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THE TRUE BISIMULATIONS

FOR ‘SINCE’ AND ‘UNTIL’

Abstract. The aim of this paper is to establish a new notion of equivalence
between temporal models, so-called S-similarity, as the appropriate notion
of bisimilarity for temporal logic with Since and Until. The main technical
results of the paper provide semantical characterizations of the first-order
formulas that are equivalent to a temporal formula: Theorem 3.7 concerns
the equivalence of temporal and first-order formulas with respect to pointed

temporal models, whereas Theorem 4.4 takes the level of temporal models
into account.

1. Introduction

The present paper deals with the problem of finding a proper notion of bisim-
ulation for the temporal logic LSU . Roughly speaking, LSU is the logic one
gets by adding the two temporal operators S (Since) and U (Until) to the
language of boolean logic, and by interpreting its formulas on Kripke-style
models. Using an adaption of van Benthem’s standard translation the set
of LSU -formulas can be mapped in a semantically well-behaved way into the
set of first-order formulas over a suitable vocabulary. For a long time it had
been an open problem whether this fragment has a semantical characteri-
zation in terms of bisimulations, that means, whether there exists a proper
type of equivalence relations between temporal models such that a first-order
formula is preserved under these relations if and only if it is equivalent to the
translation of a LSU -formula. In [3] Kurtonina and de Rijke presented a (pos-
itive) solution to this problem. They introduced a new notion of temporal

© 2002 by Nicolaus Copernicus University



174 Holger Sturm

bisimulation and proved the desired result in their Corollary 5.4. Moreover,
the authors showed how to use temporal bisimulations in order to develop the
basic model theory of LSU ; besides other results they gave a characterization
of the elementary classes of LSU , that is, of the classes of pointed temporal
models that are definable by means of (sets of) temporal formulas.

An alternative solution to the bisimulation problem for LSU is contained
in my doctoral thesis [5]. In section 2.11 of this work, I introduced the notion
of S-simulation, and proved this to be the right candidate for handling LSU .1

Albeit Kurtonina and de Rijke’s proof shows some resemblance with my own
proof, both the proofs as well as the involved notions of equivalence, bisimi-
larity respectively S-similarity, were obtained independently from each other.

However, it turned out that S-similarity and bisimilarity are equivalent
notions in the following sense: Let A and B be temporal models, then two
points a ∈ A and b ∈ B are related via a S-simulation (between A and B)
if and only if they are related via a bisimulation (between A and B).2 The
main difference between the two notions lies in the fact that S-simulations
are only defined with respect to points while bisimulations also take intervals
into account. As temporal formulas are evaluated at points only this can
be regarded as an advantage of S-simulations. Though Kurtonina and de
Rijke concede the prima facie superiority of S-simulations, they nevertheless
prefer their own concept; what they claim in favor of bisimulations is that
it is precisely this special two-sorted character of our notion of bisimulation
that allows us to develop the model theory of Since and Until in a direct way
(without making detours through richer languages).

The correctness of this observation granted, I dare to doubt its relevance
for the question under consideration. As far as I can see, there is only
one step in the development of the model theory of LSU where it makes
a difference whether to use S-simulations instead of bisimulations, namely
when it comes to prove that for ω-saturated models temporal equivalence
and S-similarity coincide; for the remainder S-simulations work in the same
way as bisimulations do. Contrary to Kurtonina and de Rijke’s proof of their
Theorem 4.3 the proof of my Lemma 3.4, where the wanted equivalence is
established in the case of S-similarity, makes use of the translation of the
temporal language into a first-order language.

1 To be more precise, in [5] the notion of S-simulation has been introduced for a
language that only contains the forward looking operator U . However, as the temporal
operators S and U are defined independently, the adaption of the proofs to the temporal
case is just an easy exercise.

2 This has already been observed by Kurtonina and de Rijke in their paper.
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Surely, this might be seen as a kind of detour through a richer language;
however, as the whole enterprise of investigating the model theory of modal
and temporal logics along the line followed by [3] is based on the idea of
translating modal and temporal languages into first-order languages, and,
thereby, of applying techniques as well as results from the latter to the former,
this is no argument against S-simulations, or in favor of bisimulations. What
really matters is, contrary to an analysis presented by van Benthem and
Bergstra in [1, page 822], that the power of LSU is strong enough to enforce
the right structural relation upon ω-saturated temporal equivalent models,
and that one needs no detours through richer (possibly many-dimensional)
temporal languages.

Therefore, and this is the message one should get from this paper, S-
simulations are the true bisimulations for LSU .

The paper is organized as follows. In Section 2, I will recapitulate some
basic notions and facts from the syntax and semantics of LSU , rather to fix
the notation than to tell anything new. In Section 3, I will formally introduce
S-simulations, and will give a semantical characterization of the first-order
sentences that are equivalent to a LSU -formula (Theorem 3.7). The main
load of the proof is carried by an application of Lemma 3.4 which states
that for ω-saturated temporal models temporal equivalence and S-similarity
coincide. In accordance with common practice, Section 3 investigates tem-
poral logic on the level of pointed models; in contrast, considering temporal
models Section 4 will take a more global perspective. Theorem 4.4 presents
a characterization of the set of first-order sentences that are equivalent to a
LSU -formula with respect to temporal models.

2. Basic concepts

For the following fix a countable set P := {pn | n ∈ ω} of propositional
letters. The set FormSU of temporal formulas (over P) is then defined as the
smallest set X that contains the propositional letters from P, is closed under
¬, ∨ and ∧, and satisfies the following condition: if ϕ and ψ are in X, then
S(ϕ,ψ) and U(ϕ,ψ) are in X as well.

Temporal formulas are interpreted on temporal models. A triple A =
(A,<A, V A) is called a temporal model, if A is a non-empty set, <A a binary
relation on A, and V A a valuation function from P into the power set of A.
As usual, the truth of temporal formulas is defined with respect to pairs
(A, a), so-called pointed temporal models, consisting of a temporal model A
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and a distinguished element a ∈ A:

(A, a) |= pn :⇔ a ∈ V A(pn), for n ∈ ω,

(A, a) 6|= ⊥,

(A, a) |= ¬ϕ :⇔ (A, a) 6|= ϕ,

(A, a) |= ϕ ∨ ψ :⇔ (A, a) |= ϕ or (A, a) |= ψ,

(A, a) |= ϕ ∧ ψ :⇔ (A, a) |= ϕ and (A, a) |= ψ,

(A, a) |= S(ϕ,ψ) :⇔
∃a′(a′ <A a& (A, a′) |= ϕ& ∀a′′(a′ <A a′′ & a′′ <A a⇒ (A, a′′) |= ψ)),

(A, a) |= U(ϕ,ψ) :⇔
∃a′(a <A a′ & (A, a′) |= ϕ& ∀a′′(a <A a′′ & a′′ <A a′ ⇒ (A, a′′) |= ψ)).

Obviously, by a slight change of perspective a pointed temporal model (A, a)
may also be regarded as a first-order model suitable for a first-order vocab-
ulary, lets call it τ , consisting of a countable set {Pn |n ∈ ω} of predicate
symbols, a binary relation symbol < and an individual constant c.3 This to-
gether with the fact that the truth clauses for temporal formulas are stated
in a first-order metalanguage makes it possible to define a mapping St from
FormSU into the set of first-order sentences over τ :

St(pn) := Pnc, for n ∈ ω,

St(¬ϕ) := ¬ St(ϕ),

St(ϕ ∨ ψ) := St(ϕ) ∨ St(ψ),

St(ϕ ∧ ψ) := St(ϕ) ∧ St(ψ),

St(S(ϕ,ψ)) := ∃x(x < c ∧ St(ϕ)[x/c] ∧

∀y(x < y ∧ y < c→ St(ψ)[y/c])),4 ,5

St(U(ϕ,ψ)) := ∃x(c < x ∧ St(ϕ)[x/c] ∧

∀y(c < y ∧ y < x→ St(ψ)[y/c])).

3 This is possible because neglecting some harmless notational differences (A, a) might
be seen as a convenient way of denoting the first-order model (A,<A , (V A(pn))n∈ω, a).

4 Here and in the next clause the variables x and y are assumed to be the first two
variables chosen from a list of variables that neither occur in St(ϕ) nor in St(ψ).

5 In general, for a first-order formula ϕ and individual terms t1 and t2, ϕ[t1/t2] denotes
the formula one gets by replacing every occurence of t2 in ϕ by t1.
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That this translation is a reasonable one will be obvious from the following
lemma. The proof is a routine induction and can be left to the reader.

Lemma 2.1. For every ϕ ∈ FormSU , temporal model A = (A,<A, V A) and
every a ∈ A the following equivalence holds:

(A, a) |= ϕ ⇐⇒ (A, a) |= St(ϕ).

3. S-simulations: the local point of view

The central notion of this paper is introduced in the next definition.

Definition 3.1. Let A and B be temporal models. A relation Z ⊆ A×B is
called a S-simulation between A and B, if Z satisfies the following conditions:

S1 For every a ∈ A and b ∈ B:
if Zab, then (A, a) |= pn ⇔ (B, b) |= pn for every n ∈ ω.

S2a For every a, a1 ∈ A and b ∈ B: if Zab and a1 <
A a,

then there exists a b1 ∈ B such that Za1b1, b1 <
B b and

for every b2 ∈ B with b1 <
B b2 and b2 <

B b
there is an a2 ∈ A such that a1 <

A a2, a2 <
A a and Za2b2.

S2b For every a ∈ A and b, b1 ∈ B: if Zab and b1 <
B b,

then there exist an a1 ∈ A such that Za1b1, a1 <
A a and

for every a2 ∈ A with a1 <
A a2 and a2 <

A a
there is a b2 ∈ B such that b1 <

B b2, b2 <
B b and Za2b2.

S3a Similar to clause S2a; exchange only a and a1, respectively b and b1.

S3b Similar to clause S2b; exchange only a and a1, respectively b and b1.

(A, a) ∼s (B, b) means that there exists a S-simulation Z between A and
B such that Zab.

Lemma 3.2. Let A and B be temporal models and Z a S-simulation between
A and B. For every a ∈ A and b ∈ B with Zab it holds that

(A, a) ≡SU (B, b).6

Proof. By induction.

6 ≡SU denotes the relation of elementary equivalence with respect to temporal formulas,
that is, for pointed temporal models (A, a) and (B, b) we have (A, a) ≡SU (B, b) iff for all
ϕ ∈ FormSU : (A, a) |= ϕ⇔ (B, b) |= ϕ.
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In general, temporal equivalence is a weaker notion than S-similarity;
there exist temporal models A, B, and elements a ∈ A, b ∈ B such that
(A, a) ≡SU (B, b) without having a S-simulation between them. However, for
certain classes of models these two notions coincide. Such classes are called
Hennessy-Milner classes; examples are the class of finite temporal models
and the class of ω-saturated temporal models.

Definition 3.3. Let σ be a first-order vocabulary. A σ-model A is ω-satura-
ted, if for every finite set {c1, . . . , cn} of new individual constants, and every
set Φ(x) of first-order formulas over σ ∪ {c1, . . . , cn}, and every a1, . . . , an ∈
A: if Φ(x) is finitely satisfiable in (A, a1, . . . , an), then Φ is satisfiable in
(A, a1, . . . , an).

Lemma 3.4. Let A and B be ω-saturated temporal models. Then ≡SU is a
S-simulation between A and B.

Proof. We need to show that

∀a ∈ A∀b ∈ B(Zab :⇔ (A, a) ≡SU (B, b))

defines a S-simulation between A and B. Clause S1 is obvious. To check S2a
assume Zab and a1 <

A a for a, a1 ∈ A and b ∈ B. Let ∆(x) be the union of
the following three sets of first-order formulas:

{x < c},

Γ1(x) := {St(ϕ)[x/c] |ϕ ∈ FormSU & (A, a1) |= ϕ},

Γ2(x) := {∀z(x < z ∧ z < c→ St(ψ)[z/c]) |
∀a2(a1 <

A a2 & a2 <
A a⇒ (A, a2) |= ψ)}.

It is sufficient to prove that ∆(x) is satisfiable in (B, b), that is, that there
exists a b1 ∈ B such that (B, b) |= ∆(x)[b1]. Because B is ω-saturated, and
hence (B, b) is ω-saturated as well, we only need to show that each finite
subset of ∆(x) is satisfiable in (B, b). Moreover, as Γ1(x) and Γ2(x) are
both closed under conjunctions, we only have to consider subsets of the form
{x < c, St(ϕ)[x/c], ∀z(x < z∧z < c→ St(ψ)[z/c])}, with St(ϕ)[x/c] ∈ Γ1(x)
and ∀z(x < z ∧ z < c→ St(ψ)[z/c]) ∈ Γ2(x).

Assume {x < c,St(ϕ)[x/c],∀z(x < z ∧ z < c → St(ψ)[z/c])} to be fixed.
Using the definition of Γ1(x) and Γ2(x) this yields (A, a) |= S(ϕ,ψ). By Zab,
which means the same as (A, a) ≡SU (B, b), we get (B, b) |= S(ϕ,ψ), hence
there is a b′ ∈ B such that
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(i) b′ <B b,

(ii) (B, b′) |= ϕ, and

(iii) ∀b′′ ∈ B(b′ <B b′′ & b′′ <B b⇒ (B, b′′) |= ψ).

Alternatively, there is a b′ ∈ B such that

(iv) b′ <B b,

(v) (B, b′) |= St(ϕ), and

(vi) ∀b′′ ∈ B(b′ <B b′′ & b′′ <B b⇒ (B, b′′) |= St(ψ)).

Obviously, (iv) is equivalent to

(vii) (B, b) |= x < c[b′],

(v) is equivalent to

(viii) (B, b) |= (St(ϕ)[x/c])[b′],

and (vi) to

(ix) (B, b) |= ∀z(x < z ∧ z < c→ St(ψ)[z/c])[b′ ].

From (vii), (viii) and (ix) it follows that b′ satisfies {x < c, St(ϕ)[x/c],
∀z(x < z ∧ z < c → St(ψ)[z/c])} in (B, b). Therefore, ∆(x) is finitely
satisfiable in (B, b), hence, by ω-saturation there is a b1 ∈ B which satisfies
∆(x) in (B, b).

It remains to show that b1 has all the properties stated in S2a. Since
x < c is contained in ∆(x) we immediately get b1 <

B b. That b1 satisfies
Γ1(x) yields (A, a1) ≡SU (B, b1), hence, by the definition of Z, Za1b1.

Let b2 ∈ B with b1 <
B b2 and b2 <

B b. We must find an a2 ∈ A such
that a1 <

A a2, a2 <
A a and Za2b2, that is (A, a2) ≡SU (B, b2). To show

the existence of such an a2 we reason as follows: let ψ1, . . . , ψn be temporal
formulas such that for each i ≤ n: (B, b2) |= ψi. Put ψ := ψ1 ∧ · · · ∧ ψn.
Suppose there is no a′ ∈ A with a1 <

A a′, a′ <A a and (A, a′) |= ψ. Then the
formula χ(x) := ∀z(x < z& z < c→ St(¬ψ)[z/c]) belongs to Γ2(x), hence to
∆(x). Therefore, b1 satisfies χ(x) in (B, b), but this contradicts the choice
of b2 and ψ. So we have shown that there is an a′ ∈ A such that a1 <

A a′,
a′ <A a and (A, a′) |= ψ. As the subset {ψ |ψ ∈ FormSU & (B, b2) |= ψ} was
chosen arbitrary, it follows that the set

Φ(x) := {St(ψ)[x/c] | (B, b2) |= ψ} ∪ {c′ < x, x < c}

is finitely satisfiable in (A, a, a1), where c′ is a new individual constant.
Again, by the ω-saturation of A there is an a2 ∈ A which satisfies Φ(x)
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in (A, a, a1). It is obvious that a2 has all the desired properties: a1 <
A a2,

a2 <
A a and especially (A, a2) ≡SU (B, b2), that is Za2b2. As we can repeat

this argument for every b2 between b1 and b clause S2a is proved.
The other three clauses are proved similarly.

Definition 3.5. A first-order sentence ϕ over τ is said to be preserved
under S-simulations, if for all pointed temporal models (A, a) and (B, b) the
following holds: if (A, a) |= ϕ and (A, a) ∼s (B, b), then (B, b) |= ϕ.

In order to streamline the proof of Theorem 3.7, I will make use of the
following well-known lemma.

Lemma 3.6. Let σ be a first-order vocabulary and Γ a class of σ-sentences
closed under (finite) disjunctions and conjunctions. Then for every σ-sentence
ϕ the following statements are equivalent:

1. There exists a ψ ∈ Γ such that |= ϕ↔ ψ.

2. For all σ-models A and B: if A |= ϕ and A =⇒Γ B, then B |= ϕ.7

Proof. For a proof see [2, section 3.2], for instance.

Theorem 3.7. For every first-order sentence ϕ (over τ) the following are
equivalent:

1. There is a temporal formula ψ such that |= ϕ↔ St(ψ).

2. ϕ is preserved under S-simulations.

Proof. The direction from 1 to 2 follows from Lemma 2.1 and Lemma 3.2.
For the other direction suppose ϕ is preserved under S-simulations. Using
the definition of St it is easy to check that the set of translations of tempo-
ral formulas is closed under disjunctions and conjunctions. Because of the
foregoing lemma it is now sufficient to prove the second claim of this lemma
with Γ := {St(ψ) |ψ ∈ FormSU}. Let A and B be temporal models, and let
a ∈ A and b ∈ B such that (A, a) |= ϕ and (A, a) =⇒Γ (B, b). As Γ is also
closed under negations this leads to (A, a) ≡SU (B, b). Choose ω-saturated
elementary extensions A

′ and B
′ of A respectively B. (A well-known result

from model theory tells us that this is always possible.) By Lemma 3.4 we
get: (A′, a) ∼s (B′, b). As ϕ is preserved under S-simulations, it follows that
(B, b) |= ϕ, hence, by an application of Lemma 3.6, there exists a St(ψ) ∈ Γ

such that |= St(ψ) ↔ ϕ, what had to be shown.

7
A =⇒Γ B means that every formula in Γ that is true in A is also true in B.
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4. S-simulations: the global point of view

In the foregoing section temporal logic and its corresponding first-order frag-
ment were studied on the level of pointed temporal models. This choice was
made in accordance with the line of investigation usually undertaken in the
literature. The present section takes a different perspective: it considers
temporal formulas on the level of temporal models. Again, it is possible to
define a reasonable translation from the set of temporal formulas into the set
of first-order sentences (over a suitable vocabulary) which allows to consider
LSU as a fragment of first-order logic, now on the level of temporal models:
just correlate a temporal formula ϕ with the universal closure of its standard
translation, that is, with the formula ∀x(St(ϕ)[x/c]). The aim of this section
is to give a semantical characterization of this fragment. In Theorem 4.4
it is shown that a first-order sentence is equivalent to the universal closure
of the translation of a temporal formula iff it is preserved under surjective
S-simulations and disjoint unions.8

Definition 4.1. Let Z be a S-simulation between A and B. Z is called a
surjective S-simulation, if for all b ∈ B there is an a ∈ A such that Zab.

Definition 4.2. Let {Ai | i ∈ I} be a non-empty family of temporal models,
where the domains of these models are pairwise disjoint. The disjoint union
of this family, abbreviated by

⊎
i∈I Ai, is the following defined model A:

A :=
⋃

i∈I Ai,

V A(pn) :=
⋃

i∈I V
Ai(pn), for n ∈ ω,

<A :=
⋃

i∈I <
Ai .

Definition 4.3. A first-order sentence ϕ over τ \ {c} is preserved under
disjoint unions, if for every non-empty family {Ai | i ∈ I} of temporal models
the following holds: if for every i ∈ I Ai |= ϕ, then

⊎
i∈I Ai |= ϕ.

Theorem 4.4. For a first-order sentence ϕ over τ \ {c} the following are
equivalent:

1. There is a temporal formula ψ such that |= ϕ↔ ∀x(St(ψ)[x/c]).

2. ϕ is preserved under disjoint unions and surjective S-simulations.

8 For a similar result in the framework of modal logic see [4].
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Proof. For the direction from 1 to 2, suppose ϕ is a first-order sentence
equivalent to ∀x(St(ψ)[x/c]), where ψ is a temporal formula. We need to
check that ∀x(St(ψ)[x/c]) satisfies the closure conditions stated in 2. Let A

be the disjoint union of the family {Ai | i ∈ I} and assume that for every
i ∈ I Ai |= ∀x(St(ψ)[x/c]). Let a ∈ A. Then there is a unique i ∈ I with
a ∈ Ai. By assumption we get Ai |= ∀x(St(ψ)[x/c]), hence (Ai, a) |= St(ψ).
Moreover, it is easy to see that the identity function on Ai is a S-simulation
between Ai and A. It follows that (A, a) |= St(ψ). As a was chosen arbitrary,
this yields A |= ∀x(St(ψ)[x/c]), hence ϕ is shown to be preserved under
disjoint union. The other closure condition is proved similarly.

For the other direction assume that the first-order sentence ϕ is preserved
under disjoint unions and surjective S-simulations. Let ∆ be the set of
translations of temporal formulas. Define Σϕ as the following set of first-
order sentences:

Σϕ := {∀x(θ[x/c]) | θ ∈ ∆ &ϕ |= ∀x(θ[x/c])}.

Since ∆ is closed under finite conjunctions it is now sufficient to prove that
Σϕ |= ϕ; an application of compactness leads to the desired result.

Let A
′ be a model of Σϕ. Take A to be an ω-saturated elementary ex-

tension of A
′. For each a ∈ A set

∆a := {¬θ | θ ∈ ∆ & (A, a) |= ¬θ}.

Using the closure of ∆ under disjunctions it is easy to show that for ev-
ery a ∈ A the set ∆a ∪ {ϕ} is finitely satisfiable, and hence, by compact-
ness, satisfiable: Assume to the contrary that there is a ∈ A and sentences
¬θ1, . . . ,¬θn ∈ ∆a such that {ϕ} ∪ {¬θ1, . . . ,¬θn} has no model. It fol-
lows that ϕ |= ¬(¬θ1 ∧ · · · ∧ ¬θn). By logic we get ϕ |= θ1 ∨ · · · ∨ θn, hence
ϕ |= ∀x(θ1[x/c]∨· · ·∨θn[x/c]). As ∆ is closed under disjunctions, θ1∨· · ·∨θn

is in ∆, and therefore ∀x(θ1[x/c]∨· · ·∨θn[x/c]) in Σϕ. But the latter implies
A |= ∀x(θ1[x/c] ∨ · · · ∨ θn[x/c]) which contradicts the choice of the θi.

Now, for each a ∈ A we select a model (Ba, ba) such that (Ba, ba) |= ∆a

and (Ba, ba) |= ϕ. Without any restriction we may assume the models Ba

to be ω-saturated and their domains pairwise disjoint. From (Ba, ba) |= ∆a

we easily get (Ba, ba) =⇒∆ (A, a) for every a ∈ A. By ω-saturation of Ba

and A and by applying Lemma 3.4 it follows that (Ba, ba) ∼s (A, a), that
is, there is a S-simulation Za between Ba and A such that Zabaa. It is easy
to see that Z :=

⋃
a∈A Za defines a S-simulation between

⊎
a∈A Ba and A.

Moreover, the relation Z is surjective.
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We may now conclude as follows: By the choice of the models Ba we
get Ba |= ϕ for every a ∈ A. As ϕ is preserved under disjoint unions it
follows that

⊎
a∈A Ba |= ϕ, hence, by the preservation of ϕ under surjective

S-simulations: A |= ϕ, and, finally, A
′ |= ϕ.

References

[1] van Benthem, J. F. A. K., and J. Bergstra: “Logic of transition systems”, Journal

of Logic, Language and Information 3 (1995), 247–283.

[2] Chang, C. C., and H. J. Keisler: Model Theory. North-Holland, Amsterdam
1990.

[3] Kurtonina, N., and M. de Rijke: “Bisimulations for temporal logic”, Journal of

Logic, Language and Information 6 (1997), 403–425.

[4] de Rijke, M., and H. Sturm: “Global definability in basic modal logic”, in
H. Wansing, Essays on Non-classical Logic, World Scientific, London/Singapore
2001, 111–133.

[5] Sturm, H.: Modale Fragmente von Lωω und Lω1ω , PhD thesis, University of
Munich, CIS, Munich 1997.

Holger Sturm

Fachbereich Philosophie
Universität Konstanz
D-78457 Konstanz
holger.sturm@uni-konstanz.de

© 2002 by Nicolaus Copernicus University




