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CRITERIA CAUSING INCONSISTENCIES.

GENERAL GLUTS

AS OPPOSED TO NEGATION GLUTS
∗

Abstract. This paper studies the question: How should one handle inconsis-

tencies that derive from the inadequacy of the criteria by which one approaches

the world. I compare several approaches. The adaptive logics defined from

CLuN appear to be superior to the others in this respect. They isolate incon-

sistencies rather than spreading them, and at the same time allow for genuine

deductive steps from inconsistent and mutually inconsistent premises.

Yet, the systems based on CLuN seem to introduce an asymmetry between

negated and non-negated formulas, and this seems hard to justify. To clarify and

understand the source of the asymmetry, the epistemological presuppositions of

CLuN, viz. inadequate criteria, are investigated. This leads to a new type of

paraconsistent logic that involves gluts with respect to all logical symbols. The

larger part of the paper is devoted to this logic, to the adaptive logics defined

from it, and to the properties of these systems.

While the resulting logics are sensible and display interesting features, the search

for variants of the justification leads to an unexpected justification for CLuN.

1. The Problem

The first papers on adaptive logics concerned inconsistency-adaptive logics
defined from the logic (now called) CLuN (see especially [3] and [2]). This
was largely accidental. In earlier work on paraconsistent logic, especially [1],
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CLuN had turned out the basic system1 of a (very large) family of paracon-
sistent subsystems of CL (Classical Logic)—many of these subsystems have
been studied in the literature. So it was only natural that the first attempts
to construct an inconsistency-adaptive logic started from CLuN.

Adaptive logics defined from CLuN turned out to have the property to
maximally isolate inconsistencies: from the inconsistency of a formula A need
not follow the inconsistency of any subformula or superformula of A.2 For
an inconsistency-adaptive logic, this clearly is an advantage. Inconsistency-
adaptive logics interpret a set of premises ‘as consistently as possible’. Apart
from the rules of their (paraconsistent) lower limit logic, they validate all
applications of further CL-correct rules, provided these applications do not
lead to triviality in view of the disjunctions of abnormalities that are deriv-
able by the lower limit logic. That CLuN isolates inconsistencies warrants
that more applications of CL-correct rules are validated by the adaptive
logics defined from it—the point is further discussed in Section 3. In this
respect, the original inconsistency-adaptive logics appeared to be the most
attractive ones.

In [24], Graham Priest presented the inconsistency-adaptive logic LP
m

defined from his LP. Priest chose the latter system because it is his preferred
paraconsistent logic. As LP spreads inconsistencies, so do the inconsistency-
adaptive logics defined from it (or from CLuNs, of which LP is the impli-
cationless fragment). I shall discuss this point in Section 3.

In [20] and [21], Joke Meheus objected against inconsistency-adaptive
logics defined from CLuN. Her main argument was that they treat Modus
Ponens and Modus Tollens in an asymmetric way, and that this is unrealistic
with respect to the aim of explicating the intuitive reasoning of a scientist
who tries to surmount the inconsistency of some theory. I shall not deal with
this objection here—I did so in [7]—but rather discuss the deeper asymmetry
underlying CLuN that causes the asymmetry between Modus Ponens and
Modus Tollens.

This deeper asymmetry concerns the fact that, according to CLuN,
formulas of the form ∼A, and no other formulas, may be true independently
of the truth of their subformulas. I shall consider a justification for this
behaviour of formulas of the form ∼A, and next argue that this justification

1 According to CL (Classical Logic), negation is characterized by the consistency re-
quirement (if vM (A) = 1 then vM (∼A) = 0) and by the completeness requirement (if
vM (A) = 0 then vM (∼A) = 1). CLuN is obtained by dropping the former and keeping
the latter, and by giving all other logical symbols the same meaning as in CL.

2 The only exception is where the inconsistent formula implies itself a contradiction.
For example, ((r ∧ p) ∧ ∼p) ∧ ∼((r ∧ p) ∧ ∼p) entails p ∧ ∼p.
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cannot be restricted to such formulas. The point will be spelled out in
Section 7. The main part of the paper is devoted to the study of the system
that is the direct outcome of this line of justification. The system will be
called G because it leads to gluts with respect to all logical symbols.

The reader deserves to be warned that this paper should not be read as
a defense of G as the correct paraconsistent logic. First, G is much more
‘para’ than any popular paraconsistent logic. Next, as I argued in several
papers, the true logic is a chimera because a logic is an instrument that is
more or less suited to a specific purpose or application context.

In my view, the main application contexts for inconsistency-adaptive
logics are those in which an unexpected inconsistency surfaces. A theory
T was meant as consistent but turns out to be inconsistent. In trying to
replace T by a consistent improvement T ′, we have to reason from T in
order to locate its inconsistencies. The latter may then be removed in view
of specific experiments or observations, or in view of a conceptual analysis
if T is a mathematical theory.

The aim of inconsistency-adaptive logics is merely to see what T comes
to, in its full richness, except for the pernicious consequences of its incon-
sistency. This interpretation of T , which is neither offered by CL nor by
any (monotonic) paraconsistent logic, should enable one to start the search
for a consistent improvement T ′, either by devising and performing experi-
ments or by disentangling concepts. An inconsistency-adaptive logic should
not spell out the consistent improvements of T . It should not display all
consequences of all possible consistent improvements of T . It should locate
the problems (the inconsistencies) and separate them from the other con-
sequences of the premises (or theory). As, step by step, inconsistencies are
resolved,3 the inconsistency-adaptive logic should depict the new situation,
locate the remaining inconsistencies, if any, and provide a guide to locate the
experimental or conceptual means that enable one to surmount them. Our
judgement of G should depend on the merits of the inconsistency-adaptive
logics that are obtained from it.

2. The CLuN-Based Systems

Syntactically, CLuN consists of full positive predicative logic together with
the axiom A∨∼A. Neither Replacement of Equivalents nor Replacement of
Identicals is valid in this extremely poor paraconsistent logic.

3 This should be done in a tentative or defeasible way. Logic should not provide the
possible resolutions, but should handle attempted resolutions. A suitable logic is spelled
out in [12].
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Let L be the usual predicative language schema, with S, C, V, Pr, F and
W respectively the sets of sentential letters, individual constants, individual
variables, predicate letters of rank r, formulas, and wffs (closed formulas).4

To handle the quantifiers in a simple way in the semantics, L is extended
to the pseudo-language schema L+ by adding a set O of pseudo-constants,
requiring that any element of D is named by at least one member of C ∪O.5

Let F+ and W+ denote respectively the set of formulas and wffs of L+ and
let ∼W+ be the set of wffs of the form ∼A.

A model M = 〈D, v〉, in which D is a set and v an assignment function,
is an interpretation of W+, and hence of W, which is what we are interested
in. The assignment function v is defined by:

C1.1 v : S −→ {0, 1}
C1.2 v : C ∪ O −→ D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr −→ ℘(Dr) (the power set of the r-th Cartesian product of D)
C1.4 v : ∼W+ −→ {0, 1}

The valuation function vM : W+ −→ {0, 1} determined by M is defined as
follows:

C2.1 if A ∈ S, vM (A) = v(A); vM (⊥) = 0
C2.2 vM (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr)
C2.3 vM (α = β) = 1 iff v(α) = v(β)
C2.4 vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1
C2.5 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C2.6 vM (A ∧ B) = 1 iff vM (A) = 1 and vM (B) = 1
C2.7 vM (A ∨ B) = 1 iff vM (A) = 1 or vM (B) = 1
C2.8 vM (A ≡ B) = 1 iff vM (A) = vM (B)
C2.9 vM ((∀α)A(α)) = 1 iff vM (A(β)) = 1 for all β ∈ C ∪ O
C2.10 vM ((∃α)A(α)) = 1 iff vM (A(β)) = 1 for at least one β ∈ C ∪O

A is true in M (M verifies A) iff vM (A) = 1; Γ � A iff all models of Γ
verify A; A is valid iff it is verified by all models.6

4 I shall suppose that “⊥” belongs to L and is characterized syntactically by ⊥ ⊃ A.
Classical negation can be defined by ¬A =df A ⊃ ⊥.

5 It is called a set of pseudo-constants because the cardinality of O should be at least
that of the largest domain considered—to handle all possible domains, a different O may
be chosen for each model.

6 The present semantics does not exclude the model that is trivial with respect to ⊥-
free formulas of L, but no model verifies ⊥. This is quite all right. We are interested in
semantic consequence, and the model that verifies ⊥ cannot possibly make any difference
in this respect.
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The two best studied adaptive logics defined from CLuN are ACLuN1

and ACLuN2—see especially [4]. In preparation of the logic G, I present
them in a way that slightly departs from other papers. By an abnormality I
shall mean a contradiction, ∼A∧A, or, if it is an open formula, its existential
closure, which will be denoted by ∃(∼A ∧ A). In the sequel, !∼A and ∃!∼A

will abbreviate abnormalities.7 The set of abnormalities will be called Ω.
Where M is a CLuN-model, let Ab(M), the abnormal part of M , be {A ∈
Ω | vM (A) = 1}. Remark that Ab(M) contains (∃x)!∼Px iff it contains
(∃y)!∼Py (and vice versa) and that it contains (∃x)!∼Px if it contains !∼Pa

(but not vice versa).
In the sequel I shall have to refer to disjunctions of abnormalities. I

shall write Dab(∆) to denote the disjunction of the finite ∆ ⊂ Ω. Dab(∆)
will be called a minimal Dab-consequence of Γ iff Γ ⊢CLuN Dab(∆) whereas
Γ 0CLuN Dab(Θ) for all Θ ⊂ ∆. Similarly, some Dab-formulas are minimal
at a stage of a proof.

All theorems mentioned in the present paper are either proved in [4] or
their proof is obvious in view of the proof of the corresponding theorem in
that paper.

Theorem 1. ⊢CL A iff ⊢CLuN A ∨ Dab(∆) for some (possibly empty) ∆.
(Theorem Adjustment Theorem)

This theorem provides the basis for the dynamic proof theory. If A1, . . . ,

An ⊢CL B, then, by Theorem 1, there is a ∆ such that ⊢CLuN ((A1 ∧ . . . ∧
An) ⊃ B) ∨ Dab(∆). This CLuN-theorem may be interpreted as: B is
derivable from A1, . . . , An on the condition that all members of ∆ behave
normally. So this provides us with a conditional rule if ∆ is not empty, and
with an unconditional rule otherwise.

It is useful to illustrate this by listing some CLuN-theorems that cor-
respond to popular CL-rules. The last example concerns an application of
Replacement of Identicals within the scope of a negation.

MT ((∼B ∧ (A ⊃ B)) ⊃ ∼A)∨!∼B

DS ((∼B ∧ (A ∨ B)) ⊃ A)∨!∼B

ND (∼(A ∨ B) ⊃ ∼A)∨!∼(A ∨ B)
RI ((∼Pa ∧ a = b) ⊃ ∼Pb)∨!∼Pa

Let us now turn to the adaptive logics. The dynamic proofs are charac-
terized by three (generic) rules of inference and a marking definition. The
rules of inference are common to both adaptive logics :

7 In earlier papers on inconsistency-adaptive logics, an (open or closed) formula A is
called an abnormality iff it is true together with its negation.
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PREM At any stage of a proof one may add a line consisting of (i) an
appropriate line number, (ii) a premise, (iii) a dash, (iv) ‘PREM’,
and (v) ‘∅’.

RU If A1, . . . , An ⊢CLuN B, and A1, . . . , An occur in the proof on the
conditions ∆1, . . . , ∆n respectively, then one may add to the proof
a line that has B as its second element and ∆1∪ . . .∪∆n as its fifth
element.

RC If A1, . . . , An ⊢CLuN B ∨ Dab(∆0), and A1, . . . , An occur in the
proof on the conditions ∆1, . . . , ∆n respectively, then one may add
to the proof a line that has B as its second element and ∆0 ∪ ∆1 ∪
. . . ∪ ∆n as its fifth element.

ACLuN1 is defined from CLuN by the Reliability strategy, which is the
most obvious strategy from a proof theoretic point of view. In preparation
of its marking definition we define, with respect to a proof from a set of
premises Γ, Us(Γ) as the set of all abnormalities that are disjuncts of the
minimal Dab-formulas that occur in the proof at stage s. If, for example,
p, ∼p ∨ q, and ∼q have been unconditionally derived (that is, derived on a
line the fifth element of which is empty) in a proof from Γ, then one may
unconditionally derive

!∼p∨!∼q (1)

If (1) is a minimal Dab-formula at stage s, then both !∼p and !∼q are
members of Us(Γ). If, at a later stage s′, q is unconditionally derived, then
one may unconditionally derive

!∼q

So (1) is not a minimal Dab-formula at stage s′, whence !∼p is not a member
of Us′(Γ) (unless it is a disjunct of another minimal Dab-formula at stage
s′). The marking definition reads:

Definition 1. Marking for Reliability: Line i is marked at stage s of a proof
from Γ iff a member of its fifth element is a member of Us(Γ).

We say that A is derived at stage s of a proof from Γ iff A occurs as the
second element of a non-marked line of the proof. A is finally derived on
line i in a proof from Γ iff A is derived on line i at some stage s of the proof
and any extension of the proof in which line i is marked may be further
extended in such a way that line i is not marked. Γ ⊢ACLuN1 A iff A is
finally derivable from Γ.

Let U(Γ) denote the set of the disjuncts of the minimal Dab-consequences
that are CLuN-derivable from Γ.
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Theorem 2. Γ ⊢ACLuN1 A iff there is a finite set of abnormalities ∆ such
that Γ ⊢CLuN A∨Dab(∆) and ∆∩U(Γ) = ∅. (Monotonic Characterization)

Theorem 3. If Γ ⊢ACLuN1 A then A can be finally derived in any
ACLuN1-proof from Γ. (Proof Invariance)

Semantically, ACLuN1 is characterized by:

Definition 2. A CLuN-model M of Γ is an ACLuN1-model (a reliable
model) of Γ iff Ab(M) ⊆ U(Γ).

Definition 3. Γ �ACLuN1 A iff A is verified by all ACLuN1-models of Γ.

Theorem 4. Γ ⊢ACLuN1 A iff Γ �ACLuN1 A. (Soundness and Complete-
ness)

ACLuN2 is defined from CLuN by the Minimal Abnormality strategy.
This strategy is most straightforward from a semantic point of view.

Definition 4. A CLuN-model M of Γ is an ACLuN2-model (a mini-
mally abnormal model) of Γ iff there is no CLuN-model M ′ of Γ such that
Ab(M ′) ⊂ Ab(M).

Definition 5. Γ �ACLuN2 A iff A is verified by all ACLuN2-models of Γ.

Theorem 5. If Γ �ACLuN1 A, then Γ �ACLuN2 A.

The converse of this theorem fails. As an example, consider the set of
premises {p,∼p ∨ q,∼q, q ∨ s,∼p ∨ s}. Remark that U(Γ) = {!∼p, !∼q}. So
the ACLuN1-models of Γ are those CLuN-models M of Γ such that Ab(M)
comprises either !∼p or !∼q or both. The ACLuN2-models of Γ are those
that verify either !∼p or !∼q, but not both. Hence, some ACLuN1-models
of Γ falsify s, whereas all ACLuN2-models of Γ verify s.

The marking definition for ACLuN2-proofs is somewhat tiresome. I
shall first characterize the ACLuN2-models of Γ in terms of the set of all
minimal Dab-consequences of Γ. Let Φ◦(Γ) be the set of all sets that contain
one disjunct out of each minimal Dab-consequence of Γ. Let Φ⋆(Γ) contain,
for any ϕ ∈ Φ◦(Γ), the set CnCLuN(ϕ) ∩ Ω. Finally let Φ(Γ) contain those
members of Φ⋆(Γ) that are not proper supersets of other members of Φ⋆(Γ).
A CLuN-model M of Γ is an ACLuN2-models of Γ iff Ab(M) ∈ Φ(Γ).

With respect to a stage s of a proof from Γ, we define Φs(Γ) in the same
way as Φ(Γ), but now in terms of the set of minimal Dab-formulas that occur
in the proof. The integrity criterion is defined as follows in terms of Φs(Γ):
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Definition 6. Where A is the second element of line j, line j fulfills the
integrity criterion at stage s iff (i) the intersection of some member of Φs(Γ)
and of the fifth element of line j is empty, and (ii) for each ϕ ∈ Φs(Γ) there
is a line k such that the intersection of ϕ and of the fifth element of line k

is empty and A is the second element of line k.

The proof theory of ACLuN2 consists of the rules PREM, RU, and RC
together with a specific marking definition:

Definition 7. Marking for Minimal Abnormality: Line i is marked at stage
s of a proof from Γ iff it does not fulfill the integrity criterion.

That, at stage s of a proof from Γ, A is finally derived on line i of
the proof is defined as for ACLuN1. Here, however, we need to take into
account that even if i is marked in an infinite extension of the proof, then
this proof may be further extended (that is: finitely many lines may be
inserted in the infinite proof) in such a way that line i is not marked in
the extension—see [4, p. 466] for an example. Γ ⊢ACLuN2 A (A is finally
derivable from Γ) is defined as for ACLuN1.

Here too, Γ ⊢ACLuN2 A has a Monotonic Characterization, and Proof
Invariance, Soundness and Completeness are provable.

If Γ has CL-models, then no disjunction of abnormalities is CLuN-
derivable from it, and hence CnACLuN1(Γ) = CnACLuN2(Γ) = CnCL(Γ).
If Γ has no CL-models (and hence is inconsistent), we have CnCLuN(Γ) ⊆
CnACLuN1(Γ) ⊆ CnCL(Γ) (and similarly for ACLuN2). It can be shown
that, except for border cases, the subset-relations are proper.

Theorem 6. If a CLuN-model M of Γ is not an ACLuN1-model of Γ,
then there is an ACLuN1-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).
(Strong Reassurance)

Corollary 1. If Γ has CLuN-models, then it has ACLuN1-models. (Re-
assurance)

The equivalents of the theorem and corollary hold also for ACLuN2.

3. Spreading Abnormalities

Some other adaptive logics are defined from richer paraconsistent logics. The
most popular such logic one is no doubt CLuNs (known under many differ-
ent names). CLuNs is obtained by extending CLuN with Double Negation,
De Morgan properties, and all similar negation-reducing equivalences. By
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dropping the implication and equivalence from CLuNs one obtains Priest’s
LP (in which a non-detachable implication is defined by ∼A ∨ B).

As is explained in Section 1, such logics spread inconsistencies, and hence
the adaptive logics defined from them validate less applications of conditional
rules. Here is a simple but instructive example of a premise set:

p, s ∧ q, ∼(p ∧ q), ∼p ∨ r .

According to ACLuN1 (or ACLuN2), the only minimal Dab-consequence
of the premises is !∼(p ∧ q)—this formula, and no other one, behaves ab-
normally. Hence, r is finally derivable from the premises, along with the
CLuN-derivable p, q and ∼(p ∧ q). The situation is radically different for
adaptive logics based on CLuNs and LP. According to these, p, q, ∼p∨∼q

are all unconditionally derivable, and hence so is !∼p∨!∼q. It follows that r

is not finally derivable from the premises.
In general, and as noted already in [3], adaptive logics defined from

CLuN have the following advantage. Where (locally) no abnormality is
involved, they deliver all CL-consequences (such as applications of Double
Negation, De Morgan, etc.). Thus, ∼∼p, ∼∼r, ∼(p ∧∼r), . . . are derivable
from the above premise set. So by not spreading abnormalities, for example
by not making !p∨!q a consequence of the above premise set, they are able
to deliver other CL-consequences (such as r in the example). The matter is
discussed at length in [7].

The force of the above argument depends obviously on the intended
application contexts of inconsistency-adaptive logics. For example, in [24]
Graham Priest stresses the Classical Recapture: in as far as classical rea-
soning is applied to consistent theories, it is recognized as correct by the
inconsistency-adaptive logic.8

Actually, this property is shared by any sensible inconsistency-adaptive
logic, independently of its lower limit logic.9 A different, and in my view
more important, application context concerns theories that were intended
as consistent but turn out to be inconsistent—see Section 1. Let us for a
moment return to the above premise set, now taking into account that the
premises were intended as consistent—that this is unrealistic for the simple
premise set is irrelevant for my argument. We discovered a problem with

8 For Priest applications of Disjunctive Syllogism (and similar rules) are not correct for
logical reasons alone, but partly by virtue of the supposition that the described domain is
consistent.

9 Incidentally, the property fails for the original formulation of LP
m ; see [25] for a

correction and [5] for some further discussion.
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p ∧ q, and we want to resolve this. What the consistent replacement for the
premises will be, we cannot predict; it might affect the truth value of p as
well as that of q. But, as the premises were intended to be consistent, the
fourth premise is not taken serious if its truth is taken as possibly deriving
from the truth of ∼p.

If newly gained information enables one to remove the inconsistency in
the above premises, and it turns out that ∼p, and hence ∼(p∧ q) is rejected,
for example replaced by ∼(p ∧ ∼q), then r will obviously be derivable from
the thus modified premises. This is so independently of the inconsistency-
adaptive logic that was actually used to handle the original theory. The
difference between inconsistency-adaptive logics defined from CLuN and
those defined from lower limit logics that spread inconsistencies, is that only
the former point to the problem, rather than to a set of problems.10

In specific circumstances, the inconsistency-spreading logics may be
preferable. Suppose, for example, that it is only possible to devise tests
for primitive statements (those that correspond to formulas in which no log-
ical symbol occurs, except possibly for identity). Under this supposition, the
only conclusive tests to resolve the inconsistency in the above premise set is
the test ?(p,∼p) and the test ?(q,∼q). Needless to say, the supposition is
unrealistic—or rather it will be justified in few circumstances only.

4. Consistent Chunks

Several approaches to handling inconsistency proceed by dividing an in-
consistent set of premises into consistent chunks, sometimes maximal ones,
and defining consequence relations from the inconsistent set in terms of the
CL-consequences of these chunks. Jaskowski’s system D2 proceeded from
this idea, but it is a monotonic paraconsistent logic without any adaptive
properties.11 More closely related to adaptive logics are the Rescher–Manor
consequence relations: the flat ones (Free Consequence, Strong Consequence,
Argued Consequence, C-Based Consequence, and Weak Consequence), and
a set of prioritized consequence relations. I refer to [27], [28], [29], and espe-
cially [30]. Interesting surveys of the whole family are presented in [15] and
[16]. A related approach is presented in [31].

In [8], it was shown that all flat Rescher–Manor consequence relations

10 If A and ∼A are derivable from the premises, then, according to the logics that
spread inconsistencies, !∼(A ∧ B) is unconditionally derivable for any B derivable from
the premises; similarly for many other inconsistencies.

11 See [22] for adaptive logics that are defined from D2.
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are characterized by an adaptive logic defined from CLuN. There it is
proved that, for example, where all negations in members of Γ are classical
(that is, are formalized as “¬”) and ΓG = {∼¬A | A ∈ Γ}, Γ ⊢Free A iff
ΓG ⊢ACLuN1 A. This provides all those consequence relations with a dy-
namic proof theory—before, they were just abstract definitions in terms of
possibly undecidable sets. In [11], an interesting strengthening of the flat
Rescher–Manor consequence relations is presented and applied to discus-
sions.

Suitable application contexts for chunking logics are those in which the
premises derive from distinct sources. For example, the Free consequences
of some set of premises are the CL-consequences of those premises that are
not contradicted by any other subset of the premises. This (very cautious)
approach relies on the idea that sources that contradict some other (set of)
sources are not considered as reliable. If the information does not derive
from different sources, the suitability of the Rescher–Manor consequence
relations is doubtful. For example, if some theory is inconsistent, it is usually
impossible to consider its “axioms” as deriving from different sources. Take
Frege’s set theory as an example. If we consider the whole theory as deriving
from a single source (and take the conjunction of the axioms as the single
axiom), then the whole theory reduces to the empty set on all Rescher–
Manor consequence relations. If Frege’s axioms are considered as deriving
from different sources, then the abstraction axiom is simply removed from
them (it leads to an inconsistency by logic alone). Both approaches are
obviously inadequate if the aim is to study the theory in order to find a
consistent replacement for the abstraction axiom. One wants to keep at
least some of its consequences.

That mutually inconsistent premises do not deliver any common con-
sequences according to any Rescher–Manor consequence relation, seems es-
pecially problematic for empirical theories. In [10] two such problems are
spelled out in the context of explanation from inconsistent theories.

If two theories are mutually inconsistent and there are good reasons to
forge a consistent single theory from consequences of both of them, then
again the Rescher–Manor consequence relations seem problematic. A his-
torical example is discussed in [19]: the way in which Clausius forged a
consistent theory from, on the one hand, Sadi Carnot’s thermodynamics
and, on the other hand, Joule’s principle and experimental findings. Here
we have two clearly distinct sources. But we do not want to choose between
them; Clausius’s problem was to modify Carnot’s theory in such a way that
its coherence was preserved but that it did not contradict Joule’s findings
and principle.
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Many of these problems can be resolved by applying the Rescher–Manor
consequence relations to CL-consequences of the statements made by the
different ‘sources’. There are, however, two problems with proceeding thus.
First, if some ‘source’ is internally inconsistent, we still do not want to kick
it out (as all Rescher–Manor consequence relations do). Next, precisely be-
cause these consequence relations are so strongly dependent on the formula-
tion of the premises,12 it is extremely easy to offer a rational reconstruction
of a historical case in terms of this procedure, but it is nearly impossible to
demonstrate that the reconstruction is not ad hoc.

A fair summary of the situation seems to be that the Rescher–Manor
consequence relations are sensible adaptive logics (in the broad sense) but
that their application context is rather restricted. More particularly, they
seem unfit for the analysis of theories that were intended as consistent but
turn out to be inconsistent—and remember that this analysis should be
useful for deciding which further specific information might enable one to
resolve the inconsistency.

5. Ambiguities in the Non-Logical Symbols

An important contribution to the adaptive logic programme was offered by
Guido Vanackere in [32] and [33]—see [9] for a slightly different lower limit
logic. The idea is that inconsistencies may be caused by ambiguities in the
non-logical symbols rather than by non-standard meanings of the logical
symbols. Unfortunately, in its present guise this approach has the disad-
vantage to spread abnormalities. This disadvantage might be overcome by
allowing for ambiguities in complex formulas that do not reduce to ambigu-
ities in primitive formulas. For the time being, however, I need not further
consider the approach in the present context.

6. The Original Justification of CLuN

Before considering the objection to CLuN, it is worthwhile to briefly sum-
marize its original justification. CLuN relies on a clear and simple idea,
both from a semantic and from a proof theoretic point of view. The jus-
tification for the propositional fragment was first spelled out in [1]. This
justification derives from the way in which CLuN is obtained, viz. by drop-
ping the consistency requirement (if vM (A) = 1, then vM (∼A) = 0) from

12 The set Γ∪{p, q} does not in general have the same consequences as the set Γ∪{p∧q}.
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CL.13 That a CL-rule is valid, respectively invalid, in CLuN is easily jus-
tified in view of this simple idea: the meaning of negation is reduced to the
completeness requirement (if vM (A) = 0, then vM (∼A) = 1) and the mean-
ing of all other logical symbols is exactly as in CL. Below, I merely consider
some examples.

Let us start with Disjunctive syllogism. If ∼A and A are true, then ∼A

and A∨B are true even if B is false. Hence, B is not a semantic consequence
of ∼A and A∨B because some models are inconsistent. Modus Tollens too is
invalid: in models that verify A, B and ∼B, and falsify ∼A, both A ⊃ B and
∼B are true whereas ∼A is false. Unlike Modus Tollens, Modus Ponens is
valid—the truth conditions for A ⊃ B are distinct from those for ∼A∨B; if
A is false, ∼A is true, but not conversely. As a last example, consider Double
Negation, both directions of which are invalid because of the absence of the
consistency requirement. Some models verify A and ∼A but falsify ∼∼A,
other models verify ∼∼A and ∼A but falsify A.

The transition to the predicative level is straightforward. If both
∼(∀x)A(x) and (∀x)A(x) are true, (∃x)∼A(x) may very well be false. Con-
versely, the truth of (∃x)∼A(x) does not rule out the truth of (∀x)A(x),
and hence cannot warrant the truth of ∼(∀x)A(x). Also Replacement of
Identicals is not generally valid. If a = b and Pa are true, then v(b) = v(a)
and v(a) ∈ v(P ) and hence Pb. However, the truth of a = b and ∼Pa does
not exclude that v(a) ∈ v(P ); if this is the case, Pb is true and ∼Pb may be
false.

It is easy enough to make Replacement of Identicals hold generally. This,
however, would undermine the systematic character of CLuN. As appears
from the previous two paragraphs, the idea underlying CLuN is clear and
simple from a semantic point of view. From a proof theoretic point of view,
CLuN consists of full positive CL (or of full CL, as classical negation may
be defined) extended with A∨∼A.14 Making Replacement of Identicals hold
generally would require an exception with respect to both the semantics and
the proof theory. A further argument derives from the obvious similarity
between identity and equivalence. Some models verify A, B and ∼A and
falsify ∼B (even if A and B are valid formulas); hence they verify A ≡ B

and falsify ∼A ≡ ∼B.15 It follows that Replacement of Equivalents does

13 One should not confuse this justification with the structure of the models—this will
become even more obvious in Section 12.

14 There is nothing puzzling about this. I take “∼” to be the standard negation. This
negation is classical in CL and paraconsistent in CLuN. However, if one defines ¬A =df

A ⊃ ⊥, then “¬” behaves in CLuN as “∼” behaves in CL.
15 This holds even if A ≡ B is a theorem. Remark, however, that Replacement of
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not generally hold in CLuN. In view of this, it seems hard to justify that
Replacement of Identicals would generally hold.

Some people object to the absence of Modus Tollens (in the presence of
Modus Ponens), or to the absence of Contraposition. Apart from the above
justification, it is worthwhile to recall that Modus Tollens and Contraposi-
tion fail for many familiar implications, for example counterfactual implica-
tions (see, e.g., [17]), default rules (see, e.g., [18]), probabilistic implications,
etc. An excellent example (borrowed from Guido Vanackere) for default
rules is that although it is true that (typical) humans are non-logicians, it
is false that (typical) logicians are non-human.

7. Invoking Criteria

Let us now consider the asymmetry between Modus Ponens on the one hand
and Modus Tollens and Disjunctive Syllogism on the other hand—see Section
1. The asymmetry between Modus Ponens and Modus Tollens derives from
a more deeply rooted asymmetry. CLuN does not spread inconsistencies
because of the special way in which negative formulas are handled. Unlike
all other formulas, formulas of the form ∼A may be true independently of
the truth value of their subformulas—technically, this is realized by clauses
C1.4 and C2.4 of the semantics. As a result some CLuN-models verify, for
example, ∼(p ∧ q)), but falsify both ∼p and ∼q.16

Clause C1.4 of the assignment ‘drops in’ certain true formulas of the form
∼A. As their truth is not a result of the truth values of their subformulas,
I shall say that these formulas hang from a skyhook. The truth of skyhook
formulas has effects for more complex formulas. Thus, if p and hence p ∨ q

is true, ∼(p ∨ q) hangs from a skyhook, and ∼∼(p ∨ q) does not hang from
a skyhook, then ∼∼(p∨ q) is false whereas ∼∼∼(p∨ q) and p∧∼(p∨ q) are
true.

In the subsequent paragraphs, I consider one possible interpretation that
justifies skyhook formulas. I shall show that a sensible and systematic ap-
plication of this interpretation leads to a paraconsistent logic—I shall call it
G—that is very different from CLuN. In subsequent paragraphs I articulate
G and two inconsistency-adaptive logics defined from it.

Identicals proceeds in terms of logically contingent identities.
16

CLuN was devised for reasons that have nothing to do with isolating inconsistencies—
see the previous section—but it turned out that it isolates inconsistencies.
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Our knowledge may be taken to derive from a multiplicity of criteria that
apply to statements of different complexity.17 The combination of criteria
need not lead to consistent results. Thus, one criterion may deliver p whereas
another delivers ∼(p ∨ q).

Restricting our attention to the simplest possible case, let each applica-
tion of a criterion be a test of the type ?(A,∼A)—a positive outcome will
be described as A and a negative one as ∼A. It is possible that the test
?(p,∼p) delivers p whereas the test for ?(p ∨ q,∼(p ∨ q)) delivers ∼(p ∨ q).
These outcomes obviously reveal that the criteria are problematic. However,
it is obvious enough from the history of the sciences that many problematic
criteria could only be replaced by the introduction of new concepts (and of
connected criteria).

So, as a first approach, a paraconsistent model may be seen as a model
of the results of a set of criteria. The criteria may cause the model to be
inconsistent (even if ‘the world is consistent’). Needless to say, the outcome
of the criteria does not in itself constitute a model. In the example consid-
ered, the outcome leaves the truth value of p ∨ q undetermined. In order
to fix that value, one has to rely on the intended meaning of the logical
symbols. Suppose then that we intend to use disjunction in such a way that
p ∨ q is true whenever p is true, and that we intend to use negation in such
a way that ∼(p ∨ q) is false whenever p ∨ q is true. If we moreover intend
‘true’ and ‘false’ to exclude each other, our intentions are clearly overruled
by the outcome of the criteria. This seems a good reason to see the criteria
as problematic.18

We may proceed in several ways to handle cases in which criteria lead to
jointly inconsistent outcomes. The classical logician will have to consider the
situation as hopeless. As, on the classical logician’s approach, the resulting
knowledge about the domain is trivial, one cannot possibly rely on it to
arrive at a consistent replacement—one would have to start from scratch.

In situations of the considered kind, adaptive logics offer a sensible way
out: they interpret the outcome of applications of the criteria as normally as
possible. It has been argued at length, in [3] and in many other papers, that

17 The nature of the criteria may vary according to the domain and according to the
way in which the domain is approached. The criteria may be observational. They may
also contain observational as well as theoretical aspects. In mathematical cases, they may
refer to provability and disprovability from a given set of axioms by means of a set of given
rules. And so on.

18 Given that we have no a priori warrant that our criteria are unproblematic, no form
of decent knowledge would be possible if the result of applying of our criteria could not
reveal their problematic character.
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a monotonic paraconsistent logic delivers too weak a set of consequences for
such situations.

In the sequel I shall on use a classical semantic metalanguage. This
means that I shall use ‘true’ and ‘false’ in such a way that they exclude each
other.19

How then may an inconsistency-adaptive logic handle the outcomes of
criteria? One possibility is to follow the Rescher–Manor approach and to
consider the outcomes of the criteria as the premises (the criteria thus being
the sources).20

A second possibility consists in applying all analysing rules of CL to
separate formulas, and to close the result under the constructive rules for
the binary connectives.21 Thus, in the above example, p ∨ q will be derived
from p and ∼p will be derived from ∼(p ∨ q). This is the approach followed
by LP

m (see [24]).22 As we have seen in Section 3, such adaptive logics
spread inconsistencies; the same holds for the specific approach followed by
AN from [21].

CLuN and the adaptive logics that have CLuN as their lower limit
logic proceed in a different way. The truth values of complex formulas are
determined by the truth values of their subformulas, just as in the CL-
semantics. The only difference with the CL-semantics is that the skyhook
formulas interfere whenever they are met. This procedure may be justified
in terms of criteria. Given the intended meaning of the logical symbols,
the combination of a criterion for p and of a criterion for q constitutes a
criterion for p∧q; that the outcome of both former criteria is positive counts
as a positive outcome of the criterion for p ∧ q. A different combination of
criteria for p and for q constitutes a criterion for p ∨ q; that the outcome of
the criterion for p is positive counts as a positive outcome of the criterion
for p ∨ q. And so on.

There is absolutely no problem with this approach in itself. If a semantics
allows for models that verify both A and ∼A for some but not all A, then
negation cannot possibly be a binary truth-function. If the semantics allows
for models that verify both A and ∼A for complex A and inconsistencies
should not be spread, then some formulas of the form ∼A should be allowed
to hang from a skyhook.

19 Dialetheists and many relevantists will object for philosophical reasons that need not
be considered here (and with which I disagree).

20 This answers some objections from Section 4, but the others remain.
21 See [21] for the distinction between analysing and constructive rules.
22

CLuNs (see [13]) proceeds somewhat differently in that its implication is detachable.
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However, if the skyhooks have to be justified in terms of criteria, then
it is problematic that the only formulas hanging from skyhooks have the
form ∼A. Consider again the simple example used throughout this section.
The truth of ∼(p ∨ q) derived from the negative outcome of the test for
?(p ∨ q,∼(p ∨ q)). Suppose that the outcome of this test had been positive.
Then p ∨ q would have been considered as true. However, nothing prevents
that, in this situation, other criteria give us ∼p as well as ∼q whereas no
criterion gives us either p or q. The upshot seems to be that we need models
that verify p ∨ q but falsify both p and q, and no CLuN-model does so.

An interpretation of paraconsistency in terms of criteria is implicitly used
in the previous paragraph. This interpretation leads to a logic that allows
for gluts with respect to all logical symbols. Even if A is false, A ∧ B may
be true; even if A and B are false, A ∨ B may be true, etc. This suggests
that the interpretation leads to one of the many possible logics discussed in
[6], viz. gluts with respect to all logical symbols (and no gaps). However,
the present interpretation requires something more. If any formula may be
hanging from a skyhook, then so may primitive formulas. This requires some
special attention.

Let us first consider sentential letters. As these are not in any way
composed, it does not make any difference whether they are true in the
regular way or because they are hanging from a skyhook. So sentential
letters do not require special care. That a formula of the form α = β

hangs from a skyhook means that α = β is true whereas v(α) 6= v(β).
This is quite all right. If there are gluts with respect to all the other logical
symbols, identity should not form an exception. This leaves us with primitive
predicative formulas: even if v(a) 6∈ v(P ), Pa may be verified by the model.
One of the effects of this is that, if v(a) = v(b), it is still possible that the
model verifies Pa but falsifies Pb.23

In the preceding discussion, I implicitly presupposed that there is at
most one criterion for each (primitive or complex) formula. No change is
required if this presupposition is removed. That several tests for ?(A,∼A)
have different outcomes simply causes a negation-glut. Incidentally, I did
not exclude tests for ?(∼A,∼∼A), and so on.

A final remark concerns gaps. I presupposed that each criterion leads to
a negative or positive outcome. In order to have gaps, for example both A

and ∼A false, we need to presuppose that all criteria for A fail (and that all

23 That some criterion provides us with Pa might be interpreted as a reason to take
v(a) ∈ v(P ). I have investigated this approach, and it appears to undermine both the
coherence and the justification of the resulting logic—however, see Section 12.
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criteria for ∼A fail or have a negative outcome). Even if this were the case,
we may still presuppose that either A or ∼A is true. The reasons for doing
so are not ontological, but derive from the intended meaning of negation.
That our criteria may cause inconsistencies, does not force us to give up this
intended meaning in as far as it is compatible with the possibly inconsistent
outcomes of criteria.24 The G-models will be presented in the next section.
It is useful to remark that all CLuN-models are G-models, but not the
other way around.

8. The Paraconsistent Logic G

There are several ways to obtain the effect that all formulas may be verified
directly in view of the assignment. I apply the simplest one that came to
my mind. A model M = 〈D, v〉, in which D is a set and v an assignment
function, is an interpretation of W+, and hence of W. The assignment
function v is defined by:

C1.1 v : W+ −→ {0, 1}
C1.2 v : C ∪ O −→ D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr −→ ℘(Dr) (the power set of the r-th Cartesian product of D)

The valuation function vM : W+ −→ {0, 1} determined by M is defined as
follows:

C2.1 where A ∈ S, vM (A) = v(A); vM (⊥) = 0
C2.2 vM (πrα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(πr) or v(πrα1 . . . αr) =

1
C2.3 vM (α = β) = 1 iff v(α) = v(β) or v(α = β) = 1
C2.4 vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1
C2.5 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1 or v(A ⊃ B) = 1
C2.6 vM (A ∧ B) = 1 iff vM (A) = 1 and vM (B) = 1 or v(A ∧ B) = 1
C2.7 vM (A ∨ B) = 1 iff vM (A) = 1 or vM (B) = 1 or v(A ∨ B) = 1
C2.8 vM (A ≡ B) = 1 iff vM (A) = vM (B) or v(A ≡ B) = 1
C2.9 vM ((∀α)A(α)) = 1 iff vM (A(β)) = 1 for all β ∈ C∪O or v((∀α)A(α))

= 1
C2.10 vM ((∃α)A(α)) = 1 iff vM (A(β)) = 1 for at least one β ∈ C ∪ O or

v((∃α)A(α)) = 1

24 This presupposition may obviously be given up and in some cases there are good
reasons to do so—see, for example, [6] and [14]. However, the matter need not concern us
here. Our present problem is paraconsistency, not paracompleteness.
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Truth in a model, semantic consequence and validity are defined as usual.
Incidentally, C2.8 does not lead to the same values as

vM (A ≡ B) = 1 iff vM (A ⊃ B) = vM (B ⊃ A) = 1 or v(A ≡ B) = 1 .

Indeed, nothing excludes that vM (A) = 1, vM (B) = 0, vM (A ≡ B) = v(A ≡
B) = 0, but v(A ⊃ B) = vM (A ⊃ B) = vM (B ⊃ A) = 1.

G is a very poor logic. Γ ∪ {A} � A holds in it, as well as many con-
structive rules of CL, for example A � B ⊃ A, A � A ∨ B, A,B � A ∧ B,
A,B � A ≡ B, and A(β) � (∃α)A(α). Moreover, A∨∼A is valid as are most
formulas obtained by the Deduction Theorem from G-correct inferences, for
example A ⊃ (B ⊃ A), A ⊃ (A ∨ B), etc. However, G falsifies other con-
structive rules, such as ∼A � A ⊃ B, and all analyzing rules of CL: Modus
Ponens, Modus Tollens, Disjunctive Syllogism, Simplification, etc.

An axiomatization of the G-semantics is rather useless with respect to
the inconsistency-adaptive logics I want to define from it. Indeed, I am first
and foremost interested in the proof theory of these adaptive logics, and this
requires that one is able to derive abnormalities as well as ‘disjunctions’ of
abnormalities from a set of premises. The language L does not allow one
to do so. Let me consider an example. Suppose that p ⊃ q, p, and ∼q are
derivable from the premises. It follows that either ∼q or p ⊃ q is abnormal
(either ∼q is true together with q, or p ⊃ q is true whereas p is true and q is
false). These two possibilities cannot be distinguished within the language
L because the falsehood of q cannot be expressed in it (some models verify
even ∼q, q ⊃ ⊥ and q).

To resolve this inconvenience, I extend the language L to L† by adding
the logical symbols of CL with their usual meaning—I shall write ¬, ⊓,
⊔, ⇒, ⇔, (⊓α), (⊔α) and ≈ to denote negation, conjunction, disjunction,
implication, equivalence, the universal quantifier, the existential quantifier,
and identity respectively. In the present paper, premises will always be closed
formulas of L; the classical connectives will merely function as a technical
means to express abnormalities.

The resulting system will still be called G. The semantics is obtained by
adding clauses for the classical connectives. These are identical to the clauses
for the corresponding logical symbols of L, except that the disjunct referring
to the assignment is dropped. Thus, the clause for identity reads:

C2.11 vM (α ≈ β) = 1 iff v(α) = v(β)

The axiomatization of (the full system) G is obtained by extending an ax-
iomatization for CL with the following axioms:
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¬A ⇒ ∼A

(A ⇒ B) ⇒ (A ⊃ B)
(A ⊓ B) ⇒ (A ∧ B)
(A ⊔ B) ⇒ (A ∨ B)
(A ⇔ B) ⇒ (A ≡ B)
a ≈ b ⇒ a = b

(⊓α)A(α) ⇒ (∀α)A(α)
(⊔α)A(α) ⇒ (∃α)A(α)

The obvious Soundness and Completeness proofs are left to the reader.

9. Abnormalities

A complex formula will be said to be normal iff it classically implies the
corresponding CL-formula; otherwise it will be said to be abnormal. Thus
A∨B is normal iff it is either false, or else true together with A⊔B, that is
iff (A ∨ B) ⇒ (A ⊔ B) is true; A ∨ B is abnormal iff it is true together with
¬A ⊓ ¬B, that is iff (A ∨ B) ⊓ ¬A ⊓ ¬B is true.

One cannot express in L† that a primitive predicative formula πα1 . . . αr

is normal, which is the case iff 〈v(α1) . . . v(αr)〉 ∈ v(π). However, there is
a way around this. Consider a model M that verifies Pa. Whether this is
caused by v(a) ∈ v(P ) or by v(Pa) = 1 has no effect on superformulas of
Pa, such as Pa ∨Qc. Nor does it have any effect on universal or existential
generalizations of Pa. For example, as M verifies Pa, it verifies (∃x)Px as
well as (⊔x)Px. However, there is a relevant difference between v(a) ∈ v(P )
and v(Pa) = 1: only the first warrants that M verifies Pα whenever v(α) =
v(a). The upshot is that Pa is normal if and only if Pa ⇔ (⊓x)(x ≈ a ⇒ Px)
is true. In general, πα1 . . . αr is normal iff it is classically equivalent to

((⊓x)(x ≈ α1 ⇒ πxα2 . . . αr) ⊓ . . . ⊓ (⊓x)(x ≈ αr ⇒ πα2 . . . αr−1x))

We shall have to compare sets of abnormalities, and an abnormality
is not simply an abnormal formula. It is indeed essential to distinguish
between, on the one hand, the fact that a formula hangs from a skyhook
and, on the other hand, the trouble that is caused by this. Thus, a model
in which v(A ∧ B) = 1, vM (A) = 0 and vM (B) = 0 is more abnormal than
one in which v(A ∧ B) = 1, vM (A) = 0 and vM (B) = 1. The same holds
for primitive predicative expressions formed by a predicate with rank greater
than one. Thus, a model M in which vM (Pab) = 1 is abnormal if v(c) = v(a)
and vM (Pcb) = 0, but it is more abnormal if moreover v(d) = v(b) and
vM (Pad) = 0.
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If open formulas behave abnormally, we need to prefix the (open) ab-
normality with a classical existential quantifier over the variables that occur
free in the formula. To easily handle such cases, let (⊔)C abbreviate the
result of prefixing C with a classical existential quantifier over each variable
free in C. Remark that, in Section 2, the abbreviation ∃C had exactly the
same meaning—the existential quantifier is classical in CLuN.

For the sake of precision, I now list all types of abnormalities. It is useful
to introduce abbreviations for the abnormalities; I list the abbreviations on
the left hand side:

!1πα1 . . . αr: (⊔)(πα1 . . . αr ⊓ (⊔x)(x ≈ α1 ⊓ ¬πxα2 . . . αr))
!2πα1 . . . αr: (⊔)(πα1 . . . αr ⊓ (⊔x)(x ≈ α2 ⊓ ¬πα1xα3 . . . αr))

. . . . . .
!rπα1 . . . αr: (⊔)(πα1 . . . αr ⊓ (⊔x)(x ≈ αr ⊓ ¬πα1 . . . αr−1x))

!∼A: (⊔)(∼A ⊓ A)
!(A ⊃ B): (⊔)((A ⊃ B) ⊓ A ⊓ ¬B)
!l(A ∧ B): (⊔)((A ∧ B) ⊓ ¬A)
!r(A ∧ B): (⊔)((A ∧ B) ⊓ ¬B)
!(A ∨ B): (⊔)((A ∨ B) ⊓ ¬A ⊓ ¬B)

!l(A ≡ B): (⊔)((A ≡ B) ⊓ A ⊓ ¬B)
!r(A ≡ B): (⊔)((A ≡ B) ⊓ B ⊓ ¬A)

!a = b: (⊔)(a = b ⊓ ¬a ≈ b)
!β(∀α)A(α): (⊔)((∀α)A(α) ⊓ ¬A(β)) (β ∈ C)
!x(∀α)A(α): (⊔)((∀α)A(α) ⊓ (⊔α)¬A(α))
!(∃α)A(α): (⊔)((∃α)A(α) ⊓ ¬(⊔α)A(α))

Let ¡1πα1 . . . αr denote ¬!1πα1 . . . αr, etc.—this will be handy to indicate,
for example, that a conditional step in a dynamic proof presupposes that a
formula behaves normally in a specific sense.

The abnormal part of a G-model M , Ab(M), is the set of all abnormali-
ties — see the above list — that are verified by M . Remark that (⊔x)A(x) ∈
Ab(M) iff (⊔y)A(y) ∈ Ab(M), etc. Remark also that (⊔x)A(x) ∈ Ab(M)
if A(a) ∈ Ab(M), but not vice versa. This also explains the difference be-
tween !β(∀α)A(α), which denotes a different formula for different β ∈ C,
and !x(∀α)A(α) which (with some notational abuse) denotes an infinite set
of equivalent formulas. Again, !a(∀α)A(α) entails !x(∀α)A(α) but not vice
versa.

Where we need disjunctions of abnormalities, the disjunction obviously
has to be classical. Also, Dab(∆) denotes the classical disjunction of the
finite set of abnormalities ∆.
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It is useful to have a closer look at the way in which abnormalities inter-
fere with some familiar inferences. A ⊃ B is G-equivalent to

(A ⇒ B) ⊔ ((A ⊃ B) ⊓ (A ⊓ ¬B))

in other words,
(A ⇒ B)⊔!(A ⊃ B)

This has an immediate effect whenever A ⊃ B is a premise. For example,
consider what becomes of Modus Ponens:

A,A ⊃ B ⊢G B⊔!(A ⊃ B)

So from A and A ⊃ B G does not enable one to derive B, but only “B

or A ⊃ B is abnormal” (in which the “or” is classical). Even if A ⊃ B is
not a premise but a subformula of the conclusion, a valid CL-inference may
become invalid. Here is an example:

A,∼B ⊢G ∼(A ⊃ B)⊔!∼B⊔!(A ⊃ B)

Suppose that A and ∼B are true. If ∼B is abnormal, then B is true, and
hence A ⊃ B is true; whence ∼(A ⊃ B) need not be true. If ∼B is normal
(and hence ¬B is true), A ⊃ B may be abnormal (true together with A and
¬B); whence ∼(A ⊃ B) need not be true.

In some cases there are even more formulas that need to behave normally:

∼A ∧ ∼B ⊢G ∼(A ∨ B)⊔!1(∼A ∧ ∼B)⊔!2(∼A ∧ ∼B)⊔!(A ∨ B)⊔!∼A⊔!∼B

Compare this to:

∼(A ∨ B) ⊢G (∼A ∧ ∼B)⊔!∼(A ∨ B)

Here is an example with an abnormal open formula:

(∀x)Px ⊢G ∼(∃x)∼Px⊔!x(∀x)Px ⊔ (⊔x)!∼Px⊔!(∃x)∼Px

Indeed, if a model verifies (∀x)Px, it may still falsify ∼(∃x)∼Px in three
cases. The first is that (∀x)Px is abnormal (the model falsifies (⊓x)Px).
Next, even if the model verifies (⊓x)Px, it may also verify (⊔x)∼Px, in
which case it verifies (⊔x)(∼Px ⊓ Px). Finally, even if the model verifies
(⊓x)Px and falsifies (⊔x)∼Px, it may still verify (∃x)∼Px. Here is a more
complex example:

(∀x)(Px ⊃ Qx), (∃x)∼Qx ⊢G

(∃x)∼Px⊔!x(∀x)(Px ⊃ Qx)⊔!(∃x)∼Qx ⊔ (⊔x)!(Px ⊃ Qx) ⊔ (⊔x)!∼Qx
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Theorem 7. ⊢CL A iff ⊢G A⊔Dab(∆) for some (possibly empty) ∆. (The-
orem Adjustment Theorem)

As is the case for other adaptive logics, this theorem provides the basis
for the dynamic proof theory. If A1, . . . , An ⊢CL B, then ⊢CL (A1 ⊓ . . . ⊓
An) ⇒ B and hence, by Theorem 7, there is a ∆ such that ⊢G ((A1 ⊓ . . . ⊓
An) ⇒ B) ⊔ Dab(∆). The latter will be interpreted as: B is derivable from
A1, . . . , An on the condition that all members of ∆ behave normally. Here
are some examples of G-theorems that correspond to popular CL-rules—RI
corresponds to a specific application only:

DN (∼∼A ⇒ A)⊔!∼A

MP ((A ⊓ (A ⊃ B)) ⇒ B)⊔!(A ⊃ B)
MT ((∼B ⊓ (A ⊃ B)) ⇒ ∼A) ⊔ (!∼B⊔!(A ⊃ B))
DS ((∼B ⊓ (A ∨ B)) ⇒ A) ⊔ (!∼B⊔!(A ∨ B))
SIM ((A ∧ B) ⇒ A)⊔!l(A ∧ B)
ND (∼(A ∨ B) ⇒ ∼A)⊔!∼(A ∨ B)
UI ((∀α)A(α) ⇒ A(β))⊔!β(∀α)A(α)
RI ((Pac ⊓ a = b) ⇒ Pbc)⊔!a = b⊔!1Pac

Here are some examples of unconditional rules:

IRR A ⇒ (B ⊃ A)
ADJ A,B ⇒ (A ∧ B)
ADD A ⇒ (A ∨ B)

10. The Adaptive Logics AG1 and AG2

Applying the Reliability strategy and the Minimal Abnormality strategy, we
obtain respectively the adaptive logics AG1 and AG2. Dab-formulas are
now classical disjunctions of abnormalities. The premise rule is as in Section
2 and the two other rules of inference require cosmetic changes only:

RU If A1, . . . , An ⊢G B, and A1, . . . , An occur in the proof on the con-
ditions ∆1, . . . , ∆n respectively, then one may add to the proof a
line that has B as its second element and ∆1 ∪ . . . ∪ ∆n as its fifth
element.

RC If A1, . . . , An ⊢G B ⊔ Dab(∆0), and A1, . . . , An occur in the proof
on the conditions ∆1, . . . , ∆n respectively, then one may add to the
proof a line that has B as its second element and ∆0∪∆1∪ . . .∪∆n

as its fifth element.
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Let U(Γ) and Us(Γ) be defined as before, but now with respect to min-
imal classical disjunctions of (the present) abnormalities.25 The Marking
definition for AG1 is identical to that for ACLuN1. For the AG2-proof
theory, we define Φ(Γ) and Φs(Γ) as for ACLuN2. The integrity criterion is
as in Section 2 and the Marking definition is identical to that for ACLuN2.
The definitions of “derivability at a stage” and of all other proof theoretic
technicalities remain unchanged.

Semantically, the systems are characterized by:

Definition 8. A G-model M of Γ is an AG1-model (a reliable model) of
Γ iff Ab(M) ⊆ U(Γ).

Definition 9. Γ �AG1 A iff A is verified by all AG1-models of Γ.

Definition 10. A G-model M of Γ is an AG2-model (a minimally abnormal
model) of Γ iff there is no G-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Definition 11. Γ �AG2 A iff A is verified by all AG2-models of Γ.

The derivability relation of both adaptive logics has an obvious Mono-
tonic Characterization, e.g., for AG1:

Theorem 8. Γ ⊢AG1 A iff there is a finite set of abnormalities ∆ such that
Γ ⊢G A ⊔ Dab(∆) and ∆ ∩ U(Γ) = ∅. (Monotonic Characterization)

Moreover, the proofs of Soundness and Completeness, Proof Invariance,
Strong Reassurance (and Reassurance) are straightforward. As expected,
we also have:

Theorem 9. If Γ �AG1 A, then Γ �AG2 A.

The following instructive example illustrates that the converse of this
theorem fails: {p, p ⊃ q,∼q, q ∨ s,∼(p ⊃ q) ∨ s}. Remark that U(Γ) =
{!∼q, !(p ⊃ q)}. So the AG1-models of Γ are those G-models M of Γ such
that Ab(M) comprises either !∼q, or !(p ⊃ q), or both. Of these, only those
of the first and second kind are AG2-models of Γ. Hence, s is only an
AG2-consequence of Γ.

If Γ has CL-models, CnAG1(Γ) = CnAG2(Γ) = CnCL(Γ). If Γ has no
CL-models (and hence is (CL-)inconsistent), we have CnG(Γ) ⊆ CnAG1(Γ)
⊆ CnCL(Γ) (and similarly for AG2). Except for border cases, these subset-
relations are proper. So I have established that AG1 and AG2 are decent
adaptive logics.

25 An example: !(p ⊃ q)⊔!∼q is unconditionally derivable from p, p ⊃ q, and ∼q.
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11. Comparison with the CLuN-based Systems

It is worth discussing the way in which the present logics differ from
ACLuN1 and ACLuN2. The most striking difference is that, in the sys-
tems defined from G, a single abnormality—a one-member disjunction of
abnormalities—can only be derived from a set of premises Γ iff (i) it has
the form !∼A and (ii) A,∼A ∈ Γ. Where one ‘half’ of an inconsistency is
CLuN-derivable from a set of premises, for example, by Modus Ponens, only
a classical disjunction of several abnormalities will be G-derivable. I present
some examples in the top half of Table 1. In the bottom half of that table,
I list two examples where even CLuN delivers a disjunction—!e(∼A ∧∼B)
abbreviates !l(∼A ∧ ∼B)⊔!r(∼A ∧ ∼B).26

premises CLuN G

A,∼A !∼A !∼A

A,A ⊃ B,∼B !∼A !∼A⊔!(A ⊃ B)
A ∧ B,∼A !∼A !∼A⊔!l(A ∧ B)
(∀x)Px,∼Pa !∼Pa !∼Pa⊔!(∀x)Px

Pa, a = b,∼Pb !∼Pb !∼Pb⊔!a = b

A ∨ B,∼A,∼B !∼A∨!∼B !∼A⊔!∼B⊔!(A ∨ B)
A ∨ B,∼A ∧ ∼B !∼A∨!∼B !∼A⊔!∼B⊔!(A ∨ B)⊔!e(∼A ∧∼B)

Table 1. Strongest Derivable Disjunctions of Abnormalities

The situation has rather dramatic consequences. Consider, for example,
the premises p ∧ q,∼p. The only derivable disjunction of abnormalities is
!∼p⊔!l(p∧ q). According to both AG1 and AG2, q is finally derivable from
these premises, whereas p and hence !∼p are not.27 According to ACLuN1

and ACLuN2, q, p, and ∼p, and hence !∼p, are unconditionally derivable
from the premises.

Let us extend these premises to p ∧ q,∼p,∼p ⊃ r, q ⊃ s, p ⊃ t. The only
derivable disjunction of abnormalities is still !∼p⊔!l(p ∧ q). So, from these
premises, q, r, and s are finally derivable, but p and t are not—as t is only
derivable on the condition {¡(p ⊃ t), ¡l(p ∧ q)}, and hence, the line at which
it is derived will be marked on both strategies. Compare this to: according

26 To interpret the table, recall that, in CLuN, “∧” and “∨” have the same force as
“⊓” and “⊔” respectively.

27 Incidentally, that q is finally derivable depends on the fact that we distinguished
between !l(p∧ q) and !r(p∧ q); if we would take p∧ q to be abnormal as soon as one of its
disjuncts is false, q would not be derivable.
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to ACLuN1 and ACLuN2, p, ∼p, q, r, s, and t are all unconditionally
derivable from the premises.

Finally let us modify the premises to p∧q,∼p, p∨r,∼q∨s,∼p∨t. Again,
the only derivable disjunction of abnormalities is !∼p⊔!l(p ∧ q). So q and s

are finally derivable whereas p, r, and t are not.28 ACLuN1 and ACLuN2

deliver p, q and s as final consequences.

All these examples illustrate two characteristics of the adaptive logics
defined from G. First, the set of consequences is reduced in comparison
to systems defined from CLuN. Many formulas that are unconditionally
derivable from a set of premises by the CLuN-systems become condition-
ally derivable only or even non-derivable. Some formulas that are condi-
tionally derivable on the CLuN-systems become non-derivable. Next, the
same holds for abnormalities. In general, we obtain longer disjunctions of
abnormalities than on the CLuN-systems, and it is exceptional that all the
disjuncts are inconsistencies.

In this sense, the systems defined from G isolate abnormalities as strongly
as the CLuN-systems. One should not misunderstand this. One half of !∼p

is non-derivable in the examples from the previous paragraphs, but a disjunc-
tion of abnormalities that has !∼p as a disjunct is unconditionally derivable.
The effect is that the deductive force of p is lost in those examples (as p is
not finally derivable) whereas p is nevertheless seen as suspect (for example
in that !∼p ∈ U(Γ)).

It is instructive to reconsider the example from Section 3 in connection
with the isolation of abnormalities:

p, s ∧ q, ∼(p ∧ q), ∼p ∨ r

The only derivable disjunction of abnormalities is !∼(p∧q)⊔!r(s∧q). Hence p

and r are still finally derivable, as desired. However, q is not finally derivable
by the present logics. So if q ⊃ t were added to the premises, t would not
be finally derivable. Remark the asymmetry between p and q. The formula
p derives from a direct criterion, whereas q is known in a more indirect way:
a deduction from the result of a criterion for s∧ q. So it is sensible that q is
considered as more problematic than p.

The fact that inconsistency-adaptive logics defined from G deliver less
consequences than those defined from CLuN is not necessarily a disadvan-
tage. Let us reconsider the last example (with q ⊃ t a premise) from the

28 As ∼p is unconditionally derivable, so is ∼p ∨ t, which incidentally (and somewhat
uselessly) has the force of ∼p ⊔ t.
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viewpoint of the intended application context of inconsistency-adaptive log-
ics. Two comments are at hand.

First, the systems defined from CLuN point to !∼(p∧ q) as the problem
and hence advise us to test ?(p ∧ q,∼(p ∧ q)). The systems defined from
G point to !∼(p ∧ q)⊔!r(s ∧ q) as the problem and hence advise us to test
?(p ∧ q,∼(p ∧ q)) as well as ?(s ∧ q,¬q).

This deserves a small digression. The test for ?(p ∧ q,∼(p ∧ q)) is clear
enough. Depending on the available criteria, this might be a direct test,
or an indirect one, built up from a test of ?(p,∼p) and a test of ?(q,∼q).
But what is a test for ?(s ∧ q,¬q)? As s is unproblematic (and useless
with respect to the derivability of t), we are really interested in a test for
?(q,¬q). However, we should be serious at this point. We cannot presuppose
that the tests always deliver consistent answers. In other words, we can at
best perform a test for ?(q,∼q). Moreover, as the original tests led to an
inconsistent set of premises, we can only hope to resolve the inconsistency
by means of an improved set of tests. If the outcome of the new tests are
consistent, an answer to ?(q,∼q) is sufficient to resolve our problem. Indeed,
if the outcome is q, we can derive t and know that the problem with the test
for ?(p∧ q,∼(p∧ q)) reduces to a test for ?(p,∼p). If the outcome is ∼q, we
retain s and consider q ⊃ t as true in virtue of ∼q, and hence as inconclusive
with respect to t.29

The second comment concerns a rather different consideration. In some
cases, the choice between different consistent alternatives depends on their
consequences. Thus, in the absence of conclusive empirical results, one might
prefer the theory that has the greater explanatory power. In view of this, it
is useful that a dynamic proof reveals the consequences of the ‘halves’ of in-
consistencies. In dynamic proofs of the CLuN-systems, these consequences
may be traced by spelling out the path of derived formulas. The fact that
the G-systems deliver less final consequences need not be a serious drawback
in this respect. The consequences of ‘halves’ of abnormalities may still be
traced.30 Only this time they will be revealed by marked lines of the proof.
As an illustration, consider again the same example. We have seen that any
line on which q is derived will be marked (as soon as !∼(p ∧ q)⊔!r(s ∧ q) is
derived). Nevertheless, nothing prevents one to derive further consequences
of q, most importantly t. It will be derived on a line that has the condi-

29 If a different test for ?(q,∼q) delivers q, or if a test for ?(s ∧ q,∼(s ∧ q)) delivers
s ∧ q, we know that the tests are still problematic and hence have to revise them. This is
a nuisance, but an unavoidable one. However, if the tests deliver consistent results, then
the test for ?(q,∼q) leads to a consistent improvement of the theory.

30 This is, of course, not typical for the G-systems but holds for all adaptive logics.
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tion ¡r(s ∧ q) and hence will be marked. But this is not important. In the
presence of the premise s ∧ q, ¡r(s ∧ q) entails that q is true, and hence the
(marked) lines with this condition adequately depict the consequences of the
modified premises that make q true. By a hardly more complex reasoning,
(marked) lines with the condition ¡∼(p∧q) contain consequences of the mod-
ified premises that make ∼q true—because p is unconditionally derivable. If
∼q ⊃ u or even q ∨u were added to the premises, then u would be derivable
on such a line.

This too deserves a small digression. Some people, among them Joke
Meheus, have argued that one should look for an adaptive logic that delivers
all consequences of all possible (but sensible) consistent selections that may
be obtained from an inconsistent theory. No such system is possible because
different adaptive logics define different sets of abnormalities, as is obvious
from the logics discussed in this paper. However, one may still compare
the result of different adaptive logics, and compare the different ‘normal
selections’ to which each of them leads.

12. Skyhook Formulas Plus Choices

In the previous sections, paraconsistent logics were justified in terms of the
skyhook idea, viz. that formulas of any complexity are provided by criteria.
Let us now reconsider more systematically the way in which models may be
obtained from a set of skyhook formulas.

Needless to say, a set of skyhook formulas by itself does not constitute
a model. The reason is that the skyhook formulas by themselves do not
lead to any decisions on the meaning of the logical symbols; this is han-
dled by clauses. Some clauses, for example “if M |= A and M |= B, then
M |= A ∧ B”, introduce a logical symbol and hence extend the valuation to
superformulas. Other clauses, for example “if M |= A ∧ B, then M |= A

and M |= B”, eliminate a logical symbol and hence extend the valuation
to subformulas. Each clause provides an indirect criterion, relying on the
intended interpretation of the logical symbols—the outcomes A and B, pro-
vide an indirect criterion for A∧B. So, while skyhook formulas derive from
the direct criteria, other formulas may derive from the indirect criteria.

How do the clauses that determine CL-models relate to G-models and
to CLuN-models? Let us start with G. Clauses that introduce a single
logical symbol and have a positive consequent—one that does not contain
“6|=”—hold unrestrictedly in G-models. An example is: “if M |= B, then
M |= A ⊃ B”. Clauses that eliminate a single logical symbol and have
a positive antecedent function as defaults: if their antecedent is true, M
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will agree with their consequent unless this is contradicted by a skyhook
formula or by one of the aforementioned introduction clauses. Examples are
“if M |= ∼A, then M 6|= A”, “if M |= A ⊃ B, then M 6|= A or M |= B”.
Other clauses that introduce or eliminate a single symbol are contrapositives
of the discussed ones and hence need not further be considered.

It is interesting to compare the situation with CLuN. Here all afore-
mentioned clauses hold unconditionally, with the exception of “if M |= A,
then M 6|= ∼A”, which functions as a default. Remark first that this plot
is formally coherent: a set of skyhook formulas may be inconsistent, in that
both A and ∼A belong to it, but cannot itself display any other logical
abnormalities—any set of formulas has a CLuN-model. It follows at once
that an approach in terms of skyhook formulas does not force one to chose
for the plot behind G. Moreover, the plot behind CLuN is attractive, even
from a philosophical point of view.

If the outcome of a criterion is A ∧ B, this provides a reason to believe
A as well as B; if the outcome is A∨B, it provides a reason to believe A or
B. What if the outcome of a criterion is ∼(A ∧ B)? This provides a reason
to believe that A ∧ B is false. If indeed A ∧ B is false, we have a reason
to believe that either ∼A or ∼B is true. However, the reason to believe
that A∧B is false may be overruled by the outcome of a different criterion.
If A ∧ B is the outcome of a different criterion, the previous reasoning is
blocked. The reason to believe that A ∧ B is false is overruled, and hence
we have no reason for believing that either ∼A or ∼B is true.31

The plot that leads from skyhook formulas to CLuN is simpler and
in a sense more attractive than the one that leads to G. The only derived
criterion that may be overruled is the one that leads from a reason to consider
A (respectively ∼A) as true to a reason to consider ∼A (respectively A) as
false.32 Even a derived criterion for Pa comes to a criterion for v(a) ∈ v(P ).

What was going on in this section? First and foremost, I was not trying
to justify an adaptive logic, but a type of models. From the epistemological
side, I supposed that our theories rely upon certain criteria (for possibly

31 If both A and B are outcomes of criteria, we have a reason to believe that A ∧ B is
true. Remark that, even on the plot behind G, this forces one to consider A ∧ B as true.
As we cannot avoid inconsistency on the skyhook approach, the upshot is that we have
to let the reason to consider A ∧ B as true prevail over the reason to consider it as false.
The only alternative is to put both reasons on a par. This, however, leads to spreading
inconsistency.

32 The situation for material implication is very different. A reason to believe A ⊃ B,
provides a reason to believe that A is false or that B is true. If we moreover have a reason
to believe that A is true, then we have a reason to believe that B is true.
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complex formulas). Where the direct criteria leave the truth-value of certain
formulas undetermined, it has to be supplied by the intended meaning of
the logical symbols. Remark that this not only settles the truth-value of
subformulas and superformulas, but even of formulas that are unrelated to
the skyhook formulas: even if A is not a subformula of any skyhook formula,
if we take the model M to falsify A, then M verifies ∼A (and vice versa).
The difference between the logics turns out to depend on the choice of the
clauses that are considered as defaults only. Both G and CLuN are fine in
this respect, but rely on different presuppositions.

It turned out, somewhat unexpectedly, that all sorts of formulas may
be hanging from skyhooks in the CLuN-models. This is not clear at once
because only negations lead to abnormalities. However, as we have seen,
this effect results from a very sensible plot. The skyhook approach need not
lead to gluts for all logical symbols. And the effects of the skyhooks need
not be explicit in the characterization of the valuation function.

13. In Conclusion

The somewhat odd line of exposition of the present paper corresponds to the
way in which the results were obtained. The justification of a paraconsistent
logic requires that one has independent reasons for believing certain complex
formulas. I described the matter in terms of skyhook formulas. Trying to
avoid an apparent asymmetry of CLuN-models (only negations seem to be
hanging from skyhooks), we arrived at the logic G. Its models allow for
gluts with respect to all logical symbols. To define adaptive logics from G

turned out to be straightforward.
Next, we found an asymmetry in the G-models: clauses that introduce

logical symbols (in the sense that a complex formula is verified) hold unre-
strictedly, whereas clauses that eliminate logical symbols function only as
defaults. Trying to overcome this asymmetry led to the idea to make posi-
tive conclusions of clauses hold unconditionally, and to let only conclusions
of the form M 6|= A be subject to being overruled. Unexpectedly, this plot
resulted in the CLuN-models.

Presumably, other plots may be formulated, and they may lead to dif-
ferent logics. A systematic research in this direction is wholly beyond the
confines of the present paper. Nevertheless, it is clear that the skyhook ap-
proach cannot justify logics that are not paraconsistent—nothing prevents
different criteria from leading to the outcomes A and ∼A respectively.

An interesting feature of the skyhook approach is that it may be applied
directly to a set of premises to arrive at adaptive models of the premises.
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Given a set of premises (a ‘theory’) Γ, the criteria underlying a model of
Γ provide a reason to believe Γ. In the intended application contexts of
adaptive logics, we consider ‘the world’ to be as normally as possible with
respect to Γ. And indeed, it is easily seen that applying the reasoning from
the previous section to a set of skyhook formulas Γ leads to the adaptive
models of Γ, and not to all its lower limit models. Which adaptive models
will be obtained will depend on the chosen plot (determining the lower limit
logic) and on the chosen adaptive strategy. Remark that such an approach
directly connects the adaptive models to the dynamic proof theory.33
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