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ZF AND THE AXIOM OF CHOICE IN SOME

PARACONSISTENT SET THEORIES

Abstract. In this paper, we present set theories based upon the paraconsis-

tent logic Pac. We describe two different techniques to construct models of such

set theories. The first of these is an adaptation of one used to construct clas-

sical models of positive comprehension. The properties of the models obtained

in that way give rise to a natural paraconsistent set theory which is presented

here. The status of the axiom of choice in that theory is also discussed. The

second leads to show that any classical universe of set theory (e.g. a model of

ZF ) can be extended to a paraconsistent one, via a term model construction

using an adapted bisimulation technique.

1. Introduction

The ideal calculus, i.e. the first-order axiomatization of naive set theory that
consists of the general comprehension schema and the axiom of extension-
ality, is inconsistent in classical logic. Legitimately, one may tamper rather
with the underlying logic than the axiomatization in order to keep our naive
conception of set safe from the antinomies that appear in “classical” reason-
ing, trying to find which logics can support, in a satisfactory way, this naive
(yet intuitively correct) conception. Several attempts have been made so far
to consider such ideal calculi based upon non-classical logics. For instance,
let us just mention [5] and [13] where the consistency of some versions of
this calculus was proved respectively in the  Lukasiewicz three-valued logic
 L3 and in the paraconsistent three-valued logic LP . In either (and others
as well), a possible objection is the absence of the equality relation in the
language and, a fortiori, in the formulae defining sets. We show here that,
in Pac, this objection can be overcome in a natural way (of course, others
objections are possible).
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Actually, Pac is the name under which the propositional version of this
logic appeared in [1], but it had previously appeared in [3], under the name
PIS, or even in [2] under the name RM e⊃

3 ; more recently, the predicative
version of that logic was studied in [4] under the name CLuNs. This plural-
ity reflects, in a sense, the impression that many logicians treat non-classical
logics only as pure calculi without investigating further their interpretations
and applications. In this paper, we have tried to tone down this impres-
sion by showing there exist natural models for a paraconsistent set theory
(in Pac), or if one does not agree on the word “natural”, let us say less
pathological or artificial than those which are especially constructed just to
guarantee the consistency of such non-classical theories (as in [13],[5],[10]1,
and as in the last section of this paper!).

To make this paper as self-contained as possible and because the logic
we use has appeared under different names and aspects in the literature,
the next section of this paper is aimed to present it in the context of set
theory introducing a syntactical variant of the ideal calculus in that logic.
We describe afterwards two different techniques to build non-trivial models.

All the models are constructed in usual set theory, ZF or some suitable
extension of it, so that the consistency results proved here are relative to
that theory. We shall use the common notations of ZF as well as any set
theoretical feature. Beside these we wish to introduce the following ones:

If R is any binary relation (i.e. a set of ordered pairs), R−1 will denote
{(x, y) | (y, x) ∈R}, and for any set A, we define R ”A as { b | ∃a ∈A : aRb}.
These notations will be mainly used in the functional case; then, for any
function f and any a within the domain of f , we define f ’a by f”{a} = {f ’a}.
So we have, for any subset A of the domain of f , f”A = {f ’a | a ∈A},
and for any subset B of the codomain of f , f−1”B = {a | f ’a ∈B}. The
observant reader will notice that the membership relation in the metatheory
is denoted by a small ‘∈’ to distinguish it from the big ‘∈’ that will appear
in the languages of set theories. By the way, if ϕ denotes a formula in one
of those languages, then the notation ϕ(x1, . . . , xk) will be used as usual for
denoting that formula when its free variables are among x1, . . . , xk. In this
case, ϕ[a1, . . . , ak] will designate the formula obtained from ϕ by substituting
ai for each occurrence of the variable xi in ϕ, for i = 1, . . . , k.

1 Actually, in [5] and [10], it is not a paraconsistent logic that is involved but the
paracomplete (or “partial”) three-valued logic  L3.
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2. A paraconsistent set theory

Because of the nature of Russell’s paradox, a paraconsistent logic seems to
be especially suitable for our purposes. The one that is used here, Pac, is a
three-valued logic. As non-classical logics are not a familiar topic for most
set-theorists, we shall briefly survey how a set theory might be presented
in that logic. We will content ourselves with presenting the key steps and
some illustrative properties of the logic without any proofs, but the reader
really should not meet with difficulties in verifying them if he ever tried
(some details can be found here and there in the references mentioned in the
introduction).

As usual, the language of set theory is the first-order predicate calculus
built up from the signature L := {∈,=} where ‘=’ is really meant to be an
“equality” relation. In Pac, the primitive connectives and quantifiers will
be denoted by ∼,∧,∨,⇀,∀,∃. This logic can be characterized semantically
by means of the following valuation system:

• the set of truth values is V := {0, i, 1}, ordered by 0 < i < 1, and the
set of designed ones is D := {i, 1};

• the valuation functions for the primitive connectives and quantifiers
are defined as follows:

f∼
1 0
i i
0 1

f∧ 1 i 0

1 1 i 0
i i i 0
0 0 0 0

f∨ 1 i 0

1 1 1 1
i 1 i i
0 1 i 0

f⇀ 1 i 0

1 1 i 0
i 1 i 0
0 1 1 1

For any A ⊆ V,

{
f∀’A := minA
f∃’A := maxA

We should emphasize that the paraconsistent logic LP used in [13] is ex-
actly the implicationless fragment of Pac. In LP , the primitive implication,
denoted here by ‘ ’, is in fact definable from ‘∼’ and ‘∨’ as in classical logic:

p q :≡∼p ∨ q (for any propositional variables p, q)

Notice incidentally that ‘ ’ is weaker than ‘⇀’, but ‘ ’ is self-contrapositive
whereas ‘⇀’ is not. Its contrapositive will be denoted by:

p ⇁ q :≡∼q ⇀∼p (for any propositional variables p, q)

and it is used for defining a self-contrapositive implication:

p ⇀⇁ q :≡ (p ⇀ q) ∧ (p ⇁ q) (for any propositional variables p, q)
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which is obviously stronger than ‘⇀’. At this point, let us mention that,
among all these implication connectives, ‘⇀’ is the only one fulfilling the
deduction property : Σ ∪ {ϕ} �

Pac
ψ ⇔ Σ �

Pac
ϕ ⇀ ψ, where ‘�

Pac
’ is the

consequence relation in Pac that is defined specifically below. The right to
left meta-implication ‘⇐’ corresponds actually to modus ponens (MP), while
the converse is sometimes referred to as conditionalization (C ). In fact, one
can show that ‘ ’ fulfills C but not MP, whereas ‘⇀⇁’ satisfies MP but not
C. The implication connectives derived from ‘⇀’ also lead to syntactically
define several bi-implication connectives, as the notations suggest: ↼⇀, ↽⇁,
⇀↽, ↼⇁, ⇀⇁↼↽.

An L-structure M :≡ 〈M;LM〉 for Pac is a non-empty domain of quan-
tification M (the universe of the structure) together with a function LM
which interprets each (binary) relational symbol R ∈L as a function RM

from M ×M into V .2

Then, an L-assignment for Pac consists of a pair (M, v) whereM is an
L-structure and v is a function that assigns an element of M to each variable
of the language. Given such an L-assignment we are able to compute the
truth value v

M
’ϕ of any L-formula in Pac: for any R ∈L, v

M
’(xR y) :=

RM’(v’x, v’y) and v
M

’ϕ is defined inductively from these as it should be,
following the valuation functions of the connectives and quantifiers. Now it is
agreed to write (M, v) |=

Pac
ϕ: iff v

M
’ϕ ∈D, and thenM |=

Pac
ϕ: iff for any

v, (M, v) |=
Pac

ϕ. Finally, the semantical definition of consequence relation
‘�

Pac
’ is given by: Σ �

Pac
ϕ: iff for any L-assignment (M, v), (M, v) |=

Pac

Σ ⇒ (M, v) |=
Pac

ϕ, where Σ ∪ {ϕ} is a set of L-formulae in Pac.

Thus defined, one can prove that �
Pac

ϕ∨ ∼ϕ, for any formula ϕ in Pac,
showing that the law of excluded middle holds for this logic. But on the
other hand, the principle of non-contradiction must be given up since for
some Σ and ϕ, it is possible to get Σ �

Pac
ϕ∧ ∼ϕ. Nevertheless, Pac is a

paraconsistent logic precisely in the sense that such a contradiction does not
entail everything; non-trivial models of some set theories in that logic will
provide us with examples of this situation. So let us conclude this concise
description with stating expeditiously that, in Pac, ‘∧’, ‘∨’, ‘⇀’, ‘∀’, ‘∃’
behave as in classical logic, while the negation ‘∼’ (though acting rather
classically on the other primitive connectives and quantifiers) is in some
sense weaker than the classical one. This should become less obscure in the
light of section 3.

2 In classical logic, V = {0, 1} and such a function RM from M × M into V becomes
identified with a binary relation on M , as usual.
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Remark 1. The reader has probably noticed that we have not specified the
status of ‘=’ yet. As was mentioned, we require ‘=’ to be an equality, i.e.

{
�

Pac
x = x (reflexivity)

{x = y , ϕ } �
Pac

ϕ[x| y] , for any L-formula ϕ in Pac 3 (substitutivity)

Actually, that can be met by prescribing ‘=’ to satisfy some (finite) set
of axioms Id in any L-structureM. This set of axioms will become apparent
in the next section.

Finally what follows is the syntactical variant of the ideal calculus that
will mainly interest us in this paper:





EXT :≡ ∀x∀y(∀z(z ∈ x ⇀⇁↼↽ z ∈ y) ↼⇀ x = y)

COMP :≡

{
For any L-formula ϕ in the implicationless fragment of Pac,

∃y ∀x(x ∈ y ⇀⇁↼↽ ϕ) (y not free in ϕ)

Note that the ‘↼’ implication in EXT is actually given by our requirement
for ‘=’ to be an equality. It is worth remarking that, in these formulations,
EXT and COMP are really compatible in the sense that, for any (suitable)
L-formula ϕ, EXT ensures that there is only one set y provided by COMP ;
in that case, this such set is usually denoted by ‘{x | ϕ}’. In the last section,
we will meet a slightly different syntactical variant of the ideal calculus in
which this compatibility fails. Then, such a notation ‘{x | ϕ}’ cannot be
used unless it is introduced in the language itself to designate a particular
set provided by the ϕ-instance of the comprehension schema. When each
set within a model can be designated in such a way, we shall say that one
deals with a term model.

In view of our comprehension schema, only LP formulae can be used
for defining a set, and as ‘ ’ does not satisfy modus ponens, we are safe
from the set-theoretical version of Curry’s paradox. Indeed, we are going to
prove that there exist non-trivial models of this calculus or its variants (some
of them can contain any classical universe as an initial part). To do that,
we will take advantage of a very handy aspect of this logic: the first-order
structures can be described classically, as the next section shows.

3 Where ϕ[x| y] denotes the L-formula in Pac obtained from ϕ by substituting y for
some, but not necessarily all, free occurrences of x (with the proviso that y is free for x in
ϕ).
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Remark 2. With regard to the formulation of our syntactical variant of
the ideal calculus, one could argue that it would have been more pertinent
to consider ‘⇀⇁’ as primitive implication in the underlying logic. We opted
however here for a presentation in which negation is, in some sense, the only
“non-classical” primitive connective. Indeed, it is proved in [1] (or in [4])
that the {∨,∧,⇀ (,∃,∀)}-fragment of Pac is identical to the corresponding
fragment of the two-valued classical logic.

3. Models in classical setting

We are going to swap the language of set theory described in the preceding
section for the first-order classical calculus built up from L

±

:= {∈, /∈,=, 6=}.
The primitive classical connectives and quantifiers will be denoted as usual,
namely ‘¬’, ‘∨’, ‘∧’, ‘→’, ‘∀’, ‘∃’, so it should be remarked directly that ‘/∈’
and ‘6=’ are not abbreviations for the classical negation ‘¬’ of ‘∈’ and ‘=’
respectively. Basically, in any interpretation, ‘∈’ & ‘/∈’ will be weak negation
of each other, as well as ‘=’ & ‘6=’. So what we call the Pd-case is the
following:

Pd-case :≡ (¬(x ∈ y)→ x /∈ y) ∧ (¬(x = y)→ x 6= y)

Remark 3. It is interesting to note that the Pd-case can be restated “posi-
tively” in L

±

, seing that it is equivalent to ‘ (x ∈ y∨x /∈ y)∧(x = y∨x 6= y) ’.
This simple fact will be central in all the constructions we present.

A classical L
±

-structure satisfying the Pd-case is called a Pd L
±

-structure.
In fact, any L-structure M for Pac gives rise in a natural way to a Pd L

±

-
structureM△ on the same universe M by setting :

for any m,n ∈M ,





m∈M△ n :⇔ ∈M’(m,n) ∈ {ı, 1}
m /∈M△ n :⇔ ∈M’(m,n) ∈ {0, ı}
m=M△ n :⇔ =M’(m,n) ∈ {ı, 1}
m 6=M△ n :⇔ =M’(m,n) ∈ {0, ı}

And conversely, from any Pd L
±

-structureM, one can define an L-structure
M▽ for Pac, on the same universe M , as follows:

for any m,n ∈M ,





∈M▽’(m,n) = 1 :⇔ m∈M n ∧ ¬(m /∈M n)
∈M▽’(m,n) = ı :⇔ m∈M n ∧ m /∈M n
∈M▽’(m,n) = 0 :⇔ ¬(m∈M n) ∧ m /∈M n
=M▽’(m,n) = 1 :⇔ m=M n ∧ ¬(m 6=M n)
=M▽’(m,n) = ı :⇔ m=M n ∧ m 6=M n
=M▽’(m,n) = 0 :⇔ ¬(m=M n) ∧ m 6=M n

In this way, M△▽ =M, for any L-structureM for Pac, andM▽△ =M, for
any Pd L

±

-structure M. It remains now to describe the translation at the
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language level. In view of our semantical translation above, any L-formula
ϕ in Pac gives rise actually to a pair (ϕ+, ϕ−) of L

±

-formulae which are
defined inductively as follows:

(x ∈ y)+ is ‘x ∈ y’ (x ∈ y)− is ‘x /∈ y’
(x = y)+ is ‘x = y’ (x = y)− is ‘x 6= y’

(∼ϕ)+ is ‘ϕ−’ (∼ϕ)− is ‘ϕ+’
(ϕ ∧ ψ)+ is ‘ϕ+∧ ψ+ ’ (ϕ ∧ ψ)− is ‘ϕ−∨ ψ− ’
(ϕ ∨ ψ)+ is ‘ϕ+∨ ψ+ ’ (ϕ ∨ ψ)− is ‘ϕ−∧ ψ− ’

(ϕ ⇀ ψ)+ is ‘ϕ+→ ψ+ ’ (ϕ ⇀ ψ)− is ‘ϕ+∧ ψ− ’
(∀xϕ)+ is ‘ ∀xϕ+ ’ (∀xϕ)− is ‘∃xϕ− ’
(∃xϕ)+ is ‘∃xϕ+’ (∃xϕ)− is ‘∀xϕ− ’

Indeed, in this way, one can prove that, for any L-assignment (M, v) for
Pac, we have:

(M, v) |=
Pac

ϕ ⇔ (M△, v) |=
Cla

ϕ+ & (M, v) |=
Pac
∼ϕ ⇔ (M△, v) |=

Cla
ϕ−

and therefrom, for any L
±

-assignment (M, v):

(M▽, v) |=
Pac

ϕ ⇔ (M, v) |=
Cla

ϕ+ & (M▽, v) |=
Pac
∼ϕ ⇔ (M, v) |=

Cla
ϕ−

Thus we immediately get:

Σ �
Pac

ϕ ⇔ Σ+∪ {‘Pd-Case’} �
Cla

ϕ+

(where Σ+ := {ψ+ | ψ ∈ Σ}.)

Remark 4. Let us just mention that this is actually the way some para-
consistent set theories were presented in [11], but without specifying any
references to Pac (nor its synonyms).

Remark 5. With regard to Remark 1, it is now fairly easy to find a (finite)
set of axioms Id to be satisfied in any L-structure M for Pac so that ‘=’
be an equality. Indeed, let Cg be the (finite) set of axioms for ‘=’ ensuring
that a L

±

-congruence , i.e.:

Cg :≡





• the axioms for ‘=’ to be an equivalence relation;

• for any R ∈L
±

\{=},
∀x∀y(x = y → (∀z(z R x↔ z R y) ∧ ∀z(xR z ↔ y R z))) .

and then consider Id in Pac such that Id+ = Cg.4

4 Incidentally, a suitable way of defining a notion of congruence for ‘=’ in Pac could
be: �

for any R ∈L,

∀x∀y(x = y ⇀ (∀z(z R x ⇀⇁↼↽ z R y) ∧ ∀z(x R z ⇀⇁↼↽ y R z))) .
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It is worth observing that, for any L-formula ϕ in Pac, ϕ+ and ϕ− are
pseudo-positive in L

±

.5 Clearly, the translation described above consists in
“absorbing” the non-classical (weak) negation ‘∼’ of Pac in L

±

. Now we
bring it out again by officially defining the weak negation ϕ of any pseudo-
positive L

±

-formula ϕ inductively as follows:

(x ∈ y) is ‘x /∈ y’ (x /∈ y) is ‘x ∈ y’

(x = y) is ‘x 6= y’ (x 6= y) is ‘x = y’

(ϕ ∧ ψ) is ‘ϕ ∨ ψ ’ (ϕ ∨ ψ) is ‘ϕ ∧ ψ ’

(∀xϕ) is ‘∃xϕ ’ (∃xϕ) is ‘ (∀xϕ) ’

(ϕ→ ψ) is ϕ ∧ ψ

Actually, the Pd-case entails (classically) ϕ∨ϕ , for any pseudo-positive
L

±

-formula ϕ, and it is worth noting that the weak negation of any pseudo-
positive L

±

-formula is always positive; in fact, ϕ is positive if and only if ϕ =
ϕ. The analogue in Pac to such a formula is within LP , the implicationless
fragment of Pac. So, by virtue of our formulation of the ideal calculus, these
formulae will play a central role in the construction of its models. Here is
precisely that so-called ideal calculus translated into L

±

:





EXT :≡ ∀x∀y(∀z((z ∈ x↔ z ∈ y) ∧ (z /∈ x↔ z /∈ y))↔ x = y)

COMP :≡

{
For any positive L

±

-formula ϕ,
∃y ∀x((x ∈ y ↔ ϕ) ∧ (x /∈ y ↔ ϕ)) (y not free in ϕ)

Basically, the techniques that will be used to construct models of this cal-
culus are essentially based upon a well-known property of positive formulae
stating that such formulae are preserved under surjections:

Theorem 1 (Projective Lemma).
LetM, N be any L

±

-structures and f :M։ N a surjective L
±

-morphism.
Then, for any positive L

±

-formula ϕ(x1, . . . , xk) and any m1, . . . ,mk ∈M ,
we have M |= ϕ[m1, . . . ,mk]⇒ N |= ϕ[f ’m1, . . . , f ’mk]

Proof. This can be easily checked by induction on the complexity of ϕ.
Note that the surjectivity of f is required for the universal quantifier case
only.

5 Where a L
±

-formula is said to be pseudo-positive if it can be constructed from atomic

L
±

-formulae without using ‘¬’, and it is said to be positive if it can be constructed without
using ‘¬’ nor ‘→’. This terminology follows the one used to in classical logic.
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We will see that a larger class of formulae has also an exemplary behavior
with respect to some specific operations involved in our constructions; so let
us conclude this section with defining inductively the class of bounded positive
(BP) L

±

-formulae:

1. Any atomic L
±

-formula is BP.

2. If x is a variable and if ϕ, ψ are BP, so are ‘ϕ∧ψ ’, ‘ϕ∨ψ ’, ‘∀xϕ ’,‘ ∃xϕ ’.

3. If x, y are distinct variables and if ϕ is BP, so are ‘∀x(x ∈ y → ϕ) ’
and ‘∀x(x /∈ y → ϕ) ’.

Particularly, the positive formulae are those obtained without using rule 3,
and so, some strong negations ‘¬’ are allowed in BP formulae through the
implications ‘x ∈ y → · · · ’ and ‘x /∈ y → · · · ’. Since any BP formula is
pseudo-positive, this notion has an analogue in Pac.

4. About extensionality

Here we are going to present a result providing a way of recovering exten-
sionality within an L

±

-structure that initially fails to satisfy it. This will be
used in the last section of the paper. It turns out that our formulation of
extentionality lends easily itself to an adaptation of the bisimulation tech-
nique required in classical analogous circumstances. But, indeed, the key
point ensuring that this adaptation really works out is the positiveness of
the Pd-case.

Extensions and p-sets

In any L
±

-structure M ≡ 〈M;L
±

M
〉, we define the extension and the anti-

extension of each x ∈M respectively as follows:

[x]+
M

:= {y | y ∈Mx} & [x]−
M

:= {y | y /∈Mx}

So the ‘∈’ part of the Pd-case means exactly that [x]+
M
∪ [x]−

M
= M , for any

x ∈M . Naturally, anM-set x shall be said to be classical if [x]+
M
∩ [x]−

M
= ∅.

In that setting, extensionality can be rephrased just like this:

EXT ≡ ∀x∀y(([x]+ = [y]+ ∧ [x]− = [y]−)→ x = y)

Therefore, in any Pd L
±

-structure M satisfying EXT , an M-set can be
identified with a covering pair (A ,B) of subsets of M . Such a pair is called
a paraconsistent set, or p-set, over M (as in [6]).
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A bisimulation technique

Now let Eq(M) denote the complete lattice of equivalence relations on M .
If R is any binary relation on M and if ∼ ∈Eq(M), then one can define
naturally a new binary relation R̃ on M by modulating R with ∼, i.e.

x R̃y :⇔ ∃x′∼ x,∃ y′∼ y : x′Ry′.

Thus, starting with M and ∼ ∈Eq(M), one can define a new L
±

-structure

M̃ on the same universe by modulating each relation RM for R∈L
±

M
in

this way. Obviously, if ∼ is =M , then M̃ is nothing but M (since =M is
a congruence). However, it should be noted that =̃M is not in general an
equivalence on M (transitivity may fail). Anyway, if =M is the real equality
on M (i.e. M is normal), then =̃M is ∼ and it is actually a congruence on M

for ∈̃M , /̃∈M and ˜6=M , as the definition of these clearly shows. Moreover, ifM

is a Pd L
±

-structure, so is M̃. This follows from the following observation:
for any R∈L

±

, RM ⊆ R̃M =: RfM . Hence, the identity map on M is a

surjective morphism from M onto M̃, and by the projective lemma, any
positive formula is preserved, so is the Pd-case.

We now move towards introducing the concept of bisimulation in this
context.

Definition. ∼ ∈Eq(M) is a bisimulation (inM) if the notions of extensions
are preserved, i.e. for any x ∈M, [x]+fM = ([x]+

M
)∼ and [x]−fM = ([x]−

M
)∼, where

(A)∼ := {x ∈M | ∃ a ∈A : a ∼ x}, for any A ⊆M .

It is interesting to note that even bounded positive formulae are preserved
when one deals with a bisimulation. This will turn out to be essential in the
last section and here is the key to the proof :

Proof. Assume that ϕ(x, y, z, . . .) is preserved and let us check that so is
‘∀x(x ∈ y → ϕ(x, y, z, . . .))’. Suppose therefore that M |= ∀x(x ∈ y →
ϕ(x, y, z, . . .)) and, then, let m,n, p . . . ∈M with m∈fM n. Since ∼ is a bisim-
ulation, we know there exists m′ ∈M , such that m′ ∼ m and m′ ∈M n. So,
by hypothesis, we have M |= ϕ[m′, n, p, . . .]. Now, being assumed that

ϕ is preserved, we have M̃ |= ϕ[m′, n, p, . . .] and, as m′ ∼ m, this yields

M̃ |= ϕ[m,n, p, . . .], showing that M̃ |= ∀x(x ∈ y → ϕ(x, y, z, . . .)). A
similar argument goes with /∈ instead of ∈.

The concept of bisimulation can be handled more easily by defining the
following monotone operator ( ·)+ on Eq(M):

x ∼+ y :⇔ ([x]+
M

)∼ = ([y]+
M

)∼ & ([y]−
M

)∼ = ([y]−
M

)∼
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Thus, one can prove that ∼ is a bisimulation if and only if ∼ ⊆ ∼+ and
then, for a bisimulation, we have ∼=∼+ if and only if M̃ |= EXT . Now it
becomes easy to prove the aimed result of this section:

Theorem 2.
For any normal L

±

-structure M, there exists a finest bisimulation ∼ on M
such that M̃ |= EXT .

Proof. ‘∼’ is simply the least fixed point of the ( ·)+ operator. It can be
obtained inductively by iterating this operator from =M (which is supposed
to be the real equality on M):





∼0 := =M

∼α+1 := ∼+

α

∼λ :=
⋃

α<λ

∼α (λ limit)

As we start with =M , which is obviously a bisimulation, and since ( ·)+ is

monotone, each ∼α is actually a bisimulation. Then, the ‘∼’ we are looking
for is ∼α0

where α0 is the least ordinal α such that ∼α+1 = ∼α.

5. Topological models, “Hyper-Frege” and the axiom of

choice

The models we describe in this section first appeared in [11]. The technique
that was used for their construction is actually an adaptation of the one
used to build extensional models of positive comprehension (see [9]). We
shall briefly survey that construction exhibiting by the way some properties
of these models which will give rise to a very special paraconsistent set theory
called “Hyper-Frege”. The status of the axiom of choice in that theory will
be discussed.

A topological model

Many proofs are omitted but can be found in [11].

We start with any non-empty finite set X and we define a sequence
(Xn | n ∈ω) from X by induction:

{
X0 := X
Xn+1 := {(ζ, ξ) | ζ ∪ ξ = Xn} (n ∈ω)

Now let s be any surjection from X1 onto X0. One can naturally extend
s to the higher levels inductively by setting s’(ζ, ξ) := (s”ζ, s”ξ), and then,
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set up each level Xn as a L
±

-structure in such a way that s becomes an
epimorphism between two consecutive levels. To do that, we proceed as
follows:

-) ∈X0
= /∈X0

:= X2 and, for all n ∈ω, we define ‘∈’ and ‘/∈’ in Xn+1 by
means of their extensions like this:

[(ζ, ξ)]+
Xn+1

:= s−1”ζ & [(ζ, ξ)]−
Xn+1

:= s−1”ξ ;

-) for all n ∈ω, =Xn is the real equality on Xn and ‘6=’ is defined by the
(positive) formula δ(x, y) :≡ ∃z ((z ∈ x ∧ z /∈ y) ∨ (z /∈ x ∧ z ∈ y)).

Furthermore, it can be easily checked that, in this way, for each n ∈ω, Xn is
a Pd L

±

-structure satisfying EXT ♯ which is defined by :

EXT ♯ :≡ EXT ∧ ∀x∀y(x 6= y ↔ δ(x, y))

Remark 6. We should emphasize that this is actually a stronger version of
extensionality, which corresponds in Pac to:

EXT ♯ ≡ ∀x∀y(∀z(z ∈ x ⇀⇁↼↽ z ∈ y) ⇀⇁ x = y)

Notice also that it gives us a nice characterization of ‘6=’ seeing that:

x 6= x ⇔ δ(x, x) ⇔ [x]+ ∩ [x]− 6= ∅ ⇔ x is paradoxical

Now the L
±

-structure we are interested in will be the projective limit of
those we have just defined:

Xω :≡
n∈ω

lim
←−s
Xn , i.e.

{
Xω := {x = (xn|n ∈ω) ∈

∏
n∈ ω

Xn | ∀n ∈ω, s’xn+1 = xn}

For any R ∈L
±

, xRXω y :⇔ ∀n ∈ω, xnRXn yn

Then, one can prove that Xω is still a Pd L
±

-structure satisfying EXT ♯,
and especially for this, a compactness argument is required. The proof can
be found in [11], but we shall briefly recall here which topology is involved
before looking further into the properties of the model.

We simply equip Xω with the natural topology induced by the product
topology when each Xn is fitted with the discrete one (by the way, we would
remind the reader that any Xn is finite). Thus, it can be easily shown that
Xω is compact and that a basis for its topology is given by the clopen sets
Uζ := {x ∈Xω | xn = ζ} , n ∈ω, ζ ∈Xn . Notice that Uζ ⊆ Uζ′ iff there
exists k ∈ω such that sk’ζ = ζ ′; moreover, if Uζ * Uζ′ and Uζ + Uζ′ , then
Uζ ∩ Uζ′ = ∅.
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This topology really fits in with our L
±

-structure as one can prove that
the interpretations of the primitive symbols in Xω are “continuous” with
regard to that topology. More precisely, let us say that an L

±

-formula
ϕ(x0, . . . , xn) is continuous in Xω if {(x0, . . . , xn) | Xω |= ϕ[x0, . . . , xn]}
is closed in Xn

ω . Then, it is proved in [11] that actually any BP L
±

-formula
is continuous in Xω . Particularly, for any y ∈Xω, ([y]+

Xω
, [y]−

Xω
) is a covering

pair of closed subsets of Xω . The main property of the model is in a sense
the converse:

∣∣∣∣
for any covering pair (A ,B) of closed subsets of Xω, there exists
an Xω-set y such that [y]+

Xω
= A and [y]−

Xω
= B.

(Again, for a proof see [11].)

Now let (ϕ,ψ) be a pair of BP L
±

-formulae such that Xω |= ϕ ∨ ψ. By
virtue of the continuity of these formulae, the property above tells us that
there exists a (unique) set y such that

[y]+
Xω

= {x ∈Xω | Xω |= ϕ} & [y]−
Xω

= {x ∈Xω | Xω |= ψ}

This set shall be denoted by ‘{x | ϕ ≀ ψ }’. In particular, when ϕ is positive
and ψ is exactly ϕ, we get ‘{x | ϕ}’ showing that Xω |= COMP .

In order to formulate another related property in a more expressive way,
we need the following definition:

Definition. x is less paradoxical than y when [x]+ ⊆ [y]+ and [x]− ⊆ [y]−.

In these terms, a straightforward consequence of the main property men-
tioned above can be put into words as follows:

∣∣∣∣
for every covering pair (A ,B) of subsets of Xω, there exists a minimal
paradoxical Xω-set y such that A ⊆ [y]+

Xω
and B ⊆ [y]−

Xω
.

This shows that the underlying topological structure on Xω really confers a
very characteristic property on the model that is axiomatized next.

“Hyper-Frege”

As was seen, each set in the model can be identified with a covering pair
of closed subsets of the universe, which actually constitutes a subalgebra
of the “paraconsistent boolean algebra” of p-sets over Xω (see [6]). For
instance, the underlying order of this algebra corresponds to the most natural
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interpretation of “inclusion” in the model, according to our formulation of
extensionality in Pac, which is the following:

x ⊑ y :⇔ ∀z(z ∈ x ⇀⇁ z ∈ y)
⇔ [x]+ ⊆ [y]+ & [y]− ⊆ [x]−

The bottom element is the “empty set” Λ and the top element is the “uni-
versal set” V, which are defined in our model by:

[Λ]+
Xω

:= ∅ [V]+
Xω

:= Xω

[Λ]−
Xω

:= Xω [V]−
Xω

:= ∅

These sets are classical. Note incidentally that, within the algebra of p-sets
over Xω, the class of classical sets of the model can be identified with the
boolean algebra of clopen subsets of Xω. Furthermore, it can be shown that
the class of hereditarily classical well-founded sets in Xω yields a model for
ZF except the axiom of infinity (see below). Beside these classical sets, our
model is replete with paraconsistent ones, such as the Russell set R := {x |
x /∈ x}, so that it might frame an elegant domain of investigation of such
sets.

Anyway, we shall not elaborate on the properties of the model here but
content ourselves with presenting a general first order theory in L

±

which
arises naturally from those properties pointed out so far. This theory will
be called “Hyper-Frege” HF . It can be axiomatized as follows:

HF :≡





• First-order predicate calculus with identity ‘=’ in L
±

• The Pd-case

• EXT ♯

• Closure Schema:

for every pair (ϕ ,ψ) of L
±

-formulae, the following axiom:
∀x(ϕ ∨ ψ)→ “there exists a minimal paradoxical set y such that

∀x(ϕ→ x ∈ y) ∧ ∀x(ψ → x /∈ y)”
• Bicomprehension Schema:

for every pair (ϕ ,ψ) of bounded positive L
±

-formulae:
∀x(ϕ ∨ ψ)→ ∃y(∀x(x ∈ y ↔ ϕ) ∧ ∀x(x /∈ y ↔ ψ)

This theory appears in a sense to be the natural paraconsistent coun-
terpart of the positive set theory GPK+, introduced and deeply inves-
tigated by Esser in [7]. He showed that GPK+

∞ interprets ZF , where
GPK+

∞ :≡ GPK++ “there exists an infinite (von Neumann’s) ordinal”. At
present, our research consists in finding a relevant formulation in HF of an
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axiom of infinity I that would permit to show thatHF∞ :≡ HF+I interprets
GPK+

∞, and therefrom ZF . Moreover, we conjecture that HF∞ should be
“modelizable” in ZF plus some reasonable large cardinal assumption.

Remark 7. By the way, let us draw the reader’s attention to the fact that,
though Xω is infinite, Xω does not satisfy any relevant axiom of infinity that
would yield transfinite induction. For instance, Xω |= ∃x (Λ ∈ x ∧ ∀y (y ∈
x → y ∪ {y} ∈ x)) . Indeed, V is such an ‘x’, whatever ‘∪’ and ‘{·}’ might
mean in Xω. Although in ZF this axioms provides the existence of the least
infinite ordinal ω, nothing like that happens here.

The axiom of choice in HF

Esser proved in [8] that GPK+
∞ ⊢ ¬AC, no matter how one formulates the

axiom of choice (AC). In view of what has been argued, it is reasonable
to conjecture that the situation is similar in HF∞. However, HF + AC is
consistent. Indeed, we can prove that Xω |= “Every set can be well-ordered”.
It suffices in fact to show that V can be. To see this, we begin with defining
a “continuous” ordering on Xω. Here is the procedure:

-) Choose any linear ordering 6n on each Xn in such a way that s is order
preserving. This can be done by choosing an ordering 6

n+1
satisfying

the following condition:

∀ζ, ξ ∈Xn (ζ <n ξ ⇒ ∀ ς ∈ s−1”{ζ},∀ ̺ ∈ s−1”{ξ}, ς <
n+1

̺)

-) Define 6ω as the restriction of the lexical product of the 6n ’s on Xω,
i.e.

x<ω y ⇔ xn0
<n0

yn0
, where n0 is the least n ∈ω such that xn 6= yn

Since s is order preserving, that actually amounts to ‘∃n ∈ω : xn<n yn’,
and it is now very easy to show that 6ω is “continuous”:

Proof. This amounts to proving that U := {(x, y) | x<ω y} is open
in X2

ω . So let a<ω b. Then, there exists n ∈ω such that an<n bn , and
we have Uan× Ubn ⊆ U .

Basically, the continuity of this ordering ensures that it can be coded in Xω,
in the sense that there exists r ∈Xω such that:

(x, y)∈Xω r ⇔ x6ω y
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This requires some further explanations:

We have first to specify the meaning of an expression such as ‘(x, y) ∈ r’
in Xω. Of course, this would mean that ‘r’ is a set of ordered pairs and that
‘(x, y)’ is one of them. So we need to define a notion of ordered pair in the
model or more generally in the theory. This can be done naturally by using
the usual Kuratowski’s definition, i.e. ‘(x, y) := {{x}, {x, y}}’, provided we
have fixed a notion of pair in HF . The one we choose here is defined by:

{a, b}
L

:= {x | x = a ∨ x = b ≀ x = x}

This definition might seem quite disconcerting as for any x, x /∈ {a, b}
L

!
Anyhow, it ensures that a formula such as ‘z = {x, y}

L
’ is BP. Indeed, in

HF , this formula is equivalent to:

∀u(u ∈ z → (u = x ∨ u = y)) ∧ (x ∈ z ∧ y ∈ z) ∧ ∀u(u /∈ z)

Now the reader should easily convince himself that a formula such as ‘z =
(x, y)

L
’ is BP as well. Thus, in view of the continuity of 6ω , the formula

‘∃x∃ y(z = (x, y)
L
∧ x6ω y)’ should be continuous in Xω. Hence, there does

exist r ∈Xω such that:





[r]+
Xω

:= {z ∈Xω | Xω |= ∃x∃ y(z = (x, y)
L
∧ x6ω y)}

[r]−
Xω

:= Xω

And so we have Xω |= (x, y)
L
∈ r ↔ x6ω y .

Now it remains to show that 6ω is really a “well-ordering” on V in Xω.
The compactness of Xω will be decisive once more:

Proof. We are going to show that

Xω |= ∀y(Λ 6= y ⊑ V→ ∃ a(a ∈ y ∧ ∀x(x ∈ y → a6ω x))).

So let Λ 6= y ⊑ V. Then [y]+
Xω

is non-empty and we can define a := (an|n ∈ω)

by setting an := min6n
{xn | x∈Xω y}. Now, as [y]+

Xω
is closed in Xω, so is

An := Uan ∩ [y]+
Xω

, for all n ∈ω. Since s is order preserving, it is also easy to
see that, for all n ∈ω,

⋂
{Ak | k 6 n} = An and then is non-empty. Thus, so

is
⋂
{Ak | k 6 ω} by compactness of Xω, and as this intersection is nothing

but {a}, we get a∈Xω y. On the other hand, by definition, it is clear that
a6ω x for all x∈Xω y.
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6. Extending any classical universe to a paraconsistent one

Here we prove that any classical universe of set theory (supposed to be
extensional) can be extended to a paraconsistent one by using a term model
construction. The inductive technique used here is the “dual” adaptation of
the one introduced in [10], where the author produced a term model for his
partial set theory without extentionality.

A term universe

Let N ≡ 〈N;LN〉 be any classical universe of set theory (e.g. a model of
ZF ; at least we require such an universe to be extensional). We naturally
consider it as a L

±

-structure by setting /∈N := N2\∈N and 6=N := N2\=N (so
in which ‘∈’ & ‘/∈’ are really classical negation of each other, as well as ‘=’ &
‘6=’, and we assume further that =N is the real equality on N). Now let L

±

τ [N ]
be the natural extension of L

±

obtained by using an abstraction operator
‘{ | }’ and by considering each element in N as a constant. Formally, the
terms and formulae of L

±

τ [N ] are defined inductively by the following rules:

1. Any variable is a term, as well as any constant n in N .

2. If ζ and ξ are terms, then ‘ζ ∈ ξ’, ‘ζ /∈ ξ’, ‘ζ = ξ’, ‘ζ 6= ξ’ are formulae.

3. If ϕ and ψ are formulae and x is a variable, then ‘ϕ∨ψ’, ‘ϕ∧ψ’, ‘∀xϕ’,
‘∃xϕ’ are formulae.

4. If ϕ is a formula, so is ‘¬ϕ’.

5. If ϕ is a formula, then ‘{x | ϕ}’ is a term.

The positive terms and formulae in L
±

τ [N ] are those obtained without
using rule 4. The weak negation ϕ of such a positive formula ϕ is defined
naturally as in L

±

by considering terms as variables. The reader should
notice here that a positive formula in this extended language might not be
positive in L

±

, at least for its natural interpretation pretending that EXT
and COMP are fulfilled.

Example 1.
Set ξ := {x | x ∈ x} and consider the positive L

±

τ -formula ‘ξ ∈ ξ’. Its natural
translation in L

±

is ‘∃y(y ∈ y ∧ ∀x(x ∈ y ↔ x ∈ x) ∧ ∀x(x /∈ y ↔ x /∈ x))’,
which is not positive in L

±

(not even bounded positive).

However, it is worth observing that the projective lemma remains true
for positive L

±

τ [N ]-formulae as soon as the surjective morphism involved
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preserves terms, as it can be easily checked, since terms represent nothing
but distinguished elements in any model.6

Now what we call a constant term is either a constant or a term of the
form ‘{x | ϕ(x)}’. Here is such a term:

Example 2.
Set ξ(y) := {x | y ∈ y} and let ϕ(x) be the L

±

τ -formula ‘∀y(ξ(y) ∈ x)’. Then
ζ := {x | ϕ(x)} is a constant positive L

±

τ -term.

Note that if {x | ϕ(x, y1, . . . , yk)} is any (positive) term and if ζ1, . . . , ζk
are any constant (positive) terms, then {x | ϕ[x, ζ1, . . . , ζk]} is actually a
constant (positive) term. Some special constant positive terms will play a
particular role in our construction, so let us define the set of posterms over
N recursively as follows:

• Each n ∈N is a primitive posterm over N ;

• If t1, . . . , tk are posterms over N and if ϕ(x, y1, . . . , yk) is a positive
L

±

-formula, then ‘{x | ϕ[x, t1, . . . , tk]}’ is a posterm over N .

Thus any posterm is clearly a constant positive term, but the converse is
false as, for instance, the term ζ defined in example 2 shows. Notice by the
way that example 1 proves actually that even the natural translation in L

±

of a formula such as ‘ϕ[ξ]’, where ϕ(x) is positive in L
±

and ξ is a posterm,
might not be positive in L

±

either.

From now on, we assume that the positive constant terms have been
coded in the metatheory, in such a way that if pζq denotes the code of ζ,
then pnq = n for any n ∈N . So let M be the set of those codes and M∗ the
subset of M corresponding to the posterms (thus N ⊆M∗ ⊆M).

Setting up M as a L
±

-structure

We define a sequence (Mα|α ∈On) of L
±

τ+ [N ]-structures as follows (‘τ+’
means that only positive terms will be interpreted):

-) The universe of Mα is M , for all α, and the interpretation of any
constant n ∈N is ‘n’ itself;

-) The interpretation of the positive term {x | ϕ(x, y1, . . . , yk)} in Mα,
for all α and for y1 = pζ1q, . . . , yk = pζkq is ‘p{x | ϕ[x, ζ1, . . . , ζk]}q’;

6 Naturally, we say that a surjective morphism f : M։N preserves terms if
f ’{x | ϕ[x, m1, . . . , mk]}

M
= {x | ϕ[x, f ’m1, . . . , f ’mk]}

N
, for any m1, . . . , mk ∈ M .
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-) For all α, =Mα is the real equality in M and 6=Mα is classical;

-) ∈Mα and /∈Mα are defined inductively:

- Initial Step:
{
∈M0

:= ∈N ∪M×(M \N)
/∈M0

:= M2\∈N

- Successor Step:

If n ∈N , then

{
m∈Mβ+1

n :⇔ m ∈N ∧m∈N n

m /∈Mβ+1
n :⇔ (m ∈N ∧m /∈N n) ∨m ∈ (M \N)

If n = p{x | ϕ(x)}q, then

{
m∈Mβ+1

n :⇔ Mβ |= ϕ[m]

m /∈Mβ+1
n :⇔ Mβ |= ϕ[m]

- Limit Step:




∈Mλ
:=

⋂
α<λ

∈Mα

/∈Mλ
:=

⋂
α<λ

/∈Mα

An easy induction shows that, for all α ∈On , ∈Mα∩N
2 = ∈N , /∈Mα∩N

2 =
/∈N and N is ∈-initial in Mα .7 Of course, N is not /∈-initial since M \N×
N ⊆ /∈Mα for all α ∈On. The next lemma tells us that (Mα|α ∈On) is a
descending sequence of Pd L

±

-structures on M :

Lemma.

(i) ∀α∀β 6 α, ∈Mα⊆ ∈Mβ
& /∈Mα⊆ /∈Mβ

;

(ii) ∀α, Mα |= Pd-case .

Proof. The proof goes by induction on α ∈On.

(i) If α is a limit ordinal or 0, then the property is obviously true by
definition. So let α = β + 1 and let the property be true for all γ 6 β; that
means actually that the identity map on M is a L

±

-epimorphism from Mδ

to Mγ , for all δ 6 γ 6 β, and clearly, the terms are preserved too (see the
definition of their interpretations). Now suppose that m∈Mβ+1

n and let us
check that this implies that m∈Mβ

n. If n ∈N , that is obvious. Assume then
that n = p{x | ϕ(x)}q. Hence, by definition, we have Mβ |= ϕ[m], and by
using the (extended) “projective lemma”, it follows thatMγ |= ϕ[m], for all

7 N is said to be R-initial in 〈M ; RM〉 if N ⊆ M and ∀n ∈ N, ∀m∈ M, m RM n ⇒
m∈ N .
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γ 6 β. Therefore, m∈Mγ+1
n, for all γ < β. So, when β 6= 0, we have:

∈Mβ+1
⊆

⋂

γ<β

∈Mγ+1
⊆

⋂

γ<β

∈Mγ .

That shows that ∈Mβ+1
⊆ ∈Mβ

. Of course, this is true as well if β = 0 as
the definition of ∈M0

shows. A symmetric argument applies to ‘/∈’.

(ii) Since ‘6=’ is classical at each step, we focus on the ‘∈’ part. Let the
property be true for all β < α.

• α = 0 :
Then ∈M0

∪ /∈M0
= M2 by definition;

• α = β + 1 :
Let n,m ∈M . Assume first that n = p{x | ϕ(x)}q. Then by induction
hypothesis, we know that Mβ |= ϕ[m] ∨ ϕ[m] , which means exactly
that m∈Mβ+1

n or m /∈Mβ+1
n. Now, if n ∈N , this follows directly from

the definition of ‘∈’ & ‘/∈’ in Mβ+1.

• α = λ limit :
Suppose ¬(m∈Mλ

n). Then there exists β0 < λ such that ¬(m∈Mβ0
n).

Whence m /∈Mβ0
n , by induction hypothesis, and this implies that

m /∈Mλ
n. Otherwise, there would exist γ0 such that β0 < γ0 < λ and

¬(m /∈Mγ0
n). Then, again by induction hypothesis, this would imply

that m∈Mγ0
n, which is impossible as ¬(m∈Mβ0

n) and ∈Mγ0
⊆ ∈Mβ0

(by property (i)).

In view of this lemma, there does exist a least ordinal δ such that both
∈Mδ+1

= ∈Mδ
& /∈Mδ+1

= /∈Mδ
. ThenMδ does satisfy comprehension as the

next theorem states:

Theorem 3.
For any positive L

±

τ [N ]-formula ϕ,

Mδ |= ∀y1, . . . , yk ∀z





z ∈ {x | ϕ(x, y1, . . . , yk)} ↔ ϕ[z, y1, . . . , yk]

z /∈ {x | ϕ(x, y1, . . . , yk)} ↔ ϕ[z, y1, . . . , yk]

Proof. Let ϕ(x, y1, . . . , yk) be a positive L
±

τ [N ]-formula and let pζ1q, . . . ,
pζkq ∈M . Now set n := p{x | ϕ[x, ζ1, . . . , ζk]}q. Then,

m∈Mβ
n ⇔ m∈Mβ+1

n ⇔ Mβ |= ϕ[m, pζ1q, . . . , pζkq]

and similarly for ‘/∈’ but with ϕ instead of ϕ.
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Thus Mδ |= COMP . But unfortunately, Mδ |=/ EXT .

Example 3.
Let ζ := {x | x = x} and ξ := {x | ζ = ζ}. Then it is easy to see that, for
all α, [pζq]+

Mα
= [pξq]+

Mα
= M and [pζq]−

Mα
= [pξq]−

Mα
= ∅, but pζq 6= pξq yet!

So we have here a situation whereby the technique described in section
4 could be useful.

Recovering extensionality

We now call in theorem 2 required for that job. Let ∼ be the finest bisim-
ulation as provided by the theorem. Our final model is M̃δ.8 So it satisfies
EXT , but what about COMP now? It turns out that a (slightly?) weaker
version remains:

Theorem 4.
M̃δ |= COMP ♭

where COMP ♭ :≡

{
For any positive L

±

-formula ϕ,
∃y ∀x((x ∈ y → ϕ) ∧ (x /∈ y → ϕ)) (y not free in ϕ)

Proof. Observe that ‘∃y ∀x((x ∈ y → ϕ) ∧ (x /∈ y → ϕ))’ is a BP L
±

-
formula whenever ϕ is positive in L

±

. Then, as noticed in section 4, such a
formula is preserved under a bisimulation.

Thus implications in the other direction are lost. Nevertheless, this ver-
sion of comprehension really makes sense in the Pd-case, as the reader should
easily allow himself to be convinced by drawing a picture. Its translation in
Pac is the following:

COMP ♭ :≡

{
For any L-formula ϕ in the implicationless fragment of Pac,

∃y ∀x(x ∈ y ⇀↽ ϕ) (y not free in ϕ)

However, as that clearly appears in the formulation above, COMP ♭ is
not compatible with EXT any more. Indeed, it is no longer provable using
EXT that, for any given formula ϕ, there is only one set y provided by
COMP ♭. It follows that the natural interpretation of non-constant positive
terms has been destroyed by the bisimulation: for paq ∼ pbq, we are not
able to prove that p{x | ϕ[x, a, . . .]}q ∼ p{x | ϕ[x, b, . . .]}q . Furthermore,
although each set in M\N (being some p{x | ϕ}q) is still designated by a

8 We would just remind the reader that =fMδ
is nothing but ∼ (since =Mδ

is the real
equality on Mδ).
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positive L
±

τ[N ]-formula ϕ, the existence of such a set in M̃δ is not either

provided by the ϕ-instance of the current comprehension schema in M̃δ ,
i.e. COMP ♭, since only positive L

±

-formulae are allowed in it. Hence the
model we get in this way is no longer a pure “strong” 9 term model as Mδ

was. In other words, many sets outside N are quite artificial with regard to
our formulation of comprehension in M̃δ. But this can be overcome if we
only take M∗ into account. Indeed, any p{x | ϕ[x, t1, . . . , tk]}q ∈M∗ satisfies
the ϕ(x, y1, . . . , yk)-instance of COMP ♭, for y1 = pt1q, . . . , yk = ptkq, as the
definition of M∗ ensures that ϕ(x, y1, . . . , yk) is a positive L

±

-formula. So a

more “natural” model M̃∗
δ can be obtained by reiterating the construction

described in 6.2 & 6.3 but with M∗ instead of M .

On the other hand, as expected, our construction does not change the
meaning of the primitive symbols in N , which really appears as an ∈-initial
and classical part of M̃δ (and of M̃∗

δ as well). Perhaps this requires some
explanations:

We already know that N is an ∈-initial and classical part of Mδ with
∈Mδ
∩N2 = ∈N & /∈Mδ

∩N2 = /∈N . So it suffices to prove that ∼∩N2 is
exactly =N . Recalling the proof of theorem 2, we have to show that ∼α∩N

2

is =N , for all α ∈On. This goes by induction. Of course, as N is supposed to
be a classical model of some set theory, we assume that it is extensional (in
its classical meaning), and that will do the job. To see that, suppose that
∼α∩N

2 is =N and recall that:

x ∼α+1 y ⇔ ([x]+
Mδ

)∼α = ([y]+
Mδ

)∼α & ([x]−
Mδ

)∼α = ([x]−
Mδ

)∼α

Now let x, y ∈N . As N is ∈-initial in Mδ and ∈Mδ
∩N2 = ∈N , we have

[x]+
Mδ

= [x]+
N
⊆ N , and similarly for y. Thus, x ∼α+1 y ⇒ ([x]+

N
)∼α =

([y]+
N

)∼α . By transitivity of ∼α, this last equality can be reformulated more
expressively as follows:

[x]+
N
⊆ ([y]+

N
)∼α & [y]+

N
⊆ ([x]+

N
)∼α

Now, by induction hypothesis, this amounts to:

[x]+
N
⊆ [y]+

N
& [y]+

N
⊆ [x]+

N

Therefore, x ∼α+1 y ⇒ [x]+
N

= [y]+
N
⇒ x=N y , assuming that N is exten-

sional, and thus ∼α+1 is still =N on N .

9 In the sense that the terms in Mδ are defined by means of L
±

τ [N ]-formulae, so within
a richer language involving terms themselves.
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The reader might wonder what the difference relation looks like in our
model. By definition of M̃δ, we have:

x 6=fMδ
y ⇔ ∃x′ ∼ x ,∃ y′ ∼ y : x′ 6=Mδ

y′

As M̃δ |= Pd-case and ‘6=’ is classical in Mδ, we get:

x 6=fMδ
y ⇔ ¬(x ∼ y) ∨ (x ∼ y ∧ |({x})∼| > 1)

(where |A| denotes the cardinal number of A) and it turns out that m 6=fMδ
m,

for any m ∈M\N . Indeed, fix n0 ∈N and let m := p{x | ϕ}q ∈M\N . Now set
m′ := p{x | ϕ ∧ n0 = n0}q. Thus, it is fairly clear that m and m′ have the
same extensions in Mδ, so m ∼ m′, but m 6= m′.
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