d ((β →d γ) →d (α ∨ β →d γ)).
(A9) α ∨ ∼ α
(A10) α →d ∼(∼(α ∨ β) ∧d ∼ β ∧d ∼ α)
(A11) ∼(∼(α ∨ β) ∧d ∼ β ∧d ∼ α) →d ∼(∼(α ∨ β ∨ γ) ∧d ∼ γ ∧d ∼ β ∧d ∼ α)
(A12) ∼(∼(α ∨ γ ∨ β) ∧d ∼ γ ∧d ∼ β ∧d ∼ α) →d

→d ∼(∼(α ∨ β ∨ γ) ∧d ∼ β ∧d ∼ γ ∧d ∼ α)
(A13) ∼(∼(α ∨ β) ∧d ∼ β ∧d ∼ α) →d ((α ∨ ∼ β) →d α)
(A14) ∼(∼(α ∨ β ∨ γ) ∧d ∼ γ ∧d ∼ β ∧d ∼ α) →d ((α ∨ β ∨ ∼ γ) →d (α ∨ β))
(A15) ∼(∼(α ∨ β ∨ γ) ∧d ∼ γ ∧d ∼ β ∧d ∼ α) →d

→d (∼(∼(α ∨ β ∨ ∼ γ) ∧d ∼ ∼ γ ∧d ∼ β ∧d ∼ α) →d ∼(∼ β ∧d ∼ α))
(A16) ∼(∼ α ∧d ∼ β) →d (α ∨ β)
(A17) (α ∨ ∼ ∼ β) →d (α ∨ β)
(A18) (α ∨ β) →d (α ∨ ∼ ∼ β)

The sole rule of inference is Detachment Rule

(MP)∗ α, α →d β/β
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The consequence relation ⊢D∗

2
is determined by the set of axioms and

(MP)∗.
Observe that (A1), (A2) are axiom schemata of D∗

2 and our system is
closed under the detachment rule. It immediately follows that the proof of
the deduction theorem is standard.

Theorem 1. Φ ⊢D∗

2
α →d β ⇔ Φ ∪ {α} ⊢D∗

2
β,

where α, β ∈ ForD∗

2
, Φ ⊆ ForD∗

2
.

Corollary 4. The formulas listed below are provable in D∗
2 :

(T1) (α ∨ α) →d α
(T2) (α ∨ β) ↔d (β ∨ α)
(T3) ((α ∨ β) ∨ γ) ↔d (α ∨ (β ∨ γ))
(T4) (α ∨ (β →d γ)) ↔d ((α ∨ β) →d (α ∨ γ))
(T5) α ∨ (α →d β)
(T6) (α →d β) →d ((γ ∨ α) →d (γ ∨ β))
(T7) (α →d (α →d β)) →d β
(T8) (β ∨ α ∨ β) →d (α ∨ β)
(T9) ∼(∼(α ∨ β) ∧d ∼ β ∧d ∼ α) →d

→d (∼(∼(α ∨ ∼ β) ∧d ∼ ∼ β ∧d ∼ α) →d α)

and the set of {α :⊢D∗

2
α} is closed under the rules:

(R1) α, β / α ∧d β
(R2) α ∧d β / α (β)
(R3) α (β) / α ∨ β.

Proof. We prove (T1)− (T8) in much the same way as it is in the (positive)
classical case. (T9):

1. ∼(∼(α ∨ β) ∧d ∼ β ∧d ∼ α) by deduction theorem
2. ∼(∼(α ∨ ∼ β) ∧d ∼ ∼ β ∧d ∼ α) by deduction theorem
3. (α ∨ ∼ β) ∨ ∼ β ∨ α (A16), 2 and (MP)∗

4. α ∨ ∼ β (T8), (T3), 3 and (MP)∗

5. α (A13), 1, 4 and (MP)∗

(R1)–(R3) are obvious due to (A6), (A5), (A4), (A7), (A8) and (MP)∗.

Corollary 5. Each of the axiom schemata of D∗
2, (A1)–(A18), becomes a

schema of the thesis of the classical propositional calculus after replacing
in Ai, where i ∈ {1, . . . , 18}, all the discursive connectives with their clas-
sical counterparts (i.e. →d / → and ∧d/∧).7 The rule (MP)∗ becomes an

7(A9) can already be treated as a thesis of CP C.
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admissible rule of CPC after replacing →d with →.

Let (D∗
2) = {α : ⊢(D∗

2
) α} be the system described in Corollary 5 and

CPC = {α :⊢CP C α}.

Corollary 6. (D∗
2) ⊂ CPC.

4. Soundness and Completeness

Theorem 2 (Soundness). ⊢D∗

2
α ⇒ |= α.

Proof. By induction. All that needs to be checked is that (A1)–(A18) are
valid and (MP)∗ preserves validity.

Theorem 3 (Completeness). |= α ⇒ ⊢D∗

2
α

Proof. (Outline). Assume that 6⊢D∗

2
α (by contraposition) and |= α. Define

a sequence of all the formulas of D∗
2 as follows:

Γ = γ1, γ2, γ3, . . . where γ1 = α.

Define the family of (finite) subsequences of Γ:

∆1 = δ1 where δ1 = γ1 = α
∆2 = δ1, δ2 where δ1 = γ1 = α and δ2 = γi iff 6⊢D∗

2
δ1 ∨ γi,

otherwise take the very next formula(s) occurring in
Γ, γj for short, and check if 6⊢D∗

2
δ1 ∨ γj

∆3 = δ1, δ2, δ3 where δ1 = γ1 = α, δ2 = γi and δ3 = γi+n iff 6⊢D∗

2

δ1 ∨ δ2 ∨ γi+n, otherwise go on testing the very next
formulas of the sequence Γ

...
∆n = δ1, δ2, δ3, . . . , δn

...

Next define:
∇1 = δ1

︸︷︷︸

∆1

, δ1, δ2
︸ ︷︷ ︸

∆2

, δ1, δ2, δ3
︸ ︷︷ ︸

∆3

, . . . , δ1, δ2, δ3, . . . , δn
︸ ︷︷ ︸

∆n

, . . .

∇2 = δ1, δ2
︸ ︷︷ ︸

∆2

, δ1, δ2, δ3
︸ ︷︷ ︸

∆3

, . . . , δ1, δ2, δ3, . . . , δn
︸ ︷︷ ︸

∆n

, . . .

∇3 = δ1, δ2, δ3
︸ ︷︷ ︸

∆3

, . . . , δ1, δ2, δ3, . . . , δn
︸ ︷︷ ︸

∆n

, . . .

...
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∇n = δ1, . . . , δn
︸ ︷︷ ︸

∆n

, . . . , δ1, δ2, δ3, . . . , δn+k
︸ ︷︷ ︸

∆n+k

, . . .

...
Observe that all the sequences are infinite.

From now on we use ∇i, where i = {1, 2, 3, . . . }, to denote both the
i-sequence and the set of formulas which contains all the elements of the
i-sequence. Additionally, let ∇ = {∇1, ∇2, . . . ∇i, . . . , ∇n, . . . }.

Lemma 1. (i) 6⊢D∗

2
δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δn, for any n ∈ N

(ii) if β 6∈ ∇i, then ⊢D∗

2
δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ β, for some k ∈ N .

Proof. Apply the definition of ∇i, where i = {1, 2, 3, . . . }.

Definition 2. ∇iR∇k ⇔ (∇i = ∇k), for every ∇i, ∇k ∈ ∇.

Lemma 2. R is the equivalence relation on ∇.

Proof. Immediately from Definition 2.

In Section 2, we mentioned that the connectives of ↔d and →d were
redundant. This fact simplifies a proof of the next lemma.

Lemma 3. ∀β,γ∈For
D∗

2

, ∀∇i,∇k∈∇:

(i) β ∨ γ ∈ ∇i ⇔ β ∈ ∇i and γ ∈ ∇i

(ii) β ∧d γ ∈ ∇i ⇔ ∀∇k∈∇(∇iR∇k ⇒ β ∈ ∇k) or γ ∈ ∇i

(iii) ∼ β ∈ ∇i ⇔ β 6∈ ∇i.

Proof. We only show (ii) and (iii).
(ii) ⇒. Let (1) β ∧d γ ∈ ∇i, (2)∃∇k∈∇(∇iR∇k and β 6∈ ∇k) and γ 6∈ ∇i.

Then, due to (2), we obtain (3) ∇iR∇k, (4) β 6∈ ∇k and (5) γ 6∈ ∇i.
By Definition 2 and (4), we have (6) β 6∈ ∇i and consequently (7) ⊢D∗

2

δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ β, for some k ∈ N (Lemma 1(ii) and (6)), (8)
⊢D∗

2
δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δr ∨ γ, for some r ∈ N (Lemma 1 (ii) and (5)).

Suppose that k ≥ r (we prove the second case, i.e. r > k, on much the
same way as k ≥ r). Apply (R3), (T2), (T3), (MP)∗ to (8), to get (9)
⊢D∗

2
δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ γ. Now use (R1) to obtain (10) ⊢D∗

2
(δ1 ∨ · · · ∨

δ1 ∨ · · · ∨ δk ∨ β) ∧d (δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ γ) and finally, (T4) to get (11)
⊢D∗

2
(δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk) ∨ (β ∧d γ). Obviously, δ1, δ2, . . . , δk, β ∧d γ

∈ ∇i. A contradiction due to Lemma 1(i).
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(ii) ⇐. Assume that (1) ∀∇k∈∇(∇iR∇k ⇒ β ∈ ∇k) or γ ∈ ∇i and (2)
β ∧d γ 6∈ ∇i. Subcase (a): if (1) ∀∇k∈∇(∇iR∇k ⇒ β ∈ ∇k), (2)β ∧d γ 6∈ ∇i,
then (3) β ∈ ∇i (by R) and (4) ⊢D∗

2
(δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk) ∨ (β ∧d γ),

for some k ∈ N (Lemma 1(ii) and (2)). Now apply (T4) to get (5) ⊢D∗

2

(δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ β) ∧d (δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ γ) and (R2) to obtain
(6) ⊢D∗

2
δ1 ∨ · · · ∨ δ1 ∨ · · · ∨ δk ∨ β, but δ1, . . . , δk, β ∈ ∇i. A contradition due

to Lemma 1(i). Subcase (b): (1) γ ∈ ∇i and (2) β ∧d γ 6∈ ∇i. Now proceed
analogously to the subcase (a).

(iii) ⇒. Assume that ∼ β ∈ ∇i and β ∈ ∇i. It means the formula β ∨∼ β
is not a thesis of D∗

2 (Lemma 1 (i)). A contradiction due to (A9).

(iii) ⇐. Let ∇i be a sequence i = {1, 2, 3, . . . }. For every ∇i define:

∇∗
i = δ∗

1 , δ∗
2 , δ∗

3 , δ∗
4 , . . .

where

(a) δ∗
1 = δ1 = γ1 = α

(b) for every δn∈∇i : (δn=δ∗
k)⇔6⊢D∗

2
∼(∼(δ∗

1 ∨. . .∨ δ∗
k) ∧d ∼ δ∗

k ∧d. . .∧d ∼ δ∗
1).

Definition 3. We call a formula β classical if it does not include constant
symbols other than ∼ and ∨. We call a formula β discursive if it contains
at least one discursive connective. A formula β is a discursive thesis if it is
a thesis and discursive.

Corollary 7. (i) ∇∗
i ⊆ ∇i, for every i ∈ {1, 2, 3, . . . }

(ii) 6⊢D∗

2
∼(∼(δ∗

1 ∨ · · · ∨ δ∗
n) ∧d ∼ δ∗

n ∧d . . . ∧d ∼ δ∗
1), for every n ∈ N

(iii) If β is not a discursive thesis, β 6∈ ∇i, then ⊢D∗

2
∼(∼(δ∗

1 ∨ · · · ∨ δ∗
k ∨ β)

∧d ∼ β ∧d ∼ δ∗
k ∧d . . . ∧d ∼ δ∗

1), for some k ∈ N .

Now assume that (1) ∼ β 6∈ ∇i and (2) β 6∈ ∇i. Apply Lemma 1(ii), to
get (3) ⊢D∗

2
δ1 ∨· · ·∨δm ∨∼ β and (4) ⊢D∗

2
δ1 ∨· · ·∨δn ∨β, for some m, n ∈ N .

Suppose that m ≥ n (the case n > m is similar to m ≥ n). Use (R3), (T2),
(T3), (MP)∗ to (4), to obtain (5) ⊢D∗

2
δ1 ∨ · · · ∨ δm ∨ β. If ∼ β 6∈ ∇i, β 6∈ ∇i

and ∇∗
i ⊆ ∇i, then (6) ∼ β 6∈ ∇∗

i , (7) β 6∈ ∇∗
i . We have to consider three

subcases:
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(A) neither β nor ∼ β is a discursive thesis

(B) β is a discursive thesis, but ∼ β is not a discursive thesis

(C) ∼ β is a discursive thesis, but β is not a discursive thesis.

Note that the fourth subcase (both β and ∼ β is a discursive thesis) is
impossible due to Soundness.

Subcase (A).

Let m = 1. (8) ⊢D∗

2
∼(∼(δ∗

1 ∨β)∧d ∼ β ∧d ∼ δ∗
1), Corollary 7 (iii) and (2), (9)

⊢D∗

2
∼(∼(δ∗

1 ∨ ∼ β) ∧d ∼ ∼ β ∧d ∼ δ∗
1), Corollary 7 (iii) and (1). Apply (T9)

to (8) and (9), to get (10) ⊢D∗

2
δ∗

1 , but δ∗
1 = δ1 = γ1 = α. A contradiction.

Let m > 1. (8)’ ⊢D∗

2
∼(∼(δ∗

1∨· · ·∨δ∗
p∨β)∧d∼ β∧d∼ δ∗

p∧d. . .∧d∼ δ∗
1), for some

p ∈ N , (9)’ ⊢D∗

2
∼(∼(δ∗

1∨· · ·∨δ∗
r ∨∼ β)∧d∼ ∼ β∧d∼ δ∗

r ∧d. . .∧d∼ δ∗
1), for some

r ∈ N . Note that p ≥ r or r > p. If p ≥ r, then apply (A11), (A12) and (MP)∗

to (9)’, to get (10)’ ⊢D∗

2
∼(∼(δ∗

1 ∨· · ·∨δ∗
p ∨∼ β)∧d∼ ∼ β∧d∼ δ∗

p ∧d . . .∧d∼ δ∗
1),

for some r ∈ N . Now consider (8)’, (10)’ and use (A15) and (MP)∗, to
obtain (11)’ ⊢D∗

2
∼(∼ δ∗

p ∧d . . . ∧d ∼ δ∗
1). Apply (A16) to (11)’, to get (12)’

⊢D2
δ∗

1 ∨ · · · ∨ δ∗
p . Since ∇∗

i ⊆ ∇i, (R3) is an admissible rule in D∗
2 and we

have (T2), (T3), then (13)’ ⊢D2
δ1 ∨ · · · ∨ δp (where δ∗

1 = δ1, δ∗
2 = δ2, . . . , δ∗

p

= δp). Clearly, δ1, . . . , δp ∈ ∇i. A contradition due to Lemma 1(i).

We prove the subcases (B) and (C) in a very similar way. Make use of
(A11), (A12) (A13), (A14), (A17) and (A18).

Now we construct a canonical model for D∗
2 that will falsify any non-theorem

(and invalidate a non-derivable rule). Let MC = 〈∇, R, vc〉 be such a model.
The canonical valuation vc : ForD∗

2
× ∇ ⇒ {1, 0} is defined:

vc(β, ∇i) =

{

1, if β 6∈ ∇i

0, if β ∈ ∇i.

We have to show:

Case (1): β = σ ∨ τ
(i) vc(σ ∨ τ, ∇i) = 1 ⇔ σ ∨ τ 6∈ ∇i ⇔ σ 6∈ ∇i or τ 6∈ ∇i ⇔ vc(σ, ∇i) = 1

or vc(τ, ∇i) = 1

(ii) vc(σ ∨τ, ∇i) = 0 ⇔ σ ∨τ ∈ ∇i ⇔ σ ∈ ∇i and τ ∈ ∇i ⇔ vc(σ, ∇i) = 0

and vc(τ, ∇i) = 0.
Case (2): β = σ ∧d τ

(i) vc(σ ∧d τ, ∇i) = 1 ⇔ σ ∧d τ 6∈ ∇i ⇔ ∃∇k∈∇(∇iR∇k and σ 6∈ ∇k)

and τ 6∈ ∇i ⇔ ∃∇k∈∇(∇iR∇k and vc(σ, ∇k) = 1) and vc(τ, ∇i) = 1

(ii) vc(σ ∧d τ, ∇i) = 0 ⇔ σ ∧d τ ∈ ∇i ⇔ ∀∇k∈∇ (if ∇iR∇k then σ ∈ ∇k)
or τ ∈ ∇i ⇔ ∀∇k∈∇ (if ∇iR∇k then vc(σ, ∇k) = 0) or vc(τ, ∇i) = 1.
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Case (3): β = ∼ σ

(i) vc(∼ σ, ∇i) = 1 ⇔ ∼ σ 6∈ ∇i ⇔ σ ∈ ∇i ⇔ vc(σ, ∇i) = 0

(ii) vc(∼ σ, ∇i) = 0 ⇔ ∼ σ ∈ ∇i ⇔ σ 6∈ ∇i ⇔ vc(σ, ∇i) = 1.

To finish the proof, recall 6⊢D∗

2
α, but |= α. Notice, however, that

the formula α is the very first element of all the sequences ∇i, where i ∈
{1, 2, 3, . . . }. Since α ∈ ∇i, then the formula is not valid in 〈∇, R, vc〉, and
consequently 6|= α. A contradiction.

5. Labelled Tableaux for D
∗

2

In what follows, we will use signed labelled formulas such as σ :: T P (or
σ :: FP), where σ is a label and T P (or FP) is a signed formula (i.e. a
formula prefixed with a “T ” or “F”). The phrase σ :: T P is read as “P is
true at the world σ” and σ :: FP as “P is false at the world σ”. By label, we
understand a natural number. We call ρ root label and always assume that
ρ = 1. A tableau for a labelled formula P is a downward rooted tree, where
each of the nodes contains a signed labelled formula, constructed using the
branch extension rules defined below.

Non-discursive rules:

The rules for disjunction and negation are identical to the ones used in
classical case.

(T∨) σ :: T P ∨ Q

σ :: T P σ :: T Q

(F∨) σ :: FP ∨ Q

σ :: FP
σ :: FQ

(T∼) σ :: T ∼ P

σ :: F P

(F∼) σ :: F ∼ P
σ :: T P

The rules (F∨), (F∼) and (T∼) are linear, but (T∨) is branching.

Discursive rules:

(T∧d) σ :: T P ∧d Q

τ :: T P
σ :: T Q

(F∧d) σ :: F P ∧d Q

σ′ :: F P σ :: F Q

Notice that τ , for (T ∧d), is a label that is new to the branch, but σ′, for
(F∧d), is a label that has been already used in the branch.
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(T→d) σ :: T P →d Q

σ′ :: F P σ :: T Q

(F→d) σ :: F P →d Q

τ :: T P
σ :: F Q

where σ′, for (T →d), has been already used in the branch and τ , for (F →d),
is a label that is new to the branch.

Closure rule:

A branch of a tableau is closed if we can apply the rule:

(C) σ :: T P
σ :: F P

closed

Otherwise the branch is open. A tableau is closed if all of its branches are
closed, otherwise the tableau is open.

Special rule:

(S)
ρ :: F P

σ′ :: F P

ρ is a root label and σ’ is a label that has been already used in the branch.
The application of the rule is always limited to root labels.

Let P be a formula. By a D∗
2-tableau proof of P we mean a closed tableau

with 1 :: FP.

Now, we give a few examples to illustrate how the rules we defined work.

Example 1. Closed tableau for the second Clavius’ law.

(a) 1 :: F (∼ P →d P) →d P (start)
(b) 2 :: T ∼ P →d P (F →d), (a)
(c) 1 :: F P (F →d), (a)
1st branch

(d) 1 :: F ∼ P (T →d), (b)
(e) 1 :: T P (F ∼), (d)

Closed (C), (c), (e)
2nd branch

(d)’ 2 :: T P (T →d), (b)
(e)’ 2 :: F (∼ P →d P) →d P (S), (a)
(f)’ 3 :: T ∼ P →d P (F →d), (e)’
(g)’ 2 :: F P (F →d), (e)’

Closed (C), (d)’, (g)’
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In our example, we applied one of the branching rules, i.e. (T →d), to the
line (b) and used the notions 1st branch and 2nd branch to indicate that the
(new) branches were opened.

In the next example, we will generate an infinite tableau for a notorious

law of CPC.

Example 2. Infinite tableau for the Duns Scotus thesis

(a) 1 :: F P →d (∼ P →d Q) (start)
(b) 2 :: T P (F →d), (a)
(c) 1 :: F ∼ P →d Q (F →d), (a)
(d) 3 :: T ∼ P (F →d), (c)
(e) 1 :: F Q (F →d), (c)
(f) 3 :: F P (T ∼), (d)
(g) 2 :: F P →d (∼ P →d Q) (S), (a)
(h) 4 :: T P (F →d), (g)
(i) 2 :: F ∼ P →d Q (F →d), (g)
(j) 5 :: T ∼ P (F →d), (i)
(k) 2 :: F Q (F →d), (i)
(l) 5 :: F P (T ∼), (j)
(m) 3 :: F P →d (∼ P →d Q) (S), (a)
(n) 6 :: T P (F →d), (m)
(o) 3 :: F ∼ P →d Q (F →d), (m)
(p) 7 :: T ∼ P (F →d), (o)
(r) 3 :: F Q (F →d), (o)
(s) 7 :: F P (T ∼), (p)
(t) 4 :: F P →d (∼ P →d Q) (S), (a)

......

The procedure goes on ad infinitum.

Theorem 4. A formula P has a D∗
2-tableau proof ⇔ P is valid in D∗

2.

Proof. See [5].

6. Unsigned Labelled Tableaux for D
∗

2

Now, we give a new set of tableau rules for our system We will work with
labelled formulas such as σ :: P, where σ is a label (being viewed as a natural
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number) and P is a formula. The notation σ :: P intuitively means “P holds
in world σ”.

D∗
2-tableau is a tree of labelled formulas with root label ρ (we always

assume that ρ = 1) and all the nodes of a tree are obtained by the rules
schematically described in Table 1. A branch of D∗

2-tableau is closed if it
contains ⊥, otherwise it is open. A D∗

2-tableau is closed if all of the branches
it contains are closed, otherwise it is open. By a D∗

2-tableau proof of P we
mean a closed tableau with 1 :: ∼ P.

Classical rules:

(∨) σ :: P ∨ Q
σ :: P σ :: Q

(∼ ∨)

(∼ ∼)

σ :: ∼(P ∨ Q
σ :: ∼ P
σ :: ∼ Q

σ :: ∼ ∼ P
σ :: P

Discursive rules:

(∧d) σ :: P ∧d Q
τ :: P
σ :: Q

(for τ new)

(→d) σ :: P →d Q
σ′ :: ∼ P σ :: Q
(for σ′ used)

(∼ ∧d)

(∼ →d)

σ :: ∼(P ∧d Q)
σ′ :: ∼ P σ :: ∼ Q
(for σ′ used)

σ :: ∼(P →d Q)
τ :: P
σ :: ∼ Q

(for τ new)

(C)

Closing rule:

σ :: P
σ :: ∼ P

⊥

(S)

Special rule:

ρ :: ∼ P
σ′ :: ∼ P

(for root label ρ)
(for σ′ used)

Table 1. Unsigned Labelled Tableaux for D∗

2
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Here is an example of a tableau proof of ∼ ∼ P →d P.

Example 3. Closed tableau for the law of double negation.

(a) 1 :: ∼(∼ ∼ P →d ∼ P) (start)
(b) 2 :: ∼ ∼ P (∼ →d), (a)
(c) 1 :: ∼ P (∼ →d), (a)
(d) 2 :: P (∼ ∼), (b)
(e) 2 :: ∼(∼ ∼ P →d ∼ P) (S), (a)
(f) 3 :: ∼ ∼ P (∼ →d), (e)
(g) 2 :: ∼ P (∼ →d), (e)
(i) ⊥ (d), (g)
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