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LOGIC AND GROUPS

1. Introduction

Abelian group logic (AGL) — in other words, the logic which is sound and
complete w.r.t. Abelian groups — is a non-trivial inconsistent logic, i.e. what
some paraconsistent logicians call a “dialethic” logic. AGL entered the arena
of paraconsistent research in the late 1980s, when Casari (1989) and Meyer
and Slaney (1989), quite independently of each other, first axiomatized it
and studied its properties (it must be said, however, that Meyer and Slaney
circulated unpublished material about Abelian group logic as early as in
1981, so it seems correct to assign them chronological priority).

Casari, in particular, considered Abelian groups as a borderline case of
a more general class of algebraic structures (pregroups), also encompassing
MV-algebras and Boolean algebras. Correspondingly, he treated AGL as an
inconsistent extension of a logic aimed at formalizing the idea of a “compar-
ative implication” (see also Casari, 1990, 1997 for details). Another paper
containing results on Abelian group logic is Restall (1993). In both Casari’s
and Meyer-Slaney’s approaches AGL is introduced as the intensional frag-
ment of a wider logic, call it L-AGL, the logic of lattice-ordered Abelian
groups. Such a system contains, of course, connectives of conjunction and
disjunction enjoying lattice properties. However, both papers also devote
some attention to the purely intensional system AGL (Al in Meyer-Slaney’s
terminology).

In what follows, we shall try to push further the study of AGL, trying to
highlight its extreme simplicity and simmetry, properties relatively to which
it is matched to a comparable extent only, perhaps, by classical logic. At the
close, we shall prove some results concerning L-AGL, too.
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Section 2 will (except for Lemma 2) be a partial survey of the work done
by Casari on AGL. Section 3 will deal with the gentzenization of such a

system. Sections 4 and 5 will be devoted to semantics. Section 6 is about
L-AGL.

2. Hilbert-style systems

The language .Z(AGL) is a propositional language containing the connectives
of negation (—) and implication (—). AGL can be axiomatized as follows

(cf. Casari, 1989):
Al (A-B)—=(B—-C)—=(A—0)
A2 (A= (B—-C))—»(B—-(A—0)
A3 (A—- A) - (B— B)
A4 —(A— A)

A6 (A— -B) — (B — —-4)

>

7 “(A—A)— (A— A

A8

(A1)

(A2)

(A3)

(A4)

(A5) ——A— A
(A6)

(A7)

(A8) (A=A —(A—-A)—> (A=A
(R1)

R1 AA—B=B

Equivalently, we can enlarge £ (AGL) by the propositional constant T
(“true”) and replace A3, A4, A7, A8 by:

(A3) T—(A— A)
(A3") (A—-A)—-T
(A4)) -T

(A7) ~T =T

(A8') (-T—-T)—->T

It will turn out useful to have recorded some theses and admissible rules
of AGL (we shall henceforth drop the subscript “AGL” near the turnstile
whenever convenient).
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LEMMA 1. i) FA = A;
(ii) FA— ((A— B)— B);

(iii) F(A— B)— ((C —- A) - (C — B));
(iv) F(A— B) — (-B — —A);
(v) FA— A
(vi) FA=F-A;
(vii) FA—B=FDB—A;
(viii) F-(A— B)— (B — A);
(ix) F(A— B) = (B — A);
(x) FAFB=FA— B;
(xi) FT;

(xii) FA=FT > A

PROOF. Proofs of (i)-(v) can be found in Casari (1989). As regards (vi)—
(xii), it is a trivial exercise to check the soundness of such principles w.r.t.
the algebraic semantics which follows. The existence of a proof for each of
them follows then from the completeness theorem below (which of course
does not depend on them). O

If VAR is the set of propositional variables of .Z(AGL) and FOR is the
free algebra of formulas of AGL, an algebraic model </ is a pair (¥, p), where
¢ = (G,+,—,0) is an Abelian group and the realization p: FOR — ¥ is a
homomorphism extending the arbitrary mapping p*: VAR — G in such a
way that:

p(p) = p*(p);
p(—A) = —p(A);
p(A — B) = —p(A) + p(B).
(If the constant T is in the language also:
p(T) = 0).

We say that A is p-true in o (p F A) iff p(A) = 0; that A is true in o
(Fo A) iff p E, A for every p on «7; that A is logically valid (Fa-agr A) iff
E.s A for every algebraic model <.

THEOREM 1. l_AGL A iff ':A—AGL A.

PROOF. See Casari (1989). O
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By an AGL-theory we mean a set M of formulas of .Z(AGL) s.t. if
A€ M and Fagr, A — B, then B € M. It is easy to prove:

LEMMA 2. If M is an AGL-theory and, for some A, both+ A and A € M,
then AGL C M.

PRrROOF. Suppose H B and B € M. Then, if C is any theorem of AGL, by
Lemma 1(x) we have - B — C, whence C € M as M is an AGL-theory. O

3. Sequent systems

We now introduce two Gentzen-style versions of AGL. First, we shall consider
the two-sided calculus G-AGL, with negation and implication as primitive
connectives.

Let I', A, ... stand for possibly empty finite multisets of formulas of
Z(AGL). The postulates of G-AGL are:

(Ax) I'=T
I'=AA All =X

(Cut) Il= A%
L e

R

(= 1) BA’—>FA:,>FA:7>BA
(= R) FA:’>FA:,>AA;>BB

In what follows, we shall sometimes find it more convenient to resort
to a one-sided version of Abelian group logic. The calculus O-AGL has
therefore primitive literals instead of variables and just one primitive binary
connective, “@”. Then, generalized negation is introduced as usual (cf. e.g.
Girard, 1987), except for the fact that we have to take care of the self-duality
of @ in the De Morgan equivalences. A — B is defined as =A@ B. Here are
the postulates of O-AGL:

(AX) :>A1,...,An,—|A1,...,—|An (TL}O)
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=T A  =A-A

(Cut) =1I,A
(©) =1I,A B
=1 A®B

Returning now to our main system G-AGL, we are in a position to prove:
THEOREM 2. Facr, A iff Fg_agr= A.

PrROOF. Left to right. We proceed by induction on the proof of A in AGL.
Here are some examples (where in each case it is obvious which rule has been
applied):

(A2)

C,B,A=(C,B,A
B—C B, A=C,A
A—(B—-C),B,A=C
A—-(B—-C),B=A—-C
A—-(B—-C)=B—(A—=0)
=(A—->(B—-0C)—>(B—-A—=0)

A B=AB
A— A B=21B
A—-A=>B—~B

= (A— A) - (B — B)

(A4)
A=A
A A=
= (A — A)
(A7)
A A=A A
A=A A— A
“(A—A),A= A
“(A—=A)=>A-A
=-(A—>A) > (A= A)

Right to left. Tt is enough to extend to sequents the semantical concepts
introduced in Section 2 and show that, if Fg.aqr I = A, then I' = A is
logically valid. Once this is done in the appropriate way, our claim becomes
a consequence of Theorem 1 for I' = () and A = {A}.
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Hence, let p(A41,..., A, = Bi,...,Bp) = —p(A1) + -+ + —p(4,) +
p(B1) + -+ + p(By,) and p(=) = 0. The sequent I' = A is said to be
logically valid iff p(I" = A) = 0 for every p on every algebraic model <.
Now we can prove the “if” part of our theorem by a standard induction on
the length of the proof of I' = A in G-AGL. The cases (= L) and (— R) are
left to the reader.

(Ad Ax). p(A1,...,Ap = A1...,Ay) = —p(A1)+- -+ —p(An)+p(A1)+
o4+ p(4,) =0+---4+0=0. Moreover, if n = 0 we are done by definition.

(Ad Cut). Let —p(I') + p(Q) = x, —p(IT) + p(X) =y, p(A) = z. By IH,
r+z=0and —2+y=0. So0=04+0=—z2+4+2+2+y=0+2+y=2+y.

(Ad = R). If —p(I') + p(A) = z and p(A) =y, by IH —y + & = 0, which
is actually what we wanted to prove.

(Ad — L). If —p(I") 4+ p(Q) = z, p(A) = y and p(B) = z, then by IH
—y+x+2=0. But then —(—z+y)+2z=-y+2z+z=0. O

THEOREM 3. G-AGL is cut-free.

PrOOF. First, let us show that if D is a proof of the following form:

/ D/I
I'=AA All=X
T Il= A% (Cut)

where D’ and D” are cut-free proofs, then the previous application of cut
can be replaced by an application of the following rule:
A A==, A

—_

(Elim) 1o =

yielding the same end sequent. Indeed, if D’ and D" are cut-free, they are
chains, since no other rule of G-AGL has two premisses:

d=> 6 =06
Dl DII
I'=AA All = X

Hence, we can construct a D" as follows:

P60 =9,6

"
A=A XA
II=AY

(Elim)

A cut-elimination procedure for G-AGL can then be carried out in three
steps:
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(A) We replace one by one all applications of (Cut) by applications of (Elim),
starting from the maximal sequents in each branch of the proof-tree and
descending down to its root. Proof-trees become chains.

(B) We show that (Elim) is superfluous in proofs containing a single final
application of such a rule.

(C) We extend this result in the standard way to proofs containing a finite
arbitrary number of applications of (Elim).

Proof of (B) is a double induction on the rank and the complexity of the
principal formula in the application of (Elim) at issue. However, we must
suitably adapt to the present case the ordinary definition of rank.

Consider the following proof:

I L X

=
A= A4 (Bue)
TTroa (Eim

We stipulate that the left rank of A (rl(A)), i.e. the rank relative to the first
occurrence of A, remains unaltered in passing from IT = X to A, "' = A A
if (1) that occurrence of A was obtained by a rule other than (Ax) and (2) the
second occurrence of A is the principal formula of the application of (Rule);
otherwise it increases by one unit. Similar consideration apply to the right
rank of A (rr(A)). As usual, r(A) is defined as rl(A4) + rr(A).

Basis (r(A) = 2). Due to the absence of structural rules, there are just
three cases to consider (up to trivial simmetries such as permutation of the
order of inferences).

First case:
AT'=T,A .
D: o1 (Elim) D:. I'=T
Second case:
AT=AA (-L)
ﬁAAFjA;R)
ﬂAF:AwH&m AF:AAEMO
D: I'= A D' I'= A
Third case:

A,B, = A, A B .
A%RAF:ABF%Q
A5Bloaisp R

D: I'= A (Elim)

A B, = A A B
BT = AB
D' I'=A

(Elim)
(Elim)
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Step (r(A) > 2). For the same reason as above, the only main case to be
treated remains the one concerning inversion of rules. Examples:

AT = A A B AT = AAB

1-BIoaAlh I ap  (Flim)
D: Broa  (Fhim) p. “Broalm

ARF:AQA(%m ARF:AQAET)

AC%RFiAA@r) BT = A,C f
D: CSBIT=A m . CoBI=a D
This concludes the proof of our theorem. O

4. Denotational semantics

Abelian group logic has a semantics of proofs. We can easily obtain it by
suitably trivializing some distinctions available in Girard’s denotational se-
mantics for linear logic (Girard, 1987; Troelstra, 1992). Remark that in
Girard’s semantics the multiplicative truth and falsity constants are inter-
preted by the same coherent space, and this may be seen as a shortcoming of
this semantics. In our dialethic setting, however, this feature, far from being
a drawback, is indeed a desideratum.

An AGL-coherent space is an ordered triple . = (X, R, S), where X is
a set and R, S are irreflexive symmetric relations on X s.t. RUSUI is a
covering of X2 (“I” denotes here the identity relation).

We define two operations on AGL-coherent spaces: orthogonality (unary)
and sum (binary).

If ¥ =(X,R,S), then

s+ L (X S R).
It is easily checked that . is well-defined and ./ = ..
If ¥ =(X,R,S) and &' = (X R',S"), then
7+ L (X x X'\ R" 5",
where for any z,y,2,y € X we have:

(z,2") R" (y,y/) if 2 Ryora’ Ry,
and
(z,2') S" (y,y/) ff zSyora’ S y.

Are R” and S” well-defined? They are both irreflexive, since, for example,
(x,2") R" (z,2’) iff R x or ' R’ 2/, i.e. never; symmetry of R”  S” follows
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likewise from symmetry of R, S, R/, S’. It remains to prove that either
(x,2") R" (y,y) or (z,2') S” (y,y') or (x = y and 2/ = ¢/), but this is
tantamount to: either x Ry or 2’ R v or x Sy or 2/ S" ¢ or (x =y and
a2’ =v/'), and this follows from the properties of R, S, R, S’

We can also define another binary operation on AGL-coherent spaces, i.e.
implication: if ¥ = (X, R,S) and ./ = (X', R',S’), then

7 7YX x X, R",S",
where for any z,y, 2,y € X we have:

(z,2") R" (y,y') iff zSyora’ Ry,
and
(x,2") 8" (y,y/) iff xRyora’ S y.

The following isomorphisms between AGL-coherent spaces are provable:

De Morgan equalities:

1 — = + ;

(1) S =S 2 g

(2) (y_}_y/)L ~ yl_}_yll‘
Commutativity isomorphisms:

3 — = — ;

( ) y y! C7/J‘ yl

4 B =R

(4) (

(5) S+ 2SS
Associativity isomorphisms:

(6) S = (S+ S =2 (S =S+
(7) S+ (S + I 2 (S+ I+ IS

As an example we prove (2) and (4), which are not valid in linear logic.

Ad (2): (z,2") R (y,) in (& + ) iff (z,2) S (y,y) in .¥ + .7
iff (x Syin.ora’ Sy in.?)iff (x Ryin.#+ ora’ Ry in 77t)iff
(z,2') R (y,v') in .+ 4+ .#"+. Dually, we can repeat the same reasoning
for S.

Ad (4): (z,2") R (y,9/) in (¥ — )L iff (z,2") S (y,9/) in & — 7" iff
(x Ryin Lor 2’ Sy in ) iff (z,2') R (y,y) in " — .. Again, the
argument relative to S is symmetrical.

Let us now return to our one-sided calculus O-AGL of Section 3 and see
how it can be interpreted within our semantical frame.

Let SP be an (at least denumerable) set of AGL-coherent spaces, contain-
ing the empty one (the empty set with two empty relations on it) and closed
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under the operations of orthogonality and sum. If LIT is the set of literals of
Z(AGL) and L€ is the complementary literal of L, then given any mapping
v*: LIT — SP s.t. v * (L¢) = v*(L)*, a valuation v transforms sequents of
O-AGL into members of SP according to the following clauses:

o(L) = v (L);
v(A® B) =v(A) + ( );
v(=A1,...,A,) =v(41) + -+ v(An).

The valuation v is in itself far from sufficient, since what we are after
is a semantics of proofs. So, if D is a proof of = I' in O-AGL, where
v(=T)=(X,R,S), we interpret it by a mapping j s.t. (D) C X. We
shall then show that, for every proof D of = I' in O-AGL, j(D) is a clique
in v(= I), i.e. that if z, y both belong to j(D), then z R y or x = y in
v( = I') (as a matter of convention, we stipulate that the only subset of =
is a clique in the empty AGL-coherent space).

We inductively define j as follows (boldface letters stand for n-tuples):

—j( = Ay, -AL . L AL AL = {x, a1, 0 2 € X}, where
v(4;) = % = (X;, R, S;) and v(=A4;) = v(Aj)*; for n = 0, j( =
Al,ﬁAl, . ,An,ﬁAn) — @

~ If D proves = I,A, D' proves = A,-A, and D’ proves = I, A by
a cut rule from D and D', then j(D") = {x,2’ : Jy(x,y € j(D) and
o',y € (D))}

— If D proves = I’ A, B and D’ proves = I, A® B by a plus rule from D,
then j(D') = {x, (y,2) : ®,y,2 € j(D)}.

THEOREM 4. If D proves = I" in O-AGL, then j(D) is a clique in v( = I").

PRrROOF. Induction on the length of D. Since the inductive step is proved as
in Girard (1987), we shall focus on the basis of the induction.

We have to show that either (z1,21,...,Zn,Zn) R (Y1,Y1, -+ YnsYn) OF
(r1 = y1 and ... and x, = y,), i.e. either 1 Ry y; or 1.%y; or ... or
Tn Ry Yn OF X Spyn or (r1 = y1 and ... and z, = y,). But this follows
easily from the fact that for each ¢ < n, R; US; U1 is a covering of XZ-2 (if
n = 0, we are OK by definition).

In fact, our axioms of the form = Ay,—-A4;,..., A,, A, are nothing else
than generalized excluded thirds actually embodying a composition rule —
a restricted form of weakening which is known to be sound in Girard’s se-
mantics (cf. e.g. Blute and Scott, 1996). O
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5. Kripke-style semantics

Coherent space semantics is a semantics of proofs, not provability. Moreover,
interesting logics which have denotational models, in primis linear logic, are
usually shown to be sound, not complete, w.r.t. such an interpretation. So,
as we have just seen, does also AGL. It is then desirable to have a more
traditional semantics — different from the immediate algebraic one presented
in Section 2 — which affords a proper completeness proof.

With such an aim in mind, we now proceed to introduce a relational
semantics for the Hilbert-style system AGL, taken in its axiomatization with
a primitive propositional constant T (see above).

A G-frame is an ordered quadruple % = (W, R, 1,* ), where:

e 1V is a nonempty set containing 1.

e R is 3-place relation on W satisfying:
Rl  Rlzxx;
R2 Rxyz = Ryxz,
R3  R?*(xy)zw = R%*(zz)yw,
R4  Rrxyz & w < z = Rwyz.
As usual (cf. Dunn, 1986), R%(zy)zw is short for Ju(Rryu & Ruzw),
whereas x < y stands for R1xy.

e *is a l-place operation on W satisfying:
1 ==z
*2  Rxyz = Rxz*y*,
*3 1<z <= 1 ﬁ z*.

A G-model for AGL is a pair # = (Z,F), where % is a G-frame and
F C W x FOR is a relation satisfying:

F1 zEp&ax<y=yFp;

F2 zFT << 1 <u;

E3 zE-A < x"F A

F4 2FA— B < Vyz(Rryz& yk A= zE B).

A G-model # is unit-splitting (or, for short, u-splitting) iff the forcing
relation satisfies, for every A:

ES 1EFA < 1*"FA.
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Of course we have to show that this last constraint is not incompatible
with the previous ones, i.e. that there are u-splitting G-models. But this will
be proved through our completeness theorem below.

A is said to be true in A (M E A) iff 1 E A; to be an Abelian logical
law (Fx.agL a) iff 4 E A for every u-splitting G-model .Z .

LEMMA 3. In every u-splitting G-model .4 :

(i) zFA&z<y=yE A (Heredity)
(ii) Ve(rFA=2FB)=1F A— B. (Verification)
(i) 1FA & 1F-A
(iv) 1FA < 1"F-A.

(v) If, for some A, 1 E A and x F A, then 1 < x.

PROOF. (i)-(ii) See Anderson, Belnap and Dunn (1992), Dunn (1986) or
Routley-Meyer (1972).

(iii) Left to right: 1 F A = (E5) 1" ¥ A = (F3) 1 F —A. Right to left:
1FE-A= (E5) 1" F -A= (F3,*1) 1 F A.

(iv) Symmetrical.

(v) Suppose 1 E B, x E B and 1 £ z. By (*1) and (*3), this last implies
1 < z*. 1 F Bimplies instead 1 £ =B by (iii) above. Hence, by (i), z* F =B,
i.e., in virtue of (F3) and (*1), z ¥ B, which is a contradiction. O

THEOREM 5. bFaqr A implies Fg_acr A.

PROOF. Standard induction on the length of derivations. In particular, (A1),
(A2), (A5), (A6), and (R1) are verified as in Dunn (1986) or in Routley-Meyer
(1972). We now argue for the rest of the postulates. Lemma 3(ii) will be
used without special mention in what follows.

(A3'). Suppose x E T. Then, by (F2), I < x. Now assume Rxyz and
y E A; by (R4), then, y < z. Hence Lemma 3(i) implies z F A.

(A3"). Tt is easy to check that 1 F A — A. Suppose now z F A — A; by
Lemma 3(v) we conclude that 1 <z, ie zFE T.

(A4"). Since 1 < 1, by (*3) it is not the case that 1* < 1%, ie. (F2)
1*E T. By (F3), then 1 F —T.

(A7"). Suppose z E =T. Then z* ¥ T, according to (F3). Since 1 F T
(as 1 < 1), by Lemma 3(i) it is not the case that 1 < z*. But this amounts
to I <z in virtue of (*3). Hence (F2), z F T.

(A8'). This axiom is verified exactly like (A3"), since 1 £ =T — T, as
we have just seen. O
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THEOREM 6. Fx_aqr, A implies Fagr, A.

PrROOF. We prove the contrapositive: assuming that it is not the case that
F A, we show that there is an u-splitting G-model (the canonical model of
AGL) s.t. 1 E A.

Our canonical model € = ((W, R, 1,*),E) is constructed as follows:
— W is the set of all AGL-theories;
Rzxyz holds iff A — B € x and A € y jointly imply B € z;
- 1 is AGL;
¥ ={A:-A ¢z}
- xzF Aholds iff A € x.

Since W contains AGL, it is of course a nonempty set containing 1.

That R satisfies R1-R4 can be shown as in Dunn (1986), exploiting (A2)
and Lemma 1(i)—(iii).

By (A5), (A6) and Lemma 1(iv)—(v) the operation * maps theories to
theories and satisfies (*1) and (*2).

As to (*3), we first prove that I < x implies 1 £ z*. Suppose I < z,
which is easily seen to mean that x extends AGL. We have to show that for
some A and B, B ¢ x* although - Aand+ A — B. But 2* = {C': =C ¢ z};
now,take A=D — Dand B=F — E; youhave - A,- A — B and F -DB,
hence, by our hypothesis, =B € z, i.e. B ¢ z*.

For the converse implication, suppose that there are A and B s.t. F A,
FA— Band B¢ a* ie., =B € z. It follows from - A and F A — B that
F B, hence (Lemma 1(vi)) = —=B. Then, in virtue of Lemma 2, x extends
AGL, ie., 1 <=x.

Now we have to show that F is a well-behaved forcing relation. The reader
is once again referred to Dunn (1986) or Routley-Meyer (1972) for proofs that
F meets the criteria (F1), (F3) and (F4). As to (F2), suppose I < z. But if x
extends AGL, then it surely contains T in virtue of Lemma 1(xi). Conversely,
suppose that x contains T. Now, by Lemma 1(xii), given any theorem A of
AGL, T — A is a theorem of AGL too; hence € x. It follows that 2 extends
AGL.

The very last thing left to prove is that % is u-splitting. Remember that
1* = {A ¥ -A}. But 1 F A implies 1* ¥ A, since - A implies - = A by
Lemma 1(vi) and so =A € 1, i.e. 1* ¥ A. Conversely, if A € 1 then by
Lemma 1(vi) again A € 1. Hence 1* ¥ A implies 1 F A.

This concludes the proof of our theorem. O
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A A=A
A A= A A A= —AA A (oR)
— T (>R) (VR)
A= A (Ao A) A= AV-A A AA (VB)
A= AV-AA—> A A= AV-A4,AA

(VR) (=L)
A= AV-AA—> A AsA=Av-AA (Ao o
\%
A (Ao A)= A (A — A) . A(A> A)=> AV-A,A— A (VL)
—
:>A,(A—)A)—)A,(A~>A)( ) A,(A—>A) A (A A)=AV-A

= AV -A

(=1)
(Cut)

Figure 1. Excluded third without contraction

6. From Abelian group logic to Abelian l-group logic

6.1. Proof theory

If we extend our language with the connective “&” and add to AGL the
standard semilattice axioms for conjunction and the adjunction rule:

(A9)  A&B-—A

(A10) A& B— B

(A11) (A=-B)&(A—-C)— (A—->B&C)
(R2) AB= A&B

we get L-AGL, i.e. Abelian [-group logic. Disjunction can now be defined as
usual via the De Morgan laws. The corresponding Gentzen-style system (GL-
AGL) can be obtained from G-AGL by adding the standard rules for additive
(lattice-theoretical) conjunction. Algebraic semantics (w.r.t. [-groups) for the
new systems can easily be recovered from the one presented in Section 1, by
stipulating that p(A & B) = p(A) A p(B), and that A is p-true in o iff
0 < p(A). It is possible to prove:

THEOREM 7. l_L—AGL A iff |_AL—AGL = A iff ':AL—AGL A. O

The addition of lattice connectives to Abelian group logic has its pros and
cons. One of the advantages is that it affords nice contraction-free proofs of
classical tautologies essentially depending on contraction, e.g. the excluded
third and the law of distribution (cf. Fig. 1 and Fig. 2 on p. 123).

Among the disadvantages, there is loss of cut elimination.

THEOREM 8. GL-AGL is not cut-free.
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B,A,A& (BVC)= A& B,A, BV C
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(&L)
(&R)

C,A,A= A A C
C,A,A= A A, BVC
C,A,A& (BVC)= A, A, BV C

(VR)

(&L

)

C,A,BvC=C,A,BVC

C,A,A& (BVC)= A& C,A, BV C

(&R

)

C,A, A& (BVC)= A, ABV C

C,A, A& (BVC)= (A& B)V(A&C),A, BV C

(vL)

BvVC = BVC

BVC,A, A& (BVC) = (A& B)V(A&C),A, BV C

———— X  — (—R)
= (BVvC)— (BVC)

(=L)
(Cut)

(BVC) > (BVC),A,A&(BVC)= (A& B)V (A& C), A

A= A A, A& (BVC)= (A& B)V(A&C), A

(&L)
(VR)

—— (&R)
= A - A

A A A&(BVC)= (A& B)V (A&C)

A& (BVC)= (A& B)V (A&C)

Figure 2. Distribution without contraction

© 2001 by Nicolaus Copernicus University

(Cut)

(—=L)

SdNOYD ANV DIDOT

€cl



124 FRANCESCO PAOLI

PROOF. As we have seen, the excluded third is provable in our system. Were
GL-AGL cut-free, by the subformula property its atomic instances should be
provable using just the conjunction and negation rules and the rule (Ax).
But, as it can be seen by inspection, there is no combination of such rules
yielding the desired result. Hence GL-AGL is not cut-free. O

6.2. Phase semantics

The relational semantics of Section 5 is no good for L-AGL, since it rests
upon characteristic properties of AGL that are not shared by the full system.
However, we can provide a relational semantics for L-AGL by constructing
appropriate phase models (cf. Girard, 1987).

Remember that a phase structure is a pair % = (#, L), where .4 =
(M, -, 1) is an Abelian monoid and L is a distinguished subset of M. Instead
of z - y we shall usually write xy. We define, as usual, for X, Y C M:

XY ={zy:2eX&yeY}
Xt={z:WylyeX=uazyecl)}
XaYy=XvhHt
The operation c(A) = A1+ is a closure operation on M. We define
CM)={XCM: X=cX)}.
F is an Abelian phase structure iff:
(a) (L,-,1) is a submonoid of .Z;
(b) for every y € M and every X € C(M), X{y} C X implies L{y} C L.

LEMMA 4. In every Abelian phase structure % = (#, 1), for every X €
CM): (1) LL=1, (i) L=1+ (i) XoXt=1,(@1v) XL =X.

ProOOF. (i) LL C 1 since (L,-, 1) is a submonoid of .#; for the same reason
lel,henceifee l,e=ax¢€ L1

(i) L+ ={z:Vylye L =ayc L)}. Ifxc L, then, by (a), z € L+
Conversely, if Vy(y € L = xy € 1), choose y = 1 to obtain z € L.

(iii) We have to prove that (X1 X)* = L. The inclusion from right to left
follows from standard phase semantics. Suppose now w € (X X)+, which
by ordinary theory of phase semantics means X{w} C X. Then, by (b),
1{w} C L, which amounts to w € L by (ii) above.

(iv) As regards X @ L C X, suppose z € X & L, ie., Vy(Vz(z € L =
zy € 1) = xy € X). Let y = 1. Since the antecedent is trivially satisfied,
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x € X. Conversely, if z € X we have to prove that Vy(Vz(z € L = zy €
1) = zy € X). By (ii) and (iii) above, X @ X+ = 11, so we can replace
Vz(z € L = zy € 1) by Vz(z € X = zy € X), whence our conclusion
follows. O

Remark that an affine phase structure (Lafont, 1997) is a phase structure
where X € C(M) implies L X C 1. In any affine phase structure, X € C(M)
implies L. C X C L+ =M.

LEMMA 5. If % is an affine Abelian phase structure, then M = 1 and
C(M) ={M}.

PROOF. Since M is closed, LM C 1. But 1 € 1, so for every = in M,
r =1z € L. Since X € C(M) implies M = L C X C 1+ = M, then
C(M) = {M}. O

TuEOREM 9. Let IT C C(M) be closed w.r.t. -, @, and contain 1.' Then
S = (II,®,*, L, C) is an Abelian po-group. IfIT is closed w.r.t. intersection,
then . is an Abelian l-group.

PRrROOF. (II,®) is an Abelian po-semigroup by standard phase semantics.
By Lemma 4(iv) L is a zero and by Lemma 4(iii) * is an inverse operation.
If IT is closed w.r.t. intersection, then by ordinary phase semantics (I1, C) is
a lattice where joins are represented by (X UY)+t. O

THEOREM 10. Every Abelian po-group ¥ = (G,+,—,0,<) is isomorphic
to an Abelian po-group . of sets. Moreover, if & is lattice-ordered, . is
lattice-ordered.

ProOOF. Let ¥ = (G,+,—,0,<) be an Abelian po-group. Then ¥* =
(G,+,0) is an Abelian monoid and I(0) = {z : z < 0} is a distinguished
subset of G. Hence # = (4*,1(0)) is a phase structure. We can thus
define on it operations of generalized product, orthogonality, and sum ex-
actly as above. Notice that X+ = {y : Va(z € X = z+y < 0)}
since x +y <0iff 0 < —(z+y) = —x+ —y iff z < —y, we have that
Xt={y:Ve(re X =2 < —y}.
Let also I(z) = {y : y <z} and IT = {I(z) : € G}. Now we prove:

(a) II € C(G);
(b) II contains L;

! Hence L*; not necessarily, however, M and (.
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(c) IT is closed w.r.t. - and @ (also set-theoretical intersection if ¢ is lattice-
ordered);

(d) .# is an Abelian phase structure.

Ad (a): I(y)*t = {z : Vz2(Vw(w <y = w < —2) = 2 < —2)}. We
have to show that 2 € I(y)*+ = 2 < y. Choose z = —y to get the desired
conclusion.

Ad (b): L =1(0) belongs to I1.

Ad (c): We show that: I(z)* = I(—2); I(z)@1(y) = I(z+y); I(z)N1(y) =
I(z Ay) (if binary meets exist everywhere). In the first place, remember that
()t ={y:Vz(z<z=2<—y)}. Ify < —z,ie o < —y, and z < x, then
z < —y by transitivity. Conversely, if Vz(z < x = z < —y), choose z = z to
get x < —y, e y < —z.

As regards sum, by what we have just proved it is enough to show that
I(x +y) = (I(—2)I(—y))*. Suppose then z <z +vy, 2/ < —x, 2" < —y. We
have to show that 2’ + 2" < —z. But 2/ + 2" < —x+ —y = —(x + y). Hence
z<z+y < —(2+2"). Contraposing, 2z’ + 2 < —z. Conversely, suppose
Vw(w=uw+uw"&w < —-zx&w" < —y=w< —2). Choose w=—x+ —y.
You get —x 4+ —y < —z, thatis 2 < —(—z 4+ —y) = x + y.

As for meets, if (¢, <) is a lattice, then I(x) is the principal I-ideal gener-
ated in ¢ by =z, and we know from lattice theory that I(z) N1(y) = I(x A y).

Ad (d): First of all, remark that 0 belongs to I(0) and that z <0, y <0
imply z +y < 0+ 0 = 0. Moreover, X{y} C X implies L{y} C L, i.e. if
z < x implies z < y = x, then z < 0 implies z +y < 0. In fact, if z <0,
then z < x + —x; adding « on both sides, z + x < z. Hence z +x +y < z.
Adding —z on both sides, z +y < 0.

So, by Theorem 9, .¥ = (II,®,+,1(0),C) is an Abelian po-group of
sets. Moreover, the map turning x into I(x) is clearly an order-preserving
bijection and, as we have seen, preserves inverses, sums and meets. Hence ¢
is isomorphic to .. O

Now, we can define a relational model for L-AGL as a triple Z = (Z,
II,v), where .# = (M,-,1, 1) is an Abelian phase structure (called frame),
IT is a subset of C(M) closed w.r.t. the phase-semantical operations defined
as above, and v is a map assigning to every variable of the language of L-AGL
an element of I, extended to a homomorphism by the clauses:

v(-4) = v(A),
v(A& B) =v(A) Nnv(B),
v(A — B) = v(A)t ¢ u(B).
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This allows to define a binary accessibility relation on M setting Rxy PN
xy ¢ L. Notice that, like in the semantics for intuitionistic logic, x € v(—A)
iff Vz2(Rzz = z ¢ v(A)).

We stipulate that A is v-true in Z (v E4 A) iff 1 € v(A); that A is true
in. % (Fgz A)iff v Fy A for every v on %, that A is logically valid (Fr-acr A)
iff v E5 A for every relational model Z.

THEOREM 11. For every algebraic model o/ = (¥, p) there is a relational
model #¥ = (F,1I,v) such that for every formula A, p F A iff v E u A.
Likewise, for every relational model # = (%, II,v) there is an algebraic
model o/” = (4, p) such that for every formula A, v 4 A iff pE 2 A.

PROOF. As regards the first statement, given &/ = (¥, p), let % be (G, +,
0,1(0)), IT be the set of all principal l-ideals of ¢, and v(A) = {z € G :
x < p(A)}. By Theorem 10, .# is a frame and it is easy to check (since the
map x +— () preserves the operations of the I-group) that v(=A) = v(A)*,
v(A — B) = v(A)* @ v(B) and v(A & B) = v(A) Nv(B). Thus, v is well
defined. Moreover, p o A iff 0 < p(A) iff 0 € v(A) iff v Fyw A.

For the second part of the theorem, given # = (%, Il,v) with F =
(M,-,1,1), let 4 = (II,®,+, 1,C), constructed as in Theorem 9, and
p(A) = v(A). By Theorem 9, ¢ is an I-group and p is well defined, according
to our definitions. Moreover, v F5 A iff 1 € v(A) iff L = 1+ C v(A) (by
standard phase semantics, since v(A) is a c-closed subset of M) iff L C p(A)
iff pE_ 2 A. O
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