Anna Gomolińska

PARAINCONSISTENCY OF CREDIBILITY-BASED BELIEF STATES*

Abstract

In our approach credibility of information plays an important role in modeling of both belief state and belief change [4]. It turns out that the credibility-based consequence operators used to define the notion of belief state tolerate inconsistency under some conditions.

Keywords: parainconsistency, credibility of information, belief state.

1. Introduction

In [4] we proposed a general model of belief state and belief change, where both rationality of an agent as well as credibility of information were taken into account. In the present paper we develop some of the ideas, concerning the concept of belief state, presented there and discuss the problem of parainconsistency of such belief states.

It is hardly an exaggeration to say that our notion of belief state is credibility-based, while rationality, if understood along the standard lines, plays an auxiliary role only. It is a simple consequence of the fact that the consequence operators used to define a belief state are "credibility-oriented". Moreover, these operators tolerate inconsistency of sets of formulae, which is another interesting feature.

[^0]

Information and beliefs, viewed as sufficiently credible information, are represented by formulae of the classical propositional logic (PC). Starting with credibility of information, expressed in the form of pairs of real numbers attached to formulae, we arrive at credibility-based preference relations on formulae. Any such preference relation induces a consequence operator in the Tarski sense. Next, information is classified into three classes: highly credible information, lowly credible information, and the rest. Finally, a notion of belief state is defined by means of our consequence operators and the concept of high and low credibility. Belief states are pairs of sets of formulae that are closed under the consequence operators mentioned above and consist of sufficiently credible information. The first element of a belief state defined in such a way is called a belief set. It contains stronger beliefs and is a subset of the second element called a plausibility set. The plausibility set may contain weaker beliefs as well.

When information comes from several sources, it can happen that there is much evidence both for a considered fact as well as for its negation. As a consequence, both a piece of information and its negation may be highly (or at least not-lowly) credible to a given agent. On the other hand, contradictory statements like $p \wedge \neg p$ are not believed in general. Along the standard lines [17], a set of formulae X of a given language is parainconsistent (or, in other words, paraconsistent) if there is a formula α such that α and $\neg \alpha$ can be derived from it by means of a considered consequence operation but the set of all consequences of X is a proper subset of the set of all formulae. In our case we are faced with a credibility-based form of parainconsistency of an agent's state of beliefs. In the paper we consider this form of parainconsistency and investigate whether (and under what conditions if answered positively) it may be the case that (i) both a formula and its negation are highly credible; (ii) a formula is highly credible and its negation is not lowly credible; and (iii) neither a formula nor its negation are lowly credible. Similarly, we answer the question whether and under what conditions it may be the case that (i) both a formula and its negation belong to the same belief set; (ii) a formula belongs to a belief set, while its negation is a member of the corresponding plausibility set; (iii) both a formula and its negation are members of the same plausibility set. Finally, we obtain necessary conditions for belief and plausibility sets to be parainconsistent in our sense.

Section 2 contains preliminaries. Among others, we define a consequence operator which is based on a preference relation and which plays a fundamental role in defining of the notion of belief state. In Section 3 we present some notions concerning credibility of information, recall their properties

Parainconsistency of credibility-based belief states
given in [4], and also give new results useful or simply interesting from our standpoint. In particular, we recall such notions as pre-degree of credibility, credibility mapping, degree of credibility, credibility-based preference relation, and low and high credibility. In Section 4 we define a notion of belief state based on credibiity of information and investigate the question of parainconsistency. Final remarks are given in Section 5.

2. Preliminaries

Information and, in particular, beliefs are represented by formulae of the classical propositional logic (PC). Propositional letters are denoted by p, q with sub/superscripts if needed, propositional connectives by $\wedge, \vee, \rightarrow, \leftrightarrow$, and \neg, formulae, formed along the standard lines, by α, β, γ with sub/superscripts if needed, the set of all formulae by $F O R$, and the power set of a set X by $\mathcal{P}(X)$.

An operator $C: \mathcal{P}(F O R) \rightarrow \mathcal{P}(F O R)$ is a consequence operator in the Tarski sense if for any $X, Y \subseteq F O R, C$ is increasing (i.e., $X \subseteq C(X)$), monotonic $(C(X) \subseteq C(Y)$ if $X \subseteq Y)$, idempotent $(C(C(X)) \subseteq C(X))$, and compact $\left(C(X)=\bigcup\left\{C\left(X^{\prime}\right) \mid X^{\prime} \subseteq X \wedge \operatorname{card}\left(X^{\prime}\right)<\aleph_{0}\right\}\right)$. Cn denotes the classical consequence operator. Whenever convenient, $\alpha \in C n(X)$ and $X \vdash \alpha$ are used interchangeably, while TAUT stands for the set $C n(\emptyset)$ of all PCtautologies. co-TAUT denotes the set of all PC-countertautologies, that is:

$$
c o-T A U T=\{\alpha \in F O R \mid \neg \alpha \in T A U T\} .
$$

A set $X \subseteq F O R$ is C-closed if $C(X)=X$. It is absolutely (resp., traditionally) C-consistent iff $C(X) \neq F O R$ (resp., $\neg(\exists \alpha)(\alpha, \neg \alpha \in C(X)))$; otherwise X is absolutely (traditionally) C-inconsistent. ${ }^{1}$ Along the standard lines [17], sets of formulae traditionally C-inconsistent and absolutely C-consistent are called C-parainconsistent (or paraconsistent when looking from another perspective). An intersection $C_{1} \cap C_{2}$ of two consequence operators C_{1} and C_{2}, defined as

$$
\left(C_{1} \cap C_{2}\right)(X)=C_{1}(X) \cap C_{2}(X),
$$

is a consequence operator.
A relation $\preceq \subseteq X^{2}$ is a pre-ordering on X, while (X, \preceq) is a pre-ordered set if \preceq is reflexive and transitive. The corresponding relations \prec (strict

[^1]pre-ordering) and \approx on X are defined as usual, i.e., for any $x, y \in X$:
\[

$$
\begin{array}{ll}
x \prec y & \text { iff }
\end{array}
$$ \quad x \preceq y \wedge y \npreceq x . ~[\quad iff \quad x \preceq y \wedge y \preceq x . ~ \$
\]

Pre-orderings may be viewed as preference relations, where $x \preceq y$ (resp., $x \prec$ $y, x \approx y$) is read as ' y is preferred to x ' (' y is strictly preferred to x ', ' x and y are equally preferred'). Along the standard lines if \preceq is also antisymmetric, it is called partial ordering and (X, \preceq) is partially ordered. Partial orderings which are also connected (i.e., any two elements are comparable) are called total orderings. Note that \approx is the equality relation for partial orderings. An element $x \in X$ is the greatest (resp., least) in a partially ordered set (X, \preceq) iff $(\forall y \in X) y \preceq x$ (resp., $x \preceq y$).

Let $D=\left\{(x, y) \in[0,1]^{2} \mid x \leqslant y\right\}$, where $[0,1]$ is the unit interval and \leqslant is the natural total ordering of real numbers. Some pre-orderings on D are defined below.

$$
\begin{array}{lll}
\left(x_{1}, y_{1}\right) \preceq_{1}\left(x_{2}, y_{2}\right) & \text { iff } & x_{1} \leqslant x_{2} \wedge y_{1} \leqslant y_{2} . \\
\left(x_{1}, y_{1}\right) \preceq_{2}\left(x_{2}, y_{2}\right) & \text { iff } & x_{1}<x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1} \leqslant y_{2}\right) . \\
\left(x_{1}, y_{1}\right) \preceq_{3}\left(x_{2}, y_{2}\right) & \text { iff } & y_{1}<y_{2} \vee\left(y_{1}=y_{2} \wedge x_{1} \leqslant x_{2}\right) . \\
\left(x_{1}, y_{1}\right) \preceq_{4}\left(x_{2}, y_{2}\right) & \text { iff } & y_{1} \leqslant x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right) .
\end{array}
$$

Relation \preceq_{2} (resp., \preceq_{3}) is a total ordering known as the lexicographic (antilexicographic) ordering. Relations \preceq_{1} and \preceq_{4} are partial orderings. Let us note that $(1,1)$ (resp., $(0,0)$) is the greatest (least) element in $\left(D, \preceq_{i}\right)$ for $i=1, \ldots, 4$.

Proposition 2.1. For any $\left(x_{j}, y_{j}\right) \in D(j=1,2)$ and $i=1, \ldots, 4$, we have that:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \prec_{1}\left(x_{2}, y_{2}\right) \quad \text { iff } \quad\left(x_{1}<x_{2} \wedge y_{1} \leqslant y_{2}\right) \vee\left(x_{1} \leqslant x_{2} \wedge y_{1}<y_{2}\right) . \\
& \left(x_{1}, y_{1}\right) \prec_{2}\left(x_{2}, y_{2}\right) \quad \text { iff } \quad x_{1}<x_{2} \vee\left(x_{1}=x_{2} \wedge y_{1}<y_{2}\right) . \\
& \left(x_{1}, y_{1}\right) \prec_{3}\left(x_{2}, y_{2}\right) \quad \text { iff } \quad y_{1}<y_{2} \vee\left(y_{1}=y_{2} \wedge x_{1}<x_{2}\right) . \\
& \left(x_{1}, y_{1}\right) \prec_{4}\left(x_{2}, y_{2}\right) \quad \text { iff } \quad x_{1}<y_{1}=x_{2} \vee y_{1}<x_{2} \vee y_{1}=x_{2}<y_{2} . \\
& \text { If }\left(x_{1}, y_{1}\right) \neq(0,0) \quad \text { then }(0,0) \prec_{i}\left(x_{1}, y_{1}\right) .
\end{aligned}
$$

For any pre-ordering $\preceq \subseteq X^{2}$, we define two operators $\nabla_{\preceq}, \triangle_{\preceq}: \mathcal{P}(X) \rightarrow$ $\mathcal{P}(X)$ as follows:

$$
\begin{aligned}
& \nabla_{\preceq} Y=\{x \in X \mid(\exists y \in Y) y \preceq x\} . \\
& \triangle \preceq Y=\{x \in X \mid(\exists y \in Y) x \preceq y\} .
\end{aligned}
$$

Parainconsistency of credibility-based belief states

For simplicity, $\nabla_{\preceq} x$ stands for $\nabla_{\preceq}\{x\}$, and similarly for \triangle_{\preceq}. Some basic properties of $\nabla \preceq$ and \triangle_{\preceq} are given below. Easy proofs are left as exercises. Proposition 2.2. Let O stand for ∇_{\preceq} or \triangle_{\preceq}. For any $X_{1}, X_{2} \subseteq X$, we have that:

$$
\begin{aligned}
O\left(X_{1}\right)=\emptyset & \text { iff } \quad X_{1}=\emptyset . \\
\text { If } X_{1} \subseteq X_{2} & \text { then } O\left(X_{1}\right) \subseteq O\left(X_{2}\right) . \\
X_{1} & \subseteq O\left(X_{1}\right) . \\
O\left(O\left(X_{1}\right)\right) & \subseteq O\left(X_{1}\right) . \\
O\left(X_{1}\right) & =\bigcup\left\{O(x) \mid x \in X_{1}\right\} . \\
O\left(X_{1} \cup X_{2}\right) & =O\left(X_{1}\right) \cup O\left(X_{2}\right) . \\
O\left(X_{1} \cap X_{2}\right) & \subseteq O\left(X_{1}\right) \cap O\left(X_{2}\right) .
\end{aligned}
$$

Corollary 2.3. If $X=F O R$, then ∇_{\preceq} and $\triangle \preceq$ are consequence operators.

3. Credibility of information

In [4] we defined a pre-degree of credibility of information as a quantity (e.g., a number, a pair of numbers, an interval) describing initially how credible a considered piece of information is in a given situation. Such a quantity may be obtained as the result of some measurement, calculation or logical inference. In the next step pre-degrees are refined to satisfy some rationality postulates. In the present paper pre-degrees of credibility are elements of D, i.e. pairs of real numbers (x, y) such that $0 \leqslant x \leqslant y \leqslant 1$. This is a generalization of the following situation.
Example 3.1. In a group of $k(0<k)$ experts or sources of information, m experts state that α holds, while n experts state that $\neg \alpha$ holds in the sense that it is not the case that α holds. Assume that experts have consistent opinions, i.e., no one states that both α and its negation hold simultaneously. However, some experts may be indecisive, i.e., $m+n \leqslant k$. Credibility of α is initially assessed by two fractions $\frac{m}{k}$ and $\frac{n}{k}$ of positive and negative answers, respectively. Thus, $\left(\frac{m}{k}, 1-\frac{n}{k}\right)$ may be taken as the pre-degree of credibility of α. Similarly, the pre-degree of credibility of $\neg \alpha$ is $\left(\frac{n}{k}, 1-\frac{m}{k}\right)$.

From a rational point of view, degrees of credibility of information should satisfy some postulates. For instance, it is reasonable to require for logically equivalent formulae to be given the same degree of credibility. Therefore predegrees of credibility may need an appropriate adjustment. Let us consider the ordered sets $\left(D, \preceq_{i}\right)(i=1, \ldots, 4)$ defined in Section 2. Every mapping
$c r_{i}: F O R \rightarrow D$ satisfying the following postulates for any formulae α, β is called a credibility mapping and its values are referred to as credibility degrees:

(CR1)	If $\alpha \vdash \beta$, then $\quad c r_{i}(\alpha) \preceq_{i} c r_{i}(\beta)$.
(CR2)	If $\vdash \alpha$, then $\quad c r_{i}(\alpha)=(1,1)$.
(CR3)	If $\vdash \neg \alpha$, then $\quad c r_{i}(\alpha)=(0,0)$.

The constraints imposed on credibility by (CR1)-(CR3) are natural. Tautologies are credible to the highest degree as opposite to countertautologies. Logically equivalent pieces of information are equally credible by (CR1). Starting with pre-degrees, one can arrive at credibility degrees [4]. Henceforth we will consider such credibility mappings $c r_{i}$ that $c r_{i}(\alpha)=(x, y)$ iff $c r_{i}(\neg \alpha)=(1-y, 1-x)$.

Every $c r_{i}$ induces a preference (pre-ordering) relation on $F O R, \preceq_{c r_{i}}$, as follows:

$$
\alpha \preceq_{c r_{i}} \beta \quad \text { iff } \quad c r_{i}(\alpha) \preceq_{i} c r_{i}(\beta) .
$$

Relations $\approx_{c r_{i}}$ and $\prec_{c r_{i}}$ are defined along the standard lines. Henceforth ∇_{i} will stand for $\nabla_{\preceq_{c r_{i}}}$ for the sake of simplicity, and analogously for $\triangle_{\preceq_{c r_{i}}}$.
Proposition 3.2. For any $X \subseteq F O R$ and $\alpha, \beta \in F O R$, we have that:

$$
\begin{aligned}
& \alpha \approx_{c r_{i}} \beta \text { iff } \quad c r_{i}(\alpha)=c r_{i}(\beta) . \\
& \alpha \prec_{c r_{i}} \beta \text { iff } \quad c r_{i}(\alpha) \prec_{i} c r_{i}(\beta) . \\
& \text { If } \vdash \alpha \leftrightarrow \beta, \text { then } \alpha \approx_{c r_{i}} \beta . \\
& \alpha \preceq_{c r_{i}} \beta \text { iff } \neg \beta \preceq_{c r_{i}} \neg \alpha, \text { for } i=1,4 . \\
& \alpha \preceq c r_{2} \beta \text { iff } \neg \beta \preceq_{c r_{3}} \neg \alpha . \\
& \text { If } \vdash \alpha, \text { then }(\forall \beta)\left(\beta \preceq_{c r_{i}} \alpha \wedge \beta \approx_{c r_{i}}(\alpha \wedge \beta)\right) . \\
& \text { If } \vdash \neg \alpha, \text { then }(\forall \beta)\left(\alpha \preceq_{c r_{i}} \beta \wedge \beta \approx_{c r_{i}}(\alpha \vee \beta)\right) . \\
& \text { If } \alpha \vdash \beta,\text { then } \forall \gamma) \alpha \wedge \gamma \preceq c r_{i} \beta \wedge \gamma . \\
& \text { If } X \neq \emptyset, \text { then } T A U T \subseteq \nabla_{i} X \wedge c o-T A U T \subseteq \triangle_{i} X . \\
& \nabla_{i} c o-T A U T=F O R=\triangle_{i} T A U T . \\
& \text { If } X \neq \emptyset, \text { then } \triangle \triangle_{i} \nabla_{i} X=F O R=\nabla_{i} \triangle_{i} X . \\
& \nabla_{i} X=F O R \text { iff } \quad c o-T A U T \cap \nabla_{i} X \neq \emptyset .
\end{aligned}
$$

Proof. We only prove the last property. Assume that there is a countertautology $\alpha \in \nabla_{i} X$. Hence $c r_{i}(\alpha)=(0,0)$ and there is $\beta \in X$ such that $\beta \preceq c r_{i} \alpha$. Thus $c r_{i}(\beta)=(0,0)$ and $(\forall \gamma) \beta \preceq c r_{i} \gamma$. In other words, $F O R \subseteq \nabla_{i} X$. The remaining part is obvious.

It is easy to see that operators ∇_{i} tolerate ∇_{i}-inconsistency in the sense that there exist ∇_{i}-parainconsistent sets of formulae.
Example 3.3. Let $X=\left\{q_{1}, q_{2}\right\}, c r_{i}\left(q_{1}\right)=(0.5,0.6), c r_{i}\left(q_{2}\right)=(0.4,0.4)$, and $c r_{i}(p)=(0.5,0.6)(i=1, \ldots, 4)$. Hence $c r_{i}(\neg p)=(0.4,0.5)$. Clearly, $\nabla_{i} X \neq F O R$. On the other hand, $p, \neg p \in \nabla_{i} X$.

Given credibility of information, one may have to decide whether a particular piece of information is highly or lowly credible. The concepts of high and low credibility are subjective and change with agents, situation or domain of application. ${ }^{2}$ In our model we distinguish three classes of information: highly credible information, lowly credible information, and the rest. The rules for decision making are simple: a piece of information is highly (resp., lowly) credible if its degree of credibility is higher (lower) than some threshold. ${ }^{3}$ A formula is highly (resp., lowly) credible in case the information represented by the formula is highly (lowly) credible.

Let $l_{i}(\alpha)$ (resp., $h_{i}(\alpha)$) denote that α is lowly (highly) credible relative to the ordering $\preceq_{i}(i=1, \ldots, 4)$ and k_{i} stand for h_{i} or l_{i}. Given a pair of threshold values $0 \leqslant t_{1} \leqslant t_{2} \leqslant 1$, low and high credibility of a formula may be defined as follows:

$$
l_{i}(\alpha) \quad \text { iff } \quad c r_{i}(\alpha) \prec_{i}\left(t_{1}, t_{2}\right) \text { and } h_{i}(\alpha) \quad \text { iff } \quad\left(t_{1}, t_{2}\right) \preceq_{i} c r_{i}(\alpha) .
$$

Some basic properties of the notions just introduced are given below.
Proposition 3.4. For any formulae α, β, we have that:

$$
\begin{array}{rllll}
\text { If } \alpha \preceq_{c r_{i}} \beta \wedge l_{i}(\beta), & \text { then } & l_{i}(\alpha) . & & \\
\text { If } \alpha \vdash \beta & \wedge l_{i}(\beta), & \text { then } & l_{i}(\alpha) . & \\
\text { If } \alpha \preceq_{c r_{i}} \beta \wedge h_{i}(\alpha), & \text { then } & h_{i}(\beta) . & & \\
\text { If } \alpha \vdash \beta \wedge h_{i}(\alpha), & \text { then } & h_{i}(\beta) . & \\
\text { If } \alpha \approx_{c r_{i}} \beta, & \text { then } & \left(k_{i}(\alpha)\right. & \text { iff } & \left.k_{i}(\beta)\right) . \\
\text { If } \vdash \alpha \leftrightarrow \beta, & \text { then } & \left(k_{i}(\alpha)\right. & \text { iff } & \left.k_{i}(\beta)\right) . \\
\text { If } l_{i}(\alpha) \wedge h_{i}(\beta), & \text { then } & \alpha \prec_{c r_{i}} \beta . & \\
\text { If } i=2,3, & \text { then } & h_{i}(\alpha) \quad \text { iff } & \neg l_{i}(\alpha) .
\end{array}
$$

The proof is easy and hence omitted.

[^2]There arises a problem: Whether and under what conditions is there a formula α such that
(1) $h_{i}(\alpha)$ and $h_{i}(\neg \alpha)$;
(2) $h_{i}(\alpha)$ and $\neg l_{i}(\neg \alpha) ;{ }^{4}$
(3) neither $l_{i}(\alpha)$ nor $l_{i}(\neg \alpha)$?

If (1) (resp., (2), and (3)) holds, then the set $A_{i}=\left\{(x, y) \in D \mid\left(t_{1}, t_{2}\right) \preceq_{i}\right.$ $\left.(x, y) \wedge\left(t_{1}, t_{2}\right) \preceq_{i}(1-y, 1-x)\right\}\left(\right.$ resp.,$B_{i}=\left\{(x, y) \in D \mid\left(t_{1}, t_{2}\right) \preceq_{i}\right.$ $\left.(x, y) \wedge(1-y, 1-x) \nprec_{i}\left(t_{1}, t_{2}\right)\right\}$, and $C_{i}=\left\{(x, y) \in D \mid(x, y) \nprec_{i}\left(t_{1}, t_{2}\right) \wedge\right.$ $\left.\left.(1-y, 1-x) \nprec_{i}\left(t_{1}, t_{2}\right)\right\}\right)$ is non-empty. The converse, however, is not true in general since the co-domain $c r_{i}(F O R)$ is a proper subset of $[0,1]$. The following equivalences hold.

Proposition 3.5.

$$
\begin{array}{lll}
A_{1} \neq \emptyset & \text { iff } & B_{1} \neq \emptyset \quad \text { iff } \quad t_{2} \leqslant 1-t_{1} \\
C_{1} \neq \emptyset & \text { iff } & t_{1}<0.5 \vee t_{2}<1 \vee t_{2} \leqslant 1-t_{1} \\
A_{3}=B_{2}=B_{3}= & C_{2} \neq \emptyset & \text { iff } \\
C_{3} \neq \emptyset & \text { iff } & t_{2}<0.5 \vee t_{2} \leqslant 1-t_{1} \\
& A_{4} \neq \emptyset & \text { iff } \\
B_{2} \leqslant 0.5 \vee t_{2}=1-t_{1} \\
B_{4} \neq \emptyset & \text { iff } & t_{1}<0.5 \vee t_{1}=t_{2} \leqslant 0.5 \\
C_{4} \neq \emptyset & \text { iff } & t_{1}<1 \vee t_{1}=t_{2} \leqslant 0.5
\end{array}
$$

Proof. Leaving the remaining cases as exercises, we only show that $B_{1} \neq \emptyset$ iff $t_{2} \leqslant 1-t_{1}$. Let us note that $\left(t_{1}, t_{2}\right) \preceq_{1}(x, y)$ and $(1-y, 1-x) \prec_{1}\left(t_{1}, t_{2}\right)$ iff $t_{1} \leqslant x, t_{2} \leqslant y$, and neither $\left(1-y<t_{1} \wedge 1-x \leqslant t_{2}\right)$ nor $\left(1-y \leqslant t_{1} \wedge 1-x<\right.$ t_{2}). After necessary transformations we obtain that $\left(t_{1}, t_{2}\right) \preceq_{1}(x, y)$ and $(1-y, 1-x) \nprec_{1}\left(t_{1}, t_{2}\right)$ iff $t_{1} \leqslant x<1-t_{2} \wedge t_{2} \leqslant y$ or $t_{1} \leqslant x \wedge t_{2} \leqslant y<1-t_{1}$ or $t_{1} \leqslant x=1-t_{2} \wedge t_{2} \leqslant y=1-t_{1}$. There are $\operatorname{such}(x, y) \in D$ iff $t_{2} \leqslant 1-t_{1}$.

Now we can give a partial answer ${ }^{5}$ to the problem formulated above.

[^3]Corollary 3.6. Let m_{i} stand for h_{i} or $\neg l_{i}$.

$$
\begin{aligned}
& \text { If }(\exists \alpha)\left(h_{1}(\alpha) \wedge m_{1}(\neg \alpha)\right), \text { then } t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(\neg l_{1}(\alpha) \wedge \neg l_{1}(\neg \alpha)\right), \text { then } \\
& t_{1}<0.5 \vee t_{2}<1 \vee t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(h_{2}(\alpha) \wedge m_{2}(\neg \alpha)\right), \text { then } \\
& t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(\neg l_{2}(\alpha) \wedge \neg l_{2}(\neg \alpha)\right), \text { then } \\
& t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(h_{3}(\alpha) \wedge m_{3}(\neg \alpha)\right), \text { then } t_{2}<1 \vee t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(\neg l_{3}(\alpha) \wedge \neg l_{3}(\neg \alpha)\right), \text { then } \\
& t_{2}<1 \vee t_{2} \leqslant 1-t_{1} . \\
& \text { If }(\exists \alpha)\left(h_{4}(\alpha) \wedge h_{4}(\neg \alpha)\right), \text { then } t_{2} \leqslant 0.5 \vee t_{2}=1-t_{1} . \\
& \text { If }(\exists \alpha)\left(h_{4}(\alpha) \wedge \neg l_{4}(\neg \alpha)\right), \text { then } \\
& t_{1}<0.5 \vee t_{1}=t_{2} \leqslant 0.5 . \\
& \text { If }(\exists \alpha)\left(\neg l_{4}(\alpha) \wedge \neg l_{4}(\neg \alpha)\right), \text { then } \\
& t_{1}<1 \vee t_{1}=t_{2} \leqslant 0.5 .
\end{aligned}
$$

For any set of formulae X, let $l_{i}(X)=\left\{\alpha \in X \mid l_{i}(\alpha)\right\}$ (the set of lowly credible members of X) and $h_{i}(X)=\left\{\alpha \in X \mid h_{i}(\alpha)\right\}$ (the set of highly credible members of $X)$. Note that $X-l_{i}(X)=X-l_{i}(F O R)$. Below we relate the notions of low and high credibility to $C n, \nabla_{i}$, and \triangle_{i}. As earlier k_{i} stands for h_{i} or l_{i}.

Proposition 3.7. For any sets of formulae X, Y, we have that:

$$
\begin{aligned}
& k_{i} k_{i}(X)=k_{i}(X) . \\
& k_{i}(X \cap Y)=k_{i}(X) \cap k_{i}(Y), \text { and similarly for } \cup . \\
& \triangle_{i} l_{i}(F O R)=l_{i}(F O R) \wedge \nabla_{i} h_{i}(F O R)=h_{i}(F O R) . \\
& l_{i} \triangle_{i} l_{i}(X)=\triangle_{i} l_{i}(X) \subseteq l_{i} \triangle_{i}(X) . \\
& h_{i} \nabla_{i} h_{i}(X)=\nabla_{i} h_{i}(X) \subseteq h_{i} \nabla_{i}(X) . \\
& \nabla_{i}\left(X-l_{i}(F O R)\right) \subseteq \nabla_{i} X-l_{i}(F O R) . \\
& h_{i}\left(C n\left(h_{i}(X)\right)\right) \subseteq h_{i}(C n(X)) . \\
&\left(C n \cap \nabla_{i}\right)\left(X-l_{i}(F O R)\right) \subseteq\left(C n \cap \nabla_{i}\right)(X)-l_{i}(F O R) . \\
&\left(C n \cap \nabla_{i}\right) h_{i}(X) \subseteq h_{i}\left(C n \cap \nabla_{i}\right)(X) . \\
& h_{i}(F O R)=F O R \quad \text { iff } \quad l_{i}(F O R)=\emptyset \quad \text { iff } \quad t_{1}=t_{2}=0 .
\end{aligned}
$$

Proof. We only prove the last property. ${ }^{6}$ First, let us note that $h_{i}(F O R) \cap$ $l_{i}(F O R)=\emptyset$. Hence if $h_{i}(F O R)=F O R$, then $l_{i}(F O R)=\emptyset$. Now suppose that $l_{i}(F O R)=\emptyset$, i.e., $(\forall \alpha) c r_{i}(\alpha) \nprec_{i}\left(t_{1}, t_{2}\right)$. In particular if $\alpha \in c o-T A U T$ and hence $c r_{i}(\alpha)=(0,0)$, then $(*)(0,0) \not \varliminf_{i}\left(t_{1}, t_{2}\right)$. Let $i=2,3$. Since \preceq_{i} is total, $\left(t_{1}, t_{2}\right) \preceq_{i}(0,0)$. Hence $t_{1}=t_{2}=0$. If $i=1$, then $(*)$ is equivalent

[^4]
to the disjunction: $t_{1}<0$ or $t_{2}<0$ or $t_{1}=t_{2}=0$. Hence $t_{1}=t_{2}=0$. If $i=4$, then $(*)$ is equivalent to the disjunction: $t_{1}=t_{2}=0$ or $t_{1}<0$. Hence $t_{1}=t_{2}=0$ as earlier. Now if $t_{1}=t_{2}=0$, then $h_{i}(c o-T A U T)=c o-T A U T$. Hence $h_{i}(F O R)=F O R$.

4. Belief states

Many various models for representing states of beliefs are known in the areas of logic, philosophy, and artificial intelligence, depending on the perspective taken by the author or the intended area of application. For lack of space, instead of giving an exhaustive survey of the proposals, let us mention belief sets, belief bases, hypertheories, and pairs of belief sets.

As before it is assumed that beliefs are represented by formulae of a given language. Along the standard lines, belief sets are C-closed sets of formulae, where C is a logical consequence operator. In the AGM theory [1], it is assumed that the underlying logic contains the classical one. In modal logics approaches [10, 11], C is the consequence operator of an epistemic/doxastic modal logic. In nonmonotonic approaches, C may be the consequence operator of PC like in the autoepistemic logic [14, 15], the consequence operator of the classical first-order logic like in the default logic [18] or the consequence operator of a modal logic like in nonmonotonic modal logics [13, 20]. In nonmonotonic approaches however, being C-closed is a necessary but not sufficient condition for a set of formulae to represent beliefs. Indeed, belief sets based on a set of premises I called extensions (or expansions) of I are defined as C-closed sets of formulae satisfying some groundedness and stability conditions. Whenever direct or indirect practical applications are considered, belief states are represented by finite sets of formulae called belief bases $[3,6,8,12,16]$. In this case there arises a problem of independence of the results of operations on belief bases from the syntax. In [21] belief states of a rational agent are represented by hypertheories to grasp how doxastic dispositions of a rational agent change. In [5] a nonmonotonic framework for representing belief states in the presence of incomplete knowledge is proposed. Belief states are represented by $A E 2$ extensions which are pairs of sets of formulae, where the first (resp., second) set consists of all beliefs (disbeliefs) ${ }^{7}$ of a rational agent in a given situation. The first set is $C n$-closed, while the second one is closed under a rejection consequence $C n^{\prime}$. Both have to satisfy some groundedness and stability conditions in the spirit of autoepistemic logic.

[^5]Parainconsistency of credibility-based belief states

In the present approach the main stress is laid on credibility of information. From this standpoint beliefs may be stronger or weaker. In low-risk situations we usually use beliefs of both types, while in risky cases we rather trust our stronger beliefs only. It can also be the case that normally we use stronger beliefs, while in problematic situations we also use weaker beliefs to enhance our reasoning capabilities or decision making. Keeping with the common terminology [19, 22], the stronger beliefs are simply called beliefs, while the weaker ones are referred to as plausible information. Belief states are represented by pairs of sets of formulae, where the first (resp., second) set called a belief set (plausibility set) consists of all believed (plausible) information. ${ }^{8}$ In our approach two aspects are combined: rationality of an agent and credibility of information. In [4] we consider three kinds of consequence operators: (1) $C n$; (2) ∇_{i}; and (3) $C n \cap \nabla_{i}(i=1, \ldots, 4)$. The first operator yields purely rational consequences of premises, operators of the second kind yield consequences which are at least as credible as some premise, while operators of the last kind take into account both rationality and credibility. As traditional and absolute $C n$-consistency coincide, there are no $C n$-parainconsistent sets of formulae. For $C n$-inconsistent sets of formulae, $C n \cap \nabla_{i}=\nabla_{i}$. In the present paper we will only take into account operators of the second kind. Given a set of premises I and $i=1, \ldots, 4$, the belief state based on I is a pair $B_{i}(I)=\left(B S_{i}(I), P S_{i}(I)\right)$, where $P S_{i}(I)$ (the plausibility set) and $B S_{i}(I) \subseteq P S_{i}(I)$ (the belief set) are defined as follows:

$$
B S_{i}(I)=\nabla_{i} h_{i}(I) \text { and } P S(I)=\nabla_{i}\left(I-l_{i}(F O R)\right)
$$

Informally speaking, beliefs have to be at least as credible as some highly credible premises and plausible information has to be at least as credible as some non-lowly credible premises. In this way, beliefs are highly credible and plausible information is not lowly credible. Given a belief state $B_{i}(I)$ as above, we will say that the plausibility set $P S_{i}(I)$ is corresponding for $B S_{i}(I)$, and similarly for the belief set. Let S_{i} stand for $B S_{i}(I)$ or $P S_{i}(I)$.

Proposition 4.1. For any formulae α, β, we have that:

1. If $\alpha \vdash \beta \wedge \alpha \in S_{i}$, then $\beta \in S_{i}$.
2. If $\vdash \alpha \leftrightarrow \beta$, then $\alpha \in S_{i} \quad$ iff $\beta \in S_{i}$.
3. $S_{i}=F O R$ iff $S_{i} \cap c o-T A U T \neq \emptyset$ iff
$t_{1}=t_{2}=0$ and $(\exists \beta \in I) c r_{i}(\beta)=(0,0)$.
[^6]Proof. We only prove that $B S_{i}(I)=F O R$ iff $t_{1}=t_{2}=0$ and $(\exists \beta \in$ $I) c r_{i}(\beta)=(0,0)$, for a given $c r_{i}$ and a threshold $\left(t_{1}, t_{2}\right)$. The equivalence

$$
B S_{i}(I)=F O R \quad \text { iff } \quad B S_{i}(I) \cap \operatorname{co-TAUT} \neq \emptyset
$$

follows from Proposition 3.2. Thus if $B S_{i}(I)=F O R$, then $(\exists \alpha) \alpha \wedge \neg \alpha \in$ $B S_{i}(I)$. Clearly, $c r_{i}(\alpha \wedge \neg \alpha)=(0,0)$. Hence there is $\beta \in I$ such that $h_{i}(\beta)$ and $\beta \preceq_{c r_{i}} \alpha \wedge \neg \alpha$, i.e., $\left(t_{1}, t_{2}\right) \preceq_{i} c r_{i}(\beta)=(0,0)$. Thus $t_{1}=t_{2}=0$ and there is $\beta \in I$ such that $c r_{i}(\beta)=(0,0)$. If $t_{1}=t_{2}=0$ and $(\exists \beta \in I) c r_{i}(\beta)=(0,0)$, then $h_{i}(F O R)=F O R$ by Proposition 3.7 and $(\exists \alpha) \alpha \wedge \neg \alpha \in \nabla_{i} I$. Finally $B S_{i}(I)=\nabla_{i} h_{i}(I)=\nabla_{i} I=F O R$.

Roughly speaking, property 1 (resp., 2) states that belief and plausibility sets are closed under direct derivation (equivalence) in PC. According to 3, belief and plausibility sets based on a set of premises I are either both absolutely ∇_{i}-consistent or both inconsistent in this sense. Moreover, they are inconsistent iff the threshold is $(0,0)$ and so is the degree of credibility of some premise.

Below we formulate the necessary and sufficient conditions for (1) both a formula and its negation to be in a belief set $B S_{i}(I) ;(2)$ a formula to be in $B S_{i}(I)$ and its negation to be in the corresponding plausibility set $P S_{i}(I)$; (3) both a formula and its negation to be in $P S_{i}(I)$. In other words, the conditions are necessary and sufficient for $B S_{i}(I)$ (resp., $P S_{i}(I)$) to be traditionally ∇_{i}-inconsistent in the case (1) (resp., (3)). Clearly, (1) and (2) are special cases of (3) since $B S_{i}(I) \subseteq P S_{i}(I)$. Needless to say, necessary (resp., sufficient) conditions for ∇_{i}-inconsistency of $P S_{i}(I)\left(B S_{i}(I)\right)$ remain necessary (sufficient) for $B S_{i}(I)\left(P S_{i}(I)\right)$ as well.

Proposition 4.2. For any formula α, we have that: ${ }^{9}$

1. $\alpha, \neg \alpha \in B S_{i}(I)$ iff $(\exists \beta, \gamma \in I)\left(h_{i}(\beta) \wedge h_{i}(\gamma)\right.$ and $\beta \preceq_{c r_{i}} \alpha$ and $\left.\gamma \preceq c r_{i} \neg \alpha\right)$ iff $h_{i}(I) \cap \triangle_{i} \alpha \neq \emptyset$ and $h_{i}(I) \cap \triangle_{i} \neg \alpha \neq \emptyset$.
2. $\alpha \in B S_{i}(I)$ and $\neg \alpha \in P S_{i}(I)$ iff $(\exists \beta, \gamma \in I)\left(h_{i}(\beta)\right.$ and $\wedge \neg l_{i}(\gamma)$ and $\beta \preceq_{c r_{i}} \alpha$ and $\gamma \preceq_{c r_{i}} \neg \alpha$) iff $h_{i}(I) \cap \triangle_{i} \alpha \neq \emptyset$ and $\left(I \cap \triangle_{i} \neg \alpha\right)-l_{i}(F O R) \neq \emptyset$.
3. $\alpha, \neg \alpha \in P S_{i}(I) \quad$ iff $\quad(\exists \beta, \gamma \in I)\left(\neg l_{i}(\beta)\right.$ and $\neg l_{i}(\gamma)$ and $\beta \preceq_{c r_{i}} \alpha$ and $\left.\gamma \preceq_{c r_{i}} \neg \alpha\right)$ iff $\left(I \cap \triangle_{i} \alpha\right)-l_{i}(F O R) \neq \emptyset$ and $\left(I \cap \triangle_{i} \neg \alpha\right)-l_{i}(F O R) \neq \emptyset$.

The proof is left as an exercise.

[^7]Parainconsistency of credibility-Based belief states

Despite of the elegant form of the above conditions and their sufficiency, what we would rather like to have is a characterization in terms of the threshold values t_{1} and t_{2}. It is interesting that the obtained conditions are the same as in Corollary 3.6. They are necessary but not sufficient, unfortunately. As earlier S_{i} stands for $B S_{i}(I)$ or $P S_{i}(I)$.
Proposition 4.3. 1. If $(\exists \alpha)\left(\alpha \in B S_{1}(I) \wedge \neg \alpha \in S_{1}\right)$, then $t_{2} \leqslant 1-t_{1}$.
2. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{1}(I)\right)$, then $t_{1}<0.5 \vee t_{2}<1 \vee t_{2} \leqslant 1-t_{1}$.
3. If $(\exists \alpha)\left(\alpha \in B S_{2}(I) \wedge \neg \alpha \in S_{2}\right)$, then $t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1}$.
4. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{2}(I)\right)$, then $t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1}$.
5. If $(\exists \alpha)\left(\alpha \in B S_{3}(I) \wedge \neg \alpha \in S_{3}\right)$, then $t_{2}<1 \vee t_{2} \leqslant 1-t_{1}$.
6. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{3}(I)\right)$, then $t_{2}<1 \vee t_{2} \leqslant 1-t_{1}$.
7. If $(\exists \alpha)\left(\alpha, \neg \alpha \in B S_{4}(I)\right)$, then $t_{2} \leqslant 0.5 \vee t_{2}=1-t_{1}$.
8. If $(\exists \alpha)\left(\alpha \in B S_{4}(I) \wedge \neg \alpha \in P S_{4}(I)\right)$, then $t_{1}<0.5 \vee t_{1}=t_{2} \leqslant 0.5$.
9. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{4}(I)\right)$, then $t_{1}<1 \vee t_{1}=t_{2} \leqslant 0.5$.

Proof. Since the proof is technical and rather long, we show its idea only. Let us consider, e.g., the third condition for $S_{2}=B S_{2}(I)$. Assume there is a formula α such that $\alpha, \neg \alpha \in B S_{2}(I)$. By Proposition 4.2, there are $\beta_{1}, \beta_{2} \in I$ such that $h_{2}\left(\beta_{j}\right)(j=1,2), \beta_{1} \preceq_{c r_{2}} \alpha$, and $\beta_{2} \preceq_{c r_{2}} \neg \alpha$. Let $c r_{2}(\alpha)=(x, y)$ (hence $\left.c r_{2}(\neg \alpha)=(1-y, 1-x)\right)$ and $c r_{2}\left(\beta_{j}\right)=\left(x_{j}, y_{j}\right)$. One can check that there are $(x, y),\left(x_{j}, y_{j}\right) \in D(j=1,2)$ such that $\left(t_{1}, t_{2}\right) \preceq_{2}\left(x_{j}, y_{j}\right)$, $\left(x_{1}, y_{1}\right) \preceq_{2}(x, y)$, and $\left(x_{2}, y_{2}\right) \preceq_{2}(1-y, 1-x)$ iff $t_{1}<0.5$ or $t_{2} \leqslant 1-t_{1}$. Hence our condition follows.

From Propositions 4.1 and 4.3 we obtain the necessary conditions for $B S_{i}(I)$ (or equivalently $P S_{i}(I)$) to be absolutely ∇_{i}-consistent and a formula α to exist, where (1) $\alpha, \neg \alpha \in B S_{i}(I)$; (2) $\alpha \in B S_{i}(I)$ and $\neg \alpha \in P S_{i}(I)$; (3) $\alpha, \neg \alpha \in P S_{i}(I)$. In other words, the conditions are necessary for $\nabla_{i^{-}}$ parainconsistency of $B S_{i}(I)$ (resp., $P S_{i}(I)$) in the case (1) (resp., (3)). For simplicity, let Ψ_{i} be $(\forall \beta \in I)(0,0) \prec_{i} c r_{i}(\beta)(i=1, \ldots, 4)$ and $\Phi_{j}(j=1$, $\ldots, 9)$ be the necessary conditions from Proposition 4.3 , respectively. ${ }^{10}$
Corollary 4.4. If $B S_{i}(I) \neq F O R(i=1, \ldots, 4)$, then the following conditions hold:

1. If $(\exists \alpha)\left(\alpha \in B S_{1}(I) \wedge \neg \alpha \in S_{1}\right)$, then
$0=t_{1}<t_{2} \vee t_{2} \leqslant 1-t_{1}<1 \vee\left(\Phi_{1} \wedge \Psi_{1}\right)$.

[^8]2. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{1}(I)\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1}<0.5 \vee 0<t_{1} \leqslant t_{2}<1 \vee\left(\Phi_{2} \wedge \Psi_{1}\right)$.
3. If $(\exists \alpha)\left(\alpha \in B S_{2}(I) \wedge \neg \alpha \in S_{2}\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1}<1 \vee\left(\Phi_{3} \wedge \Psi_{2}\right)$.
4. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{2}(I)\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1}<0.5 \vee t_{2} \leqslant 1-t_{1}<1 \vee\left(\Phi_{4} \wedge \Psi_{2}\right)$.
5. If $(\exists \alpha)\left(\alpha \in B S_{3}(I) \wedge \neg \alpha \in S_{3}\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1} \leqslant t_{2}<1 \vee t_{2} \leqslant 1-t_{1}<1 \vee\left(\Phi_{5} \wedge \Psi_{3}\right)$.
6. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{3}(I)\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1} \leqslant t_{2}<1 \vee t_{2} \leqslant 1-t_{1}<1 \vee\left(\Phi_{6} \wedge \Psi_{3}\right)$.
7. If $(\exists \alpha)\left(\alpha, \neg \alpha \in B S_{4}(I)\right)$, then
$0=t_{1}<t_{2} \leqslant 0.5 \vee\left(t_{1}=0 \wedge t_{2}=1\right) \vee 0<t_{1} \leqslant t_{2} \leqslant 0.5 \vee$ $t_{2}=1-t_{1}<1 \vee\left(\Phi_{7} \wedge \Psi_{4}\right)$.
8. If $(\exists \alpha)\left(\alpha \in B S_{4}(I) \wedge \neg \alpha \in P S_{4}(I)\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1}<0.5 \vee 0<t_{1}=t_{2} \leqslant 0.5 \vee\left(\Phi_{8} \wedge \Psi_{4}\right)$.
9. If $(\exists \alpha)\left(\alpha, \neg \alpha \in P S_{4}(I)\right)$, then $0=t_{1}<t_{2} \vee 0<t_{1}<1 \vee 0<t_{1}=t_{2} \leqslant 0.5 \vee\left(\Phi_{9} \wedge \Psi_{4}\right)$.

Except for the conditions of the form $\Phi_{j} \wedge \Psi_{i}$ not discussed here for the sake of simplicity, the remaining ones may be classified into several groups. (a) The conditions, where $t_{1}=0$ (i.e., $\left(t_{1}=0 \wedge t_{2}=1\right), 0=t_{1}<t_{2}$, and $0=t_{1}<t_{2} \leqslant 0.5$) seem to be unintuitive from the common-sense standpoint. (b) According to the conditions $0<t_{1} \leqslant t_{2} \leqslant 0.5$ and $0<t_{1}=t_{2} \leqslant 0.5$ (cases 7-9), the threshold values should be relatively low which is not very promising. In the most optimistic case $t_{1}=t_{2}=0.5$. (c) The condition $0<t_{1}<0.5$ (cases $2-4$, and 8) requires that t_{1} be fairly low but, on the other hand, t_{2} may be arbitrary (i.e., $t_{1} \leqslant t_{2} \leqslant 1$). (d) The conditions $t_{2} \leqslant 1-t_{1}<1$ and $t_{2}=1-t_{1}<1$ (cases 1 and $3-7$) form yet another class. In this case $t_{1}=0.5-a$ and $t_{2} \leqslant 0.5+a$ for some $0 \leqslant a<0.5$. Hence the distance between t_{1} and t_{2} should not be greater than $2 a$. Intuitively, the situation is realistic, especially for small a, and it should be no particular problems with finding parainconsistent belief and plausibility sets. (e) The last class considered here consists of the conditions $0<t_{1} \leqslant t_{2}<1$ and $0<t_{1} \leqslant t_{2} \leqslant 1$ (cases $2,5,6$, and 9$)$. Here it should be easy to find parainconsistent belief states since the terms imposed on t_{1} and t_{2} are indeed minimal.

Parainconsistency of credibility-based belief states

5. Summary

The aim of the paper was to show that the situation, where a belief state is parainconsistent in the sense that its belief and/or plausibility sets are C parainconsistent, is natural if the consequence operator C takes into account credibility of information like the operators $\nabla_{i}(i=1, \ldots, 4)$ do. Indeed, the necessary conditions for belief and plausibility sets to be ∇_{i}-parainconsistent obtained above can be satisfied in a fairly large number of cases.

Since ∇_{i} tolerates inconsistency (in the sense that there exist ∇_{i}-parainconsistent sets of formulae) and for any formulae α, β, we have that $c r_{i}(\alpha \rightarrow$ $(\beta \rightarrow \alpha))=(1,1)$, operator ∇_{i} is not closed under the adjunction rule:

$$
\frac{\alpha, \beta}{\alpha \wedge \beta}
$$

It is easy to give an informal example justifying this statement, however, systematic considerations are postponed to a separate paper.
Example 5.1. Let $p_{i}(i=1,2)$ represent the information that 'Skier S_{i} wins the competition.' Suppose each p_{i} is highly credible. On the other hand, $p_{1} \wedge p_{2}$ is almost incredible.

Another problem worthy of consideration is the problem of change of (possibly parainconsistent) belief states and the threshold values.

References

[1] Alchourrón, C.E., P. Gärdenfors, and D. Makinson: "On the logic of theory change: Partial meet contraction and revision functions", Journal of Symbolic Logic 50, 1985, 510-530.
[2] Davey, B. A., and H. A. Priestley: Introduction to Lattices and Order, Cambridge University Press, 1990.
[3] Fuhrmann, A.: "Theory contraction through base contraction", Journal of Philosophical Logic 20, 1991, 175-203.
[4] Gomolińska, A.: "Credibility of information for modeling belief state and its change", Fundamenta Informaticae 34, 1998, 33-51.
[5] Gomolińska, A.: "On the logic of acceptance and rejection", Studia Logica 60, 1998, 233-251.
[6] Grahne, G., A. O. Mendelzon, and P.Z. Revesz: "Knowledgebase transformations". Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1992, 246-260.
[7] Gärdenfors, P. (ed.): Belief Revision, Cambridge University Press, 1992.
[8] Hansson, S. O.: Belief Base Dynamics, Doctoral Dissertation, Uppsala University, 1991.
[9] Hansson, S. O., and W. Rabinowicz (eds.): Logic for a Change. Essays Dedicated to Sten Lindström on the Occasion of His Fiftieth Birthday, Uppsala Prints and Preprints in Philosophy 9, 1995.
[10] Halpern, J. Y., and Y. Moses: "A guide to completeness and complexity for modal logics of knowledge and belief", Artificial Intelligence 54, 1992, 319379.
[11] Hintikka, J.: Knowledge and Belief, Cornell University Press, Ithaca, NY, 1962.
[12] Katsuno, H., and A. O. Mendelzon: "On the difference between updating a knowledge base and revising it". [7], 183-203.
[13] Marek, V., and M. Truszczyński: Nonmonotonic Logic, Springer-Verlag, 1993.
[14] Moore, R. C.: "Semantical considerations on nonmonotonic logic", Artificial Intelligence 25(1), 1985, 75-94.
[15] Moore, R. C.: "Possible-world semantics for autoepistemic logic". M. L. Ginsberg (ed.), Readings in Nonmonotonic Reasoning, Morgan Kaufmann, 1987, 137-142.
[16] Nebel, B.: "Base revision operations and schemes: Semantics, representation, and complexity". A. Cohn (ed.), Proceedings of the 11th European Conference on Artificial Intelligence (ECAI 94), John Wiley and Sons, 1994, 341-345.
[17] Priest, G., and R. Routley: "Introduction: Paraconsistent logics", Studia Logica 43(1/2), 1984, 3-16.
[18] Reiter, R.: "A logic for default reasoning", Artificial Intelligence 13, 1980, 81-132.
[19] Resher, N.: Plausible Reasoning. An Introduction to the Theory and Practice of Plausibilistic Inference, Van Gorcum, Assen, Amsterdam, 1976.
[20] Schwarz, G.: "Autoepistemic modal logics". R. Parikh (ed.), Proceedings of the 3rd Conference TARK (1990), Morgan Kaufmann, 1990, 97-109.
[21] Segerberg, K.: "Some questions about hypertheories". [9], 136-154.
[22] Shafer, G.: A Mathematical Theory of Evidence, Princeton University Press, 1976.

Anna Gomolińska

Department of Mathematics
University of Białystok
Białystok, Poland
anna.gom@math.uwb.edu.pl

[^0]: * The paper was in part presented during the Stanisław Jaśkowski Memorial Symposium on Parainconsistent Logic, Logical Philosophy, Mathematics, and Informatics, Toruń, Poland, July, 1998. Thanks to Diderik Batens, Max Urchs, and in particular to Don Faust for interesting questions and comments on my presentation, and last but not least to Jerzy Perzanowski.

[^1]: ${ }^{1}$ In general, absolute and traditional C-consistency are different notions. However, they coincide for $C=C n$. Clearly, traditional C-consistency implies the absolute one.

[^2]: ${ }^{2}$ For instance, information about a new physical phenomenon may be highly credible for ordinary people and of low credibility for physicists working in that area.
 ${ }^{3}$ First, note that our present approach is quantitative. In [4] a qualitative version is considered as well. Next, several interesting and non-trivial questions arise, e.g., how to obtain the threshold which is the most relevant in a given situation.

[^3]: ${ }^{4}$ The case that there is α such that $h_{i}(\neg \alpha)$ and $\neg l_{i}(\alpha)$ can be easily reduced to that one.
 ${ }^{5}$ The conditions below are necessary but not sufficient.

[^4]: ${ }^{6}$ A proof of the remaining cases can be found in [4].

[^5]: ${ }^{7}$ In [5] the terms 'accepted' and 'rejected information' were used.

[^6]: ${ }^{8}$ In [4] we also consider the case that belief/plausibility sets are not closed under a logical consequence operator.

[^7]: ${ }^{9}$ Since $(\exists \alpha)\left(\alpha \in P S_{i}(I) \wedge \neg \alpha \in B S_{i}(I)\right)$ is equivalent to $(\exists \alpha)\left(\alpha \in B S_{i}(I) \wedge \neg \alpha \in\right.$ $P S_{i}(I)$), the former case need not to be considered separately.

[^8]: ${ }^{10}$ That is, $\Phi_{1}=t_{2} \leqslant 1-t_{1}, \Phi_{2}=\left(t_{1}<0.5 \vee t_{2}<1 \vee t_{2} \leqslant 1-t_{1}\right)$, etc.

