L ogic andL ogical Philosophy
Volume 13 (2004), 89-120
DOI: 10.12773.LP.2004.006

Andrzej Pietruszczak

THE CONSEQUENCE RELATION
PRESERVING LOGICAL INFORMATION -~

1. Introduction

Information is contained in statements and «flows» from their structure and mean-
ing of expressions they contain. The information that flows only from the meaning
of logical constants and logical structure of statements we willlogltal infor-
mation In this paper we present a formal explication of this notion which is proper
for sentences being Boolean combination of atomic senténthasrefore we limit
ourselves to analyzing logical information flowing only from the meaning of truth-
value connectives and logical structure of sentences connected with these connec-
tives.

In (Perzanowski, 198%. 244) the following broad definition of the term ‘logic’
is accepted: ,Logic is a theory of transforming information, i.e., the theory of the
principlesof transforming information.” Yet we maintain that not every “principle”
of e.g. Classical Propositional Calculus (CPC), preserves information after having
processed i#. In what follows we define the consequence relatignwhich pre-
serves logical information contained in formulas of CPC, and we give an axiomat-
ics for this relation.

*This is a corrected version of the Polish paper (Pietruszczak,))19%9vanslation by Rafat
Gruszczyhski (authorized).

1t deals with so called «qualitative aspect» of information, not its «quantitative» one (the latter is
the object of information theory studying the measure of quantity of information).

*Cf. e.g. “the principle” of reasoning according to a schegfa
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The consequence relati¢gn of CPC preserves truth solely by the meaning of
truth-value connectives and the structure of sentences that is a result of properties of
these connectives. It is not the case yet that it always preserves logical information
(in a sense explained farther in the paper). The similar situation holds as well for
different non-classical logical consequence relations defined in the set of formulas
of CPC (with classical meanings of connectives).

For example, inZinov'ev, 197) the author analyzes the relatigi of strong
logical consequencsatisfying the following condition:p * v iff (1) ¢ E ¢
and @) every variable ofy is a variable ofy. The latter condition is connected
with the notion of “sense units” of a given formula, which are its propositional
variables. Thus additional conditio)(says that all “sense units” of a formula
W are at the same time “sense units” of a formula In our opinion @) is too
weak to «correct» the classical consequence relation and free it from «paradoxes».
It is because a sense of a formula is given not only by its “sense units” but also
by the meaning of logical connectives it contains and its structure. The refation
generates «paradoxes» as well. agc* pvq, butpA—-qE* pva, pA(qQV—Q) E*
pvgandpVv(gA—Q) E* pV g Onecanask: ipV qgis nota consequence pf
itself, then what is an influence efg, q v —=q or g A =q on it? In the first case, it
seems that lack of a “sense unifis «less noticeable» then lack of a “sense unit”
represented by.q. If the “sense unit’p itself is not enough to concludeV g, then
the “sense” contained ip A =g cannot be enough all the more. And similarly for
the two remaining cases.

In our opinion, if we accept thagb v g is not a consequence @ then this
is not because of a variabtgbut p. It is not thatq is in the succedent, but not
in the antecedent. The point is that the succedent does not say «the whole truth»
that the antecedent says abpuin other words, the succedent is «informationally
weaker» byp than the antecedent. For the same reasons we maintajmmbéag not
a consequence gf A g (since the succedent is «informationally weaker» than the
antecedent by both andq). We think, that in an acceptable consequence relation
betweeny andy (wherey is a consequence @f) that «presereves information,
the succedent can be «poorer in content» then the antecegentet v should
extract «maximal content» frogabout the “sense units” qf.

The axiomatization g&* can be found inZinov’ev, 1971 and (Wessel, 198
Let us notice that=* remains in connection with Epstein’s calculDs If in an
implication™¢ — ¢ of the language of the calculid subformulas ofp andy are
Boolean combinations of variables (i.e.—~ ¢ is a first degree implication), then
the following theorem holdsiy — ¢ € D iff ¢ E* ¢ (cf. Epstein 199Q p. 141).

As Wessel noticed inWessel, 198% the relation=* has some residues of the
«paradoxes» of the classical consequence relation: “everything that is built from
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variables occurring in a contradiction is a consequence of this contradiction” and
“every tautology is a consequence of everything that includes all variables of this
tautology”. Wessel defines the so callgttict logical consequence™ that elim-
inates these paradoxes. He accepts that™ v iff (1), (2) and @) neitherg is a
contradiction no is a tautology of CPC (cf.1) and @) in the definition of=*).2

The «paradoxes» of the relatigri, that we analyzed earlier, in the text apply to
E** as well. Others, applying to both of them, are presenteRigt{uszczak, 1992

In Section 5 of this paper we will define the consequence relatiotinat pre-
serves information:

¢ Ei y iff (@) neithery is a contradiction noy is a tautology, and
(b) information contained i is a part of information contained in

The notions ofa part of informationandinformation contained in a formula
that occur in ) will be so defined, thath) will entail (1) occurring in the defini-
tions of the relationg=* and=**. Yet the condition 2) of those definitions will not
hold. Namely, the consequence bj (ill only be the fact that the set of so called
essential variableg v is not empty and is a subset of the set of essential variables
of . «Paradoxes» we mentioned before will not concern the relatiqsee Ex-
ample5.1). In Section6 we give a diferent definition of=;, and in Sectiory we
axiomatize this relation.

2. Some facts of classical propositional calculi (CPC)

Let £ = (L, V, A, =) be a propositional language. The formulag/ofi.e., elements

of the set.) are composed in a standard way from propositional variables being el-
ements of the denumerable $et= {po, p1, p2. . . .}, brackets and functors, A and

- understood, respectively, as truth-value connectives of disjunction, conjunction
and negation. From formal point of view is an absolutely free algebra where

is its set of free generators.

In examples first three variables will be denoted by, respectivply, ¢ and
‘r’. The set of propositional variables of a formutae L will be denoted byw(y).

Let 8, be a two-element Boolean algebra in the {€1l}, with operations of
max, min and subtraction from 1. By homomorphism frdito 8, we mean every
functionh from L to {0, 1}, such thath(—¢) = 1—-h(y), h(¢ Vv ¥) = maxh(e), h(y)}
andh(e A ¥) = min{h(y), h(y)}. Let Hom(L, B>) be the set of all such homomor-
phisms.

SRegarding a sequent calculus for the relatfeti see footnotd 7 and Pietruszczak, 2004
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By anevaluation of variablesve mean any functioe on the sew, taking val-
ues in{0, 1}. Every homomorphisrh € Hom(Z£, 85) is unambiguously determined
by an evaluatiorn|y : V — {0, 1}. And conversely, every evaluatian V — {0, 1}
determines uniguely some homomorphisfrirom Hom(Z, 85).

A formulag € L is atautology(resp. acontradictior) of CPC it for everyhin
Hom(L, B2) we haveh(y) = 1 (resp.h(y) = 0). LetT (resp.F) be the set of all tau-
tologies (resp. contradictions) of CPC. We say that a given formwaansngent ff
it is neither tautology nor contradiction. Litbe the set of all contingent formulas,
ie,K:=L\(TUF).

A formula ¢ is said to be aonsequencef a formulag (according to CPC)
iff for everyh € Hom(Z, B,) we haveh(y) < h(y). If ¥ is a consequence of
(according to CPC), we writep E . For allg, s € L we have:

YEY&peT = YeT,
pEY&YeF = peF,
(2.2) YEV&peF&YET = ¢, eK.

A formula ¢ is said to beequivalentto a formulay (according to CPC) for
everyh € Hom(ZL, 82) we haveh(y) = h(¥). If ¢ is equivalent tay, we write:
¢ H ¢. In other wordsy H v iff ¢ = ¢ andy | ¢. The relationH is a congruence
of the algebral.

We say that a given variable éssentiain a given formulaff the logical value
of the formula can be changed by changing the logical value of this variable. To
define this notion in a formal way we introduce some auxiliary operation in the set
E of all evaluations. Fow € V ande € E we define the operatiog,: V — {0, 1}
by the following equation:

1-e@) ifa=p
() if @

i.e., e, differs frome exactly on a variable. Forg € L anda € V we accept that

: . df _
ais essential i & g h(p) # h% (¢).

LetVe(p) :={a@ € V : ais essential ing}. Let us notice that

(2.2) Ve(p) € V().
(2.3) Velp) =0 < peTorpekF,
(2.4) e, ande, coincide onVe(p) = h®(¢) = h%(yp),

(2.5) eHY = Velp) = Ve(¥).



THE CONSEQUENCE RELATION PRESERVING |NFORMATION 93

3. Logical informations in CPC

As we are interested in logical information connected only with the meaning of
truth-value connectives, thus—in case of analyzing sentential schemata-from

it deals solely with logical values assigned to variables fiontor example, a
statement whose schema A (' gives logical information that both statements,
represented byp’ and ‘q’, are true. A statement whose schemaps/ g—that

at least one of statements representedyahd ‘q’ is true. Finally, a statement
whose schema is-p'—that a statement represented lpyis false.

3.1. Information states

We will make use of functions characterized on finite subsets of V and taking val-
ues in{0,1}. We will call these functiongnformation statesand their set will be
denoted by ‘IS’

df
selS < se FunV;{0, 1}) for some finite subsex of V.

The empty sed is an element of IS is a function with an empty domain, i.e.,
0: 0 — {0,1}). If 0 stands as an «empty information state» we will denote it by ‘@’.
Information states from IS are to represent information about the assignment of
logical values to propositional variables in the domains of these states. «Empty» in-
formation state represents «the lack of knowledge about every variable» (we know
nothing about logical values assigned to variables).
In examples—in order to shorten and emphasize notation—an information state
swith a domain{ay, . .., an} Will be denoted by the formal sequeneg. .. o, such
thatfori=1,...,n

"o |@ if (@) =0
The order of the elements of such a sequence is of no importance, i.e., sequences
that have the same elements bdfetiin order represent the same function from IS.

It is accidental that information states and evaluations of variables are repre-
sented by mathematical objects of the same structure. It is connected with consid-
ered scope of information; with «weak strength of expression» of formulaslfrom

Every function from IS is a binary relation M x {0, 1}, i.e., for everysin IS,
sC Vx{0,1}. Arelationr € Vx{0, 1} is not a functionff for some variabler both
(a,1) € r and{a,0) € r. For a functionsinstead of«a, i) € swe write S(a) = i.

In the set of all relations iw x {0, 1}, as the power sgi(V x {0, 1}), the following
set-theoretical operations are performable: prodycumu, complement- and
subtraction\. Moreover, the sgp(V x {0, 1}) is partially ordered by.

. {ai if (o) =1
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The set IS is closed under(i.e., if 1, S € IS, thens; N s, € IS). Generally: if
selSandr cV x{0,1},thensnr elSands\r €IS. Yet the set IS is not closed
underu (i.e., the sum of two functions may not be a function).

Remind that the domain of the functiane IS is the set dng) = {@ € V
Jicjo.1){a, 1) € s}, i.e., the set of those variables for which the value of the function
is determined. By a restriction of a functiane IS to a setV C V we mean the
function sy, whose domain is a set ds)(© V and which takes the same values as
sfor the variables from the new domain. Formally,

svi=sN(Vx{01).

Of course, if dm§) NV = 0, thensy = @. Thus & = g andsy = @. For any
functions, t € IS we have

sCte dm(s) cdm(t) & Yaedme S@) = t(e),
SCte— t|dm(S) =S.

We say that an information stasgfrom IS is compatiblewith an evaluatiore
from E iff sc g, i.e.,sassigns the same values to variables.as

Let us notice that the empty information state @ is compatible with every eval-
uation from E?

3.2. Alternatives of information states

By an alternative of information statewe mean any finite subset of IS. Their to-
tality will be denoted byA, i.e.,

A={AcCIS : CardA< Np}.

Intuitively, a setA from A «informs» that at least one of the state#iis compatible
with a given evaluation.

“Thetriple (IS, 2, @) is Cohen’s forcing (cfBell, 1977, p. 44). We say that a partially ordered set
(P, <, 1) with unity 1 is aforcing, if it satisfies a polarization conditiorx £ y = J,.x z L y, Where

Zly &, ~3¢(s < z & s < y) expresses an incompatibility condition. In case wireis—for
some infinite seiX—a setC(X) of all functions with finite domains being subsets>find taking
values in the sef0, 1} and relation< is an inverse inclusion i€(X), a forcing is called th€ohen’s
forcing (Cohen himself used simple inclusion; in later works the order was inverted for technical
reasons; cf. [2, p. 47]). In our ca¥e= V, C(X) = IS andl = g. The incompatibility conditiors L t

says that there is no function in IS such that would include Is@hdt. Such situation holdgfifor

some variabler from dm(s) N dm(), s(a) # t(a).

The “forcing relation”r, that is included in IS< L, can be defined by the following condition:

Sk ¢ é Yece(S € e = h¥(p) = 1). We will not deal with forcing farther in this paper.



THE CONSEQUENCE RELATION PRESERVING |NFORMATION 95

We say that an alternative of information stafess truefor an evaluatiore
from E (in symbols:e = A) iff at least one information state Ais compatible
with e. Formally,

df
eEA < dgaSce.

Becausd) € A, so it is an «alternative» of information states as well. As such
we will denoted by ‘A’.° There is no evaluation for which «the empty alternative»
A is true.

By aset of variables of an alternative e will mean a sum of all domains of
information states being iA, i.e.,

V(A) =) dm(s).
seA

3.3. The set of logical information

We identify alternatives of information states that are true for the same evaluations
and we maintain that they transmit the same logical information. In the set
define an equivalence relation:

df
A=B < Veg(ek Ao ek B).

The relation= is reflexive, symmetrical and transitive.

Example3 L@ {e. .} ={ag={pp...}

(b) { {pa, pa, pq} {P.g. Pg = {p, pq} = {q, pq)-

(© { pq qr {pa, pr.ar} = {par, par, par, par, par, par}.
Indeed, ife | pr, thene(p) = 0, e(r) = 1 and eithere(q) = 1 ore(q) = 0. In
the first case E gr. In the second caselE pq.

(d) {pa. pr,qr} = {pqr, par, par, par, par, par} = {pg, pr,ar}. O
An equivalence class of an alternatiten relation= we will denote by PAJ:

[A] ={BeA : A=B}.

We assume that the set of logical information is the quotienfAget The set of
logical information we will denote b¥INF, i.e.,

INF =R/~ ={[A] : AeA}.

5The fact that( represents two éfierent notions (@ and) will not cause any formal diculties.
The context will disambiguate which of the two notions is being represented.
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Remark3.1 A question arises: could we use, as an explication of the notion of
logical information, some representatives (i.e., some alternatives of information
states) chosen in some «canonical» way, instead of using equivalence classes of
these states? This way would have to abide by some sensible criterion of «minimal
complexity» of these alternatives. Such sensible criteria of complexity of members
of A could be for example: either a minimal number of tokens of propositional
variables occurring in a given alternative or just a number of its elements. Yet
according to these two criteria the following equivalent alternatives are «equally
minimal»: {pq, pr, qr} and{pag, pr, qr} (see Exampl&.1d). O

Directly from the definition we have that the relatienis acongruence with
respect td=. Therefore we can say that logical informatidiis true at evaluation
e (in symbols:e = I) iff some (arbitrary) representative of the cldds true ine.
We can express it in the following fierent way:

ek [A] é eEA.

We single out two of all logical information: logically empty and logically
contradictorya.

By logically empty informatiorwe mean information that is true at every eval-
uation. Clearly, there exists exactly one such information which we denote by
It will be a counterpart of logical information contained in tautologies of CPC.
Representatives of the clagsare, among others, the following alternatives: {@}
and every alternative whose element is{@;a, a1, ...,an}; a set of functions
Fun(V; {0, 1}) for every finite set of variable¥. Thus in particular the following
holds: v = [{g}] = [{p, p}].

By logically contradictory informatiorwe mean the one that is not true for
every evaluation. Clearly, there exists exactly one such information that we denote
by A. It will be a counterpart of logical information contained in contradictions of
CPC. The class has exactly one element whichAs Thereforex = [A] = {A}.

We fix the following notational convention: while writing particular examples
of logical information we omit «brackets of a set», i.e., instead i B, . .., S
we write [s1, S, ..., Sh)- E.g., the class{p}] will be written down as [@], {pq, r}]

as [pg, r], etc.

Example3.2 (see Exampl8.1). (@) v =[@,...]=[8] =[p.p,-..]-

(b) [p.dl =[pa pa, pd = [p. g, pd = [p, pdl = [4, pa].

(c) [pa.ar] = [pa, pr,ar] = [par, par, par, par, par, par].

(d) [pq. pr,ar] = [par, par, par, par, par, parl = [pa, pr, ar]. O
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3.4. Domain of information

Now we will define the notion ofn essential variable in an alternative of infor-
mation statesThis definition if similar to the definition of a corresponding notion
in the set_:

. - df
aisessential ilA — ~Vep(eEAe €, EA).

LetVe(A) :={a@ eV : ais essential irA}. Clearly,Ve(A) C V(A).
To introduce a notion cd domain of informatioret us notice that directly from
the definition we have:

Facr3.1. ForallABe A: A= B = Vq(A) = Ve(B).

Proor. LetA = B. Then for alle ¢ Ve(A) andec E: e= Biffe= Aiff €, | Aiff
€, E B. Soa ¢ Ve(B), i.e.,Ve(B) C Ve(A). Similarly, Ve(A) € Ve(B). O

Therefore the relatior: is acongruence with respect to a functivg(:). So
we can define a domain of informatidn(in symbols: dm{)) as a set of essential
variables of its (arbitrary) representative:

dm([A]) = Ve(A).

Obviously, dm{) = 0 = dm(v).

3.5. Restriction of logical information

By a restriction of an alternativeA € A to a setV of variables inv we mean an
alternativeA|y defined by the equation:

A|V 2:{S|V : SEA}.

Clearly,Alv = A, {g}lv = {8} and forA # A we haveAp = {g}.
Let us prove that a restriction of an alternative is invariant with respeet to

Fact 3.2. For every subseX of V it holds that:
A=B = Ay = Bly.

Proor. Let A = B and lete be an arbitrary evaluation satisfyirgg= Aly. Then

for somes from Aly, s c e. Let § be an arbitrary element of a sAtsuch that
s = S|y and lete be an arbitrary evaluation such th&itc € (clearly, there are
suchs and¢€’). By hypothese®lgms = S = Slamg = €ldmg- Now we are
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constructing a new evaluatia@?: for « from V we set€’(a) := &a); for a from
dm(s) we sete”’ (@) := € (a); for the remaining variables it may be anything one
likes. The functiong’ is well defined, since dnsf = dm(s) N V. Thus fora in
dm(s) NV we havee(e) = s(a) = S'(a) = €(a). Since€’|gme) = €ldms) = S,
sos c €’,i.e.,¢ £ A Moreovere’” £ B, i.e.,s’ c € for somes’ in B. Hence
S’lv € €’|v = €ly C g that ise = B|y. The converse is proved analogously. [J

Thanks to the above fact we can introduce operatioresfiction of informa-
tion I to a set of variable¥':

[Allv =[Alv].
Notice thatv|y = v andAly = A foranyV C V.
Facr 3.3. Foranyl € INF: I = I|gm().

Proor. It is enough to show that for an arbitradyfrom A, A = Aly, ). Lete
be an arbitrary evaluation. ¥ c e, for somes from A, thensy, s € s c e
as well. Conversely, le¢ = Aly, ), i.€., s C g for somes from Aly, ). Let
s’ be an arbitrary element ok such thats = S|y, a) and lete’ be an arbitrary
evaluation, for whichs' ¢ €. Let us notice, that dng{ = dm(s’) N V¢(A) and
€ldme = S = Slame = €ldm. If evaluationse ande’ coincide on the set drs()
too, thens' c e, that ise  A. Otherwise from the set drg() \ dm(s) we take all
variablesay, . . ., an, Which take diferent values foe than fore’. Hencee coincide
with an evaluation .(.(€},)...);, on the set dng). From this and from the fact
thatay,...,an are not essential il we achievele F Ao €, FAse - o
(- (€)-)e, FA EEA O

3.6. Operations on logical information

In the setIINIF we will introduce operations of denial, convolution and alternation
of information, which will correspond to the respective connectives of. negation,
conjunction and disjunction. These operations will be induced from some opera-
tions in the seA that are invariant with respect to the relatsn

The operation of deniad: A — A is defined as follows: fon-element > 0)
setA=1{s,..., Sy} we take

te oA é telSandfori=1...,nthere are such; € dm(s), that
dm@) = {a1,...an} | () =1- (a).

Therefore the elements of the g8k are these and only these functions which arise
in the following way: for every 1< i < n from the domain ofs we chose one
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elementy;. If a set of paird(a1,1 - S(a1)),..., (a1,1 - (1))} is a function (i.e.,
only one value: 0 or 1 is assigned to every variahlg thena; € oA.

Example3.3. (a) o{g} = A andeA = {g}.

(b) ef{p.pt=A

(¢) efp,al = ©{pg pq, pg = {pa} ande {pa} = {p, q}.

(d) ef{par.ar} = {pg, pr.qr, qr}.

(e) ©{pg, pr} = {p, pr, pg, gr}. O

It is provable that for everg € E it holds that:
3.1 eE0A < el A.
The immediate conclusion is
(3.2) A=B < oA=x=oB.
Therefore the operation of denial of information may be defined as follows:
o[A] = [eA].
From the above facts we conclude that:
(3.3) eEol — el 1.

Moreover,oy = A,©A = v and generallypo I = I.
Conjunction will be connected with a binary operation of “convolution”. We
define the operatiom: A x A — A by means of the following equation:

A®pB:={sUtelS : se A& teB}.

Example3 4. (a) {plo gl ={pg; {p.a} @ {p,q} = {p, pg q}.

(b) { p q) = {pq pa. q} and{pa} ® {pa,r} = {par}.

(c) ¢ = A and generallys} ® o{s} = A.

(d)A@A_Aand{ﬂ}®A_A. O

It is easily provable that
(34) e AdB < ek A& eEB.
The immediate conclusion is:

(3.5) A=zB = ApC=z=BoC.
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Therefore the operation of @nvolution of informatiors: TNIF x TNFF — TNIF
may be defined as follows:
[Alo[B] = [A®B].
It holds that
(3.6) eEIp] — eEFlI&eE].

This operation is idempotent, symmetrical and associative Ji@] = I, [® ] =
JolandIo(JoK)=(Io])oK.Besides oy =TandI ® A = A.

The set-theoretical sum of sets framis an operation that corresponds to the
connective of disjunction. It is idempotent, symmetrical and associative, besides it
satisfies the condition:

3.7) eEAUB < eEAorekEB.
The direct conclusion of this fact is that:
(3.8) A=B = AuC=BUC.

Thus the operation : A x A — A induces a binary operation in a I&IF. We
call it the alternation of informatior?

[Al@[B] = [AUB].
Alternation of information satisfies the condition:
(3.9) eEI@] < eElorekE].

Besides the operatian is idempotent, symmetrical and associative, i@,l = I,
Io]J=]Jolandl@(J@K)=(I©])® K. Moreoverl @ A =T andI @ v = v.
Let us notice that distributivity of ande holds: T@(Jo K) = (I@])® (I @K)
andIo(JoK)=(Io])e(IoK).
The above equations imply théNF, ®, @, 0, v, A) is a Boolean algebra with
sum®, product®, complement, zerov and unityA. A standard Boolean partial
order< determined in this algebra by definition:

<] & 10)=]
satisfies the condition:
(3.10) [<] & Veele]=>ekI).

Yet relation< is not proper for formalization of the notion bking a part of
information For example p,q] < [p], [p,d] < [pq] etc.

6Yet we must use a flierent symbol to denote it, since set theoretical sum of equivalence classes
is a standard notion characterized by the equatidht[[B] = {C : C= AorC = B}.
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3.7. The relation of being a part of information

We will introduce the binary relation being a part ofin the seflINT that will be
properly included in the relatiog. We say that informatior is a part of informa-
tion J (in symbols: I C ]) iff information ] restricted to a set dnh is identical
with I. Formally,

IE] é ]|dm(I)=I-
Example3.5. [p,q] Z [p], but [p,q] < [p]. O

Fact 3.4. The relationc partially orders the seiNF, i.e., it is reflexive, transitive
and antisymmetrical:
ICI,
ItJ&JCK = ICK,
ICJ&JCI = I=].

Proor. Reflexivity follows from Fact3.3. LetI C Jand] C K. ThenI =
Klam(nndmg)- Therefore, by Fad.1, dm() = dm(K) ndm(I)ndm(J), so dm() <
dm(I) n dm(J), and hence dnij = dm(I) n dm(J). Thereforel = Klgm, i.€.,
I'C K. Finally letI C Jand] C I. ThenI = Ilgmnndmg)- Hence, by FacB.1,
dm(I) = dm(I) n dm(J), i.e., dm{) € dm(J). In an analogous way we show
that dm() € dm(I). Thus dm({) = dm(J). Hence, by FacB.3 we have that

I = Jlam@ = Jlamqy = J- ]

It is easily provable that contradictory informatianis not a part of any other
information, and that it is the only its part.

Fact3.5. Foranyl e INF: AC] & [=A & ICA.

Proor. LetI = A. Thena C [ andI C A, by Fact3.4. Overwise, letl # A and
I =[A] for someA # A€ A. ThenAly = {g}. Sollp=[{8}] =V # A, i.e , AL I.
Moreover,Alyp = {Alp} = {A} = A # 1,501 Z A. O

Equally easy we show that the empty informatioris a part of every other
information diferent froma, and that it is not a part of information. Moreover,
the empty information is the only part of its own.

Fact 3.6. For anyl € INF:

I+ A< VvLCI,
ICye—v=1I.
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Proor. LetI # A andI = [A] for someA # A € A. ThenA|y = {g}. Therefore
Ilp = [{@}] = v, i.e,v C I. Overwise, letr C I. Sincey # A, SOV Z A, by
Fact3.5. Hencel # A.

Moreover, letl C v, i.e.,v|p = I. Hencel = [g|y] = [2] = V. O

We say that an informatioh is aproper partof an informationj (in symbols:
Ic))ifICTandl #].

Example3.6. (a) [p] c [pqg and [q] c [pd;
(b) [pl = [pa pr] and [g,r] = [pag, prl;
(€) [P2, 3, pa] = [PP2. PPz, dpa] @nd [p. a] = [PP2. PPz, Pal;
(d) [p,r] ©[pa, qr] (see example8.1c and3.2c);
(e) [p.dl = [pg.al = [pa, arl;
() [p.ar]  [pa. ar].
Finally we present some facts:

(3.11) ICJ = dm() c dm(),

(3.12) IcJ = dm() c dm(]),

(3.13) Yvev IVE T,

(3.14) It] & Yo IVE v & VYvedm IlVE Jlv.

It is provable that is included in<, i.e.,
(3.15) IC] = I<].

It is a proper inclusion (see Exam@e).

3.8 Logical information of formulas from L

As itis known, values of variables occurring in some formula for a given evaluation
are the only determiners of a value of this formula. More precisely, for an arbitrary
formulay € L: if evaluationse; ande, are exactly the same on the $t), then
h®(p) = h®(p). Hence for evens € IS such thaw/(y) € dm(s) we can assume that
S(¢) is a shared valuk®(yp) for all these evaluations, for whichscC e.

Let us define functiom on the set. and taking values ifiNIF:

I(¢) = [(s€1S : dm() = V(p) & S(p) = 1}].
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The clasd (¢) is calleda logical information of a formulgp. It is an equivalence
class of these and only these evaluations of variables occurringan which ¢ is
true. Clearly, the following equality holds:

(¢) = [(selS = dm(g = Ve(y) & S(¢) = 11].

It follows directly from the definition that:

(3.16) ek l(p) &= h%p) =1,
(3.17) W EIp) = vkEvy,
(3.18) eEyY = 1Y) <y,
(3.19) eHY = o) =1{¥).
(3.20) peT = l(p) =V,
(3.21) peF < I(p) = A,
(3.22) I(=¢) = ol(¢),
(3.23) e Ay) =g oll),
(3.24) e Vvy) =1 elly),
(3.25) dm((¢)) = Ve(y).

Example3.7. (a) 1(p) = [p];

(b) 1(=p) = [p] andl(==p) = [p];

(©) I(pAa)=[pd =I(pA(=pVa);

(d) I(pVv Q) =[p.ql;

€ 1(por)=[p.rl’

) (P> A(q>r)) =[pg.arl;
sol(po>r)cl((p>q) A(g>or)) (see Exampld.6d)
andl(p>qg)c I((p>q) A(g>r)) (see Exampl&.6e)

butl(pog)A(p2N))ZI({(p2a) A(gor)) (see Examplé.6). O

4. Logical information and Boolean normal forms

We will compare the structure of logical information with some Boolean normal
forms of formulas froni. This comparison will be useful while proving soundness
for the axiomatization of the relation preserving logical information.

"Farther in this papef (¢ > )7 is an abbreviation df(—¢ Vv ).
8]t is not always the case thitp) C (¢ A ) for ¢, € K. For examplei(pv a) = [p,d] Z [p] =
I((pV Q) A p). Another example ist((pVv q) Ar) =[pr,ar] Z [pr] = I(((pVv ) AT) A p).



104 ANDRZEJ PIETRUSZCZAK

4.1. Disjunctive-conjunctive normal forms

A formula ¢ from L is calledgeneralized conjunctiofresp.generalized disjunc-
tion) iff there are such formulag,, ...,y (n > 0), thaty = w1 A -+ A Yy (resp.

@ =y1 V- V)2 If so, the formulasyy, ..., ¢, are called the elements of a
formulag (if n =1, theny = y).

Generalized conjunction is calledelementanyiff the elements op are solely
propositional variables or their negations, with reservation that the elemeapts of
are not both a variable and its negatidn.Let ek be the set of all elementary
conjunctions.

A formula ¢ has itsdisjunctive—conjunctive normal for{im symbols:¢ € AN)
iff ¢ is a generalized disjunction whose all elements are elementary conjunctions.
Clearly,ek ¢ AN.

4.2. Boolean (disjunctive) normal forms

Let us agree that for every= 0 andb € {0, 1}:

. [-p ifb=0
P = .
Pi ifb=1

Moreover for every increasing sequence of natural numbersiy, ..., in) (i.€.,
0<iy <--- <ipwhenn > 0) and for every sequence of 0s and(fhg ..., bp) €
{0, 1}" let /\l'f. be an elementary conjunction:

NS =P A AR
wherek = Zi”:l b - 2" (i.e.,byby . . . by is a binary notation of a numbé&j.

Let ¢ be an arbitrary formula frora such thawv(y) = {pi,, pi,. - - - » Pi,}, where
= (i1,...,Ipy is an increasing sequenae* 0). We say that a sequence of 1s and
0s,(b1,by...,by), satisfieshe formulay iff h®(p) = 1 for every evaluatior such
thate(pi,) = by, ..., e(pi,) = bn.

For every formulap ¢ F we will construct itsBoolean (disjunctive) normal
form ¢° (cf. Asser 1959. A formula ¢° will be generalized disjunction whose
elements are altanonical elementary conjunctiorfsf. Asser 1959 built from
variables of a formulap and determined by sequences of Os and 1s satisfying the
formulay. The order of the conjunctions in a disjunctighcoincide with the order
of numbers whose sequences of binary expansions satisfy the fopmula

9By convention;y; A - - - Ay, is an abbreviation of a formuld. .. (Y1 Aw2) A A 1) Awn™
An analogical convention applies to a disjunction.

1%We will not use so calledontradictoryelementary conjunctions, whose elements are some vari-
able and its negation, e.g.A=pA QA P
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Lety ¢ Fand letky <k < --- < ks (0 < s< 2") be an increasing sequence of
natural numbers such thigt= 30, b - 2 for | = 1, ...,s where(b, ..., b,
oo ,<ka, e, b#) are all sequences satisfying the formularake

o. k k
"= NSV VAL

It is obvious thaty® € AN andg® H ¢ for ¢ ¢ F. It follows directly from the
definition that forp, s ¢ F: ¢ H ¢ & V(p) = V(¥) < ¢° = y°.

Now let us take an arbitrary formulae K such that/(¢) = {pi,, Pis - - -» Pi}»
where? = (i1,...,in) iS an increasing sequence avigly) = {Pj,, Pj,s - - -» Pjm}s
wherej = (j1,..., jmy is a (increasing) subsequence of a sequé&iife< m < n).

We say that 0-1 sequengby, b, ..., by,) essentially satisfiethe formulagy iff for
every evaluatiore such thate(p;,) = by, &(pj,) = b2, ..., &p;j,) = bm we have
h®(¢) = 1.

Taking a subsequencénstead ofi’and using the notion of essential satisfac-
tion instead of satisfaction, fgrwe define—analogously g§—a formulay® from
AN. In other words, forp € K the formulay® is a generalized disjunction, whose
elements are all canonical elementary conjunctions built from essential variables
of the formulay and determined by 0-1 sequences essentially satisfying the for-
mulag. The order of these conjunctions in disjunctiphis the same as the order
of numbers whose sequences of binary expansions essentially satisfy the fermula

Clearly, fore, ¢ € Kwe havep® H ¢ H ¢° andVe(¢) = V(¢®) andp H ¥ —
"=y

Letk € ek andV be a subset 0¥ such that/(x) NV # 0. By A restriction of a
conjunctionk to a setvV we mean an elementary conjunctidg formed fromx by
removing all its elements that are variables from beydmt negations of variables
from beyonaV.

Letyp ¢ Fandy® = k1 V --- V kn, Wherek; € ek. Clearly,V(¢) = V(k1) = --- =
V(kn). For every se¥ such thatv(¢) NV # 0 we takeg®ly = k1lv V -+ V knlv.

It is easily provable that for every formulafrom K, ¢* H ¢°lv,(,) (the equality
not necessarily holds since some elementg’ja,,) may repeat or be in improper
order).

For ¢ from K we definep®|y in an analogous way.

4.3. A comparison of formulas fromAN with sets from A

We can construct «canonical embedding» of the set of formakasto the set of
functions IS. For the notation from the paragraph 4.1, it will be a function which
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for by,..., b, €{0, 1} and diferentay,...,an € V

b, * a1 ... an

by
eksa' A Aay '_)(blmbn)EIS‘

Obviously, it is not an «invertible» function. It is neither injection (to conjunctions
that are diterent solely in order of elements we assign the same state from IS) nor
surjection (the state g is not assigned to any elementary conjunction).

The above embedding){ is extended on the s&N by setting:

k
AN 3 k1 V-V km+— {K],....km} €A

Clearly, it also is not injection nor surjection s not among its values). For every
@, ¥ € AN the following equality holds:

(4.1) PHY = ¢ =y .
It is also obvious that for every ¢ F
@) ={(pr ) elS 1 V(g) ={ar.....an} & (br.....b0) o}
wheref is the satisfaction defined in 4.2 (p04). Similarly for ¢ € K
(") = {(gi - g:) €IS : Velp) ={ag,...,an} & (by,...,by) E (,0} ,

wherel is the relation of essential satisfaction from Section 4.2.(Q%). Thus the
function ()* assigns representatives of informatidgp) to formulasy® andge®.

4.4. Comparison of the seAN/y with the setINF

From @4.1) it follows that the function-}* induces one-to-one assignment from the
setAN/y to INTF:

lell” = ¢,
wherep € AN and||¢l| := { € AN : ¥ H ¢}. Thus for every noncontradictory

formulae we havel (¢) = |l¢°|*.*
Finally let us notice that from the above facts it follows that:

(4.2) Vouex(I0) E1(9) = ¥ H e lvy)

withal the disjunctiony® may difer from¢®ly(+), at the most, that the second one
contains the iterative elements.

lvet if, while constructing a set of logical information, instead of the@gtve would like to use
the setAN, then we should extend it with «an empty elementary conjunction» (the counterpart of
the empty information state g). Otherwise, the operation of restriction of an elementary conjunction
would not be performable on every set of variables (cf. Section 4.2). Moreover, we should extend the
setAN with an object being the counterpart of the contradictory alternative of information gtates
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5. The definition of the relation [; by means
of the notion of information

Let ; be the consequence relation preserving logical information such that it is
included inL x L:

oEiY & 0¢F & yeT & 1) Cl(p).

From above definition and Fa8t4 we have:p i ¢ iff ¢ € K. Thus the relatior;
is reflexive on the set. Moreover, by FacB.4, the relations; is transitive.
The relationH; is the superposition of the relati¢sn and its converse, i.e.,

pHi Y =R eFiY & UEi@.
From the definition ofs; and by @.17) we have:
(5.1) oY = oEY.
Hence, by 2.1), we have:

(5.2) ekiy = oy ek,
Hence, by 2.3), (3.11) and 3.25, we have:

(53) pEiYy = 0#Ve(yh) C Vely).
From the definitions of; andk;, and by Fac8.4and @.19), it follows that,
(54) pHiV = oHY & ¢,y eK.

Indeedp Hi v iff o Fi v & Y i @iff o ¢ F&Y ¢ T&IW)C () & Yy ¢ F&
pET& () EIW)iffl(p) =1() & p,¥ eKiffp HY & ¢,y € K.
Examples.1 By examples3.5-3.7:

(@ pA(PD g Eiq Indeed,I(q) = [d] = [pd =I(PA(=pV Q).

(0) (PoahA(@Dr)EipPDQ

(©) poaHi -g>-p.  Indeed|(-pVq)=[pq = I(=-qV -p).}?

(d) p¥ipVva

(€) pA-Qi pVa.

) pAa(@v-a)Fipva

(@ pv(@A-0Q Kipva.

12Yet ¢ | w does not imply-y i = ¢. Counterexamplep = ‘pA ¢ andy = ‘p’.



108 ANDRZEJ PIETRUSZCZAK

6. A definition of the relation | by means of evaluations

In (Pietruszczak, 1992ve put forward a definition of some relation, that was meant
to be a modification of the relatiog™*. We will show that this definition in nothing
but different characterization of the relatign.

TueEOREM 6.1. For everyp, ¥ € L

vEiYV = ¢oEVY & 9¢F & y¢T &
Veee(N°() =1 = Jece(@lvow) = evew) & M () = 1)).

In words: ¢ i ¢ iff ¥ € K, ¢ IS a classical consequence wfand for every
evaluation satisfying there is another one that coincides with the first one on a set
of essential variables of a formulaand satisfieg.

Proor. “="Let ¢ |5 ¢. Theny ¢ F,y ¢ Tandy E , by (5.1). Sincel () C I (y),

soy® H ¢®lve), by (4.2). Set an arbitrary evaluatiaasud thath®(y) = 1. Then
in ¢*lv(y+) there is an elementary conjunctienfor whichh®(x) = 1. Let«’ be such
an elementary conjunction ipf thatx = «’|v,y). Clearly, there is an evaluatia

that satisfieg’ and coincides witle on the sev/,(¥).

“<" In (Pietruszczak, 1992t was proved that the right-handed side of the
eguvalence entails the conditioh # Ve (/) € Ve(p). Forl(y) C I1(p), by 4.2), it
is enough to show that* H ¢*ly(e). Leth®(y*) = 1. Then alsd®(y) = 1. Hence,
by assumption, there is an evaluatigrsuch thah® (¢) = 1 and€|v, () = v, v)-

It entails thath®(¢®|v(y+)) = 1. Conversely, leb(¢°ly(,+)) = 1. Then there is such
ane, that€ly, () = 6,y andh?(¢*) = 1. Sincep® k y*, soh®(y*) = 1. Thus
he(*) = 1, becaus®&,(y) = V(4°). O

CoroLLARY 6.1. If Ve(p) = Ve(¥) andy ki , theny H; .

Proor. LetVe(p) = Ve(¥) andy i v. Theny E ¢, by (6.1); ¢, ¥ € K, by (5.2);
andVe(e) = Ve(¥) # 0, by (2.3). Hencew E ¢, by Theorem6.1L So¢ H .
Herce,¢ H; v, by (5.4). O

7. The axiomatization of the relationf;

Now we define some clas$ of consequence relations preserving information. All
members of the clas$ included inL x L. After that we will show that the relation
ki is the smallest in the clags.
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A relation > is a member ofJ iff for all ¢,y, y € L the following axioms
are satisfied (we will use a symmetrical relatienas superposition of with its
converse<'3):

(a1) peK = ¢ % -,

(a2) VEI@CHeAY) # A = @AY >,

(a3) PAYEK = oAy >y Ay,

(a4) AP AYEK = (AP Ax %AW AX),
(as) PAYEK = =(pAY) * —pV Y,
(a6) (pVPIAYeK = (pV¥)Ax = (eAX)V [ AYx),
@an) PeEK&TET = ¢>¢AT,

(a8) peEK&PeEF = px¢pVo,

(a9) peEK&PeEF = ¢V,

(a10) eU&Y >y = >y,

@11) HeAYEIW&x>0&x>¢ = x> oAy,

(al2) XEF&X(p/Y) ¢T& o2y = x> x(p/y).

Remark7.1 Formally, @1)—(@9 have the following forms (for alt, o € L):

(@) If eitherr e Kando = "—-n", oro € Kandr = "—--¢ 7, thenn > o

(@2) If r ="o A a” for somea, andy # 1(o) C I () # A, thenn > 0.

(@3) meK,m="a AB"for somea,B, ando = "B A a”, thenr > o

(a4) If for somea,B,v: eitherr ="(@a AB) Ay, re Kando ="BA (@ Ay)", or
n="BA(@Ay),o="(aAB) AyTando € K, thenr > o.

(aB) If for somea,B: "a A B € Kand eitherr = "=(a AB)" ando = "—a VvV =87,
ormr="=aV-BTando = "=(a AB)7, thenr > o.

(aB) Iffor somea,B,y: eitherr = "(aVB) Ay, n e Kando = "(BAy) V(e Ay)T,
orr="BAY)V(@Ay),o="(aVB) AyTando € K, thenr > o.

(@7) If me Kando =" A 77 for somer € T, thenz > 0.

(a8) If eitherr € Kando = "7 v v for someg € F, oro € Kandr = "o v 7
for someg € F, thenn > 0.

(@9) If eitherr €e Kando = "t v n forsome¢ € F, oro € Kandr = "t v o
for someg € F, thenn > o O

Ble,forallo,y el o< yiffo>y & ¥ > o.
14See Footnoté.

B1(p) C I(y) and 1 (¥) C 1(y) does not entail (¢ A &) C I(y). Counterexampley = ‘p > q,
y="porandy="'(p>qg A(g>r) (see Example.7).



110 ANDRZEJ PIETRUSZCZAK

Obviously, the clas$ is not empty, since the full relation x L is a member
of 3. The other member d¥ is the relation;.

TueoreM oN THE CorrECTNESs 7.1. The relation=; is a member ofJ.

Proor. We must prove that the relatigs satisfies axiomsal)—(al?. For @1),
(ad-(a9 and @12 the fact follows from $.4). For @2 from (3.20 and @.21).
For (al10 from Fact3.4. The axiom 411 follows from the fact that ifp,y ¢ T,
thenp Ay ¢ T. O

We put
>o 3=ﬂ3 ::{<907¢>€LXL : V>es¢>lﬂ} s
By our definitions we have.

Fact 7.1. >, € 3, ie., the relation-, is the smallest one in the claSs O

Moreover, by our definitions and by Theorem on the Correctrielsse obtain
theCorollary on the Correctness.

CoroLLary 7.1 (on the Correctnessy., C ki, i.e., ifp >, ¥ theny i . O

The remaining part of this paper is devoted to proving the irvémslusion,
that isj € >,. In Section10we prove:

COMPLETENNESS THEOREM 7.2. i C >, I.€.,¢ i ¥ theny >, .
From these the adequacy will follow:

THEOREM ON THE ADEQUACY 7.3. |Ej = >, I.€., the relatior; is the smallest irlJ.
Further we will profit from the below lemma that we obtain in a standard way.

Lemma 7.1. ¢ >, ¢ iff there is a finite sequence of pairs of formwas, o1), .. .,
(ntn, oy such thatr, = ¢ andoy, = ¢, and fori = 1, ..., n at least one of the
following conditions holds:

1. forn = n; ando = o an antecedent of some implication frqed’)—(@9’) is
true;

2. there arg, k < i such thatrj = nj, o = o andoj = ny;

. I(oi) C I(ni) and there arg, k < i such thatrj = nj = n¢ ando = oj A o,

4. mi ¢ F, oy ¢ T and there arg k < i such thatr; = o andny = oj, andm; = x
andoi = x(rj/cj) for some formulg.*® 0O

w

For conditions 2—4 see axiomal0—(ald.
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8. Auxiliary properties of all relations from the class J

Let> be an arbitrary relation in the cla8s
Let us notice thatql) and @10 entail that the relatiot is reflexive onk:

(8.1) peK = ¢p>¢.

Moreover, from 83), (3.19), (3.20), (3.21, (a2 and @10 it follows that
(8.2) VEIW)CEH@AY)EFA = @AY >,

and .20, (3.2)), (a2, (8.1) and @11 entail idempotence foxk:

(8.3) peK = poxpAp.

Let us notice also that froma@) and @7) follows

(8.4) peK&TeET = ox¢AT,

becauser # 1(¢) = 1(p A T) # A.
We prove a theorem that will be useful farther:

(8.5) X1>x2 & o1 %Y1 & @2 % Yo = xi(e1/¥1) > x2(p2/¥2) .

Indeed, from the antecedent of the implication, 8%%), we havey, > y2(p2/¢2),
and from this, by €10, x1 > xa(g2/¢2). Sincex1 = xi(p1/¥1)-(¥1/¢1), so from
the antecedent of the implication ared.@), we derivey1(¢1/¥1) > x1. Thus, using

(@10, we haveyi(p1/¥1) > x2(p2/¥2)-
The relation> is idempotent forv in K:

(8.6) peK = px¢pVe.

Indeed, by 8.3) and @12, —(—¢ A —=¢) > =—¢ and——¢ > =(=¢ A =¢). From this
(@9 and B.5), =—¢ % —=—p V =—¢. And, by @1 and 8.5), we gety % ¢ V ¢.
We prove that

(8.7) VY eEK = oV % (g A-).

Indeed, by 85, ——¢ vV == % =(=¢ A ). Assume additionally thap, v € K.
Then, by 1), (8.1) and 8.5), we getpVy ¢ ——¢V-—y. From this and fromg10),
e Vi % =(=¢ A —y). Assume now thap € K andy € F. Then, by &9), (al), (a9
ard (8.5), we get respectivelyp Vi % ¢ % oV =y % ==V == % =(=p A—).
The casep € F andy € K is similar — we taked9) instead of 8.
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Now from (8.7), (a3 and @8.5) we have:
(8.8) pVYyeK = VY xyVoy.
Similarly, from @.7), (al), (212 and @10 we get:
(8.9) VY eK = =(pVi) ¥ - A,
We will show that relatior «preserves» commutativity fofin K:

(8.10) CVY)VYeK = (pVyY)Vy xoV ¥ Vy).

Indeed, incase ip vy € Kwe have: Vi) Vy % ==((eVi)Vy) % =((mo A=) A

) % =(=p A (= A =x)). Now if (i) ¥V y € Kwe have... x ==(¢V (¥ Vy)) *

(Vv (¥ VY)). Incase of (i), ify v y € F the following holds: ¢ Vy)Vy % oV %

@ % eV Vy). IncaseifpVvy € Fwe have: Vy)Vy x x % Yy Vy % oV Vy).
Finally

(8.11) CAY)VYEK = (pAY)Vx x(eVX)AWVY).

Indeed, let us notice thap (A ) V x % ==((p AY) V x) % =(=(p A¥) A =x). Now,
if g Ay e K, then... x =((—eV —¢) A=y). Yetif o Ay € F, then—=(o Ay) Ay %
x ¥ (k@ VvV =) A~y that is we also get.. % =((—¢ V =) A =x). Thus in both
cases we have:. . % =((-¢ A =x) V (=¥ A —y)). Now we have to consider three
cases. (A)whe v y € Kandy Vv y € K. Then... % =(=(¢ V x) V = V x)).
(B) wheng v y € Kandy v y € T we can prove thatp A =y) V (=¥ A =) *
@ % (mo A=x) V=V y). Thus we also get... % =((m¢ A =) V =y V x)) %
=(=(e Vx) V= Vy). (C)whenp Vv y € Tandy Vv y € K, then we will show
analogously that.. % =(=(¢ V x) V (=¢ A =x)) % =(=(¢ V x) V =y V x)). Thus
in all three cases we have:. % ==((¢ VX) AW VX)) % (e Vx) AW V).

We will need a couple of more generalized theorems that we proved earlier.
The axiom &6) will be used farther in the following form:

(812) @iV - -V AV EK, gi ANy EK =
(P V- Vo) AY = (L AY)V -V (en AY).

Indeed, as inductive hypothesis, let us assume that the condition is troe-for
By (@G we get: (o1 vV --- Vign) A (01 V-V gn-1) AY) V (en A Y). Letus
notice that by the antecedent of implicatiogy (/ - - - vV ¢n-1) A ¥ € K. Indeed, if
(1 V-~ Vo) ANy K, then 1V ---Von1) ANy € F, S0¢; Ay € F for every
i < n, contrary to the assumption. Therefore we can apply inductive hypothesis.
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Conditions &5 and 8.9) will also be inductively generalized:

(8.13) LA Apn €K = =(p1 A Apn) 3% @1 V-V ogn,
(8.14) Q1V--Ven €K = =(p1V:---Vn) %701 A A—gp.

For (8.13: by induction om. For n =1, by 8.1), we have-g1 > —p1. Forn> 1,
by (@9), it holds that=((¢1 A - - - A@n-1) Agn) % =(p1 A+ Agn-1) V —pn. ASSume
inductively that the condition holds for— 1. Thusin case iy A--- A¢n_1 € K, by
inductive hypothesis, we ge{p1 A---Apn-1) % =¢1V---V-pn_1. Hence, by 410
and(al?, we get the thesis. Incasedf A---Apn1 € T,we haveps,...,on1 €T
andgn, € K. Hence, by 8.4) and @3), we have ¢1 A -+ A ¢n_1) A ©n ¥ ©n. Now,
by (212, we get—(¢1 A -+ A @n) ¥ —¢@n. Moreover,—¢; V --- V —¢n_1 € F and
—-¢n € K. Hence, by #8) and 8.8), we have Gy V - -+ V =pn_1) V =@n ¥ —¢n.
Finally, we use §10.

Theabove reasoning can be carried out for an arbitrary combination of brackets
in a given conjunction.

For (8.14): analogously as forg(13. Instead of 45 we apply 8.9).

9. Auxiliary properties of the relation >,

Obviously, the relation-, has properties from Secti@h Moreover, we will prove
that this relation has some additional properties that are indispensable while prov-
ing the completeness theorehs.

Fora start let us remark that sineg C |, so by 6.1) and 6.2,

(9.1) o> = oEFEY & o, ¥ eK.

From axioms 1), (a3, (a10 and @12, and from 0.1) and g.98) it follows that
(9.2) QO Eo Y = ¥, W,
(9.3) oVxyeT R Y = VY X, U Vy,

-
(94) @1Vt T = p1%.02& Y1 % Y2 = g1V 1 %2V Y2,
(9.5) PAYEF = %0 = oAy %, U Ay,
(9.6)  wiIAYL¢F = @1 %, 2& Y1 #o 2 = Q1 AYL Ho 2 A2
The conditions 9.4) and ©.6) can be easily generalized in an inductive way:
9.7) ¢prV---VereT =
P1EY1& & pnXon =PIV Von Fo Y1V Vi,

(98) (,01/\"'/\(/7n¢|: -
Q1 ¥ Y1& & pn o hn = Q1A AppFo Y1 A Ay
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Now we will prove a couple of lemmas that will be necessary to prove com-
pleteness.

Lemma 9.1. For allk € ek there is suclp € AN thatV (k) = V(¢) and—-« %, ¢.
Proor. By (8.13), (al), (a10, (9.3) and the factk ¢ K. O

Lemma 9.2. Letyr, ...,on € AN forn > 0. Letgs A --- A pn € K. Then there is
suchy € AN thatV(y) CV(p1 A --- Agn) and(e1 A -+ A gn) %6 .

Proor. Induction onn. (I) Forn = 1: by (8.1) we set thaty = ¢;.

(I Forn=2: assume thaty = k1 V-+-Vkm, 92 = A1 V---V A, wherem,| > 0
andx;, A € ek € K. We will consider three cases:

() Let] = 1 =m. Then by hypothesig; A 11 € ek € AN. Hence, by 8.1), we
cansety = k1 A A1.

(i) Let m+l = k> 1 andm > 1. Then, by é6), we get k1V(k2V- - -Vkm)) A2 %
(k1 A @2) V ((k2 V =+ V km) A ¢2).

Assume that fon = 2 the lemma is true for athandl such tham+ | < k. By
hypothesis andd( 1) one of the following three cases holds:

(@) k1 A w2, (k2 V -+ - V km) A @2 € K. By inductive hypothesis, there are such
Y1, Y2 € ANthatky Ago . Y1 and V- - -Vikm) A2 %, Y2, andV(y1) C V(k1Ap2)
andV(y2) € V((k2 V- -+ V km) A ¢2). By hypothesis and3(1), we can apply¥.4) to
get(kp A @2) V ((k2 V -+ V km) A 92) %, W1 V 2. Thus fory = ¢1 V ¢ € AN, by
(210, we havepy A @o %, . MareoverV(y) C V(1 A ¢2).

(b) k1 A2 e Kand k2 V - -+ V km) A 2 € F. By inductive hypothesis, there is
suchy € AN thatki Ago %, ¥ andV(y) C V(k1Ag2). By (9.9), (k1 Ap2)V((k2V---V
Km)A@2) %6 YV ((k2V---Vkm) Ag2), from (@8 we gety Vv ((k2 V- - - Vkm) Ap2) o .
Hence, by §10, we getp1 A @2 %, . MoreoverV(y) C V(p1 A ¢2).

(ki ApoeFand k2 V -+ Vkm) A @2 € K. Analogously to (b).

(iii) Let m+ 1 > 2 andl > 1. Analogously like (ii).

() For n > 2: assume that the lemma in question is true formalk n.
Consider two cases:

() o1 A -+ A gn-1 € K. Then, by inductive hypothesis, there is suche AN
thatpr A+ - Apn_1 %, ¥ andV(y’) € V(e1 A--- Agn-1). Hence, by hypothesis and
(9.5, we havepy A--- Apn %, ¥ Agn. By assumption and fron®(2), ¢’ A ¢ € K.
Therefore, by inductive hypothesis, there is sugclke AN thaty’ A ¢ %, ¢ and
V() SV Agn) S V(g1 A+ Apn). By (@10 we getpr A -+ A gn . ¢

(i) 2 A -~ Agn-1 € K. Thenpy A --- A pn-1 € T ande,, € K. Hence, by §.4)
and(ad), we getyg A -+ A ¢n %o ¢n.

We repeat considerations from (lll) for an arbitrary combination of brackets.

O
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Lemma 9.3. For everyy € AN N K there is sucky € AN N K thatV(y) € V(e) and
g Fo Y

Proor. Assumethap =« V---Vkn, Wheren< 1 andg e ek ¢ Kfori=1,...,n.
By (8.14) we get that-(ky V - -+ V kn) %6 =K1 A -+ A —Kp.

By Lemma9.1there are suclpyy, ..., ¢n € AN that fori = 1,...,n we have
V(i) = V(i) and—«i %, ¢i.

Let us notice that since, -« € K for 1 < i < n, so for everym < n we
have—-k1 A --- A =km € K. Hence by induction, applying®(6), we can show that
—K1 A o+ A DKp ¥o 91 A -+ A gn. By Lemma9.2 there is suchy € AN that
V() € V(pr A -+~ Agp) ander A -+ A gn %, . Thus, using §10, we get
@ ¥, Y. ]

Lemma 9.4. For everyy € K there is suclp? € AN that V(¢®) C V(¢) andy . ¢4

Proor. Induction on the construction of the formua

() ¢ € V. Thenp € AN andg %, ¢, by (8.1).

(I ¢ = —¢. Theny € K. As inductive hypothesis, let us assume thatyfor
the theorem holds, i.e., there is sugh € AN thatV(y?) C V(¥) andy %, y2.
Thus, using 9.2), we get-y %, =2 From Lemma9.3 we get suchy € AN that
V(y) € V(y®) and-y? %, . Hence, by 410, we gety . .

(1) ¢ = ¢ v y. Consider three cases. (i) y € K. By inductive hypothesis,
there are sucly?, y® € AN thatV(y® < V() andV(y?) C V(y), andy *, ¢?
andy %, y2 By (9.4), we havey %, y2V y2 Clearly, 42 Vv y® € AN and
V2V x? € V(p). (i) ¥ € Kandy € F. Then by &8), we havey %, . By
inductive hypothesis, there is suafft € AN thatV(y?) C V(y) andy %, ¢2. By
(210, we havey %, y2. (i) ¢ € F andy € K. Analogously as for (ii).

(IV) ¢ = (¥ A x). Consider three cases. {#) y € K. By inductive hypothesis,
there are suchj?, y@ € AN thatV(y®) c V(¥) andV(y?) < V(y), andy %, 2 and
X ¥*o x2 By (9.6), we haveyp %, y2 A 2. Clearly, V(2 A ¥3) C V(p). By (9.1) and
Lemma9.3 there is sucly € AN thatV(y) € V(2 A ¢®) andy? A x? %, ¢. Thus
from (@10 we gety %, ¢. (i) ¥ € Kandy € T. Then by 8.4), we havep %, .
By inductive hypothesis, there is suahf: € AN thatV(y?) C V(y) andy %, y2.

From @10 we havey %, ¢2. (iii) ¥ € T andy € K, analogously as (ii). O
Lemma 9.5. Letiy < iz < --- < iy and fork € ek let V(k) = {Pj;, Pj»»---» Pjum} S
{Piss Pips - - -, Piy ), Wherejp < jo2 < --- < Jm. Then there are fferenty, . . ., kor-m €
ek such thatk s, k1 V -+ V kon-m @andV(ki) = {pi,, Piy» - - - » Pi}-

PROOF' Let kl < k2 <o < kn—m and{kl’ kZ,---,kn—m} = {il’iZ""9in} \ {jlajZ’
..., Jm}. By (8.4), (a3, (a6) (a4d), (9.6) and Q.4), we havex ¢, « A (P, V 7Pk;) *o
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(KA Py )V (KA=PK,) %0 K%\/K(lj, WheI’EK% andkg are diterent respectively fromA py,
andk A = py, in this, that their elements are ordered according to increasing indexes

; : 1 11,, 10
of variables. In a second step, for a variaplgwe analogously get; . «j5 Vv K]OZ
and«? =, k13 V k19. Hence, by 9.4) and @10, we havex %, k13 V k15 V K?_é‘ v K95,

11.1 1120 /7. .y 00.0

These steps are repeate_d fiermand we gek . k35 VKZ nmY VKD e
Finally we have 2-™ of different elements . O

Lemma 9.6. If ¢ € K, theny %, ¢°.

Proor. Forg e KletV(y) = {pi,, Pi,» - - -, Pi,}, Whereip <iz <--- <ip.

By Lemma9.4, there is suchy® € AN that ¢ %, ¢? andV(¢?) C V(¢). Thus
¢? = k1 V-V km, Wherem > 0 andki, ..., km € ek. By (a3, (a4), (8.3, (9.5
and(al0, we can show that; =, «, where fori < mwe haveV(k) = V(x) and
«; are dfterent from;, only in this, that no element of a conjunctighrepeats and
all elements are ordered according to an increasing indexes of variables. Hence, by
(9.7), we havep?® . k] V -+ V kfy.

Now, by Lemmad.5, for everyi < mthere is suchy® € AN thatV(¢?) = V()
andx] . ¢ Hence, by9.7), we havep x, ¢3V---Vef,. Next, by 8.10), (8.6) and
(8.9), we can delete recurrent elementary conjunctions in a disames v - - - v ¢f
and order it such thag =, ¢ s, K& v k2 v v i, wherek; < ko < -+ < k
and forj < | numberk; is equal to the sunx, b:(j - 2" 'in which b:(j =0, ifin
Klj(j there is-p; andb:(j =1,ifin Klj(j there isp;.

It remains to prove that® = < v - v . By (9.1), ¢ H &4 v--- vilé. Setan
arbitrary 0-1 sequencgs, . .., by). It satisfies a formula iff it satisfies disjunction
K‘f \VERERY; K:", i.e., for somej < | the sequence satisfies conjunct'rc‘fh The last

condition is equivalent to the fact tt’b:? = bj foralli < n. Hence it follows— from

the one side—that in disjunctioﬁ1 Ve v/<:‘| there are all elementary conjunctions
determined by sequences satisfying a forme#afrom the other—that only such
conjunctions. O

Lemma 9.7. If ¢ € K, theny® %, ¢°.

Proor. If V(¢) = Ve(p), thenyg® = ¢*, so we get the thesis frond.(l).

Let V(¢) = {piy, Piys-- -, Pi,} fOrip < iz < --- <ip andp;, ¢ Ve(p) for some
k < n. Thus for every evaluatioa: V — {0, 1} we haveh®(y) = he’_)ik(go). Hence it
follows that for everyb;, ..., by € {0,1}™ pibl1 A A pikk A+ AP occurs in
@ If PP Ao A Py A=+ A M oceurs ing®. Therefore, either both conjunction

| |
occur irllgoo or neither of them. Moreover, by®), (ad), (a6) and g.4), we have
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(PP A AP A AP V(P A A P. O

P A |obk*1 A AP A (PR P bk) 2o (PP A APYE AP A - AR,

By the above facts anoB(8) together with 9. 7) we can «eliminate» fron?p a
variable p;,, i.e.,¢° %, y¥1, wherey is different from the restriction gf° to the
set{Pi---» Piss Pieas - - - » Pi}» iN this, that it does not include recurring elements.
Subsequently, in the same way, we eliminate the second inessential variable
W1, getting suchy, thate® %, ¥1 %, 2 (we now apply the above facts #q). In

an analogous way we eliminate all inessential variables mettinge® %, ¢°, by

(8.8 and @10. O

Lemma 9.8. Let ¢ € K and letV be an arbitrary nonempty set included\ig(y)
such thaty®|y ¢ T. Theny® >, ¢°|v.

A - /\pI“) o (p A

Proor. Lety® =1 V ---V kn. Proof by induction on a number of variables in the
setV(e®) \ V. If it is empty, theny® = ¢°|y.

() Let px be the only element of the s€{y*) \ V. Consider two possible cases:

(i) For someb € {0,1} a formulapk occurs in every; for i < n. Then, by the
equations proved so far, for ever>< nwe havexi *, K A pk, wherex] is ax;
with pb deleted (i.e. we move to the last place in;). Slnce all assumptlons in
the antecedent of the implicatio.(2) are satisfied, then we get =, (x; vV ---V
k) A p. Sincex) V-V kh = ¢®lv andy # 1(@*lv) EH((K] V- V &) A pE), thus
we can apply 42 and @10 acquiringe® >, ¢°|v.

(if) px occurs inki,, Ki,, - . ., ki, where O< m < nandip <iz < --- <im <N,
and—px OCCUISK|,, Kj,, - . ., Kjy_m» WhErej < jo <--- < jp_m < N CIearIy,go *,
(kiy V- VK )V (kj, V- - -Vkj, ), and both elements of the second of disjunctions are
in K. Therefore the antecedent of the implication is satisféedld, thus, similarly
to (i), by (9.4), we gety® %, ((Ki/l VeV Ki/m) A Pr) V ((K/jl VeV K]n—m) A =py). By
(8.11) we havep® . (K V-V V(K] V- VK, YA=P))A(pkV (K], V-V

K]nim) A ﬁpk)). Again applying 8.11) together with 8.8) and 0.6), we gety® %,
(Ki’1V' . '\/Ki,m\/Kil\/' : -vK]n_m)/\(Ki’lv- : '\/Ki,mV—lpk)/\(kaK]1V' . -vK]n_m)/\(pkv—'pk).
(The transformations were permitted since by the assumptions the whole formula
and respective subformulas areki) D|SJunct|on/< Ve ViV KJ VeV K
differs fromg®|y at the most in the order of elements Slnce the antecedent in the
implication @2) is satisfied then, applyin@g(8) we gety® >, ¢°v.

(I Applying inductive hypothesis, similarly to (1), we will prove the theorem
for an arbitrary (finite) number of elements of the gép®) \ V. O
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10. Proof of the fact: |5; € >,

Applying (4.2) and lemmas from Sectid® we can prove that; C >,.

Lety i w. By (5.2), we havep, ¥ € K, and by (6.3), we geth # Ve () C Ve(p).
Moreover, by ¢.2), ¥* H ¢°lvye)-

Now, by lemmas9.6, 9.7 and 9.8, we haveyp x, ¢° x, ¢* > ¢°|yy+) and
U X, U° %o .

Sincey® H ¢°lv(y), SO¢°lvy+) can difer fromy*® at the most in the fact that
it contains recurring elements. Hence, By6f and some other equations, we get
¢l o ¥°. Thus, from @10, we getp >, y.

11. A sequent calculus for the relationf=;

Let{"¢ -y . ¢, € L} be a set of sequents. The sighdoes not mark binary
relations orL. The sequeniy + ¢ is a «new formula» that renders the argument
with assumptionpy and claimy. The formulay is called theantecedenandy is
called thesuccedenbf the sequenty + 7. A sequenfy + 7 is calledcorrectiff
v Fiy. _

Let us build, in the set of all sequents, the calcuishat will satisfy Theorem
on the Adequacyl1.2 a sequenfy + ¢ is athesis ofC' iff ¢ i ¥, i.e.,"¢ + ¢~
is correctt’

Given sequent is aaxiomof C' iff it satisfies the following two conditions:

(i) neither the antecedent of this sequent is a contradiction nor its succedent is a

tautology;

(ii) the sequent has one of the following fifteen forms:
(A1) k-
(A2) g kg
(A3) PAYFg if () E (e AY)
(A4) PAY YA
(AS) @AY AxEeA Y AX)
(A6) eAWAX)F(@AY) A Y
(AT) (P AY)F =V -y

In (Wessel, 19844 in the set of all sequents Wessel gave an axiomatization forrete
tion E** creating the calculus oftrict logical consequenc&®. Yet—as it has been proved in
(Pietruszczak, 20Q4—his axiomatization is too weak f¢£*. In (Pietruszczak, 20Q4ne can find
the calculusVF*® for £* that is completeVF*® is an «extension to completeness» of the calcBRis
i.e., forallp,y € L: ¢ E* ¢ iff the sequenty + 7 is a thesis o/F>.
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(A8) o VoY k(e AY)

(A9) ev)Axt@erx) V@A)
(A10) @A) VWAX)F(eVY)Ax
(All) QAT

(A12) OorEV o

(A13) VoL

(A14) OFOV o

(A15) OV orp

wherer € T and¢ € F.
Lemma 11.1. All axioms of the calculus<' are correct sequents.

Proor. Forthe axiomA3), by assumptionsp Ay ¢ F, ¢ ¢ T andl(¢) C (¢ A ¥).
Sop AW Ej ¢. For the others axioms: antecedem® &nd succedentsSj are
members oK, andA H S. HenceA H; S, by (5.4). O

Moreover, the calculu€' hasthreerules of inference

(R1) pry YEx

Yrx
(R2) % it 160 A ) T 1(y)
(R3) ELE st Wy and(e/) ¢ T

These rules areorrectin the following sense: when applied to correct sequents
they yield a correct sequent.

Lemma 11.2. Three rules of inference of the calcul@s are correct.

Proor. (R1): the relationk; is transitive. R2): if y ki ¢ andy i ¥, theny ¢ F
ande,y ¢ T. Sop Ay ¢ T andy E; ¢ A ¢, by the additional assumptionRg): if

¢ Fi y andy ki ¢, theng,y € Kandy H ¢. Thusy H x(¢/¢) andy, x(¢/¢) € K,
by the additional assumption. Hengedi x(¢/v¥). O

We say that a sequent iglzesis of calculusC' iff there is its derivation, i.e., it
is derivable in finite number of steps from the axioms by the rules of inference.
From lemmad.1.1and11.2we obtain:

Tueorem oN THE CorrecTNEss 11.1. All theses ofC' are correct sequents.
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Proor. As we showed, all axioms of' are correct sequent. Moreover, all rules
of C' always lead from correct sequents to correct sequents. Thus, by induction
overC', we see that every derivable sequent is correct. O

From Remark/.1it follows that:
Lemma 11.3. A sequent ¢ + 47 is a thesis of the calcult@' iff ¢ >, .

Proor. A finite sequence of sequerits; + 017, ..., mp + 0y IS a derivation of
the sequenty + ¢ iff a finite sequence of pairs of formulés,, o1), . .., {mn, on)
satisfies the conditions from Remarkl. Thus, by Remark.1, a sequenfy + ¢
is athesis of the calculu€' iff ¢ >, . O

From Theorem on the Adequagy3and Lemmal 1.3it follows that:
THEOREM ON THE ApEQuacy 11.2. A sequent is a thesis o' iff it is correct.
Proor. ¢ ki v iff ¢ >, ¢ iff the sequenfty r ¢ is a thesis of the calculu@'. [
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