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CONFLICT WITHOUT CONTRADICTION:

paraconsistency and axiomatizable conflict

toleration hierarchies in Evidence Logic

Overview

Evidence Logic (EL) goes beyond Classical Logic (CL) in its primitive expres-
sivity by including both confirmatory and refutatory predications, addition-
ally equipped with evidence level annotations. Previous work has character-
ized the Boolean Sentence Algebras (BSAs) of the monadic, functional, and
undecidable varieties of EL [4], [5]. From the perspective that our knowledge
of the world is often less-than-certain, that is to say “evidential”, application-
wise EL is conceptually antecedent to CL and provides a broad foundational
framework wherein axiomatizable extensions reach out to a number of the
more domain-specific recent constructions of logics for the representation
and processing of uncertainty in Artificial Intelligence (AI). In this paper we
analyze EL from this point of view in sections 1 and 2. In Section 3 the rela-
tionship between this work and issues in paraconsistency is briefly explored.

For any n > 1 let En = {ei = i
n−1 : i = 1, . . . , n − 1}, with smallest

evidence value and evidence increment ε = e1, be an Evidence Space of ev-
idence annotations. Focusing on notions related to the degree of evidential
conflict a theory may permit, we construct three hierarchies of axiomatizable
extensions of EL and characterize the BSAs of the theories they entail. Let
d, d ∈ {1, . . . , n}, denote the “degree of conflict toleration of confirmatory
and refutatory evidence”. In the paper we characterize the monadic, func-
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tional, and undecidable BSAs across all three hierarchies (see [9]). Here,
let us informally state the results for monadic similarity types µ stipulating
p proposition symbols, k constant symbols, an u unary predicate symbols.
Then each such theory, it turns out, has ordered basis of order type

ωmu

· mp ·

k
∑

i=1

ski · m
ui

where the ski are Sterling Numbers of the second kind, and where m depends
on which of the three conflict toleration schemes is chosen, the size n − 1 of
the Evidence Space En, and the degree d of conflict toleration permitted in
the theory.

Roughly, the dth logic in the first hierarchy will tolerate (and hence rep-
resent and process) conflict of evidence only so long as the minimum of the
confirmatory and refutatory evidence is at most (d − 1)ε. This hierarchy of
increasingly permissive logics begins with a logic allowing no conflict at all
and ends with the maximally permissive logic EL. In fact, these logics can
be viewed as logics generalizing ideas of Aristotle concerning the nature of
privatives. The dth monadic logic here has BSA with ordered basis as above
with m = d(2n − d).

The dth logic in the second hierarchy will tolerate conflict only so long
as the sum of the confirmatory and refutatory evidence is at most 1 + (d −
1)ε. This hierarchy is one of increasingly permissive Dempster-Schafer type
logics (see [1], [2], [13] and [15]), beginning with a logic modeling part of the
Dempster-Shafer logic itself and ending with EL. The dth monadic logic here
has BSA with ordered basis as above with m = (n(n+1)+(d−1)(2n−d))/2.

The dth logic in the third hierarchy will tolerate conflict only so long as the
sum of the confirmatory and refutatory evidence is at most (d − 1)ε. This
is a hierarchy of increasingly permissive sub-Dempster-Shafer type logics,
beginning with a trivialized logic effectively containing only equality and
constants and ending with the logic modeling part of the Dempster-Shafer
logic. Here the dth monadic logic has BSA with ordered basis as above with
m = d(d + 1)/2.

For a brief description of EL the reader is referred to the abstract [5].
For the broader context of EL and for the precise construction of EL and
the characterization of the various Boolean Sentence Algebras (BSAs) of EL
for monadic, functional, and undecidable languages see [4]. Also, in [8] the
concept of negation, in a number of ways the most fundamental and prob-
lematic concept in the representation and processing of evidential knowledge,
was explored making use of the machinery of EL. The two logics in [6] and
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[7] together with the three conflict toleration hierarchies of logics defined and
characterized in the present paper, provide some insight into the relation be-
tween current work in the knowledge representation and processing problem
area of AI and the machinery built into EL. In fact, the characterization of
the BSAs of these logics in EL provides, to the extent these logics model
some of the mosaic of the constructions in current AI work, some insight
into the structure of these AI logics and the relationships between them.

1. The construction of EL

To begin, let us briefly review the construction of EL (for details see [4]).
For each integer n > 1, let the Evidence Space of size n − 1 be the linear
order En as defined above. For each n > 1 and each logical similarity type τ ,
the Evidence Logic ELn,τ is equipped with both confirmatory and refutatory
predicate symbols Rc and Rr for each τ(i)-ary predicate, as well as an Evi-
dence Space En of evidence annotations for atomic formulas, while added to
a usual set of logical axioms are axioms which ensure that “stronger evidence
strictly entails weaker evidence”; also, models of ELn,τ are similarly equipped,
providing annotated confirmatory and refutatory relations interpreting each
τ(i)-ary predicate. Note that trivializing all refutatory predicates yields an
evidence logic which is, like Classical Logic, purely confirmatory; we refer to
this logic as Confirmatory Evidence Logic CELn,τ . Further, EL2,τ may be
viewed as an Absolute Evidence Logic AELτ , while CEL2,τ is both confir-
matory and absolute and is exactly the Classical Logic CLτ .

Let µ be monadic, stipulating p propositions, k constants, and u unary
predicates; let µ′ be functional, obtained by adding to µ the stipulation of
one unary function; and let ν be undecidable, stipulating a finite number of
predicates/functions including at least one predicate or function which is at
least binary or at least two unary functions. For a theory T , let BSA(T ) be
the Boolean Sentence Algebra of T , let BA(α) be the Boolean Algebra with
ordered basis of order type α, and let ∼= denote “recursive isomorphism”.

In [4], it is proven that for monadic µ as stipulated above,

BSA(ELn,µ) ∼= BA(ωn2u

· n2p ·
k

∑

i=1

ski · n
2ui),

while the functional varieties of EL are all recursively isomorphic to the func-
tional variety of CL and the undecidable varieties of EL are all recursively
isomorphic to the universal Classical Logic CL〈2〉 with one binary relation.
All of these results are proven making heavy use of the substantial machinery
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developed by Bill Hanf and Dale Myers to study the recursive isomorphism
types of languages of Classical Logic (see [3]). For example, in proving in [4]
that the undecidable variety ELn,ν of EL is recursively isomorphic to CL〈2〉,
a CL language with many (in fact, exactly 2(n − 1)) binary predicates is
used to interpret ELn,ν in CL, and then this larger language is interpreted
in CL〈2〉; the smoothness with which all these interpretations proceed re-
sults from a heavy use of the Hanf-Myers machinery which allows one to
argue comfortably about BSAs using the dual topological spaces of models
of the BSAs and, for example, Ehrenfeucht-Fraisse games to show elementary
equivalence. Of course, since recursive BSA isomorphism preserves sound-
ness and completeness, these results yield immediately and effectively the
soundness and completeness of EL.

As elaborated in [4] (see also [6]), EL is constructed as a foundational
logical framework which is conceptually antecedent to Classical Logic, and
which may be appropriate as a logical framework for evidential knowledge in
the same sense that Classical Logic provides such a framework for absolute

knowledge. In that case, it will be among the various extensions of EL that
many of the AI frameworks for the representation and processing of varieties
of uncertain knowledge in various specialized AI domains will be found. So,
by looking at families of such extensions we are both analyzing EL itself to
understand its structure better and illuminating in a generic fashion varieties
of evidential machinery potentially important to a number of classes of spe-
cialized AI domains. Further, EL provides an explication of the concept of
negation which goes beyond that provided by Classical Logic, an explication
that approaches nearer to the common sense uses of negation in the weighing
of confirmatory and refutatory evidence, in the weighing of evidence pro and
con, in the common distinction between “absence of evidence” and “evidence
of absence”.

2. The Hierarchies and their characterization

In this paper we characterize three hierarchies of extensions of ELn,τ which
essentially reflect different levels d, d = 1, . . . , n, of conflict toleration in
regard to confirmatory and refutatory evidence. The first hierarchy we con-
sider is related to ideas of Aristotle concerning privatives and has to do with
the level d of ‘absolute conflict’ tolerated: the dth logic will tolerate conflict
between the confirmatory and the refutatory only up to the point where the
minimum of the confirmatory and the refutatory evidence levels is less than
or equal to (d− 1)ε. The second hierarchy generalizes part of the Dempster-
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Shafer framework and has to do with a measure of the ‘sum of conflicting
evidence’ tolerated: the dth logic in this case will tolerate such conflict only
so long as the sum of the confirmatory and refutatory evidence is at most
1 + (d − 1)ε. The third hierarchy is in a sense a sub-Dempster-Shafer hier-
archy even less tolerant of conflict than the second hierarchy: the dth logic
in this case will tolerate conflict only so long as the sum of the confirmatory
and refutatory evidence is a most (d − 1)ε.

Let us turn now to the precise construction and characterization of these
three hierarchies of logics. Fix n and let d range from 1 through n.

The Aristotelian Evidence Logic of degree d, denoted ALn,τ (d), is the
logic

ALn,τ (d)
def
= ELn,τ (Ψ1,d)

where Ψ1,d is the axiom given by the conjunction of the following sentences:

¬(Qc : e AND Qr : e′) for all cases where min{e, e′} > (d − 1)ε, for
each proposition symbol Q stipulated by τ ,

∀x1 . . . xt ¬(Rcx1 . . . xt : e AND Rrx1 . . . xt : e′) for all cases where
min{e, e′} > (d − 1)ε, for each t-ary
predicate symbol R stipulated by τ .

Then the following proposition characterizes the Boolean Sentence Algebras
of the hierarchy of monadic logics ALn,µ(d).

Proposition 1. For each d = 1, . . . , n,

BSA(ALn,µ(d)) ∼= BA(ωmu

· mp ·

k
∑

i−1

ski · m
ui)

where m = d(2n − d).

The Dempster-Shafer Logic of degree d, denoted DSLn,τ (d), is the logic

DSLn,τ (d)
def
= ELn,τ (Ψ2,d)

where Ψ2,d is the axiom given by the conjunction of the following sentences:

¬(Qc : e AND Qr : e′) for all cases where e + e′ > 1 + (d − 1)ε, for
each proposition symbol Q stipulated by τ ,

∀ x1 . . . xt ¬(Rcx1 . . . xt : e AND Rrx1 . . . xt : e for all cases where
e + e′ > 1 + (d − 1)ε, for each t-ary
predicate symbol R stipulated by τ .
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Then the following proposition characterizes the Boolean Sentence Algebras
of the hierarchy of monadic logics DSLn,µ(d).

Proposition 2. For each d = 1, . . . , n,

BSA(DSLn,µ(d)) ∼= BA(ωmu

· mp ·

k
∑

i−1

ski · m
ui)

where m = (n(n + 1) + (d − 1)(2n − d))/2.

The Sub-Dempster-Shafer Logic of degree d, denoted SDSLn,τ (d), is the
logic

SDSLn,τ (d)
def
= ELn,τ (Ψ3,d)

where Ψ3,d is the axiom given by the conjunction of the following sentences:

¬(Qc : e AND Qr : e′) for all cases where e + e′ > (d − 1)ε, for each
proposition symbol Q stipulated by τ

∀x1 . . . xt ¬(Rcx1 . . . xt : e AND Rrx1 . . . xt : e′) for all cases where
e + e′ > (d − 1)ε, for each t-ary
predicate symbol R stipulated by τ .

Then the following proposition characterizes the Boolean Sentence Algebras
of the hierarchy of monadic logics SDSLn,µ(d).

Proposition 3. For each d = 1, . . . , n,

BSA(SDSLn,µ(d)) ∼= BA(ωmu

· mp ·
k

∑

i−1

ski · m
ui)

where m = d(d + 1)/2.

Proof of Propositions 1, 2 and 3. Fix n > 1 and d in the range 1
through n. In view of the more detailed arguments given in [4], it is suf-
ficient here to consider just the case where µ stipulates only proposition
symbols and the equality predicate is not present. So consider the theory of
the language containing only proposition symbols, let us say the p proposi-
tion symbols Q(i), i = 1, . . . , p. The atoms of the Boolean Sentence Algebra
of this theory are the n2p p-ary conjunctions with ith conjunct any one of the
n2 conjunctive pairings formed over the two collections of sentences for each
i = 1, . . . , p:

αc,j(i)
def
=











Q(i)c : 1 if j = n − 1

¬Q(i)c : ej+1 ∧ Q(i)c : ej if j = n − 2, . . . , 1,

¬Q(i)c : e1 if j = 0
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and

αr,j(i)
def
=











Q(i)r : 1 if j = n − 1

¬Q(i)r : ej+1 ∧ Q(i)r : ej if j = n − 2, . . . , 1,

¬Q(i)r : e1 if j = 0

Let us, naturally enough, refer to any of these conjunctive pairings of
the αc,j(i) and the αr,j′(i) as a preatom. We will, in turn, prove each of
propositions 1 through 3 by analyzing the ways in which each of the three
axioms Ψ1,d through Ψ3,d modify the above Boolean algebra.

First, let us consider Ψ1,d. αc,j(i) cojoins with all αr,j′(i) to form a
preatom just in case j = 0, . . . , d − 1, since it is in precisely these cases
that the level of conflict cannot exceed (d − 1)ε no matter what evidence
level j′ε is asserted by αr,j′(i); this yields exactly dn preatoms. On the other
hand, for j = d, . . . , n− 1, αc,j(i) similarly conjoins with exactly the αr,j′(i)
(0 6 j′ 6 d − 1) to form preatoms; the yield in this case is thus (n − d)d
preatoms. Altogether then, we conclude that BSA(ALn,µ(d)) is as stated in
Proposition 1 with

dn + (n − d)d = d(2n − d) = m

and the proof of Proposition 1 is completed.
Second, let us consider Ψ2,d. If j = 0, . . . , d− 1, then αc,j(i), because of

what the axiom Ψ2,d asserts about a combined evidence level not exceeding
1+(d−1)ε, conjoins consistently with all the αr,j′(i) to form a preatom; thus
in this case we have dn preatoms. In contrast to this, for each j = d, . . . ,
n − 1, αc,j(i) will conjoin consistently with just the n + d − j − 1 assertions
αr,0(i), αr,1(i), . . . , αr,n+d−j−2(i), since αc,j(i) has evidence level jε while
αr,k(i) has evidence level kε so

for just those k with 0 6 k 6 n + d − j − 2

the Dempster-Shafer combined evidence level is jε+kε 6 jε+(n+d−j−2)ε =
(n + d− 2)ε = (n− 1)ε + (d− 1)ε = 1 + (d− 1)ε; thus this case gives rise to
precisely

n−1
∑

j=d

n + d − j − 1 =

n−1
∑

j=d

j

preatoms. Hence, we conclude that BSA(DSLn,µ(d)) is as claimed in Propo-
sition 2 with
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dn +
n−1
∑

j=d

j = dn + (n − 1)n/2 − (d − 1)d/2 =

(n(n + 1) + (d − 1)(2n − d))/2 = m,

which concludes the proof of Proposition 2.
Finally, consider Ψ3,d. For each j = 0, . . . d − 1, αc,j(i) conjoins consis-

tently with αr,k(i) if the combined evidence level jε + kε is at most (d− 1)ε,
which implies that 0 6 k 6 d − j − 1 if the conjunction is to be a preatom
(i.e., consistent with Ψ3,d), and so the yield here is

d−1
∑

j=0

d − j =
d

∑

j=1

j = d(d + 1)/2 .

And, clearly, none of the αc,j(i) for j > d give rise, in conjunction with any
of the αr,k(i), to any further preatoms. This completes, then, the proof of
Proposition 3.

Turning to the functional and undecidable similarity types, note that
with arguments similar to those in [4], for functional similarity types µ′ one
gets the result that for all d:

BSA(ALn,µ′(d)) ∼= BSA(CLµ′),

BSA(DSLn,µ′(d)) ∼= BSA(CLµ′), and

BSA(SDSLn,µ′(d)) ∼= BSA(CLµ′),

while for undecidable similarity types ν it is the case that for all d:

BSA(ALn,ν(d)) ∼= BSA(CL〈2〉),

BSA(DSLn,ν(d)) ∼= BSA(CL〈2〉), and

BSA(SDSLn,ν(d)) ∼= BSA(CL〈2〉), for d 6= 1.

(The analysis of SDSLn,ν(1) is as follows: if the undecidability of ν is purely
relational, then the isomorphism type of SDSLn,ν(1) depends in an obvious
way on whether or not ν stipulates a unary function; if the undecidability of
ν is not purely relational, then the isomorphism type of SDSLn,ν(1) is that
of CL〈2〉.)

Let us remark briefly how the results of the present paper generalize
the earlier results in [6] and [7] concerning the Aristotelian logic and the
Dempster-Shafer logic as presented there. First, it is to be noted how the
SDSLn,µ(d) hierarchy above provides an ordered set of increasingly weaker
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(less stringently axiomatized) logics SDSLn,µ(d), strictly stronger, for 1 6

d 6 n − 1, than the logic DSLn,µ of [6] and [7], with

SDSLn,µ(n) = DSLn,µ .

Second, the DSLn,µ(d) hierarchy above provides an ordered set of increasingly
weaker logics DSLn,µ(d), strictly weaker, for 2 6 d 6 n, than DSLn,µ, with

DSLn,µ(1) = DSLn,µ

DSLn,µ(n) = ELn,µ .

Third, the ALn,µ(d) hierarchy provides an ordered set of increasingly weaker
logics ALn,µ(d), strictly stronger, for 1 6 d 6 n − 1, than ELn,µ, with

ALn,µ(n) = ELn,µ .

Finally, note that with respect to the Aristotelian logic ALµ in [6] and [7],

AL2,µ(1) = DSL2,µ(1) = ALµ .

Diagrammatically, we have the following where, from the top, theories
are progressively weaker, ending with the “pure” theory of monadic Evidence
Logic ELn,µ:

SDSLn,µ(1)
SDSLn,µ(2)

...
SDSLn,µ(n) = DSLn,µ = DSLn,µ(1) ALn,µ(1)

DSLn,µ(2) ALn,µ(2)
...

...
DSLn,µ(n − 2) ALn,µ(n − 2)
DSLn,µ(n − 1) = ALn,µ(n − 1)

ELn,µ = DSLn,µ(n) = ALn,µ(n)

Finally, let us note the following perspective in regard to the above re-
sults. To better understand some of the recent efforts in AI to construct logics
which provide at least partially successful machinery for the representation
and processing of uncertainty, the three hierarchies of EL logics studied here
illustrate the rich mosaic of axiomatizable extensions of EL which provide
logics appropriate to a wide variety of AI domains. In particular one sees
more clearly how current AI frameworks for the handling of uncertainty like
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that of Dempster-Shafer, coming more than two thousand years after Aristo-
tle’s preliminary grappling with the problems surrounding negation, are but
one more step in the continuing process of the construction of frameworks
which help us to better understand and more efficaciously utilize our meagre,
and often uncertain, knowledge about our world.

3. Discussion

Let us call the “Middle Ground” that region of our knowledge where, al-
though no contradictions arise, uncertainty abounds and our knowledge is
most usually evidential in character, and conflict arises from the simultaneous
presence of both confirmatory and refutatory evidence. Evidence Logic (EL),
as presented in the earlier sections of this paper, shows that for this Mid-
dle Ground robust knowledge representation frameworks can be constructed
which embody no inconsistency but rather get along quite well by simply
allowing a generous amount of evidential conflict. Further, EL provides an
explication of the concept of negation which extends that of classical logic
and shows that at least some of the foundational issues of negation which
have given rise to the importance of paraconsistent logics can indeed be cap-
tured by logics which are strictly prior to paraconsistency, that is, which,
while reaching beyond the negation of classical logic, do not allow any con-
tradictions.

Paraconsistent logics offer a reasonable framework where circumstances
involving contradictions are present. On the other hand, while of course
classical logics sometimes do offer a reasonable framework where no con-
tradictions are present, there are vast areas of human knowledge requiring
something beyond classical logic, while yet something less drastic that para-
consistent logic. In fact, regularly much of our knowledge is not absolute,
but only evidential. That is, often our knowledge is confirmatorily or refu-
tatorily evidential, and in fact gradationally so. Further, in many of these
commonly occurring circumstances, conflict often arises in the sense that one
has simultaneously both some confirmatory and some refutatory evidence in
regard to a circumstance.

Note that such conflict can well attain without there being any contradic-
tion. Here we are using the term ‘contradiction’ in the usual sense in which
it involves the classical concept of negation (NOT A meaning “it is not the
case that A”) and an assertion A AND NOT A. That is, conflict may arise
because of the presence of both confirmatory and refutatory evidence re-
garding A, and this is to be carefully distinguished from the contradiction
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which arises if one has both the presence and the absence of evidence of one
sort or another with respect to A. In the latter case, where contradictions
arise, we hope for a yet reasonable situation and seek to successfully utilize
a non-explosive framework, a paraconsistent logic. In the former case, where
conflict but no contradictions arise, classical logic fails to offer us sufficient
representational breadth to handle the conflict while paraconsistent logics
are a departure from classical logic far beyond what is needed.

In such cases of conflict, then, what is needed are systems which go be-
yond classical logic in allowing for the representation and processing of gra-
dational confirmatory and refutatory evidential knowledge. Schematically,
we may represent the three rough knowledge categories mentioned above,
and the corresponding three logical frameworks addressed to meeting their
needs, as follows:

Three Knowledge Categories

always absolute and

confirmatory, but never

contradictory

sometimes evidential

and even conflicting,

but never contradictory

sometimes contradictory,

yet not explosive

Appropriate Logical Frameworks

classical logics evidential logics like

Evidence Logic (EL)

paraconsistent logics

So our focus here is the midde category above (the Middle Ground),
knowledge which is sometimes evidential and even conflicting, but never con-
tradictory. Certainly it is not necessary to argue for the breadth of occurrence
of the Middle Ground, and hence for the clear need for logics which deal with
such knowledge. Reflection on the nature of the knowledge with which we are
most commonly confronted leads easily to the conclusion that this knowledge
is in the main evidential in character; this knowledge is rarely absolute and,
while conflicting evidence is often involved, contradictions are rarely present.
In earlier sections of this paper we have seen how it is that EL deals effica-
ciously with some of the needs of the Middle Ground. EL provides enough
machinery to adequately represent and process the gradational evidential,
and often conflicting, knowledge so ubiquitous in the Middle Ground.

In [8] one finds exemplification of how EL can serve for exploration of
such further aspects of negation. In that paper, Aristotle’s insights in Prior

Analytics regarding relations between negation as absence and privation are
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clarified by using EL. Obvious clarification, which we cannot pursue here,
concerning the often confused usage of privatives in contemporary elemen-
tary logic, becomes possible with such application of the machinery in EL.
Briefly, sentential negation addresses absence while privation addresses other-

ness, and EL helps to clarify this by using refutatory evidentials to explicate
privatives.

Penultimately, let us consider the following thesis:

(1) using classical logics whenever possible, only moving to evidential log-
ics in the less fortunate circumstances when our knowledge is indeed
evidential, and

(2) using evidential logics whenever possible, only moving to paraconsistent
logics in the even less fortunate circumstances when our knowledge is
indeed in some cases contradictory.

(1) is certainly uncontroversial. In contrast, (2) brings to the fore the
problem-laden boundary between evidential and paraconsistent logics. To
have a contradiction, say P AND NOT P , is to have simultaneously the
presence of the circumstance P describes and the absence of that circum-
stance. In some sense, this is as perplexing as it is common and unperplexing
to have simultaneously some evidence confirmatory of P and some evidence
refutatory of P . Clearly this boundary needs to be explored.

Along the lines of the analysis in the 1993 paired papers by Smiley and
Priest [16], which attempt to further penetrate the complexity of the concept
of negation, let us raise the following query. In their papers, Smiley and Priest
face, and at least partially elucidate, a number of the difficult complexities
surrounding the concept of negation. But the terrain is rough and often
perplexities seem to overwhelm all attempts to provide sufficiently sharp
linguistic codification of distinctions being addressed. For example, consider
the following, from p. 20 of the Smiley paper:

The classical idea links negation to acceptance and rejection through
the equivalence between accepting ∼A and rejecting A. Indeed, it
takes the equivalence so much for granted that its adherents are liable
to overlook or even deny the separate existence of rejection. For Priest,
however, while the joint acceptance and rejection of A is impossible,
the joint acceptance of A and ∼A is possible or even mandatory. He
therefore needs to deny that accepting ∼A implies rejecting A [. . . ].

See also, for example, Section 9 of Priest [12] on ‘denial’. Would it not be
productive to investigate carrying out this analysis upon a base logic of EL
rather than upon the base logic of classical logic?

© 2001 by Nicolaus Copernicus University



Conflict without contradiction 149

It seems to this writer that at least some of the unclarity involved in
the debate could be overcome if one made use of the machinery of EL, its
confirmatory and refutatory predications and the crisp use of classical nega-
tion simply for the absence thereof. The debate, as carried on by Smiley
and Priest, seems at times a glut of expressivity in which so much undisam-
biguatable overloading is occurring that crisp analysis is no longer possible.
It impresses as a beautiful dance of ideas, a work of “codification art”, but the
web of conceptual overloading is so complex that one feels, however unjusti-
fied, that the debate is violating one of the basic goals we strive constantly
for in doing science and philosophy: clarity. But these judgments are clearly
off the mark: negation is simply a very difficult problem area and any who
make a genuine attempt to gain further ground, as Smiley and Priest have
admirably done, not surprisingly uncover further perplexities at the depth
of their analyses. Indeed, the conclusion we draw from the papers of Smiley
and Priest is not that one or the other is right, but rather simply that good
work has been done, progress has been made, but the concept of negation
remains problematic.

Finally, we make some remarks in support of the position, respecting
paraconsistency, that while pluralism and reformism are clearly tenable po-
sitions, dialetheism, is not. For, the fact of the matter is that our ignorance of
the real world (hereafter R) is just too great at present for dialetheism to be
tenable. While we refer the reader to [10] for discussion of this perspective,
we make the following brief remarks.

Dialetheism is based on a greater knowledge of R than we in fact have.
When Priest [12, p.3] says “the theoretical object has to fit the real object;
and how this behaves is not a matter of choice”, the problem is not being
faced squarely: for the fact is, we don’t yet know the real object. To assert
what dialetheism does, that there really are contradictory simultaneous hap-
penings in R, is just simply reaching beyond what we now know about R.
As Russell said in the wonderfully lucid paper [14, pp. 91–92]:

My own belief is that most of the problems of epistemology, in so far as
they are genuine, are really problems of physics and physiology [. . . ].

It is for this reason (and possibly others as well, but it is just this reason
we are focussing on here) that dialetheism is presently untenable. Scientific
theories, including foundational theories like those we are here concerned
with, should not be theologies.

The foundational issues which give rise to, and are addressed by, para-
consistency make it clear that we must carefully respect our ignorance of R.
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We are simply building models and analyzing their partial efficacy: to assert
more than that, to forget our great ignorance of R, is to be merely theological.
As Popper [11, p. 59] said,

Theories are nets to catch what we call ‘the world’: to rationalize, to
explain, and to master it. We endeavor to make the mesh ever finer
and finer.

That’s where we are now, and this state of our ignorance limits what is
assertable: dialetheism goes beyond.
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