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Fran
es
o PaoliLOGIC AND GROUPS1. Introdu
tionAbelian group logi
 (AGL) � in other words, the logi
 whi
h is sound and
omplete w.r.t. Abelian groups � is a non-trivial in
onsistent logi
, i.e. whatsome para
onsistent logi
ians 
all a �dialethi
� logi
. AGL entered the arenaof para
onsistent resear
h in the late 1980s, when Casari (1989) and Meyerand Slaney (1989), quite independently of ea
h other, �rst axiomatized itand studied its properties (it must be said, however, that Meyer and Slaney
ir
ulated unpublished material about Abelian group logi
 as early as in1981, so it seems 
orre
t to assign them 
hronologi
al priority).Casari, in parti
ular, 
onsidered Abelian groups as a borderline 
ase ofa more general 
lass of algebrai
 stru
tures (pregroups), also en
ompassingMV-algebras and Boolean algebras. Correspondingly, he treated AGL as anin
onsistent extension of a logi
 aimed at formalizing the idea of a �
ompar-ative impli
ation� (see also Casari, 1990, 1997 for details). Another paper
ontaining results on Abelian group logi
 is Restall (1993). In both Casari'sand Meyer-Slaney's approa
hes AGL is introdu
ed as the intensional frag-ment of a wider logi
, 
all it L-AGL, the logi
 of latti
e-ordered Abeliangroups. Su
h a system 
ontains, of 
ourse, 
onne
tives of 
onjun
tion anddisjun
tion enjoying latti
e properties. However, both papers also devotesome attention to the purely intensional system AGL (AI in Meyer-Slaney'sterminology).In what follows, we shall try to push further the study of AGL, trying tohighlight its extreme simpli
ity and simmetry, properties relatively to whi
hit is mat
hed to a 
omparable extent only, perhaps, by 
lassi
al logi
. At the
lose, we shall prove some results 
on
erning L-AGL, too.
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110 Fran
es
o PaoliSe
tion 2 will (ex
ept for Lemma 2) be a partial survey of the work doneby Casari on AGL. Se
tion 3 will deal with the gentzenization of su
h asystem. Se
tions 4 and 5 will be devoted to semanti
s. Se
tion 6 is aboutL-AGL. 2. Hilbert-style systemsThe language L (AGL) is a propositional language 
ontaining the 
onne
tivesof negation (¬) and impli
ation (→). AGL 
an be axiomatized as follows(
f. Casari, 1989):(A1) (A → B) → ((B → C) → (A → C))(A2) (A → (B → C)) → (B → (A → C))(A3) (A → A) → (B → B)(A4) ¬(A → A)(A5) ¬¬A → A(A6) (A → ¬B) → (B → ¬A)(A7) ¬(A → A) → (A → A)(A8) (¬(A → A) → (A → A)) → (A → A)(R1) A,A → B ⇒ BEquivalently, we 
an enlarge L (AGL) by the propositional 
onstant T(�true�) and repla
e A3, A4, A7, A8 by:(A3′) T → (A → A)(A3′′) (A → A) → T(A4′) ¬T(A7′) ¬T → T(A8′) (¬T → T) → TIt will turn out useful to have re
orded some theses and admissible rulesof AGL (we shall hen
eforth drop the subs
ript �AGL� near the turnstilewhenever 
onvenient).
© 2001 by Nicolaus Copernicus University



Logi
 and groups 111Lemma 1. (i) ⊢ A → A;(ii) ⊢ A → ((A → B) → B);(iii) ⊢ (A → B) → ((C → A) → (C → B));(iv) ⊢ (A → B) → (¬B → ¬A);(v) ⊢ A → ¬¬A;(vi) ⊢ A ⇒ ⊢ ¬A;(vii) ⊢ A → B ⇒ ⊢ B → A;(viii) ⊢ ¬(A → B) → (B → A);(ix) ⊢ (A → B) → ¬(B → A);(x) ⊢ A,⊢ B ⇒ ⊢ A → B;(xi) ⊢ T;(xii) ⊢ A ⇒ ⊢ T → A.Proof. Proofs of (i)�(v) 
an be found in Casari (1989). As regards (vi)�(xii), it is a trivial exer
ise to 
he
k the soundness of su
h prin
iples w.r.t.the algebrai
 semanti
s whi
h follows. The existen
e of a proof for ea
h ofthem follows then from the 
ompleteness theorem below (whi
h of 
oursedoes not depend on them).If VAR is the set of propositional variables of L (AGL) and FOR is thefree algebra of formulas of AGL, an algebrai
 model A is a pair 〈G , ρ〉, where
G = 〈G,+,−, 0〉 is an Abelian group and the realization ρ : FOR → G is ahomomorphism extending the arbitrary mapping ρ∗ : VAR → G in su
h away that:

ρ(p) = ρ∗(p);

ρ(¬A) = −ρ(A);

ρ(A → B) = −ρ(A) + ρ(B).(If the 
onstant T is in the language also:
ρ(T) = 0).We say that A is ρ-true in A (ρ �A A) i� ρ(A) = 0; that A is true in A(�A A) i� ρ �A A for every ρ on A ; that A is logi
ally valid (�A-AGL A) i�

�A A for every algebrai
 model A .Theorem 1. ⊢AGL A i� �A−AGL A.Proof. See Casari (1989).
© 2001 by Nicolaus Copernicus University



112 Fran
es
o PaoliBy an AGL-theory we mean a set M of formulas of L (AGL) s.t. if
A ∈ M and ⊢AGL A → B, then B ∈ M . It is easy to prove:Lemma 2. If M is an AGL-theory and, for some A, both ⊢ A and A ∈ M ,then AGL ⊆ M .Proof. Suppose ⊢ B and B ∈ M . Then, if C is any theorem of AGL, byLemma 1(x) we have ⊢ B → C, when
e C ∈ M as M is an AGL-theory.3. Sequent systemsWe now introdu
e two Gentzen-style versions of AGL. First, we shall 
onsiderthe two-sided 
al
ulus G-AGL, with negation and impli
ation as primitive
onne
tives.Let Γ , ∆, . . . stand for possibly empty �nite multisets of formulas of
L (AGL). The postulates of G-AGL are:(Ax) Γ ⇒ Γ(Cut) Γ ⇒ ∆,A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ(¬ L) Γ ⇒ ∆,A

¬A,Γ ⇒ ∆(¬ R) A,Γ ⇒ ∆

Γ ⇒ ∆,¬A(→ L) A,Γ ⇒ ∆,B

B → A,Γ ⇒ ∆(→ R) A,Γ ⇒ ∆,B

Γ ⇒ ∆,A → BIn what follows, we shall sometimes �nd it more 
onvenient to resortto a one-sided version of Abelian group logi
. The 
al
ulus O-AGL hastherefore primitive literals instead of variables and just one primitive binary
onne
tive, �⊕�. Then, generalized negation is introdu
ed as usual (
f. e.g.Girard, 1987), ex
ept for the fa
t that we have to take 
are of the self-dualityof ⊕ in the De Morgan equivalen
es. A → B is de�ned as ¬A⊕B. Here arethe postulates of O-AGL:(Ax) ⇒ A1, . . . , An,¬A1, . . . ,¬An (n > 0)
© 2001 by Nicolaus Copernicus University



Logi
 and groups 113(Cut) ⇒ Γ,A ⇒ ∆,¬A

⇒ Γ,∆(⊕) ⇒ Γ,A,B

⇒ Γ,A⊕BReturning now to our main system G-AGL, we are in a position to prove:Theorem 2. ⊢AGL A i� ⊢G−AGL⇒ A.Proof. Left to right. We pro
eed by indu
tion on the proof of A in AGL.Here are some examples (where in ea
h 
ase it is obvious whi
h rule has beenapplied):(A2)
C,B,A ⇒ C,B,A

B → C,B,A ⇒ C,A

A → (B → C), B,A ⇒ C

A → (B → C), B ⇒ A → C

A → (B → C) ⇒ B → (A → C)

⇒ (A → (B → C)) → (B → (A → C))(A3)
A,B ⇒ A,B

A → A,B ⇒ B

A → A ⇒ B → B
⇒ (A → A) → (B → B)(A4)

A ⇒ A
A → A ⇒

⇒ ¬(A → A)(A7)
A,A ⇒ A,A

A ⇒ A,A → A

¬(A → A), A ⇒ A

¬(A → A) ⇒ A → A

⇒ ¬(A → A) → (A → A)Right to left. It is enough to extend to sequents the semanti
al 
on
eptsintrodu
ed in Se
tion 2 and show that, if ⊢G-AGL Γ ⇒ ∆, then Γ ⇒ ∆ islogi
ally valid. On
e this is done in the appropriate way, our 
laim be
omesa 
onsequen
e of Theorem 1 for Γ = ∅ and ∆ = {A}.
© 2001 by Nicolaus Copernicus University



114 Fran
es
o PaoliHen
e, let ρ(A1, . . . , An ⇒ B1, . . . , Bm) = −ρ(A1) + · · · + −ρ(An) +
ρ(B1) + · · · + ρ(Bm) and ρ(⇒) = 0. The sequent Γ ⇒ ∆ is said to belogi
ally valid i� ρ(Γ ⇒ ∆) = 0 for every ρ on every algebrai
 model A .Now we 
an prove the �if� part of our theorem by a standard indu
tion onthe length of the proof of Γ ⇒ ∆ in G-AGL. The 
ases (¬ L) and (→ R) areleft to the reader.(Ad Ax). ρ(A1, . . . , An ⇒ A1 . . . , An) = −ρ(A1)+· · ·+−ρ(An)+ρ(A1)+
· · ·+ ρ(An) = 0 + · · ·+ 0 = 0. Moreover, if n = 0 we are done by de�nition.(Ad Cut). Let −ρ(Γ ) + ρ(∆) = x, −ρ(Π) + ρ(Σ) = y, ρ(A) = z. By IH,
x+ z = 0 and −z+ y = 0. So 0 = 0+0 = −z+ z+x+ y = 0+x+ y = x+ y.(Ad ¬ R). If −ρ(Γ ) + ρ(∆) = x and ρ(A) = y, by IH −y + x = 0, whi
his a
tually what we wanted to prove.(Ad → L). If −ρ(Γ ) + ρ(∆) = x, ρ(A) = y and ρ(B) = z, then by IH
−y + x+ z = 0. But then −(−z + y) + x = −y + z + x = 0.Theorem 3. G-AGL is 
ut-free.Proof. First, let us show that if D is a proof of the following form:

D′

Γ ⇒ ∆,A
D′′

A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)where D′ and D′′ are 
ut-free proofs, then the previous appli
ation of 
ut
an be repla
ed by an appli
ation of the following rule:(Elim) A,Λ ⇒ Ξ,A

Λ ⇒ Ξyielding the same end sequent. Indeed, if D′ and D′′ are 
ut-free, they are
hains, sin
e no other rule of G-AGL has two premisses:
Φ ⇒ Φ
D′

Γ ⇒ ∆,A

Θ ⇒ Θ
D′′

A,Π ⇒ ΣHen
e, we 
an 
onstru
t a D′′′ as follows:
Φ,Θ ⇒ Φ,Θ

D′′′

A,Γ,Π ⇒ ∆,Σ,A

Γ,Π ⇒ ∆,Σ
(Elim)A 
ut-elimination pro
edure for G-AGL 
an then be 
arried out in threesteps:

© 2001 by Nicolaus Copernicus University



Logi
 and groups 115(A) We repla
e one by one all appli
ations of (Cut) by appli
ations of (Elim),starting from the maximal sequents in ea
h bran
h of the proof-tree anddes
ending down to its root. Proof-trees be
ome 
hains.(B) We show that (Elim) is super�uous in proofs 
ontaining a single �nalappli
ation of su
h a rule.(C) We extend this result in the standard way to proofs 
ontaining a �nitearbitrary number of appli
ations of (Elim).Proof of (B) is a double indu
tion on the rank and the 
omplexity of theprin
ipal formula in the appli
ation of (Elim) at issue. However, we mustsuitably adapt to the present 
ase the ordinary de�nition of rank.Consider the following proof:
D

Π ⇒ Σ
A,Γ ⇒ ∆,A

(Rule)
Γ ⇒ ∆

(Elim)We stipulate that the left rank of A (rl(A)), i.e. the rank relative to the �rsto

urren
e of A, remains unaltered in passing from Π ⇒ Σ to A,Γ ⇒ ∆,Aif (1) that o

urren
e of A was obtained by a rule other than (Ax) and (2) these
ond o

urren
e of A is the prin
ipal formula of the appli
ation of (Rule);otherwise it in
reases by one unit. Similar 
onsideration apply to the rightrank of A (rr(A)). As usual, r(A) is de�ned as rl(A) + rr(A).Basis (r(A) = 2). Due to the absen
e of stru
tural rules, there are justthree 
ases to 
onsider (up to trivial simmetries su
h as permutation of theorder of inferen
es).First 
ase:
D: A,Γ ⇒ Γ,A

Γ ⇒ Γ
(Elim)

D′: Γ ⇒ ΓSe
ond 
ase:
D: A,Γ ⇒ ∆,A

¬A,A, Γ ⇒ ∆
(¬L)

¬A,Γ ⇒ ∆,¬A
(¬R)

Γ ⇒ ∆
(Elim)

D′: A,Γ ⇒ ∆,A

Γ ⇒ ∆
(Elim)Third 
ase:

D: A,B, Γ ⇒ ∆,A,B

A → B,A, Γ ⇒ ∆,B
(→ L)

A → B,Γ ⇒ ∆,A → B
(→ R)

Γ ⇒ ∆
(Elim)

D′: A,B, Γ ⇒ ∆,A,B

B,Γ ⇒ ∆,B
(Elim)

Γ ⇒ ∆
(Elim)
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116 Fran
es
o PaoliStep (r(A) > 2). For the same reason as above, the only main 
ase to betreated remains the one 
on
erning inversion of rules. Examples:
D: A,Γ ⇒ ∆,A,B

A,¬B,Γ ⇒ ∆,A
(¬L)

¬B,Γ ⇒ ∆
(Elim)

D′: A,Γ ⇒ ∆,A,B

Γ ⇒ ∆,B
(Elim)

¬B,Γ ⇒ ∆
(¬L)

D: A,B, Γ ⇒ ∆,C,A

A,C → B,Γ ⇒ ∆,A
(→ L)

C → B,Γ ⇒ ∆
(Elim)

D′: A,B, Γ ⇒ ∆,C,A

B,Γ ⇒ ∆,C
(Elim)

C → B,Γ ⇒ ∆
(→ L)This 
on
ludes the proof of our theorem.4. Denotational semanti
sAbelian group logi
 has a semanti
s of proofs. We 
an easily obtain it bysuitably trivializing some distin
tions available in Girard's denotational se-manti
s for linear logi
 (Girard, 1987; Troelstra, 1992). Remark that inGirard's semanti
s the multipli
ative truth and falsity 
onstants are inter-preted by the same 
oherent spa
e, and this may be seen as a short
oming ofthis semanti
s. In our dialethi
 setting, however, this feature, far from beinga drawba
k, is indeed a desideratum.An AGL-
oherent spa
e is an ordered triple S = 〈X,R, S〉, where X isa set and R, S are irre�exive symmetri
 relations on X s.t. R ∪ S ∪ I is a
overing of X2 (�I� denotes here the identity relation).We de�ne two operations on AGL-
oherent spa
es: orthogonality (unary)and sum (binary).If S = 〈X,R, S〉, then

S
⊥ df
= 〈X,S,R〉 .It is easily 
he
ked that S ⊥ is well-de�ned and S ⊥⊥ = S .If S = 〈X,R, S〉 and S ′ = 〈X,R

′, S′〉, then
S + S

′ df
= 〈X ×X ′, R′′, S′′〉 ,where for any x, y, x′, y′ ∈ X we have:

(x, x′) R′′ (y, y′) i� x R y or x′ R′ y′ ,and
(x, x′) S′′ (y, y′) i� x S y or x′ S′ y′ .Are R′′ and S′′ well-de�ned? They are both irre�exive, sin
e, for example,

(x, x′) R′′ (x, x′) i� x R x or x′ R′ x′, i.e. never; symmetry of R′′, S′′ follows
© 2001 by Nicolaus Copernicus University
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 and groups 117likewise from symmetry of R, S, R′, S′. It remains to prove that either
(x, x′) R′′ (y, y′) or (x, x′) S′′ (y, y′) or (x = y and x′ = y′), but this istantamount to: either x R y or x′ R′ y′ or x S y or x′ S′ y′ or (x = y and
x′ = y′), and this follows from the properties of R, S, R′, S′.We 
an also de�ne another binary operation on AGL-
oherent spa
es, i.e.impli
ation: if S = 〈X,R, S〉 and S ′ = 〈X ′, R′, S′〉, then

S → S
′ df
= 〈X ×X ′, R′′, S′′〉 ,where for any x, y, x′, y′ ∈ X we have:

(x, x′) R′′ (y, y′) i� x S y or x′ R′ y′ ,and
(x, x′) S′′ (y, y′) i� x R y or x′ S′ y′ .The following isomorphisms between AGL-
oherent spa
es are provable:De Morgan equalities:

S → S
′ ∼= S

⊥ + S
′ ;(1)

(S + S
′)⊥ ∼= S

⊥ + S
′⊥ .(2)Commutativity isomorphisms:

S → S
′ ∼= S

′⊥ → S
⊥ ;(3)

(S → S
′)⊥ ∼= S

′ → S ;(4)
S + S

′ ∼= S
′ + S .(5)Asso
iativity isomorphisms:

S → (S ′ + S
′′) ∼= (S → S

′) + S
′′ ;(6)

S + (S ′ + S
′′) ∼= (S + S

′) + S
′′ .(7) As an example we prove (2) and (4), whi
h are not valid in linear logi
.Ad (2): (x, x′) R (y, y′) in (S + S ′)⊥ i� (x, x′) S (y, y′) in S + S ′i� (x S y in S or x′ S y′ in S ′) i� (x R y in S ⊥ or x′ R y′ in S ′⊥) i�

(x, x′) R (y, y′) in S ⊥ + S ′⊥. Dually, we 
an repeat the same reasoningfor S.Ad (4): (x, x′) R (y, y′) in (S → S ′)⊥ i� (x, x′) S (y, y′) in S → S ′ i�
(x R y in S or x′ S y′ in S ′) i� (x, x′) R (y, y′) in S ′ → S . Again, theargument relative to S is symmetri
al.Let us now return to our one-sided 
al
ulus O-AGL of Se
tion 3 and seehow it 
an be interpreted within our semanti
al frame.Let SP be an (at least denumerable) set of AGL-
oherent spa
es, 
ontain-ing the empty one (the empty set with two empty relations on it) and 
losed
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118 Fran
es
o Paoliunder the operations of orthogonality and sum. If LIT is the set of literals of
L (AGL) and L
 is the 
omplementary literal of L, then given any mapping
v∗ : LIT → SP s.t. v ∗ (L
) = v∗(L)⊥, a valuation v transforms sequents ofO-AGL into members of SP a

ording to the following 
lauses:

v(L) = v∗(L) ;

v(A⊕B) = v(A) + v(B) ;

v( ⇒ A1, . . . , An) = v(A1) + · · ·+ v(An) .The valuation v is in itself far from su�
ient, sin
e what we are afteris a semanti
s of proofs. So, if D is a proof of ⇒ Γ in O-AGL, where
v( ⇒ Γ ) = 〈X,R, S〉, we interpret it by a mapping j s.t. j(D) ⊆ X. Weshall then show that, for every proof D of ⇒ Γ in O-AGL, j(D) is a 
liquein v(⇒ Γ ), i.e. that if x, y both belong to j(D), then x R y or x = y in
v( ⇒ Γ ) (as a matter of 
onvention, we stipulate that the only subset of ⇒is a 
lique in the empty AGL-
oherent spa
e).We indu
tively de�ne j as follows (boldfa
e letters stand for n-tuples):� j( ⇒ A1,¬A1, . . . , An,¬An) = {x1, x1, . . . , xn, xn : xi ∈ Xi}, where
v(Ai) = Si = 〈Xi, Ri, Si〉 and v(¬Aj) = v(Aj)

⊥; for n = 0, j( ⇒
A1,¬A1, . . . , An,¬An) = ∅.� If D proves ⇒ Γ,A, D′ proves ⇒ ∆,¬A, and D′′ proves ⇒ Γ,∆ bya 
ut rule from D and D′, then j(D′′) = {x,x′ : ∃y(x, y ∈ j(D) and
x
′, y ∈ j(D′))}.� If D proves ⇒ Γ,A,B and D′ proves ⇒ Γ,A⊕B by a plus rule from D,then j(D′) = {x, (y, z) : x, y, z ∈ j(D)}.Theorem 4. If D proves ⇒ Γ in O-AGL, then j(D) is a 
lique in v( ⇒ Γ ).Proof. Indu
tion on the length of D. Sin
e the indu
tive step is proved asin Girard (1987), we shall fo
us on the basis of the indu
tion.We have to show that either (x1, x1, . . . , xn, xn) R (y1, y1, . . . , yn, yn) or

(x1 = y1 and . . . and xn = yn), i.e. either x1 R1 y1 or x1S1y1 or . . . or
xn Rn yn or xnSnyn or (x1 = y1 and . . . and xn = yn). But this followseasily from the fa
t that for ea
h i 6 n, Ri ∪ Si ∪ I is a 
overing of X2

i (if
n = 0, we are OK by de�nition).In fa
t, our axioms of the form ⇒ A1,¬A1, . . . , An,¬An are nothing elsethan generalized ex
luded thirds a
tually embodying a 
omposition rule �a restri
ted form of weakening whi
h is known to be sound in Girard's se-manti
s (
f. e.g. Blute and S
ott, 1996).
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 and groups 1195. Kripke-style semanti
sCoherent spa
e semanti
s is a semanti
s of proofs, not provability. Moreover,interesting logi
s whi
h have denotational models, in primis linear logi
, areusually shown to be sound, not 
omplete, w.r.t. su
h an interpretation. So,as we have just seen, does also AGL. It is then desirable to have a moretraditional semanti
s � di�erent from the immediate algebrai
 one presentedin Se
tion 2 � whi
h a�ords a proper 
ompleteness proof.With su
h an aim in mind, we now pro
eed to introdu
e a relationalsemanti
s for the Hilbert-style system AGL, taken in its axiomatization witha primitive propositional 
onstant T (see above).A G-frame is an ordered quadruple F = 〈W,R, 1 ,∗ 〉, where:
• W is a nonempty set 
ontaining 1 .
• R is 3-pla
e relation on W satisfying:

R1 R1xx;
R2 Rxyz ⇒ Ryxz,
R3 R2(xy)zw ⇒ R2(xz)yw,
R4 Rxyz & w ≤ z ⇒ Rwyz.As usual (
f. Dunn, 1986), R2(xy)zw is short for ∃u(Rxyu & Ruzw),whereas x ≤ y stands for R1xy.

• ∗ is a 1-pla
e operation on W satisfying:
∗1 x∗∗ = x,
∗2 Rxyz ⇒ Rxz∗y∗,
∗3 1 ≤ x ⇐⇒ 1 � x∗.A G-model for AGL is a pair M = 〈F ,�〉, where F is a G-frame and

� ⊆ W × FOR is a relation satisfying:
�1 x � p & x ≤ y ⇒ y � p;
�2 x � T ⇐⇒ 1 ≤ x;
�3 x � ¬A ⇐⇒ x∗ 2 A;
�4 x � A → B ⇐⇒ ∀yz(Rxyz & y � A ⇒ z � B).A G-model M is unit-splitting (or, for short, u-splitting) i� the for
ingrelation satis�es, for every A:
�5 1 � A ⇐⇒ 1

∗ 2 A.
© 2001 by Nicolaus Copernicus University



120 Fran
es
o PaoliOf 
ourse we have to show that this last 
onstraint is not in
ompatiblewith the previous ones, i.e. that there are u-splitting G-models. But this willbe proved through our 
ompleteness theorem below.A is said to be true in M (M � A) i� 1 � A; to be an Abelian logi
allaw (�K-AGL A) i� M � A for every u-splitting G-model M .Lemma 3. In every u-splitting G-model M :(i) x � A & x ≤ y ⇒ y � A. (Heredity)(ii) ∀x(x � A ⇒ x � B) ⇒ 1 � A → B. (Veri�
ation)(iii) 1 � A ⇐⇒ 1 � ¬A.(iv) 1 � A ⇐⇒ 1
∗ � ¬A.(v) If, for some A, 1 � A and x � A, then 1 ≤ x.Proof. (i)�(ii) See Anderson, Belnap and Dunn (1992), Dunn (1986) orRoutley-Meyer (1972).(iii) Left to right: 1 � A ⇒ (�5) 1 ∗ 2 A ⇒ (�3) 1 � ¬A. Right to left:

1 � ¬A ⇒ (�5) 1 ∗ 2 ¬A ⇒ (�3, ∗1) 1 � A.(iv) Symmetri
al.(v) Suppose 1 � B, x � B and 1 � x. By (∗1) and (∗3), this last implies
1 ≤ x∗. 1 � B implies instead 1 � ¬B by (iii) above. Hen
e, by (i), x∗ � ¬B,i.e., in virtue of (�3) and (∗1), x 2 B, whi
h is a 
ontradi
tion.Theorem 5. ⊢AGL A implies �K-AGL A.Proof. Standard indu
tion on the length of derivations. In parti
ular, (A1),(A2), (A5), (A6), and (R1) are veri�ed as in Dunn (1986) or in Routley-Meyer(1972). We now argue for the rest of the postulates. Lemma 3(ii) will beused without spe
ial mention in what follows.(A3′). Suppose x � T. Then, by (�2), 1 ≤ x. Now assume Rxyz and
y � A; by (R4), then, y ≤ z. Hen
e Lemma 3(i) implies z � A.(A3′′). It is easy to 
he
k that 1 � A → A. Suppose now x � A → A; byLemma 3(v) we 
on
lude that 1 ≤ x, i.e. x � T.(A4′). Sin
e 1 ≤ 1 , by (∗3) it is not the 
ase that 1

∗ ≤ 1
∗, i.e. (�2)

1
∗ 2 T. By (�3), then 1 � ¬T.(A7′). Suppose x � ¬T . Then x∗ 2 T, a

ording to (�3). Sin
e 1 � T(as 1 ≤ 1 ), by Lemma 3(i) it is not the 
ase that 1 ≤ x∗. But this amountsto 1 ≤ x in virtue of (∗3). Hen
e (�2), x � T.(A8′). This axiom is veri�ed exa
tly like (A3′′), sin
e 1 � ¬T → T, aswe have just seen.

© 2001 by Nicolaus Copernicus University



Logi
 and groups 121Theorem 6. �K-AGL A implies ⊢AGL A.Proof. We prove the 
ontrapositive: assuming that it is not the 
ase that
⊢ A, we show that there is an u-splitting G-model (the 
anoni
al model ofAGL) s.t. 1 2 A.Our 
anoni
al model C = 〈〈W,R, 1 ,∗ 〉,�〉 is 
onstru
ted as follows:� W is the set of all AGL-theories;� Rxyz holds i� A → B ∈ x and A ∈ y jointly imply B ∈ z;� 1 is AGL;� x∗ = {A : ¬A /∈ x};� x � A holds i� A ∈ x.Sin
e W 
ontains AGL, it is of 
ourse a nonempty set 
ontaining 1 .That R satis�es R1�R4 
an be shown as in Dunn (1986), exploiting (A2)and Lemma 1(i)�(iii).By (A5), (A6) and Lemma 1(iv)�(v) the operation ∗ maps theories totheories and satis�es (∗1) and (∗2).As to (∗3), we �rst prove that 1 ≤ x implies 1 � x∗. Suppose 1 ≤ x,whi
h is easily seen to mean that x extends AGL. We have to show that forsome A and B, B /∈ x∗ although ⊢ A and ⊢ A → B. But x∗ = {C : ¬C /∈ x};now, take A = D → D and B = E → E; you have ⊢ A, ⊢ A → B and ⊢ ¬B,hen
e, by our hypothesis, ¬B ∈ x, i.e. B /∈ x∗.For the 
onverse impli
ation, suppose that there are A and B s.t. ⊢ A,
⊢ A → B and B /∈ x∗, i.e., ¬B ∈ x. It follows from ⊢ A and ⊢ A → B that
⊢ B, hen
e (Lemma 1(vi)) ⊢ ¬B. Then, in virtue of Lemma 2, x extendsAGL, i.e., 1 ≤ x.Now we have to show that � is a well-behaved for
ing relation. The readeris on
e again referred to Dunn (1986) or Routley-Meyer (1972) for proofs that
� meets the 
riteria (�1), (�3) and (�4). As to (�2), suppose 1 ≤ x. But if xextends AGL, then it surely 
ontains T in virtue of Lemma 1(xi). Conversely,suppose that x 
ontains T. Now, by Lemma 1(xii), given any theorem A ofAGL, T → A is a theorem of AGL too; hen
e ∈ x. It follows that x extendsAGL.The very last thing left to prove is that C is u-splitting. Remember that
1
∗ = {A :0 ¬A}. But 1 � A implies 1

∗ 2 A, sin
e ⊢ A implies ⊢ ¬A byLemma 1(vi) and so ¬A ∈ 1 , i.e. 1 ∗ 2 A. Conversely, if ¬A ∈ 1 then byLemma 1(vi) again A ∈ 1 . Hen
e 1
∗ 2 A implies 1 � A.This 
on
ludes the proof of our theorem.
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A, (A → A) ⇒ A, (A → A)

⇒ A, (A → A) → A, (A → A)
(→R)

A,A ⇒ A,A

A ⇒ A, (A → A)
(→R)

A ⇒ A ∨ ¬A,A → A
(∨R)

A ⇒ A ∨ ¬A,A → A
(∨R)

A,A ⇒ A,A

A ⇒ ¬A,A,A
(¬R)

A ⇒ A ∨ ¬A,A → A,A
(∨R)

A ⇒ A ∨ ¬A,A,A
(∨R)

A → A ⇒ A ∨ ¬A,A, (A → A)
(→L)

A, (A → A) ⇒ A ∨ ¬A,A → A
(∨L)

A, (A → A) → A, (A → A) ⇒ A ∨ ¬A
(→L)

⇒ A ∨ ¬A
(Cut)Figure 1. Ex
luded third without 
ontra
tion6. From Abelian group logi
 to Abelian l-group logi
6.1. Proof theoryIf we extend our language with the 
onne
tive �&� and add to AGL thestandard semilatti
e axioms for 
onjun
tion and the adjun
tion rule:(A9) A&B → A(A10) A&B → B(A11) (A → B) & (A → C) → (A → B &C)(R2) A,B ⇒ A&Bwe get L-AGL, i.e. Abelian l-group logi
. Disjun
tion 
an now be de�ned asusual via the De Morgan laws. The 
orresponding Gentzen-style system (GL-AGL) 
an be obtained from G-AGL by adding the standard rules for additive(latti
e-theoreti
al) 
onjun
tion. Algebrai
 semanti
s (w.r.t. l-groups) for thenew systems 
an easily be re
overed from the one presented in Se
tion 1, bystipulating that ρ(A & B) = ρ(A) ∧ ρ(B), and that A is ρ-true in A i�

0 ≤ ρ(A). It is possible to prove:Theorem 7. ⊢L-AGL A i� ⊢AL-AGL ⇒ A i� �AL-AGL A.The addition of latti
e 
onne
tives to Abelian group logi
 has its pros and
ons. One of the advantages is that it a�ords ni
e 
ontra
tion-free proofs of
lassi
al tautologies essentially depending on 
ontra
tion, e.g. the ex
ludedthird and the law of distribution (
f. Fig. 1 and Fig. 2 on p. 123).Among the disadvantages, there is loss of 
ut elimination.Theorem 8. GL-AGL is not 
ut-free.
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A ⇒ A

⇒ A → A
(→R)

B ∨ C ⇒ B ∨ C

⇒ (B ∨ C) → (B ∨ C)
(→R)

B,A,A ⇒ A,A,B

B, A,A ⇒ A, A,B ∨ C
(∨R)

B,A, A & (B ∨ C) ⇒ A, A,B ∨ C
(&L)

B, A,B ∨ C ⇒ B,A,B ∨ C

B,A,A & (B ∨ C) ⇒ B,A,B ∨ C
(&L)

B,A,A & (B ∨ C) ⇒ A & B,A,B ∨ C
(&R)

B, A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A,B ∨ C
(∨R)

C,A, A ⇒ A,A, C

C, A,A ⇒ A, A,B ∨ C
(∨R)

C, A,A & (B ∨ C) ⇒ A,A,B ∨ C
(&L)

C,A,A & (B ∨ C) ⇒ A & C,A, B ∨ C
(&R)

C, A,B ∨ C ⇒ C,A, B ∨ C

C, A,A & (B ∨ C) ⇒ A,AB ∨ C
(&L)

C,A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A, B ∨ C
(∨R)

B ∨ C,A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A,B ∨ C
(∨L)

(B ∨ C) → (B ∨ C), A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A
(→L)

A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C), A
(Cut)

A → A,A & (B ∨ C) ⇒ (A & B) ∨ (A & C)
(→L)

A & (B ∨ C) ⇒ (A & B) ∨ (A & C)
(Cut)Figure 2. Distribution without 
ontra
tion
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luded third is provable in our system. WereGL-AGL 
ut-free, by the subformula property its atomi
 instan
es should beprovable using just the 
onjun
tion and negation rules and the rule (Ax).But, as it 
an be seen by inspe
tion, there is no 
ombination of su
h rulesyielding the desired result. Hen
e GL-AGL is not 
ut-free.6.2. Phase semanti
sThe relational semanti
s of Se
tion 5 is no good for L-AGL, sin
e it restsupon 
hara
teristi
 properties of AGL that are not shared by the full system.However, we 
an provide a relational semanti
s for L-AGL by 
onstru
tingappropriate phase models (
f. Girard, 1987).Remember that a phase stru
ture is a pair F = 〈M ,⊥〉, where M =
〈M, ·, 1〉 is an Abelian monoid and ⊥ is a distinguished subset of M . Insteadof x · y we shall usually write xy. We de�ne, as usual, for X,Y ⊆ M :

XY = {xy : x ∈ X & y ∈ Y },

X⊥ = {x : ∀y(y ∈ X ⇒ xy ∈ ⊥)},

X ⊕ Y = (X⊥Y ⊥)⊥.The operation c(A) = A⊥⊥ is a 
losure operation on M . We de�ne
C(M) = {X ⊆ M : X = c(X)} .

F is an Abelian phase stru
ture i�:(a) 〈⊥, ·, 1〉 is a submonoid of M ;(b) for every y ∈ M and every X ∈ C(M), X{y} ⊆ X implies ⊥{y} ⊆ ⊥.Lemma 4. In every Abelian phase stru
ture F = 〈M ,⊥〉, for every X ∈
C(M): (i) ⊥⊥ = ⊥, (ii) ⊥ = ⊥⊥, (iii) X ⊕X⊥ = ⊥, (iv) X ⊕⊥ = X.Proof. (i) ⊥⊥ ⊆ ⊥ sin
e 〈⊥, ·, 1〉 is a submonoid of M ; for the same reason
1 ∈ ⊥, hen
e if x ∈ ⊥, x = x ∈ ⊥⊥.(ii) ⊥⊥ = {x : ∀y(y ∈ ⊥ ⇒ xy ∈ ⊥)}. If x ∈ ⊥, then, by (a), x ∈ ⊥⊥.Conversely, if ∀y(y ∈ ⊥ ⇒ xy ∈ ⊥), 
hoose y = 1 to obtain x ∈ ⊥.(iii) We have to prove that (X⊥X)⊥ = ⊥. The in
lusion from right to leftfollows from standard phase semanti
s. Suppose now w ∈ (X⊥X)⊥, whi
hby ordinary theory of phase semanti
s means X{w} ⊆ X. Then, by (b),
⊥{w} ⊆ ⊥, whi
h amounts to w ∈ ⊥ by (ii) above.(iv) As regards X ⊕ ⊥ ⊆ X, suppose x ∈ X ⊕ ⊥, i.e., ∀y(∀z(z ∈ ⊥ ⇒
zy ∈ ⊥) ⇒ xy ∈ X). Let y = 1. Sin
e the ante
edent is trivially satis�ed,
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x ∈ X. Conversely, if x ∈ X we have to prove that ∀y(∀z(z ∈ ⊥ ⇒ zy ∈
⊥) ⇒ xy ∈ X). By (ii) and (iii) above, X ⊕ X⊥ = ⊥⊥, so we 
an repla
e
∀z(z ∈ ⊥ ⇒ zy ∈ ⊥) by ∀z(z ∈ X ⇒ zy ∈ X), when
e our 
on
lusionfollows.Remark that an a�ne phase stru
ture (Lafont, 1997) is a phase stru
turewhere X ∈ C(M) implies ⊥X ⊆ ⊥. In any a�ne phase stru
ture, X ∈ C(M)implies ⊥ ⊆ X ⊆ ⊥⊥ = M .Lemma 5. If F is an a�ne Abelian phase stru
ture, then M = ⊥ and
C(M) = {M}.Proof. Sin
e M is 
losed, ⊥M ⊆ ⊥. But 1 ∈ ⊥, so for every x in M ,
x = 1x ∈ ⊥. Sin
e X ∈ C(M) implies M = ⊥ ⊆ X ⊆ ⊥⊥ = M , then
C(M) = {M}.Theorem 9. Let Π ⊆ C(M) be 
losed w.r.t. ⊥, ⊕, and 
ontain ⊥.1 Then
S = 〈Π,⊕,⊥,⊥,⊆〉 is an Abelian po-group. IfΠ is 
losed w.r.t. interse
tion,then S is an Abelian l-group.Proof. 〈Π,⊕〉 is an Abelian po-semigroup by standard phase semanti
s.By Lemma 4(iv) ⊥ is a zero and by Lemma 4(iii) ⊥ is an inverse operation.If Π is 
losed w.r.t. interse
tion, then by ordinary phase semanti
s 〈Π,⊆〉 isa latti
e where joins are represented by (X ∪ Y )⊥⊥.Theorem 10. Every Abelian po-group G = 〈G,+,−, 0,≤〉 is isomorphi
to an Abelian po-group S of sets. Moreover, if G is latti
e-ordered, S islatti
e-ordered.Proof. Let G = 〈G,+,−, 0,≤〉 be an Abelian po-group. Then G ∗ =
〈G,+, 0〉 is an Abelian monoid and I(0) = {x : x ≤ 0} is a distinguishedsubset of G. Hen
e F = 〈G ∗, I(0)〉 is a phase stru
ture. We 
an thusde�ne on it operations of generalized produ
t, orthogonality, and sum ex-a
tly as above. Noti
e that X⊥ = {y : ∀x(x ∈ X ⇒ x + y ≤ 0)};sin
e x + y ≤ 0 i� 0 ≤ −(x + y) = −x + −y i� x ≤ −y, we have that
X⊥ = {y : ∀x(x ∈ X ⇒ x ≤ −y}.Let also I(x) = {y : y ≤ x} and Π = {I(x) : x ∈ G}. Now we prove:(a) Π ⊆ C(G);(b) Π 
ontains ⊥;1 Hen
e ⊥

⊥; not ne
essarily, however, M and ∅.
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) Π is 
losed w.r.t. ⊥ and ⊕ (also set-theoreti
al interse
tion if G is latti
e-ordered);(d) F is an Abelian phase stru
ture.Ad (a): I(y)⊥⊥ = {x : ∀z(∀w(w ≤ y ⇒ w ≤ −z) ⇒ x ≤ −z)}. Wehave to show that x ∈ I(y)⊥⊥ ⇒ x ≤ y. Choose z = −y to get the desired
on
lusion.Ad (b): ⊥ = I(0) belongs to Π.Ad (
): We show that: I(x)⊥ = I(−x); I(x)⊕I(y) = I(x+y); I(x)∩I(y) =
I(x∧ y) (if binary meets exist everywhere). In the �rst pla
e, remember that
I(x)⊥ = {y : ∀z(z ≤ x ⇒ z ≤ −y)}. If y ≤ −x, i.e. x ≤ −y, and z ≤ x, then
z ≤ −y by transitivity. Conversely, if ∀z(z ≤ x ⇒ z ≤ −y), 
hoose z = x toget x ≤ −y, i.e. y ≤ −x.As regards sum, by what we have just proved it is enough to show that
I(x+ y) = (I(−x) I(−y))⊥. Suppose then z ≤ x+ y, z′ ≤ −x, z′′ ≤ −y. Wehave to show that z′ + z′′ ≤ −z. But z′ + z′′ ≤ −x+−y = −(x+ y). Hen
e
z ≤ x + y ≤ −(z′ + z′′). Contraposing, z′ + z′′ ≤ −z. Conversely, suppose
∀w(w = w′ + w′′ & w′ ≤ −x& w′′ ≤ −y ⇒ w ≤ −z). Choose w = −x+−y.You get −x+−y ≤ −z, that is z ≤ −(−x+−y) = x+ y.As for meets, if 〈G ,≤〉 is a latti
e, then I(x) is the prin
ipal l-ideal gener-ated in G by x, and we know from latti
e theory that I(x) ∩ I(y) = I(x ∧ y).Ad (d): First of all, remark that 0 belongs to I(0) and that x ≤ 0, y ≤ 0imply x + y ≤ 0 + 0 = 0. Moreover, X{y} ⊆ X implies ⊥{y} ⊆ ⊥, i.e. if
z ≤ x implies z ≤ y = x, then z ≤ 0 implies z + y ≤ 0. In fa
t, if z ≤ 0,then z ≤ x +−x; adding x on both sides, z + x ≤ x. Hen
e z + x+ y ≤ x.Adding −x on both sides, z + y ≤ 0.So, by Theorem 9, S = 〈Π,⊕,⊥, I(0),⊆〉 is an Abelian po-group ofsets. Moreover, the map turning x into I(x) is 
learly an order-preservingbije
tion and, as we have seen, preserves inverses, sums and meets. Hen
e Gis isomorphi
 to S .Now, we 
an de�ne a relational model for L-AGL as a triple R = 〈F ,
Π, v〉, where F = 〈M, ·, 1,⊥〉 is an Abelian phase stru
ture (
alled frame),
Π is a subset of C(M) 
losed w.r.t. the phase-semanti
al operations de�nedas above, and v is a map assigning to every variable of the language of L-AGLan element of Π, extended to a homomorphism by the 
lauses:

v(¬A) = v(A)⊥,

v(A&B) = v(A) ∩ v(B),

v(A → B) = v(A)⊥ ⊕ v(B).
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essibility relation on M setting Rxy
df

⇐⇒
xy /∈ ⊥. Noti
e that, like in the semanti
s for intuitionisti
 logi
, x ∈ v(¬A)i� ∀z(Rxz ⇒ z /∈ v(A)).We stipulate that A is v-true in R (v �R A) i� 1 ∈ v(A); that A is truein F (�F A) i� v �R A for every v on F ; that A is logi
ally valid (�L-AGL A)i� v �R A for every relational model R.Theorem 11. For every algebrai
 model A = 〈G , ρ〉 there is a relationalmodel RA = 〈F ,Π, v〉 su
h that for every formula A, ρ �A A i� v �RA A.Likewise, for every relational model R = 〈F ,Π, v〉 there is an algebrai
model A R = 〈G , ρ〉 su
h that for every formula A, v �R A i� ρ �A R A.Proof. As regards the �rst statement, given A = 〈G , ρ〉, let F be 〈G,+,
0, I(0)〉, Π be the set of all prin
ipal l-ideals of G , and v(A) = {x ∈ G :
x ≤ ρ(A)}. By Theorem 10, F is a frame and it is easy to 
he
k (sin
e themap x 7→ I(x) preserves the operations of the l-group) that v(¬A) = v(A)⊥,
v(A → B) = v(A)⊥ ⊕ v(B) and v(A & B) = v(A) ∩ v(B). Thus, v is wellde�ned. Moreover, ρ �A A i� 0 ≤ ρ(A) i� 0 ∈ v(A) i� v �RA A.For the se
ond part of the theorem, given R = 〈F ,Π, v〉 with F =
〈M, ·, 1,⊥〉, let G = 〈Π,⊕,⊥,⊥,⊆〉, 
onstru
ted as in Theorem 9, and
ρ(A) = v(A). By Theorem 9, G is an l-group and ρ is well de�ned, a

ordingto our de�nitions. Moreover, v �R A i� 1 ∈ v(A) i� ⊥ = ⊥⊥ ⊆ v(A) (bystandard phase semanti
s, sin
e v(A) is a 
-
losed subset of M) i� ⊥ ⊆ ρ(A)i� ρ �A R A.A
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