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PARAINCONSISTENCY OF

CREDIBILITY-BASED BELIEF STATES
∗

Abstract. In our approach credibility of information plays an important
role in modeling of both belief state and belief change [4]. It turns out that
the credibility-based consequence operators used to define the notion of belief
state tolerate inconsistency under some conditions.
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1. Introduction

In [4] we proposed a general model of belief state and belief change, where
both rationality of an agent as well as credibility of information were taken
into account. In the present paper we develop some of the ideas, concern-
ing the concept of belief state, presented there and discuss the problem of
parainconsistency of such belief states.

It is hardly an exaggeration to say that our notion of belief state is
credibility-based, while rationality, if understood along the standard lines,
plays an auxiliary role only. It is a simple consequence of the fact that the
consequence operators used to define a belief state are “credibility-oriented”.
Moreover, these operators tolerate inconsistency of sets of formulae, which
is another interesting feature.

∗ The paper was in part presented during the Stanisław Jaśkowski Memorial Sympo-
sium on Parainconsistent Logic, Logical Philosophy, Mathematics, and Informatics, Toruń,
Poland, July, 1998. Thanks to Diderik Batens, Max Urchs, and in particular to Don Faust
for interesting questions and comments on my presentation, and last but not least to Jerzy
Perzanowski.
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Information and beliefs, viewed as sufficiently credible information, are
represented by formulae of the classical propositional logic (PC). Starting
with credibility of information, expressed in the form of pairs of real numbers
attached to formulae, we arrive at credibility-based preference relations on
formulae. Any such preference relation induces a consequence operator in
the Tarski sense. Next, information is classified into three classes: highly
credible information, lowly credible information, and the rest. Finally, a
notion of belief state is defined by means of our consequence operators and
the concept of high and low credibility. Belief states are pairs of sets of
formulae that are closed under the consequence operators mentioned above
and consist of sufficiently credible information. The first element of a belief
state defined in such a way is called a belief set. It contains stronger beliefs
and is a subset of the second element called a plausibility set. The plausibility
set may contain weaker beliefs as well.

When information comes from several sources, it can happen that there
is much evidence both for a considered fact as well as for its negation. As a
consequence, both a piece of information and its negation may be highly (or
at least not-lowly) credible to a given agent. On the other hand, contradic-
tory statements like p ∧ ¬p are not believed in general. Along the standard
lines [17], a set of formulae X of a given language is parainconsistent (or,
in other words, paraconsistent) if there is a formula α such that α and ¬α

can be derived from it by means of a considered consequence operation but
the set of all consequences of X is a proper subset of the set of all formulae.
In our case we are faced with a credibility-based form of parainconsistency
of an agent’s state of beliefs. In the paper we consider this form of parain-
consistency and investigate whether (and under what conditions if answered
positively) it may be the case that (i) both a formula and its negation are
highly credible; (ii) a formula is highly credible and its negation is not lowly
credible; and (iii) neither a formula nor its negation are lowly credible. Sim-
ilarly, we answer the question whether and under what conditions it may be
the case that (i) both a formula and its negation belong to the same belief
set; (ii) a formula belongs to a belief set, while its negation is a member of
the corresponding plausibility set; (iii) both a formula and its negation are
members of the same plausibility set. Finally, we obtain necessary conditions
for belief and plausibility sets to be parainconsistent in our sense.

Section 2 contains preliminaries. Among others, we define a consequence
operator which is based on a preference relation and which plays a funda-
mental role in defining of the notion of belief state. In Section 3 we present
some notions concerning credibility of information, recall their properties
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given in [4], and also give new results useful or simply interesting from our
standpoint. In particular, we recall such notions as pre-degree of credibil-
ity, credibility mapping, degree of credibility, credibility-based preference
relation, and low and high credibility. In Section 4 we define a notion of
belief state based on credibiity of information and investigate the question
of parainconsistency. Final remarks are given in Section 5.

2. Preliminaries

Information and, in particular, beliefs are represented by formulae of the clas-
sical propositional logic (PC). Propositional letters are denoted by p, q with
sub/superscripts if needed, propositional connectives by ∧, ∨, →, ↔, and ¬,
formulae, formed along the standard lines, by α, β, γ with sub/superscripts if
needed, the set of all formulae by FOR, and the power set of a set X by P(X).

An operator C : P(FOR) → P(FOR) is a consequence operator in the
Tarski sense if for any X,Y ⊆ FOR, C is increasing (i.e., X ⊆ C(X)),
monotonic (C(X) ⊆ C(Y ) if X ⊆ Y ), idempotent (C(C(X)) ⊆ C(X)), and
compact (C(X) =

⋃
{C(X ′) | X ′ ⊆ X ∧ card(X ′) < ℵ0}). Cn denotes the

classical consequence operator. Whenever convenient, α ∈ Cn(X) and X ⊢ α

are used interchangeably, while TAUT stands for the set Cn(∅) of all PC-
tautologies. co-TAUT denotes the set of all PC-countertautologies, that is:

co-TAUT = {α ∈ FOR | ¬α ∈ TAUT} .

A set X ⊆ FOR is C -closed if C(X) = X. It is absolutely (resp., tradition-
ally) C -consistent iff C(X) 6= FOR (resp., ¬(∃α)(α,¬α ∈ C(X))); otherwise
X is absolutely (traditionally) C -inconsistent.1 Along the standard lines [17],
sets of formulae traditionally C -inconsistent and absolutely C -consistent are
called C-parainconsistent (or paraconsistent when looking from another per-
spective). An intersection C1 ∩C2 of two consequence operators C1 and C2,
defined as

(C1 ∩ C2)(X) = C1(X) ∩ C2(X),

is a consequence operator.

A relation � ⊆ X2 is a pre-ordering on X, while (X,�) is a pre-ordered
set if � is reflexive and transitive. The corresponding relations ≺ (strict

1 In general, absolute and traditional C -consistency are different notions. However,
they coincide for C = Cn. Clearly, traditional C -consistency implies the absolute one.
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pre-ordering) and ≈ on X are defined as usual, i.e., for any x, y ∈ X:

x ≺ y iff x � y ∧ y 6� x .

x ≈ y iff x � y ∧ y � x .

Pre-orderings may be viewed as preference relations, where x � y (resp., x ≺
y, x ≈ y) is read as ‘y is preferred to x’ (‘y is strictly preferred to x’, ‘x and y

are equally preferred’). Along the standard lines if � is also antisymmetric,
it is called partial ordering and (X,�) is partially ordered. Partial orderings
which are also connected (i.e., any two elements are comparable) are called
total orderings. Note that ≈ is the equality relation for partial orderings. An
element x ∈ X is the greatest (resp., least) in a partially ordered set (X,�)
iff (∀y ∈ X)y � x (resp., x � y).

Let D = {(x, y) ∈ [0, 1]2 | x 6 y}, where [0, 1] is the unit interval and 6

is the natural total ordering of real numbers. Some pre-orderings on D are
defined below.

(x1, y1) �1 (x2, y2) iff x1 6 x2 ∧ y1 6 y2 .

(x1, y1) �2 (x2, y2) iff x1 < x2 ∨ (x1 = x2 ∧ y1 6 y2) .

(x1, y1) �3 (x2, y2) iff y1 < y2 ∨ (y1 = y2 ∧ x1 6 x2) .

(x1, y1) �4 (x2, y2) iff y1 6 x2 ∨ (x1 = x2 ∧ y1 = y2) .

Relation �2 (resp., �3) is a total ordering known as the lexicographic (anti-
lexicographic) ordering. Relations �1 and �4 are partial orderings. Let us
note that (1, 1) (resp., (0, 0)) is the greatest (least) element in (D,�i) for
i = 1, . . . , 4.

Proposition 2.1. For any (xj , yj) ∈ D (j = 1, 2) and i = 1, . . . , 4, we have
that:

(x1, y1) ≺1 (x2, y2) iff (x1 < x2 ∧ y1 6 y2) ∨ (x1 6 x2 ∧ y1 < y2) .

(x1, y1) ≺2 (x2, y2) iff x1 < x2 ∨ (x1 = x2 ∧ y1 < y2) .

(x1, y1) ≺3 (x2, y2) iff y1 < y2 ∨ (y1 = y2 ∧ x1 < x2) .

(x1, y1) ≺4 (x2, y2) iff x1 < y1 = x2 ∨ y1 < x2 ∨ y1 = x2 < y2 .

If (x1, y1) 6= (0, 0) then (0, 0) ≺i (x1, y1) .

For any pre-ordering � ⊆ X2, we define two operators ∇�,△� : P(X) →
P(X) as follows:

∇� Y = {x ∈ X | (∃y ∈ Y ) y � x} .

△� Y = {x ∈ X | (∃y ∈ Y ) x � y} .
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For simplicity, ∇� x stands for ∇�{x}, and similarly for △�. Some basic
properties of ∇� and △� are given below. Easy proofs are left as exercises.

Proposition 2.2. Let O stand for ∇� or △�. For any X1,X2 ⊆ X, we
have that:

O(X1) = ∅ iff X1 = ∅ .

If X1 ⊆ X2 then O(X1) ⊆ O(X2) .

X1 ⊆ O(X1) .

O(O(X1)) ⊆ O(X1) .

O(X1) =
⋃
{O(x) | x ∈ X1} .

O(X1 ∪ X2) = O(X1) ∪ O(X2) .

O(X1 ∩ X2) ⊆ O(X1) ∩ O(X2) .

Corollary 2.3. If X = FOR, then ∇� and △� are consequence operators.

3. Credibility of information

In [4] we defined a pre-degree of credibility of information as a quantity (e.g.,
a number, a pair of numbers, an interval) describing initially how credible
a considered piece of information is in a given situation. Such a quantity
may be obtained as the result of some measurement, calculation or logical
inference. In the next step pre-degrees are refined to satisfy some rationality
postulates. In the present paper pre-degrees of credibility are elements of
D, i.e. pairs of real numbers (x, y) such that 0 6 x 6 y 6 1. This is a
generalization of the following situation.

Example 3.1. In a group of k (0 < k) experts or sources of information, m

experts state that α holds, while n experts state that ¬α holds in the sense
that it is not the case that α holds. Assume that experts have consistent
opinions, i.e., no one states that both α and its negation hold simultaneously.
However, some experts may be indecisive, i.e., m+n 6 k. Credibility of α is
initially assessed by two fractions m

k
and n

k
of positive and negative answers,

respectively. Thus, (m
k
, 1 − n

k
) may be taken as the pre-degree of credibility

of α. Similarly, the pre-degree of credibility of ¬α is (n
k
, 1 − m

k
).

From a rational point of view, degrees of credibility of information should
satisfy some postulates. For instance, it is reasonable to require for logically
equivalent formulae to be given the same degree of credibility. Therefore pre-
degrees of credibility may need an appropriate adjustment. Let us consider
the ordered sets (D,�i) (i = 1, . . . , 4) defined in Section 2. Every mapping

© 2001 by Nicolaus Copernicus University



188 Anna Gomolińska

cr i : FOR → D satisfying the following postulates for any formulae α, β

is called a credibility mapping and its values are referred to as credibility
degrees:

If α ⊢ β, then cr i(α) �i cr i(β) .(CR1)

If ⊢ α, then cr i(α) = (1, 1) .(CR2)

If ⊢ ¬α, then cr i(α) = (0, 0) .(CR3)

The constraints imposed on credibility by (CR1)–(CR3) are natural. Tau-
tologies are credible to the highest degree as opposite to countertautologies.
Logically equivalent pieces of information are equally credible by (CR1).
Starting with pre-degrees, one can arrive at credibility degrees [4]. Hence-
forth we will consider such credibility mappings cr i that cr i(α) = (x, y) iff
cr i(¬α) = (1 − y, 1 − x).

Every cr i induces a preference (pre-ordering) relation on FOR, �cr i
, as

follows:
α �cri

β iff cr i(α) �i cr i(β) .

Relations ≈cr i
and ≺cr i

are defined along the standard lines. Henceforth ∇i

will stand for ∇�cri
for the sake of simplicity, and analogously for △�cri

.

Proposition 3.2. For any X ⊆ FOR and α, β ∈ FOR, we have that:

α ≈cr i
β iff cr i(α) = cr i(β) .

α ≺cr i
β iff cr i(α) ≺i cr i(β) .

If ⊢ α ↔ β, then α ≈cri
β .

α �cr i
β iff ¬β �cr i

¬α, for i = 1, 4 .

α �cr2
β iff ¬β �cr3

¬α .

If ⊢ α, then (∀β)(β �cr i
α ∧ β ≈cr i

(α ∧ β)) .

If ⊢ ¬α, then (∀β)(α �cr i
β ∧ β ≈cr i

(α ∨ β)) .

If α ⊢ β, then ∀γ)α ∧ γ �cr i
β ∧ γ .

If X 6= ∅, then TAUT ⊆ ∇iX ∧ co-TAUT ⊆ △iX .

∇ico-TAUT = FOR = △iTAUT .

If X 6= ∅, then △i∇iX = FOR = ∇i△iX .

∇iX = FOR iff co-TAUT ∩∇iX 6= ∅ .

Proof. We only prove the last property. Assume that there is a coun-
tertautology α ∈ ∇iX. Hence cr i(α) = (0, 0) and there is β ∈ X such
that β �cr i

α. Thus cr i(β) = (0, 0) and (∀γ)β �cri
γ. In other words,

FOR ⊆ ∇iX. The remaining part is obvious.
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Parainconsistency of credibility-based belief states 189

It is easy to see that operators ∇i tolerate ∇i-inconsistency in the sense
that there exist ∇i-parainconsistent sets of formulae.

Example 3.3. Let X = {q1, q2}, cr i(q1) = (0.5, 0.6), cr i(q2) = (0.4, 0.4),
and cr i(p) = (0.5, 0.6) (i = 1, . . . , 4). Hence cr i(¬p) = (0.4, 0.5). Clearly,
∇iX 6= FOR. On the other hand, p,¬p ∈ ∇iX.

Given credibility of information, one may have to decide whether a partic-
ular piece of information is highly or lowly credible. The concepts of high and
low credibility are subjective and change with agents, situation or domain of
application.2 In our model we distinguish three classes of information: highly
credible information, lowly credible information, and the rest. The rules for
decision making are simple: a piece of information is highly (resp., lowly)
credible if its degree of credibility is higher (lower) than some threshold.3 A
formula is highly (resp., lowly) credible in case the information represented
by the formula is highly (lowly) credible.

Let li(α) (resp., hi(α)) denote that α is lowly (highly) credible relative
to the ordering �i (i = 1, . . . , 4) and ki stand for hi or li. Given a pair of
threshold values 0 6 t1 6 t2 6 1, low and high credibility of a formula may
be defined as follows:

li(α) iff cr i(α) ≺i (t1, t2) and hi(α) iff (t1, t2) �i cr i(α) .

Some basic properties of the notions just introduced are given below.

Proposition 3.4. For any formulae α, β, we have that:

If α �cr i
β ∧ li(β), then li(α) .

If α ⊢ β ∧ li(β), then li(α) .

If α �cri
β ∧ hi(α), then hi(β) .

If α ⊢ β ∧ hi(α), then hi(β) .

If α ≈cr i
β, then (ki(α) iff ki(β)) .

If ⊢ α ↔ β, then (ki(α) iff ki(β)) .

If li(α) ∧ hi(β), then α ≺cri
β .

If i = 2, 3, then hi(α) iff ¬li(α) .

The proof is easy and hence omitted.

2 For instance, information about a new physical phenomenon may be highly credible
for ordinary people and of low credibility for physicists working in that area.

3 First, note that our present approach is quantitative. In [4] a qualitative version is
considered as well. Next, several interesting and non-trivial questions arise, e.g., how to
obtain the threshold which is the most relevant in a given situation.

© 2001 by Nicolaus Copernicus University



190 Anna Gomolińska

There arises a problem: Whether and under what conditions is there a
formula α such that

(1) hi(α) and hi(¬α);

(2) hi(α) and ¬li(¬α);4

(3) neither li(α) nor li(¬α)?

If (1) (resp., (2), and (3)) holds, then the set Ai = {(x, y) ∈ D | (t1, t2) �i

(x, y) ∧ (t1, t2) �i (1 − y, 1 − x)} (resp., Bi = {(x, y) ∈ D | (t1, t2) �i

(x, y) ∧ (1 − y, 1 − x) 6≺i (t1, t2)}, and Ci = {(x, y) ∈ D | (x, y) 6≺i (t1, t2) ∧
(1 − y, 1 − x) 6≺i (t1, t2)}) is non-empty. The converse, however, is not true
in general since the co-domain cr→i (FOR) is a proper subset of [0, 1]. The
following equivalences hold.

Proposition 3.5.

A1 6= ∅ iff B1 6= ∅ iff t2 6 1 − t1 .

C1 6= ∅ iff t1 < 0.5 ∨ t2 < 1 ∨ t2 6 1 − t1 .

A2 = B2 = C2 6= ∅ iff t1 < 0.5 ∨ t2 6 1 − t1 .

A3 = B3 = C3 6= ∅ iff t2 < 1 ∨ t2 6 1 − t1 .

A4 6= ∅ iff t2 6 0.5 ∨ t2 = 1 − t1 .

B4 6= ∅ iff t1 < 0.5 ∨ t1 = t2 6 0.5 .

C4 6= ∅ iff t1 < 1 ∨ t1 = t2 6 0.5 .

Proof. Leaving the remaining cases as exercises, we only show that B1 6= ∅
iff t2 6 1−t1. Let us note that (t1, t2) �1 (x, y) and (1−y, 1−x) 6≺1 (t1, t2) iff
t1 6 x, t2 6 y, and neither (1− y < t1 ∧ 1−x 6 t2) nor (1− y 6 t1 ∧ 1−x <

t2). After necessary transformations we obtain that (t1, t2) �1 (x, y) and
(1−y, 1−x) 6≺1 (t1, t2) iff t1 6 x < 1− t2 ∧ t2 6 y or t1 6 x∧ t2 6 y < 1− t1
or t1 6 x = 1 − t2 ∧ t2 6 y = 1 − t1. There are such (x, y) ∈ D iff
t2 6 1 − t1.

Now we can give a partial answer5 to the problem formulated above.

4 The case that there is α such that hi(¬α) and ¬li(α) can be easily reduced to that
one.

5 The conditions below are necessary but not sufficient.
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Corollary 3.6. Let mi stand for hi or ¬li.

If (∃α)(h1(α) ∧ m1(¬α)), then t2 6 1 − t1 .

If (∃α)(¬l1(α) ∧ ¬l1(¬α)), then t1 < 0.5 ∨ t2 < 1 ∨ t2 6 1 − t1 .

If (∃α)(h2(α) ∧ m2(¬α)), then t1 < 0.5 ∨ t2 6 1 − t1 .

If (∃α)(¬l2(α) ∧ ¬l2(¬α)), then t1 < 0.5 ∨ t2 6 1 − t1 .

If (∃α)(h3(α) ∧ m3(¬α)), then t2 < 1 ∨ t2 6 1 − t1 .

If (∃α)(¬l3(α) ∧ ¬l3(¬α)), then t2 < 1 ∨ t2 6 1 − t1 .

If (∃α)(h4(α) ∧ h4(¬α)), then t2 6 0.5 ∨ t2 = 1 − t1 .

If (∃α)(h4(α) ∧ ¬l4(¬α)), then t1 < 0.5 ∨ t1 = t2 6 0.5 .

If (∃α)(¬l4(α) ∧ ¬l4(¬α)), then t1 < 1 ∨ t1 = t2 6 0.5 .

For any set of formulae X, let li(X) = {α ∈ X | li(α)} (the set of lowly
credible members of X) and hi(X) = {α ∈ X | hi(α)} (the set of highly
credible members of X). Note that X − li(X) = X − li(FOR). Below we
relate the notions of low and high credibility to Cn, ∇i, and △i. As earlier
ki stands for hi or li.

Proposition 3.7. For any sets of formulae X,Y , we have that:

kiki(X) = ki(X) .

ki(X ∩ Y ) = ki(X) ∩ ki(Y ), and similarly for ∪ .

△ili(FOR) = li(FOR) ∧∇ihi(FOR) = hi(FOR) .

li△ili(X) = △ili(X) ⊆ li△i(X) .

hi∇ihi(X) = ∇ihi(X) ⊆ hi∇i(X) .

∇i(X − li(FOR)) ⊆ ∇iX − li(FOR) .

hi(Cn(hi(X))) ⊆ hi(Cn(X)) .

(Cn ∩∇i)(X − li(FOR)) ⊆ (Cn ∩∇i)(X) − li(FOR) .

(Cn ∩∇i)hi(X) ⊆ hi(Cn ∩∇i)(X) .

hi(FOR) = FOR iff li(FOR) = ∅ iff t1 = t2 = 0 .

Proof. We only prove the last property.6 First, let us note that hi(FOR)∩
li(FOR) = ∅. Hence if hi(FOR) = FOR, then li(FOR) = ∅. Now suppose
that li(FOR) = ∅, i.e., (∀α) cr i(α) 6≺i (t1, t2). In particular if α ∈ co-TAUT
and hence cr i(α) = (0, 0), then (∗) (0, 0) 6≺i (t1, t2). Let i = 2, 3. Since �i

is total, (t1, t2) �i (0, 0). Hence t1 = t2 = 0. If i = 1, then (∗) is equivalent

6 A proof of the remaining cases can be found in [4].
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to the disjunction: t1 < 0 or t2 < 0 or t1 = t2 = 0. Hence t1 = t2 = 0. If
i = 4, then (∗) is equivalent to the disjunction: t1 = t2 = 0 or t1 < 0. Hence
t1 = t2 = 0 as earlier. Now if t1 = t2 = 0, then hi(co-TAUT ) = co-TAUT .
Hence hi(FOR) = FOR.

4. Belief states

Many various models for representing states of beliefs are known in the areas
of logic, philosophy, and artificial intelligence, depending on the perspective
taken by the author or the intended area of application. For lack of space,
instead of giving an exhaustive survey of the proposals, let us mention belief
sets, belief bases, hypertheories, and pairs of belief sets.

As before it is assumed that beliefs are represented by formulae of a given
language. Along the standard lines, belief sets are C-closed sets of formulae,
where C is a logical consequence operator. In the AGM theory [1], it is as-
sumed that the underlying logic contains the classical one. In modal logics
approaches [10, 11], C is the consequence operator of an epistemic/doxastic
modal logic. In nonmonotonic approaches, C may be the consequence oper-
ator of PC like in the autoepistemic logic [14, 15], the consequence operator
of the classical first-order logic like in the default logic [18] or the conse-
quence operator of a modal logic like in nonmonotonic modal logics [13, 20].
In nonmonotonic approaches however, being C-closed is a necessary but not
sufficient condition for a set of formulae to represent beliefs. Indeed, belief
sets based on a set of premises I called extensions (or expansions) of I are de-
fined as C-closed sets of formulae satisfying some groundedness and stability
conditions. Whenever direct or indirect practical applications are consid-
ered, belief states are represented by finite sets of formulae called belief bases
[3, 6, 8, 12, 16]. In this case there arises a problem of independence of the
results of operations on belief bases from the syntax. In [21] belief states of a
rational agent are represented by hypertheories to grasp how doxastic dispo-
sitions of a rational agent change. In [5] a nonmonotonic framework for rep-
resenting belief states in the presence of incomplete knowledge is proposed.
Belief states are represented by AE2 extensions which are pairs of sets of for-
mulae, where the first (resp., second) set consists of all beliefs (disbeliefs)7 of a
rational agent in a given situation. The first set is Cn-closed, while the second
one is closed under a rejection consequence Cn′. Both have to satisfy some
groundedness and stability conditions in the spirit of autoepistemic logic.

7 In [5] the terms ‘accepted’ and ‘rejected information’ were used.
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In the present approach the main stress is laid on credibility of informa-
tion. From this standpoint beliefs may be stronger or weaker. In low-risk
situations we usually use beliefs of both types, while in risky cases we rather
trust our stronger beliefs only. It can also be the case that normally we use
stronger beliefs, while in problematic situations we also use weaker beliefs
to enhance our reasoning capabilities or decision making. Keeping with the
common terminology [19, 22], the stronger beliefs are simply called beliefs,
while the weaker ones are referred to as plausible information. Belief states
are represented by pairs of sets of formulae, where the first (resp., second)
set called a belief set (plausibility set) consists of all believed (plausible) in-
formation.8 In our approach two aspects are combined: rationality of an
agent and credibility of information. In [4] we consider three kinds of con-
sequence operators: (1) Cn; (2) ∇i; and (3) Cn ∩ ∇i (i = 1, . . . , 4). The
first operator yields purely rational consequences of premises, operators of
the second kind yield consequences which are at least as credible as some
premise, while operators of the last kind take into account both rationality
and credibility. As traditional and absolute Cn-consistency coincide, there
are no Cn-parainconsistent sets of formulae. For Cn-inconsistent sets of for-
mulae, Cn ∩ ∇i = ∇i. In the present paper we will only take into account
operators of the second kind. Given a set of premises I and i = 1, . . . , 4, the
belief state based on I is a pair Bi(I) = (BS i(I),PS i(I)), where PS i(I) (the
plausibility set) and BS i(I) ⊆ PS i(I) (the belief set) are defined as follows:

BS i(I) = ∇ihi(I) and PS(I) = ∇i(I − li(FOR))

Informally speaking, beliefs have to be at least as credible as some highly
credible premises and plausible information has to be at least as credible as
some non-lowly credible premises. In this way, beliefs are highly credible
and plausible information is not lowly credible. Given a belief state Bi(I)
as above, we will say that the plausibility set PS i(I) is corresponding for
BS i(I), and similarly for the belief set. Let Si stand for BS i(I) or PS i(I).

Proposition 4.1. For any formulae α, β, we have that:

1. If α ⊢ β ∧ α ∈ Si, then β ∈ Si.

2. If ⊢ α ↔ β, then α ∈ Si iff β ∈ Si.

3. Si = FOR iff Si ∩ co-TAUT 6= ∅ iff
t1 = t2 = 0 and (∃β ∈ I) cr i(β) = (0, 0).

8 In [4] we also consider the case that belief/plausibility sets are not closed under a
logical consequence operator.
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Proof. We only prove that BS i(I) = FOR iff t1 = t2 = 0 and (∃β ∈
I) cr i(β) = (0, 0), for a given cr i and a threshold (t1, t2). The equivalence

BS i(I) = FOR iff BS i(I) ∩ co-TAUT 6= ∅

follows from Proposition 3.2. Thus if BS i(I) = FOR, then (∃α)α ∧ ¬α ∈
BS i(I). Clearly, cr i(α ∧ ¬α) = (0, 0). Hence there is β ∈ I such that hi(β)
and β �cr i

α∧¬α, i.e., (t1, t2) �i cr i(β) = (0, 0). Thus t1 = t2 = 0 and there
is β ∈ I such that cr i(β) = (0, 0). If t1 = t2 = 0 and (∃β ∈ I) cr i(β) = (0, 0),
then hi(FOR) = FOR by Proposition 3.7 and (∃α)α ∧ ¬α ∈ ∇iI. Finally
BS i(I) = ∇ihi(I) = ∇iI = FOR.

Roughly speaking, property 1 (resp., 2) states that belief and plausibility
sets are closed under direct derivation (equivalence) in PC. According to 3,
belief and plausibility sets based on a set of premises I are either both ab-
solutely ∇i-consistent or both inconsistent in this sense. Moreover, they are
inconsistent iff the threshold is (0, 0) and so is the degree of credibility of
some premise.

Below we formulate the necessary and sufficient conditions for (1) both
a formula and its negation to be in a belief set BS i(I); (2) a formula to
be in BS i(I) and its negation to be in the corresponding plausibility set
PS i(I); (3) both a formula and its negation to be in PS i(I). In other words,
the conditions are necessary and sufficient for BS i(I) (resp., PS i(I)) to be
traditionally ∇i-inconsistent in the case (1) (resp., (3)). Clearly, (1) and (2)
are special cases of (3) since BS i(I) ⊆ PS i(I). Needless to say, necessary
(resp., sufficient) conditions for ∇i-inconsistency of PS i(I) (BS i(I)) remain
necessary (sufficient) for BS i(I) (PS i(I)) as well.

Proposition 4.2. For any formula α, we have that:9

1. α,¬α ∈ BS i(I) iff (∃β, γ ∈ I)(hi(β)∧hi(γ) and β �cr i
α and γ �cri

¬α)
iff hi(I) ∩△iα 6= ∅ and hi(I) ∩△i¬α 6= ∅.

2. α ∈ BS i(I) and ¬α ∈ PS i(I) iff (∃β, γ ∈ I)(hi(β) and ∧¬li(γ) and
β �cr i

α and γ �cr i
¬α) iff hi(I)∩△iα 6= ∅ and (I∩△i¬α)−li(FOR) 6= ∅.

3. α,¬α ∈ PS i(I) iff (∃β, γ ∈ I)(¬li(β) and ¬li(γ) and β �cri
α and

γ �cri
¬α) iff (I ∩△iα) − li(FOR) 6= ∅ and (I ∩△i¬α)− li(FOR) 6= ∅.

The proof is left as an exercise.

9 Since (∃α)(α ∈ PS i(I) ∧ ¬α ∈ BS i(I)) is equivalent to (∃α)(α ∈ BS i(I) ∧ ¬α ∈

PS i(I)), the former case need not to be considered separately.
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Despite of the elegant form of the above conditions and their sufficiency,
what we would rather like to have is a characterization in terms of the thresh-
old values t1 and t2. It is interesting that the obtained conditions are the
same as in Corollary 3.6. They are necessary but not sufficient, unfortu-
nately. As earlier Si stands for BS i(I) or PS i(I).

Proposition 4.3. 1. If (∃α)(α ∈ BS 1(I) ∧ ¬α ∈ S1), then t2 6 1 − t1.

2. If (∃α)(α,¬α ∈ PS 1(I)), then t1 < 0.5 ∨ t2 < 1 ∨ t2 6 1 − t1.

3. If (∃α)(α ∈ BS 2(I) ∧ ¬α ∈ S2), then t1 < 0.5 ∨ t2 6 1 − t1.

4. If (∃α)(α,¬α ∈ PS 2(I)), then t1 < 0.5 ∨ t2 6 1 − t1.

5. If (∃α)(α ∈ BS 3(I) ∧ ¬α ∈ S3), then t2 < 1 ∨ t2 6 1 − t1.

6. If (∃α)(α,¬α ∈ PS 3(I)), then t2 < 1 ∨ t2 6 1 − t1.

7. If (∃α)(α,¬α ∈ BS 4(I)), then t2 6 0.5 ∨ t2 = 1 − t1.

8. If (∃α)(α ∈ BS 4(I) ∧ ¬α ∈ PS 4(I)), then t1 < 0.5 ∨ t1 = t2 6 0.5.

9. If (∃α)(α,¬α ∈ PS 4(I)), then t1 < 1 ∨ t1 = t2 6 0.5.

Proof. Since the proof is technical and rather long, we show its idea only.
Let us consider, e.g., the third condition for S2 = BS 2(I). Assume there is a
formula α such that α,¬α ∈ BS 2(I). By Proposition 4.2, there are β1, β2 ∈ I

such that h2(βj) (j = 1, 2), β1 �cr2
α, and β2 �cr2

¬α. Let cr2(α) = (x, y)
(hence cr2(¬α) = (1 − y, 1 − x)) and cr2(βj) = (xj , yj). One can check
that there are (x, y), (xj , yj) ∈ D (j = 1, 2) such that (t1, t2) �2 (xj , yj),
(x1, y1) �2 (x, y), and (x2, y2) �2 (1 − y, 1 − x) iff t1 < 0.5 or t2 6 1 − t1.
Hence our condition follows.

From Propositions 4.1 and 4.3 we obtain the necessary conditions for
BS i(I) (or equivalently PS i(I)) to be absolutely ∇i-consistent and a formula
α to exist, where (1) α,¬α ∈ BS i(I); (2) α ∈ BS i(I) and ¬α ∈ PS i(I);
(3) α,¬α ∈ PS i(I). In other words, the conditions are necessary for ∇i-
parainconsistency of BS i(I) (resp., PS i(I)) in the case (1) (resp., (3)). For
simplicity, let Ψi be (∀β ∈ I)(0, 0) ≺i cr i(β) (i = 1, . . . , 4) and Φj (j = 1,
. . . , 9) be the necessary conditions from Proposition 4.3, respectively.10

Corollary 4.4. If BS i(I) 6= FOR (i = 1, . . . , 4), then the following condi-
tions hold:

1. If (∃α)(α ∈ BS 1(I) ∧ ¬α ∈ S1), then
0 = t1 < t2 ∨ t2 6 1 − t1 < 1 ∨ (Φ1 ∧ Ψ1).

10 That is, Φ1 = t2 6 1 − t1, Φ2 = (t1 < 0.5 ∨ t2 < 1 ∨ t2 6 1 − t1), etc.
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2. If (∃α)(α,¬α ∈ PS 1(I)), then
0 = t1 < t2 ∨ 0 < t1 < 0.5 ∨ 0 < t1 6 t2 < 1 ∨ (Φ2 ∧ Ψ1).

3. If (∃α)(α ∈ BS 2(I) ∧ ¬α ∈ S2), then
0 = t1 < t2 ∨ 0 < t1 < 0.5 ∨ t2 6 1 − t1 < 1 ∨ (Φ3 ∧ Ψ2).

4. If (∃α)(α,¬α ∈ PS 2(I)), then
0 = t1 < t2 ∨ 0 < t1 < 0.5 ∨ t2 6 1 − t1 < 1 ∨ (Φ4 ∧ Ψ2).

5. If (∃α)(α ∈ BS 3(I) ∧ ¬α ∈ S3), then
0 = t1 < t2 ∨ 0 < t1 6 t2 < 1 ∨ t2 6 1 − t1 < 1 ∨ (Φ5 ∧ Ψ3).

6. If (∃α)(α,¬α ∈ PS 3(I)), then
0 = t1 < t2 ∨ 0 < t1 6 t2 < 1 ∨ t2 6 1 − t1 < 1 ∨ (Φ6 ∧ Ψ3).

7. If (∃α)(α,¬α ∈ BS 4(I)), then
0 = t1 < t2 6 0.5 ∨ (t1 = 0 ∧ t2 = 1) ∨ 0 < t1 6 t2 6 0.5 ∨
t2 = 1 − t1 < 1 ∨ (Φ7 ∧ Ψ4).

8. If (∃α)(α ∈ BS 4(I) ∧ ¬α ∈ PS 4(I)), then
0 = t1 < t2 ∨ 0 < t1 < 0.5 ∨ 0 < t1 = t2 6 0.5 ∨ (Φ8 ∧ Ψ4).

9. If (∃α)(α,¬α ∈ PS 4(I)), then
0 = t1 < t2 ∨ 0 < t1 < 1 ∨ 0 < t1 = t2 6 0.5 ∨ (Φ9 ∧ Ψ4).

Except for the conditions of the form Φj ∧ Ψi not discussed here for the
sake of simplicity, the remaining ones may be classified into several groups.
(a) The conditions, where t1 = 0 (i.e., (t1 = 0 ∧ t2 = 1), 0 = t1 < t2, and
0 = t1 < t2 6 0.5) seem to be unintuitive from the common-sense standpoint.
(b) According to the conditions 0 < t1 6 t2 6 0.5 and 0 < t1 = t2 6 0.5
(cases 7–9), the threshold values should be relatively low which is not very
promising. In the most optimistic case t1 = t2 = 0.5. (c) The condition
0 < t1 < 0.5 (cases 2–4, and 8) requires that t1 be fairly low but, on the
other hand, t2 may be arbitrary (i.e., t1 6 t2 6 1). (d) The conditions
t2 6 1− t1 < 1 and t2 = 1− t1 < 1 (cases 1 and 3–7) form yet another class.
In this case t1 = 0.5 − a and t2 6 0.5 + a for some 0 6 a < 0.5. Hence the
distance between t1 and t2 should not be greater than 2a. Intuitively, the
situation is realistic, especially for small a, and it should be no particular
problems with finding parainconsistent belief and plausibility sets. (e) The
last class considered here consists of the conditions 0 < t1 6 t2 < 1 and
0 < t1 6 t2 6 1 (cases 2, 5, 6, and 9). Here it should be easy to find
parainconsistent belief states since the terms imposed on t1 and t2 are indeed
minimal.
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5. Summary

The aim of the paper was to show that the situation, where a belief state is
parainconsistent in the sense that its belief and/or plausibility sets are C-
parainconsistent, is natural if the consequence operator C takes into account
credibility of information like the operators ∇i (i = 1, . . . , 4) do. Indeed, the
necessary conditions for belief and plausibility sets to be ∇i-parainconsistent
obtained above can be satisfied in a fairly large number of cases.

Since ∇i tolerates inconsistency (in the sense that there exist ∇i-para-
inconsistent sets of formulae) and for any formulae α, β, we have that cr i(α →
(β → α)) = (1, 1), operator ∇i is not closed under the adjunction rule:

α, β

α ∧ β

It is easy to give an informal example justifying this statement, however,
systematic considerations are postponed to a separate paper.

Example 5.1. Let pi (i = 1, 2) represent the information that ‘Skier Si wins
the competition.’ Suppose each pi is highly credible. On the other hand,
p1 ∧ p2 is almost incredible.

Another problem worthy of consideration is the problem of change of
(possibly parainconsistent) belief states and the threshold values.
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