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CHANGE IN INDIVIDUALS WITHOUT A NAME.

CONTEXTUAL INDICATORS & THE FREE

CHANGE-ADAPTIVE LOGIC

Abstract. Proof theory and semantics of an adaptive logic that deals ade-

quately with change in individuals with or without a name are presented. New

logical constants are introduced, viz. indicators. Within a given context they

function as names, predicates and quantifiers at the same time. The thus ex-

tended language (of classical logic) has a big expressive power and solves—

partly—the (classical) non-logical presuppositions with respect to ‘the existence

of individuals’. Nevertheless, from a purely logical point of view, the here pre-

sented logic requires nothing but a very intuitive selection of classical models of

the premises, viz. the minimally abnormal ones.

1. Introduction

In [8] I introduced the change-adaptive logic CAL2. This logic deals with
change in individuals, in a very natural and fruitful way. Individuals occur-
ring in a theory are replaced by ‘individuals on a given moment’. Instead of
“a”, we write “ai”, which stands for “a on the moment i”. Obviously, we
have Pai 6⊢CL Paj (CL is Classical Logic) even if j comes immediately after
i, in this ‘chaotic’ reading of the premises. The adaptive logic CAL2 has
a minimally abnormal reading of the premises. Starting from the chaotic
reading, continuity is reintroduced conditionally: for every predicate P , for
every individual a, for all moments i, j, we assume Pai ≡ Paj unless and
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until the negation of this assumption is derived from the premises. I briefly
present this logic in section 2. This logic has one main drawback: it cannot
be applied in a theory formulated in a language without individual constants.
This drawback is solved in this paper. The solution is presented in section 4:
new logical constants are introduced, viz. contextual indicators, and a new
and very adequate ‘free’ change-adaptive logic is created. Of course, this
solution will be preceded by some philosophical evidence (section 3). It is
easily shown that every individual constant can be replaced by an indica-
tor.1 This simple notational change solves the metaphysical presuppositions
of classical logic, viz. that owners of a name exist. Indicators function as
predicates and hence there is no reason why their assignment should be a
singleton; it may contain 0, 1 or 2 or ... elements. The main philosophical
idea I defend is that the individuals we describe should not appear as ‘ob-
jectively existing individuals’, but as individuals that are indicated by some
people, within a given context.

At the mean time, the paper establishes once again that adaptive logics
offer a much more powerful machinery than the non-adaptive alternatives.
The power derives especially from the fact that abnormalities are no longer
considered as ‘bad guys’ that should be avoided at all costs. The acceptance
of the possible derivations of abnormalities is not only very ‘human’ and
intuitively correct, it also allows for an interpretation of theories which is
as rich and adequate as possible within the given context. This paper is
an illustration of the fact that the search for the specific abnormalities in a
specific context, results in a contextually adequate theory.

2. The change-adaptive logic CAL2

The language of CAL2, as presented in [8], contains the logical constant
†. A formula of the form †ai (in which a is an individual constant), is read
as “a does not exist on i”. Within the context of the present paper, we
are dealing with languages without individual constants. Therefore, I will
present the change-adaptive logic without †. This makes the matter even
more transparent.

We can characterize the logic CAL2 as ‘the optimum’ between a chaotic
logic (called CHAOS) and a Platonic logic (called Platonic Heaven or PH).
CHAOS and PH can be easily defined from Classical Logic CL. We just
need to change the domain. Let C be the set of individual constants ‘at

1 This notational change is so simple that from my point of view it is amazing that
Russell and Whitehead did not use it in their [9].
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a moment’, V the set of individual variables (referring to ‘individuals at a
moment’), and Pn the set of predicates of rank n. CP is the usual set of
constants (i.e. without time-indices), and DP is the usual domain, i.e a
set of (platonic forms of) individuals. Θ is the set of (shortest) periods—I
call them “moments”. The relations < and = in Θ behave exactly as the
relations < and = in the set of integers. The domain D is defined as follows:

Definition 1. D = DP × Θ

Where i ∈ Θ, DP×{i} is a state of reality. Let vp be the usual assignment
such that for every a ∈ CP : vp(a) ∈ DP . The assignment function v we
need here is such that v(ai) = 〈vp(a), i〉. For every predicate Π of rank n,
v(Π) ⊆ Dn.

2.1. Proof theory and semantics of CHAOS

Given the new domain and the new assignment function, the proof theory
of CHAOS is exactly the same as for CL. Obviously, we have the following
non-theorem:

6⊢CHAOS αi = αj (1)

On the semantic level we have: for every αi, αj (i 6= j) there is some
CHAOS-model vM such that vM(αi = αj) = 0. It is easily seen why this
logic is called chaotic: it does not allow to derive Paj from Pai even if j

comes immediately after i.

2.2. Proof theory and semantics of PH

The syntax of PH is obtained by extending the syntax of CL with, for all
i, j ∈ Θ:

A =′ : αi = αj (2)

For the semantics, we can add the clause, for all i, j ∈ Θ, for all α ∈ CP :

S =′ : vM(αi = αj) = 1 (3)

It is easily seen that the addition of A=′ and S=′ results in the fact that
time-indices become meaningless. Hence, we can say that applying PH to
the ‘indexed’ premises and applying CL to the non-indexed premises give
the same result. In other words: the logic PH deals with individuals as
eternal and unchanging entities.
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2.3. The change-adaptive logic CAL2

Every adaptive logic is characterized by an upper-limit logic, a lower-limit
logic, a set of abnormalities, and a strategy.2 The upper-limit logic at hand
is PH, the lower-limit logic is CHAOS. The abnormalities of the change-
adaptive logic CAL2 are formulas either of the form ∼(αi=αj) or, where Π is
a predicate of rank n+1 (n ≥ 0), of the form ∼(∀x1)...(∀xn)(Π(αi) ≡ Π(αj))
in which Π(αi) stands for Πα1x1...xn or Πx1α

1x2...xn or ... or Πx1...xnα1.
In general, an abnormality will be written as ?C. A is the set of all abnor-
malities. The most credulous adaptive strategy is the minimal abnormality
strategy.3 I make use of this strategy in this paper.

An abnormality is considered to be false unless and until a contradiction
of this assumption is derived from the premises. In other words: the rules
valid in CHAOS are unconditionally valid in CAL2; the rules valid in PH

but not in CHAOS can be applied conditionally. A condition (viz. “It is
not shown that ?C is derivable.”) can only be overruled if ?C is verified in
some minimal abnormal model of the premises.

A disjunction of abnormalities is what it says, and, where ?C1, ..., ?Cn are
abnormalities, a disjunction of these abnormalities is written as DA{?C1, ...,

?Cn} (a DA-formula). In general we write DA(Σ), in which Σ is a finite set
of abnormalities.

2.4. Semantics of CAL2

Definition 2. Where M is a CHAOS-model, AC(M) = {?C |?C ∈ A and
vM(?C) = 1}.

Definition 3. A CHAOS-model M is minimally abnormal with respect to
Γ iff M is a CHAOS-model of Γ, and there is no CHAOS-model M′ of Γ
such that AC(M′) ⊂ AC(M).

Definition 4. M is a CAL2-model of Γ iff M is minimally abnormal with
respect to Γ.

Definition 5. Γ |=CAL2 A iff A is true in all CAL2-models of Γ.

All CAL2-models of Γ are CHAOS-models of Γ. Hence, Γ |=CAL2 A

if Γ |=CHAOS A. Except for border cases, the CHAOS-consequence-set of

2 For an introduction in adaptive logics, see e.g [2].
3 For adaptive logics based on the minimal abnormality strategy, the Ghent Group

usually adds the number 2 to the name of the logic. The number 1 is used for the
reliability strategy. In [3], two more strategies are developed.
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Γ, will be a real subset of the CAL2-consequence-set of Γ. In general, the
set of CAL2-models of Γ is a real subset of the CHAOS-models of Γ. If
for any CAL2-model of Γ, and for any DA-formula DA(Σ), vM(DA(Σ)) = 0,
then Γ |=CAL2 A iff Γ |=PH A. The definitions show that CAL2 interprets
a set of premises as normal as possible: no more ?C ∈ A are true than is
required by the premises. It may be informative for the reader to repeat the
following theorem:

Theorem 1. Γ |=PH A iff for some sets of abnormalities Σi, (i = 0, 1, ...),
Γ |=CHAOS A ∨ DA(Σi).

A will be CAL2-derivable from Γ if every minimally abnormal CHAOS-
model of Γ falsifies some DA(Σi). The proof-theory of CAL2 exists in a
‘proof-theoretical translation’ of Theorem 1.

2.5. Proof theory of CAL2

The logic CAL2 has a dynamic proof procedure. The dynamics are due to
its conditional rule, and its marking rule. The latter forces one to rule out
lines derived on overruled conditions. CAL2 contains also unconditional
rules, viz. those of CHAOS. Hence, the syntax of CAL2 is the one of
CHAOS extended with a conditional rule (RC) and a marking rule (RM).
Here is the conditional rule:

RC : From A ∨ DA(Σ) to derive A on condition Σ. (4)

The format of CAL2-proofs is obtained from the format of CHAOS- or

CL-proofs, by adding a fifth element to each line, which contains the con-
ditions on which we rely in order for the formula in the second element
to be derivable by the rule of inference mentioned in the fourth element,
from the formulas of the lines enumerated in the third element. If we apply
a CHAOS-rule to lines the fifth element of which is not empty, the fifth
element of the new line is the union of the fifth element of the used lines.

Definition 6. A occurs unconditionally at some line of a proof iff the fifth
element of that line is empty.

Suppose that A is derived on one or more lines the fifth element of which
is not empty. A is considered as derived at a stage of a proof and the lines
become a full part of the proof if A comes out true under a maximally normal
‘interpretation’ of the DA-formulas (at that stage). “Interpretation” should
refer to formal properties of the formulas that occur in the proof.
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The role of DA-formulas is crucial in CAL2-proofs. Clearly, when a DA-
formula occurs unconditionally at some line of a proof, at least one of its
disjuncts is true. Some DA-formulas occurring unconditionally in a proof
may be disregarded. As a first step, we only have to consider minimal DA-
formulas. Where Σ and ∆ are sets of abnormalities, let us stipulate that

Definition 7. DA(Σ) is a minimal DA-formula at a stage of a proof iff
(i) it occurs unconditionally in the proof at that stage, and (ii) there is no
∆ ⊂ Σ for which DA(∆) occurs unconditionally in the proof at that stage,
and (iii) there is no DA(∆) that occurs unconditionally in the proof at that
stage such that DA(∆) ⊢CHAOS DA(Σ), whereas DA(Σ) 6⊢CHAOS DA(∆).4

Next, let Φ∗
s be the set of all sets that contain one factor out of each

minimal DA-formula at stage s of the proof. Φ∗
s may contain redundant

elements: the same factor may occur in different minimal DA-formulas.
If DA{?C1, ?C2} and DA{?C1, ?C3} are minimal DA-formulas, then Φ∗

s =
{{?C1}, {?C1, ?C2}, {?C1, ?C3}, {?C2, ?C3}}. Of these {?C1, ?C2} and {?C1,

?C3} are redundant. Both DA{?C1, ?C2} and DA{?C1, ?C3} are true if ?C1

is true; there is no need that also ?C2 and ?C3 be true. So, let Φs be ob-
tained from Φ∗

s by eliminating elements from it that are proper supersets
of other elements. Hence, the members of Φs are sets of formulas, such
that, if all members of such a set are true, then all DA-formulas that occur
unconditionally in the proof at stage s are true.

Definition 8. Where Φs is as defined above and A is the second element
of line j, line j fulfils the integrity criterion at stage s iff (i) the intersection
of some member of Φs and of the fifth element of line j is empty, and (ii)
for each ϕ ∈ Φs there is a line k such that the intersection of ϕ and of the
fifth element of line k is empty and A is the second element of line k.

Now we can introduce the marking rule:

RM : A line is marked OUT at a stage iff it does not fulfil the
integrity criterion.

(5)

If the fifth element of a line is empty, i.e., when the formula in its second ele-
ment is a CHAOS-consequence, the integrity criterion is obviously fulfilled.
All formulas in lines with an empty fifth element are CAL2-consequences.

4 Condition (iii) excludes that, e.g., ∼(ai = aj) can be a minimal DA-formula if
∼(Pai ≡ Paj) is one, for ∼(Pai ≡ Paj) ⊢CHAOS ∼(ai = aj), whereas ∼(ai =
aj) 6⊢CHAOS ∼(Pai ≡ Paj).
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Definition 9. A is finally derived at some line in a CAL2-proof iff it is
the second element of that line and any (possibly infinite) extension of the
proof can be further extended in such way that the line is unmarked.

Definition 10. Γ ⊢CAL2 A (A is CAL2-finally derivable from Γ) iff A is
finally derived at some line of a CAL2-proof from Γ.

It may be informative for the reader to repeat the following theorems:

Theorem 2. Γ ⊢CAL2 A iff there are one or more (possibly empty) finite
sets Σ1,Σ2, ... of abnormalities, such that Γ ⊢CAL2 A ∨ DA(Σ1), Γ ⊢CAL2

A ∨DA(Σ2), ..., and for any ϕ ∈ ΦΓ, one of the Σi is such that Σi ∩ ϕ = ∅.

Theorem 3. If Γ ⊢CAL2 A, then it is possible to extend any proof from Γ
into a proof in which A is finally derived.

2.6. Drawback of CAL2

In order to construct a theory about individuals that may change (in that
some of them meet a predicate P at time i but do not meet P at time
j), in a language without individual constants, the logic CAL2 as it is, is
useless. If no constant α occurs, we cannot express that ∼αi = αj , or that
∼(Pαi ≡ Pαj).

One could think of introducing time-indices over variables, and allow for
formulas like:

(∃x)∼(Pxi ≡ Pxj) (6)

This approach would force us to use quantifiers over time indices, if we want
to express rules, laws or definitions. An example:

(∀y ∈ Θ)(∀x)(Pxy ⊃ Qxy) (7)

Suppose we observe an element that meets P on i but does not meet Q on
j;

(∃x)(Pxi&∼Qxj) (8)

i.e, we observe an element that changes with respect to Q. (7) and (8) would
allow us to derive:

∼(∀x)(Pxi ≡ Pxj)&∼(∀x)(Qxi ≡ Qxj) (9)

The derivation of these abnormalities has an unwanted result: we can no
longer assume that other elements that meet P on i also meet P on j, and
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we can no longer assume that other elements that do not meet P on j do not
meet P on i. Analogously for Q. This approach would force us to conclude
that all elements change with respect to P and Q between i and j, as soon
as one element is shown to do so.

The problem is that, whereas αi stands for exactly one element on one
moment if α is an individual constant, αi stands for possibly all elements
on that moment if α is an individual variable. It is my proposal to leave
the problem for a moment, and to take a closer look at the relation between
elements of the domain and the way people indicate them.

3. Indicated individuals

A name is not a property of an individual an sich. A name functions as an
indicator of an individual within a specific context. This context guarantees
that everyone who uses some name —within this context— indicates the
same individual.

Within a given context, people have more at their disposal than lan-
guage, if they want to indicate an individual, or want to keep track of some
individuals. People may hold individuals in their hands, look at individuals,
isolate individuals, point at individuals, recognize individuals, etcetera. In
general, we can say that a specific action or whole of actions, may function
as an indicator of individuals.

Let X be a context. Let ΣX be a set of people who act and communicate
within X. Let AX be the set of all possible actions of members of ΣX. Let
IndicX ⊆ AX be the set of all actions that function as indicators of individ-
uals. Now, we can introduce for every a ∈ IndicX a new logical constant
Ia, that I call an indicator. The behaviour of indicators keeps the middle
between the behaviour of quantifiers and the behaviour of predicates of rank
1. Before I give an exact definition of indicators, let me first remind you
that within CL names for individuals can be written as predicates. Indeed,
where β is an individual constant, and B is the same name written as a
predicate of rank 1, every expression of the form Pβ can be written as

(∃x)(∀y)((Bx&Px)&(By ⊃ x = y)) (10)

If we leave names out of the language of CL and introduce formulas of
the form of (10), we can extend the set of predicative names to the set of
indicators. However, this move would not solve our problems. Suppose we
know that β changes with respect to P between i and j. Using constants
and CAL2, we can write:
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Pβi&∼Pβj (11)

Using predicative names, we would get either:

(∃x)(∀y)(((Bix & Px) & (Biy ⊃ x = y)) & ((Bjx & ∼Px) &
(Bjy ⊃ x = y)))

(12)

or:

(∃x)(∀y)((Bix & Px) & (Biy ⊃ x = y)) & (∃x)(∀y)((Bjx &
∼Px) & (Bjy ⊃ x = y)))

(13)

Formula (12) however is plainly false, and formula (13) forces us to derive:

∼(∀x)(Bix ≡ Bjx) (14)

instead of a formula equivalent to ∼(A(βi) ≡ A(βj)). This means that we
can no longer talk about change of individuals with respect to predicative
expressions.5

As an introduction to the solution I propose, let me mention that the
formula (10) reminds us of the weird presuppositions of the use of names
within CL.

1. If one uses a constant β (resp. a predicative name B), the domain
should contain at least one individual a such that for any assignment
v: v(β) = a (resp. v(B) 6= ∅).

2. The domain should not contain more than one individual a such that
v(β) = a (resp. if a ∈ v(B) then v(B) − {a} = ∅).

We can get rid of the latter presupposition if we replace (10) by

(∃x)(Bx&Px) (15)

and we can get rid of both presuppositions if we replace (10) by

(∀x)(Bx ⊃ Px) (16)

5 If one hangs on to the latter approach, one has to assume that every change ‘kills’
the old individual and gives birth to a new one. Maybe this approach would get a warm
welcome from René Descartes and other rationalists, who said that God creates the world
as new on every moment.
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Both (15) and (16) however have the drawback that the predicate B cannot
be recognized as a name. Moreover, the replacement of Pβ by either (15)
or (16) would leave us with the same problems as indicated by means of
formulas (12) and (13). Still, from a logical point of view, it would be
great to have a formula that states: “β meets P” without presupposing the
existence of the owner of the name β, and without presupposing the unique
identity of ‘all’ owners of the name. My proposal is to formalize “β meets P”
as follows: (Bx)Px. This way, (Bx) functions as a quantifier. The formula
(Bx)Px can be true even if v(B) is not a singleton, i.e., it may be the case
that the cardinality of v(B) is 0, 1, 2, 3, ... . Moreover, if we want to talk
about change, we can write:

(Bix)Px&(Bjx)∼Px (17)

Suppose we have the rule, law or definition that ‘all P are Q’, and we know
that βi meets P , whereas βj does not meet Q. We can formalize this as:

(∀x)(Px ⊃ Qx), (Bix)Px, (Bjx)∼Qx (18)

The semantical and proof-theoretical definitions of indicators will allow us
to derive:

∼((Bix)Px ≡ (Bjx)Px) & ∼((Bix)Qx ≡ (Bjx)Qx) (19)

which is exactly what we want. The reader has noticed that I refer to “(Bix)”
and “(Bjx)” by means of the term “indicator”. Indeed, ‘using a name β’
can be considered as one of the members of IndicX, let us say b, such that
B is nothing but Ib. Hence, I have illustrated the meaning of indicators by
means of a specific kind of indicators we all know, viz. ‘using names’. We are
now ready to deal with individuals that change, even if we have no names
for the individuals. By doing this we gain a lot: we have contextualized
classical logic, and we got rid of weird non-logical presuppositions.

4. The change-adaptive logic FreeCAL2

“The expression ‘free logic’ is an abbreviation for the phrase ‘free of existence
assumptions with respect to its terms, general and singular’.”6 Hence, if I
leave constants out of CL and import indicators, we obtain a partially free
logic. We can use names and other indicators and we do not have to assume
that the owner of the name (or the indicated individual) does exist. And if

6 See [4] (p. 104 for the quote) and [5].
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we assume that some indicated individual exists, we do not have to assume
that it is really an in-dividual. There may be plenty of it, i.e it may be
divided into several entities.7

4.1. The language

Let IX be set of indicators, used by the members of ΣX within a context
X, such that for all Ia ∈ IX, a is a specific set of actions, and “(Iax)” can
be read as “the individual(s) (if any) indicated by action(s) a performed by
some member(s) of ΣX, within context X”. Let IΘ

X
be defined from IX by

replacing every Ia ∈ IX by all Ii
a (i ∈ Θ).

V is a set of variables. Pn is a set of predicates of rank n, which are all
assumed to be contextually well-defined.8 Let LX be the language containing
nothing but the members of V, Pn and IΘ

X
, the logical constants ⊃, &, ∨,

≡, ∼ and ∀, and brackets.9

The set of well-formed formulas (wffs) is defined as usual for the usual
constants. There is one extension: If Ii

a ∈ IΘ
X

, and A(α) is a formula in
which the variable α (and no other variable) occurs free, then (Iaα)A(α) is
a wff.

4.2. Semantics of the underlying logic FreeCHAOS

With respect to V and Pn, the assignment v is defined as usual. The domain
D can be as simple as one wants it to be: it exists of individuals (if any).10

v : Ii
a ∈ IΘ

X −→ P(D) (the powerset of D) (20)

With respect to formulas of the form A ⊃ B, A&B, A ∨ B, A ≡ B, ∼A,
and (∀α)A, the semantical clauses defining the valuation function vM are
classical. The clause for formulas of the form (Ii

aα)A(α) is as follows:

vM((Ii
aα)A(α)) = 1 iff, if v(α) ∈ v(Ii

a), then vM(A(α)) = 1 (21)

7 This may open perspectives to quantum-physics, where it seems to be the case that
‘one’ individual is at several places simultaneously.

8 If we allow for vague or ambiguous predicates, or for any kind of predicates that is
subject to interpretation, we are better of using an ambiguity-adaptive logic. See [6] and
[7].

9 Notice that we do not need “=” !
10 We do not need the domain required for CAL2 and CHAOS, in which the members

of the domain are couples of the form 〈vp(a), i〉 (see section 2).
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It is easily seen that the following sentences are equivalent:

vM(∼(Ii
aα)A(α)) = 1 (22)

vM((Ii
aα)A(α)) = 0 (23)

v(α) ∈ v(Ii
a) and vM(A(α)) = 0 (24)

v(α) ∈ v(Ii
a) and vM(∼A(α)) = 1 (25)

vM((Ii
aα)∼A(α)) = 1 (26)

At the mean time, this shows that FreeCHAOS is not completely ‘free’:
if a sentence of the form of (22) or (26) is true, then the domain cannot be
empty.11 If not, the sentences (24) and (25) would be false.

It is also easily seen that we can derive a specific instantiation rule. If
vM((∀α)A(α)) = 1, then vM((Ii

aα)A(α)) = 1 for all Ii
a.

In analogy with CHAOS, vM((Ij
aα)A(α)) = 1 does not follow from

vM((Ii
aα)A(α)) = 1, even if j comes immediately after or before i.

4.3. Proof-theory of FreeCHAOS

The Axiom Schemas for ⊃, &, ∨, ≡ and ∼ are classical.

A∀ : (∀α)A ⊃ (Ii
aα)A (27)

R∀ : from ⊢ A ⊃ (Ii
aα)B to derive ⊢ A ⊃ (∀α)B provided Ii

a

does not occur in A

(28)

RIi
a : If A1, ..., An ⊢CL A, then (Ii

a)A1, ..., (I
i
a)An ⊢FreeCHAOS

(Ii
a)A

(29)

AIi
a∼ : (Ii

a)∼A ⊃ ∼(Ii
a)A (30)

If one feels like it, one can define (∃x)A =def ∼(∀x)∼A. But if one does
so, one has to keep in mind that there is no wff of the form A(β) from which
one may derive (∃α)A(α). Formulas of the form (∃α)A(α) can be useful if
one wants to express that there is some entity that meets A, whereas one
can not indicate this entity.

11 Which sheds a remarkable light on metaphysics: Denying truth implies asserting

existence!
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4.4. Semantics of the upper-limit logic FreePH

The semantics of FreePH is obtained from the semantics of FreeCHAOS

by adding the clause, for all i, j ∈ Θ, for all I ∈ IndicX:

SIa : vM((Ii
a)A ≡ (Ij

a)A) = 1 (31)

4.5. Proof theory of FreePH

The syntax of PH is obtained by extending the syntax of FreeCHaos with,
for all i, j ∈ Θ, for all I ∈ IndicX:

AI ′a : (Ii
a)A ≡ (Ij

a)A (32)

In the same way as for PH, the time-indices become meaningless in
FreePH. Hence FreePH may be considered as a logic of too fast induc-
tion. From the fact that some indicated individual meets A at one moment,
FreePH derives that the individual always meets A.

4.6. Semantics of FreeCAL2

Given the definitions of FreeCHAOs and FreePH, the definition of
FreeCAL2 is completely analogous to the definition of CAL2. The upper-
limit logic of FreeCAL2 is FreePH, the lower-limit logic is FreeCHAOS.
The abnormalities of the ‘free’ change-adaptive logic FreeCAL2 are formu-
las of the form ∼∀((Ii

aα)Π(α) ≡ (Ij
aα)Π(α)) in which α is a variable and

Π is a predicate of rank n and ∀ is an abbreviation of (∀x1)...(∀xm) (in
which 0 ≤ m ≤ n − 1), a universal quantification of all free variables in
Π(α) ≡ Π(α), in some preferred order. In general, an abnormality is (again)
written as ?C. A is the set of all abnormalities. Again, I make use of the
minimal abnormality strategy.

The rules valid in FreeCHAOS are unconditionally valid in FreeCAL2;
the rules valid in FreePH but not in FreeCHAOS can be applied condi-
tionally. A condition (viz. “It is not shown that ?C is derivable.”) can
only be overruled if ?C is verified in some minimal abnormal model of the
premises.

A disjunction of abnormalities DA{?C1, ..., ?Cn} is still what it says.

Definition 11. Where M is a FreeCHAOS-model, AC(M) = {?C |?C ∈ A
and vM(?C) = 1}.
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Definition 12. A FreeCHAOS-model M is minimally abnormal with re-
spect to Γ iff M is a FreeCHAOS-model of Γ, and there is no FreeCHAOS-
model M′ of Γ such that AC(M′) ⊂ AC(M).

Definition 13. M is a FreeCAL2-model of Γ iff M is minimally abnormal
with respect to Γ.

Definition 14. Γ |=FreeCAL2 A iff A is true in all FreeCAL2-models of Γ.

4.7. Proof theory of FreeCAL2

As for the proof theory of all adaptive logics, we rely on concrete proofs
in order to define the consequence-relation. The proof format is the same
as for CL be it that every line has an extra (fifth) element, in which the
conditions (on which the formula in the second element of the line is derived)
are written down.

RU : RU: If A1, ..., An occur in a proof on resp. conditions
Σ1, ...,Σn, and A1, ..., An ⊢FreeCHAOS A, then write a
new line with A as second element and Σ1 ∪ ... ∪ Σn as
fifth element.

(33)

RC : From A ∨ DA(Σ) to derive A on condition Σ. (34)

Definition 15. A occurs unconditionally at some line of a proof iff the fifth
element of that line is empty.

Definition 16. DA(Σ) is a minimal DA-formula at a stage of a proof iff
(i) it occurs unconditionally in the proof at that stage, and (ii) there is no
∆ ⊂ Σ for which DA(∆) occurs unconditionally in the proof at that stage,
and (iii) there is no DA(∆) that occurs unconditionally in the proof at that
stage such that DA(∆) ⊢CHAOS DA(Σ), whereas DA(Σ) 6⊢CHAOS DA(∆).

Let Φ∗
s be the set of all sets that contain one factor out of each minimal

DA-formula at stage s of the proof. Let Φs be obtained from Φ∗
s by eliminat-

ing elements from it that are proper supersets of other elements. Again,12

the members of Φs are sets of formulas, such that, if all members of such a
set are true, then all DA-formulas that occur unconditionally in the proof at
stage s are true.

Definition 17. Line j with A as second element fulfils the integrity criterion
at stage s iff (i) the intersection of some member of Φs and of the fifth element

12 See section 2.5.
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of line j is empty, and (ii) for each ϕ ∈ Φs there is a line k such that the
intersection of ϕ and of the fifth element of line k is empty and A is the
second element of line k.

RM : A line is marked OUT at a stage iff it does not fulfil the
integrity criterion.

(35)

Definition 18. A FreeCAL2 proof is a proof with the required format,
in which—apart from the PREMISE-rule—only the rules RU, RC may be
applied, and in which the rule RM must be applied at every stage.

Definition 19. A is finally derived at some line in a FreeCAL2-proof iff
it is the second element of that line and any (possibly infinite) extension of
the proof can be further extended in such way that the line is unmarked.

Definition 20. Γ ⊢FreeCAL2 A (A is FreeCAL2-finally derivable from Γ)
iff A is finally derived at some line of a FreeCAL2-proof from Γ.

4.8. Meta-theory

It is easily seen that every formula of the form (Ii
aα)A(α) is equal to a

formula of the form (∀α)(Ii
aα ⊃ A(α)), in which Ii

a functions as an ordinary
predicate of rank n. The new notation simply avoids that formulas of the
form (∀α)(Ii

aα) can be considered as wffs. The latter sequence is indeed
meaningless; it just says “All thus indicated individuals”. It is easily seen
that the semantics and the proof theory of both FreeChaos and FreePH

capture this notational change in a straightforward and equivalent way, the
soundness and completeness theorems for these logics follow immediately
from the soundness and completeness theorem of CL.

Given this new notation of some classical predicates, the adaptive logic
FreeCAL2 is nothing a but a special application of the ambiguity-adaptive
logic AAL2. The first ambiguity-adaptive logic was presented in [6]. I refer
to [6] and [7] for the meta theory. The ambiguity-adaptive logic AAL2 starts
from a maximally ambiguous interpretation of the premises: all non-logical
constants get a different index. The interpretation of the upper-limit logic is
such that for every non-logical constant C, all Ci and Cj are identified. The
ambiguity-adaptive logic assumes that Ci and Cj can be identified unless
and until this assumption leads to the derivation of an abnormality.

4.9. An example of a FreeCAL2-proof

For aesthetic reasons I will write (Fix) instead of (Ii
fx), and (Qix) instead of

(Ii
Qx). “†16” stands for: “this line is marked out on stage 16 of the proof”.
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i, j ∈ Θ, i < j.

1. (∀x)(Bx ⊃ (Mx&Px)) — PREM ∅
2. (Fix)Bx&(Qix)Bx — PREM ∅
3. (Qjx)∼Mx — PREM ∅
4. (Fix)(Mx&Px) 1,2 RU ∅
5. (Qix)(Mx&Px) 1,2 RU ∅
6. (Fjx)(Bx ⊃ (Mx&Px)) 1 RU ∅
7. (Qjx)(Bx ⊃ (Mx&Px)) 1 RU ∅
8. ∼((Fix)Bx ≡ (Fjx)Bx) ∨ (Fjx)(Mx&Px)

2,6 RU ∅
9. (Fjx)(Mx&Px) 8 RC {(Fix)Bx ≡ (Fjx)Bx)}

11. (Qjx)Mx 2,7 RC {(Qix)Bx ≡ (Qjx)Bx)} †14
12. (Qjx)Px 2,7 RC {(Qix)Bx ≡ (Qjx)Bx)} †14
13. (Qjx)∼Bx 3,7 RU ∅
14. ∼((Qix)Bx ≡ (Qjx)Bx) 2,13 RU ∅
15. (Qjx)Mx 5 RC {(Qix)Mx ≡ (Qjx)Mx)} †17
16. (Qjx)Px 5 RC {(Qix)Px ≡ (Qjx)Px)}
17. ∼((Qix)Mx ≡ (Qjx)Mx) 3,5 RU ∅

Φ14 = {{∼((Qix)Bx ≡ (Qjx)Bx)}}, and hence lines 11 and 12 do not
fulfil the integrity criterion at stage 14, for condition (i) of Definition 17 is
overruled. Φ17 = {{∼((Qix)Bx ≡ (Qjx)Bx),∼((Qix)Mx ≡ (Qjx)Mx)}},
and hence lines 15 and 16 meet the condition (i) of Definition 17, but line 15
does not fulfill condition (ii) whereas line 16 does. Indeed, the intersection
of Φ17 and the fifth element of line 16 is empty. Hence at stage 17, (Qjx)Px

is derived, whereas (Qjx)Mx is not. Even this simple proof illustrates the
dynamics of FreeCAL2-proofs: (Qjx)Mx is derived on stage 11, no longer
derived on stage 14, again derived on stage 15, and no longer derived at stage
17. As no other minimal DA-formula is derivable from the premises, we may
conclude that (Qjx)Mx is not FreeCAL2-derivable from the premises, and
thus that the individual(s) indicated by Q has/have changed with respect
to M between i and j. We also see that the formula (Qjx)∼Bx is finally
derived on stage 13. (Qjx)Px, that was derived on stage 12 and that was
no longer derived on stage 14, is finally derived at stage 16. This is an
interesting result. Although change is proved with respect to some predicates
(B and M), continuity of the same individual(s) is proved with respect to
some other predicate! We also see that the individual(s) indicated by F

are not subject to change. Concerning this/these individual(s) FreeCAL2

concludes continuity with respect to all predicates.

It may be interesting for some readers that (Qx) can be read as “the
individuals indicated by means of some quantum-operation”, while (Fx)
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can be read as “the individuals indicated by means of some (macro-)physics-
operation”. “B” stands for “is a body”, “M” stands for “has an observable
momentum”, “P stands for “has an observable place”.

5. Concluding remarks

We have created a logic that allows for change in individuals, even if they
have no name. The logic allows for change, but it assumes continuity unless
and until change is proved. The derivation of ‘change’ of some individual
with respect to some predicate has no implications on the continuity of the
same individual with respect to other predicates, nor on the continuity of
other individuals with respect to this specific predicate. The proof written
in section 4.9 is a good illustration of this feature.

The philosophical implications of the use of indicators instead of the use
of names are not to be underestimated. Individuals do no longer appear as
existing an sich, but as individuals that are distinguished and indicated by
people acting and communicating within a given context. We must realize
that all our knowledge is contextual, and that whenever we create theories
about individuals, we start by indicating them. There is no point in trying
to get rid of this ‘subjective’ aspect of the indications of individuals. To
the contrary, this ‘subjective’, or ‘collective’ aspect guarantees us that our
theories are of importance for us, people who indicate individuals of all kinds
through our action and communication.
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