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LOGIC OF SIMPSON PARADOX

Abstract. The main aim of this paper is to elucidate, from a logical point

of view, the phenomenon of Simpson reversal — the paradox of a statistical

reasoning. We define a binary relation of supporting in the following way:

a sentence A supports a sentence B if and only if the probability of B is

higher when A is true, than when A is false. It appears that a statistical

argument occurring in Simpson paradox cannot be formalized by means of a

binary relation. We generalize the relation of support introducing the third

parameter. Then we argue that it properly mirrors main features of the

statistical argument occurring in Simpson paradox.∗
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1. Introduction

Let us begin with an example. Suppose that some university is trying to
discriminate in favour of women when hiring staff. It advertises positions in
the Department of History and in the Department of Geography, and only
in those departments. Five men apply for the positions in History and one
is hired, and eight women apply and two are hired. The success rate for men
is twenty percent while the success rate for women is twenty-five percent.
In the Geography Department eight men apply and six are hired, and five
women apply and four are hired. The success rate for men is seventy-five
percent and for women it is eighty percent. The Geography Department
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has favoured women over men. Yet across the University as a whole 13 men
and 13 women applied for jobs, and 7 men and 6 women were hired. The
success rate for male applicants is greater than the success rate for female
applicants.

Men Women

History 1/5 2/8

Geography 6/8 4/5

Whole University 7/13 6/13

Tabular 1.

We could summarize the results above as follows:

(i) Department of History prefer women applicants.

(ii) Department of Geography prefer women applicants.

(iii) Both the Departments taken together prefer men applicants.

The phenomenon of the reversal above is called the Simpson paradox.
First encountered by Pearson in 1899, it was investigated in Simpson [1951].
In statistics, unless used judiciously, Simpson paradox may wreak havoc.
We refer a reader to Pearl [2000] for detailed investigation and references.

The aim of the present paper is to construct a formal system of propo-
sitional logic which elucidates the reasons of the above reversal.

Obviously there is a ‘bias in the sampling’ in the example above. The
question is where exactly this bias arises? The key to this puzzling example
lies in the fact that more women are applying for jobs that are harder to
get. It is harder to make your way into History than into Geography. Of
the women applying for jobs, more are applying for jobs in History than
in Geography while the reverse is true for men. History hired only 3 out
of 13 applicants, whereas Geography hired 10 out of 13 applicants. Hence
the success rate was much higher in Geography, where there were more male
applicants.2 For this reason, what we can statistically deduce in the example
does not depend only on the data, it depends also on the second factor - the
variable which can receive one of the two values “Department of Geography”
and “Department of History”.

We are going to investigate from a purely logical point of view the relation
of statistical inference occurring in the phenomenon of Simpson paradox.

2This example originates from the internet Stanford Encyclopedia of Philosophy.
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We will define a propositional language which allows us to consider events
like “Department of History prefers woman applicants” as sentences of this
language. Then we construct the semantics by considering probabilities as
logical valuations. This allows us to define the relation of supporting |≈ – a
formal counterpart of the notion of corroboration. Then we analyze to what
extent the relation of supporting reflects the features of statistical entailment
occurring in Simpson paradox.

We will argue that a statistical reasoning occurring in Simpson paradox
is a ternary relation and cannot be reduced to a binary one. The relation of
supporting is a special case of a statistical reasoning occurring in Simpson
paradox.

2. Basic concepts

Let Ln denotes an n-generated sentential language with connectives ∧, ∨,
¬, →, generated by n-element set V = {q1, ...qn} of sentential variables. We
will identify language Ln with its set of sentences (well-formed formulas). By
small characters p, q, r (with or without indices) we will denote the sentential
variables while the capitals A, B, C, P , Q, R will denote arbitrary sentences
of Ln.

By a classical logic in the language Ln we mean the binary relation
|=n between sets of sentences and single sentences defined in the following
standard way: X |=n A iff for any classical valuation v : Ln 7−→ {0, 1},
v(A) = 1 whenever v(B) = 1 for any B ∈ X. The symbol |=n A means that
A is a classical tautology. If it does not lead to a misunderstanding we skip
superscript n in |=n.

By a probabilistic valuation or simply a valuation of the language Ln we
mean any function w defined on Ln taking values in the unit interval of reals
[0, 1].

(W1) 0 ≤ w(A) ≤ 1

(W2) w(A) = 1 for some sentence A

(W3) w(A) ≤ w(B) whenever A |= B

(W4) w(A ∨ B) = w(A) + w(B) whenever A |= ¬B

The conditions (W1)–(W4) correspond to Kolomogorov’s axioms defining
finitely additive probability function. We refer the reader to C. Howson,
P. Urbach [1989] and chapter 5 of Makinson [2005] for more details.
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Proposition 1. For any valuation w the following condition hold:

(W5) if A is a classical tautology then w(A) = 1

(W6) w(¬A) = 1 − w(A)

(W7) w(A1 ∨ ... ∨ An) = w(A1) + ... + w(An) whenever Ai |= ¬Aj for all
i 6= j, 1 ≤ i, j ≤ n}.

(W8) w(A ∨ B) = w(A) + w(B) − w(A ∧ B)

It is well known that any function f : {q1, ..., qn} 7−→ {0, 1} can be
uniquely extended to the classical valuation of Ln. It is easy to observe
that for probabilistic valuations it is more complicated. A function f :
{q1, ..., qn} 7−→ [0, 1] might have many possible extensions to a probabilistic
valuation.

By a literal of Ln we mean either a sentential variable or a negation of a
sentential variable. By a state description in the language Ln we mean any
conjunction of n different literals in a fixed order. Each i-th term of such a
conjunction is either qi or ¬qi. Any function f from the set st of all of 2n

state descriptions into the unit interval [0, 1] such that
∑

s∈st f(s) = 1 will
be called a probability distribution.

Proposition 2.

(i) In any language Ln there is 2n state descriptions.

(ii) Any formula A is classically equivalent to a disjunction of a unique

non-empty subset of state descriptions.

(iii) The conjunction of two different state descriptions is a contradiction.

(iv) Any probability distribution can be in a unique way extended to a val-

uation satisfying (W1) - (W4). �

Let w denote a probabilistic valuation w, then for any sentences A and
B such that w(A) 6= 0 a function pA(B) defined as

pA(B) =
w(B ∧ A)

w(A)
,

will be called a conditional probability.
We say that A support B under w, in symbols A |≈n

w B if and only if
either w(A) = 0 or w(A) = 1 or w(A) 6= 0 and pA(B) ≥ p¬A(B). The fact
that A |≈n

w B for any valuation v in Ln will be denoted A |≈n B or A |≈ B

if the context clearly indicates the language. By proposition 3 (iii) below we
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can express it less formally but more demonstratively in the following two
equivalent ways:

A |≈ B if and only if the probability of B is higher when A is true,

than when A is false.

A |≈ B iff the fact that A is the case increases the probability of B.

J. Malinowski [2005] contains more results on the relation |≈. The re-
lation of supporting formalizes well known notions of corroboration Popper
[1968] and confirmation Carnap [1951] considered by philosophers of science
as a tool for testing scientific hypotheses. We refer the reader to Kuipers
[2000] for more references on this subject.

Proposition 3. The following conditions are equivalent.

(i) A support B under w.

(ii) B support A under w.

(iii) w(A ∧ B) ≥ w(A) · w(B).

(iv) w(A ∧ B) · w(¬B) ≥ w(A ∧ ¬B) · w(B).

(v) pB(A) ≥ w(A).

3. Simpson paradox and its formalization

In first approximation we could describe Simpson paradox as a probability
measure based on a bunch of statistical data such that a given event E is
more probable than its negation on the whole population and at the same
time E is less probable than its negation on all the elements of some partition
of the whole population. Simpson paradox in this formulation remains the
method of proving theorem by considering cases.

Also in first approximation the relation of statistical inference occurring
in Simpson paradox seems to be adequately formalized by the relation |≈. As
a consequence one could think that Simpson paradox consist in the failure
of the following rule (Sim) for the relation |≈.

(Sim)
P ∧R|≈Q P ∧¬R|≈Q

P |≈Q

It appears however, that such a point is mistaken. Let us suppose that
w is any valuation, |≈ is a shorthand for |≈w, P ∧ R |≈ Q and
P ∧¬R |≈Q. Then by Proposition 3 (iii) w(P ∧R∧Q) ≥ w(P ∧R) ·w(Q) and
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w(P∧¬R∧Q) ≥ w(P∧¬R)·w(Q). We have w(P∧Q) = w(P∧Q∧(R∨¬R)) =
w((P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R)) = w((P ∧ Q ∧ R) + w(P ∧ Q ∧ ¬R)) ≥
w(P ∧ R) · w(Q) + w(P ∧ ¬R) · w(Q) = w(Q) · (w(P ∧ R) + w(P ∧ ¬R)) =
w(Q) · w((P ∧ R) ∨ (P ∧ ¬R)) = w(P ) · w(Q) and then P |≈ Q. As a
consequence (Sim) is valid for |≈w for any w.

On the other hand the example from the first section shows that the
reversal of inequalities in the (Sim) is possible. Since such a reversal is
impossible for |≈w for any w, then |≈w is not a suitable formalization of the
form of reasoning occurring in Simpson paradox.

Let us make our example more precise. Let us denote:

E - “The application is successful”.
C - “Woman applies.”
F - “An applicant applies to Department of Geography.”

Suppose that only men and women apply, so ¬C means “A man applies”,
and that Department of History is the only alternative for F , then ¬F means
“An applicant applies to Department of History”. Then the data from table
1 can be expressed in the following way:

(i) History: pC∧¬F (E) ≥ p¬C∧¬F (E).

(ii) Geography: pC∧F (E) ≥ p¬C∧F (E).

(iii) University: pC(E) ≤ p¬C(E).

Let us observe that only in the last line the table might be easily ex-
pressed in terms of the relation |≈ as C |≈ E. It seems that the natural
candidates for previous formulas are

C ∧ ¬F |≈ E and C ∧ F |≈ E.

It is not true however. The extended forms of the last two formulas are
respectively:

pC∧¬F (E) ≥ p¬C∨F (E) and pC∧F (E) ≥ p¬C∨¬F (E).

It is easy to check that they are not equivalent to (i) and (ii). This argument
shows that statistical entailment occurring in Simpson paradox cannot be, in
general, formalized as a relation between two variables. It is often necessary
to consider the third variable.

We will define a generalization of |≈ which seems to be more suitable as
a formalization of Simpson paradox. We say that A relatively supports C
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with respect to parameter B under valuation w, in symbols A |≡w [B]C, if
and only if w(B) 6= 0 and

pB∧A(C) ≥ pB∧¬A(C).

Proposition 4.

(i) If A |= C, then for any w and B such that w(B) 6= 0 A |≡B C.

(ii) If A |≡w [B]C and we replace A or B or C by a logically equivalent

sentence then for a resulting triple of sentences A1, B1 and C1 we have

A1 |≡w [B1]C1.

(iii) For any valuation w and sentence B such that w(B) 6= 0 there exists

a valuation v such that |∼ = |≈v, where |∼ = {(A, C) : A |≡w [B]C}.

(iv) If B is a classical tautology then for any valuation w and any sentences

A and B, A |≡w [B]C if and only if A |≈ C.

Proof. (i), (ii) and (iv) are immediate. We will prove (iii). Lets us suppose
that a valuation v and a sentence B are such that w(B) 6= 0 is given. Let

us define a function v for any A ∈ Ln as v(A) = w(A∧B)
w(B) . It it easy to check

that v is a valuation. Then A |≈v C iff

v(A ∧ C)

v(A)
≥

v(¬A ∧ C)

v(¬A)
.

We transform this formula to a complex fraction using the definition of v

and then cancelling by w(B) the resulting fraction. In this way we obtain
an equivalent formula

w(B ∧ A ∧ C)

w(B ∧ A)
≥

w(B ∧ ¬A ∧ C)

w(B ∧ ¬A)
.

It is equivalent to A |∼ C.

Proposition 4 (iii) shows that for a fixed parameter B a binary relation
between A and C, A |≡w [B]C has the same structure as the relation |≈v for
some valuation v. For this reason if the parameter B is fixed then the rule
(Sim) is valid and hence Simpson paradox does not occur. Simpson paradox
might occur only if different parameters occur in one argument.
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