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A COMPLETENESS PROOF IN FULL DDL

Dynamic doxastic logicians — not a large community — have trodden gin-
gerly within the area of full DDL or, as with the present author, have not
trodden at all. However, the latter, after having written up the final version
of [6], realised that the proof given in that paper for two varieties of basic
DDL can be extended to cover full DDL; in fact, the «full» proof is simpler
than the «basic» one. The extended proof is outlined in Section 1–3. In Sec-
tion 4, the relationship to AGM is considered. Section 5 puts the importance
of the proof into perspective.

This note — an extended abstract rather than a full-fledged paper —
should be read as an appendix to [6]. Although some definitions are re-
peated here, many are not. Readers who require more detail are referred to
[6], a copy of which they should have on hand.

1. Syntax

The formulæ of the revision fragment of DDL are those that can be built from
propositional letters, Boolean connectives, the doxastic operators B and K

and the change operators [∗ϕ], where ϕ is formula. The duals of the non-
Boolean operators are b, k and < ∗ϕ>. The difference between basic and full
DDL is that, in basic DDL, for Bϕ and Kϕ and [∗ϕ]χ to be well-formed it
is necessary that ϕ is purely Boolean (that is, built from propositional letters
and Boolean connectives); in full DDL there is no such limitation. (Note that
the revision operator ∗ is our only dynamic doxastic operator — there is no
expansion operator and no contraction operator. From a strictly formal point
of view, it would not be difficult to extend the analysis to include them.)
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78 Krister Segerberg

Consider the following axiom system. The rules are three — Modus Po-
nens, Necessitation and a Rule of Congruence:

(MP) If ϕ and ϕ ⊃ ψ are theorems, then ψ is a theorem.

(# N) If ϕ is a theorem, then #ϕ is a theorem, where # is B or K or [∗ θ],
for some θ.

(RC) If ϕ ≡ ψ is a theorem, then [∗ϕ]χ ≡ [∗ψ]χ is a theorem.

The axioms are all tautologies plus all instances of the «Kripke schema»

(# K) #(ϕ ⊃ ψ) ⊃ (#ϕ ⊃ #ψ), where # is B or K or [∗ θ], for some θ.

Theories or logics providing all these postulates are said to be normal. Notice
that the Rule of Replacement of Provable Equivalents holds in all normal
theories and logics:

(RPE) Suppose γ and γ′ are formulæ that are identical except that γ con-
tains an occurrence of a formula ϕ in a place where γ′ contains an
occurrence of a formula ψ. If ϕ ≡ ψ is a theorem, then γ is a theorem
only if γ′ is a theorem.

By DDL–AGM we mean the smallest normal logic providing the following
special postulates:

(∗ 2) [∗ϕ]Bϕ,

(∗ 3) [∗⊤]Bχ ⊃ Bχ,

(∗ 4) b⊤ ⊃ (Bχ ⊃ [∗⊤]Bχ),

(∗ 5) [∗ϕ]B⊥ ⊃ K¬ϕ,

(∗ 6) K(ϕ ≡ ψ) ⊃ ([∗ϕ]Bχ ≡ [∗ψ]Bχ),

(∗ 7) [∗ (ϕ ⊃ ψ)]Bχ ⊃ [∗ϕ]B(ψ ⊃ χ),

(∗ 8) < ∗ϕ>bψ ⊃ [∗ϕ]B(ψ ⊃ χ) ⊃ [∗ (ϕ ⊃ ψ)]Bχ),

(∗D) [∗ϕ]χ ⊃ < ∗ϕ>χ,

(∗F) < ∗ϕ>χ ⊃ [∗ϕ]χ,

(KB) Kϕ ⊃ Bϕ,
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A completeness proof in full DDL 79

(K∗1) kϕ ⊃ (Kχ ≡ [∗ϕ]Kχ),

(K∗2) K¬ϕ ⊃ [∗ϕ]K⊥.

Notice that schemata (c) and (d) of the following lemma are closely related
to those named (∗3) and (∗4) in [6].

Lemma 1.1. The following theorem schemata are derivable in DDL-AGM:

(a) K¬ϕ ⊃ [∗ϕ]B⊥,

(b) < ∗ϕ>b⊤ ≡ kϕ,

(c) [∗ϕ]Bχ ⊃ B(ϕ ⊃ χ),

(d) bϕ ⊃ (Bχ ⊃ [∗ϕ]Bχ),

(e) [∗ϕ] [∗ϕ]Bχ ⊃ [∗ϕ]Bχ,

(f) [∗ϕ]Bχ ⊃ [∗ϕ] [∗ϕ]Bχ.

Proof. In addition to (RPE), which is needed for (c) and (d), the following
special postulates are used: for (a), (KB) and (K∗1); for (b), (∗5), drawing
on (a); for (c), (∗3) and (∗7); for (d), (∗3), (∗4) and (∗8); for (e), (∗2),
drawing on (c); for (f), (∗F), (KB) (K∗1) and (K ∗2), drawing on (d).

2. Semantics

Let (U, T ) be a Stone space. Suppose that R is a function assigning a binary
relation R# in U to each operator #; that is, R assigns a relation RB to B,
a relation RK to K, and a relation R∗P to each clopen set P . We say that
y is a strong or a weak doxastic alternative x if (x, y) ∈ RB or (x, y) ∈ RK

respectively, and that y is a possible result of revision by P if (x, y) ∈ R∗P .
(U, T,R) is a revision space or just a frame if, for all # ∈ {B,K, ∗P : P is
clopen}, L

#Q and M
#Q are clopen whenever Q is clopen, where

L
#Q = {x ∈ U : ∀y((x, y) ∈ R# ⇒ y ∈ Q)},

M
#Q = {x ∈ U : ∃y((x, y) ∈ R# & y ∈ Q)}.

A valuation in a frame is an assignment of a clopen set to each propositional
letter. A model is a frame with a valuation. If F is a frame with universe U ,
x a point in U , M a model on F , and ϕ a formula, then truth of ϕ at

x in M , in symbols M �x ϕ, is defined in a pleasingly diaphanous way:
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80 Krister Segerberg

the crucial conditions are those for the operators # ∈ {B,K, [∗ θ] : θ is a
formula}, and they are uniform:

M �x #χ iff ∀y((x, y) ∈ R# ⇒ M �y χ).

A formula is valid in a class of frames if true at all points in all models on
all the frames. A formula set is satisfiable in a frame if there is a model on
the frame and a point in the universe of the frame such that the formulæ of
the set are true at that point in that model.

A revision space is serial if, for every clopen set P ,

∀x∃yR∗P (x, y)

and functional if, for every clopen set P ,

∀x∀y∀z(((x, y) ∈ R∗P & (x, z) ∈ R∗P ) ⇒ y = z).

An onion is a nonempty set O of subsets of U satisfying two conditions. One
is our version of David Lewis’s famous limit condition (limit):

∀P (P is clopen & P ∩
⋃
O 6= ∅ ⇒ ∃Z ∈ O(Z µ O ∩� P )).

Here, O ∩� P = {X ∈ O : X ∩ P 6= ∅}. Furthermore, µ is short-hand for
“is the smallest element of”. Thus Z µO∩� P means that Z ∈ O∩� P and, for
all Y ∈ O ∩� P , Z ⊆ Y . The other condition (nested) is that the elements
of O are nested, that is, linearly ordered under set inclusion:

∀X∀Y ((X ∈ O & Y ∈ O) ⇒ (X ⊆ Y ∨ Y ⊆ X)).

A Lewis onion is an onion that satisfies two further conditions: closure
under arbitrary nonempty intersection (aint) and closure under arbitrary
nonempty union (auni):

∀C(∅ 6= C ⊆ O ⇒
⋂
C ∈ O),

∀C(∅ 6= C ⊆ O ⇒
⋃
C ∈ O).

We refer to
⋂
O as the belief set of O and to C(

⋃
O) as the commitment

set of O, where C represents topological closure. An onion determiner is
a function D assigning to each point x ∈ U an onion Dx. The structure
(U, T,R,D) is an onion frame if (U, T,R) is a revision space andD is an onion
determiner. Furthermore, an onion frame (U, T,R,D) is called an AGM

onion frame if it is serial, functional and satisfies the following conditions:
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(o1) ∀x∀y((x, y) ∈ RB ⇐⇒ y ∈
⋂

(Dx)),

(o2) ∀x∀y((x, y) ∈ RK ⇐⇒ y ∈ C(
⋃

(Dx))),

and, for all clopen sets P ,

(o3) ∀x∀y((x, y) ∈ R∗P ⇒ (P ∩
⋃

(Dx) 6= ∅ ⇒
∃Z(Z µ (Dx ∩� P ) &

⋂
(Dy) = P ∩ Z))),

(o4) ∀x∀y((x, y) ∈ R∗P ⇒ (P ∩
⋃

(Dx) 6= ∅ ⇒
⋃

(Dx) =
⋃

(Dy)),

(o5) ∀x∀y((x, y) ∈ R∗P ⇒ (P ∩
⋃
Dx) = ∅ ⇒ Dy = {∅})).

We can express these conditions in words as follows. Conditions (o1) and
(o2) require the set of strong doxastic alternatives and the set of weak dox-
astic alternatives to coincide with, respectively, the agent’s belief set and the
agent’s commitment set. Condition (o3) — the heart of AGM revision! —
places a necessary condition on the onion of a point that is the result of
nontrivial revision by P , that is, when P intersects the union of the onion;
then the new belief set is to be the intersection of P with the smallest P -
intersecting sphere of the old onion. Condition (o4) implies that, even though
the agent’s belief set may vary, the commitment set remains the same in all
nontrivial cases. Finally, condition (o5) specifies what happens in the trivial
case, which is when P does not intersect any element of the onion: then the
new onion is degenerate, having only the empty set as an element.

The last condition is worth a comment. Classical AGM gives no guidance
on what to do in the pathological case to which (o5) applies. One possibility
is to hang on, come hell or high water, to the background theory that governs
the K-perator and accept as a condition

∀x∀y∀z((x, z) ∈ RK ⇐⇒ (y, z) ∈ RK).

However, if you revise yourself out of your onion (and so, as Bertie Wooster
might say, you must be off your onion), there is no support for a nonempty
commitment set. It is not unreasonable to consider that in such an extreme
case you are beyond everything and have to accept the empty set as your
commitment set; once you have reached this belief state, no further revision
can change it. Here we have followed the latter course. This means that, in
effect, we have chosen to cast the belief state corresponding to the degenerate
onion {∅} in the rôle of what Gärdenfors has termed “epistemic hell”. End
of comment.

A selector is a function f from the set of clopen sets to subsets of U
satisfying the following three conditions:
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82 Krister Segerberg

(i) fP ⊆ P ,

(ii) P ⊆ Q⇒ (fP 6= ∅ ⇒ fQ 6= ∅),

(iii) P ⊆ Q⇒ (P ∩ fQ 6= ∅ ⇒ fP = P ∩ fQ).

A selector f is trivial if, for all clopen sets P , fP = ∅, otherwise nontrivial.
We refer to fP as the segment of P under f . One segment is particularly
important: fU , also called the belief set of f . The definition of the commit-

ment set of f is more complex: C(
⋃
{fP : P is a clopen set}). (Again, C

represents topological closure.) Some mnemonic aid to talk about conditions
(i)–(iii) will be useful. For condition (i), inclusion is a natural name. Con-
dition (ii) guarantees a kind of MOnotonicity for NonEmptY Segments, and
we accordingly introduce the artificial abbreviation moneys for this condi-
tion. Condition (iii), finally, is a condition introduced into modal logic by
Bengt Hansson in [2] but discussed much earlier by Kenneth Arrow in the
theory of social choice; so let us refer to it as arrow.

A superselector is a function F assigning to each x ∈ U a selector Fx.
If (U, T,R) is a revision space, the structure (U, T,R, F ) is a selector frame

if F is a superselector. A serial, functional selector frame (U, T,R, F ) is an
AGM selector frame if

(s1) ∀x∀y((x, y) ∈ RB ⇐⇒ y ∈ FxU),

(s2) ∀x∀y((x, y) ∈ RK ⇐⇒ y ∈ C(
⋃
{FxP : P is clopen})),

and, for all clopen sets P ,

(s3) ∀x∀y((x, y) ∈ R∗P ⇒ FxP = FyU),

(s4) ∀x∀y((x, y) ∈ R∗P ⇒ (FxP 6= ∅ ⇒
⋃
{FxQ : Q is clopen} =⋃

{FyQ : Q is clopen})),

(s5) ∀x∀y((x, y) ∈ R∗P ⇒ (FxP = ∅ ⇒ ∀Q(FyQ = ∅))).

Also these conditions can be explained in words. Conditions (s1) and (s2)
relate the sets of strong and weak doxastic alternatives to the belief set
and to the commitment set, respectively. Condition (s3) is the fundamental
requirement that the new belief set shall be the set selected by the current
selector. Conditions (s4) and (s5) regulate the change in the commitment
set: in «normal» cases it remains the same, in «nonnormal» ones it vanishes.

Let (U, T,R, F ) be a given AGM selector frame. If u is an element of U
and hence Fu a selector, then call a subset X of U a sphere under Fu if

© 2001 by Nicolaus Copernicus University



A completeness proof in full DDL 83

(i) ∀w ∈ X∃P (w ∈ fP ),

(ii) ∀P (P ∩X 6= ∅ ⇒ fP ⊆ X),

(iii) X 6= ∅.

(Here and in the following lemma P is a parameter over the set of clopen
sets.)

Lemma 2.1. If P ∩X 6= ∅ then fP 6= ∅.

Proof. Assume that P ∩X 6= ∅. Then there is some point w ∈ P ∩X. By
condition (i) there is some clopen set Q such that w ∈ fQ. By inclusion,
w ∈ Q. Hence P ∩Q∩ fQ 6= ∅. Since P ∩Q ⊆ Q, arrow yields f(P ∩Q) =
P ∩Q ∩ fQ. In other words, f(P ∩Q) 6= ∅. Hence fP 6= ∅ by moneys.

By (i) and (ii), X has a certain “all-or-nothing” property: whenever a
clopen set P overlaps X, the corresponding segment — nonempty by Lemma
2.1 — is completely included in X. Thus X is simply a nonempty union of
segments. Define a function DF on U by the condition

DF
u = {X : X is a sphere under Fu} ∪ {∅ : FuP = ∅, for all P}.

The following result — drawing on David Lewis’s classic work in [3] — is
an important link in the over all completeness proof:

Proposition 2.2. If (U, T,R, F ) is an AGM selector frame, then (U, T,
R,DF ) is an AGM onion frame.

Proof. Let (U, T,R, F ) be an AGM selector frame. We note that R is serial
and functional. The proof is naturally divided into two parts: one to prove
that DF

u is an onion, for each u ∈ U ; the other to prove that conditions
(o1)–(o5) are satisfied.

First we prove that DF
u is an onion, for u ∈ U ; in fact, a Lewis onion. If

Fu is trivial, then DF
u = {∅} — a Lewis onion if not a very interesting one.

Suppose therefore that Fu is nontrivial. There are four conditions to check:
nested, aint, auni and limit.

nested. We give a reductio argument. Suppose that X * Y and Y * X,
for some X,Y ∈ DF

u . Then there are points v ∈ X − Y and w ∈ Y − X.
By condition (i) there are clopen sets P and Q such that v ∈ FuP and
w ∈ FuQ. From inclusion we gather that v ∈ X ∩ P and w ∈ Y ∩ Q.
Hence by (ii) we get FuP ⊆ X and FuQ ⊆ Y . Notice that P ∪Q is clopen.
Since (P ∪ Q) ∩ X 6= ∅, it follows by condition (ii) that Fu(P ∪ Q) ⊆ X.
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84 Krister Segerberg

By the same token, Fu(P ∪ Q) ⊆ Y . Furthermore, Fu(P ∪ Q) 6= ∅ by
moneys. By inclusion therefore (P ∪Q) ∩ Fu(P ∪Q) 6= ∅. There are two
alternatives. One is that P ∩ Fu(P ∪ Q) 6= ∅. Then FuP = P ∩ Fu(P ∪Q)
by arrow, implying hat FuP ⊆ Fu(P ∪Q) ⊆ Y , which is impossible. The
other alternative is that Q ∩ Fu(P ∪ Q) 6= ∅, which is similarly impossible
(the same kind of argument leads to conclusion that FuQ ⊆ X, something
known to be absurd). Thus in either case we encounter contradiction.

aint. Let C be any nonempty collection of spheres under Fu. Suppose
w ∈

⋂
C. Take any X ∈ C (since C is nonempty, the existence of such an

element is guaranteed). Since condition (i) holds for X there is some P such
that w ∈ FuP . Thus

⋂
C satisfies condition (i). For (ii), take any clopen

P such that
⋂
C ∩ P 6= ∅. For any X ∈ C we have X ∩ P 6= ∅. Since

condition (ii) holds for X, FuP ⊆ X and hence FuP ⊆
⋂
C. Thus

⋂
C

satisfies condition (ii). Suppose, finally, that
⋂
C = ∅. Since Fu is nontrivial,

FuP 6= ∅ for some clopen P . Hence FuU 6= ∅ by moneys. Take any X ∈ C.
By (iii), X 6= ∅. Therefore X ∩ U 6= ∅. Hence FuU ⊆ X by (ii). This shows
that FuU ⊆

⋂
C and so

⋂
C 6= ∅. Thus

⋂
C satisfies condition (iii).

auni. This case is similar to that of aint.

lim. Suppose that the family C = {X ∈ DF
u : X ∩ P 6= ∅} is not empty.

Then
⋂
C ∈ DF

u by aint (which we established above). Furthermore, for
each X ∈ C, FuP ⊆ X; hence FuP ⊆

⋂
C. Thus

⋂
C is the smallest sphere

under Fu that intersects P .

Now we turn to the five conditions for onion-frame-hood. Condition (o1)
is implied by condition (s1) since FuU is the smallest sphere in DF

u . (That
FuU is a sphere follows readily from conditions (i)–(iii). To see that it is
the smallest, let X be any sphere in DF

u . By (iii), X 6= ∅ and so of course
U ∩X 6= ∅. Hence by (ii), FuU ⊆ X.)

For condition (o2) it is enough, in view of condition (s2), to observe that,
for every sphere X, there is a nonempty set EX of clopen sets such that
X =

⋃
{FuP : P ∈ EX} and that

⋃
DF
u =

⋃
{X : X ∈ DF

u } =
⋃
{
⋃
{FuP :

P ∈ EX} : X ∈ DF
u } =

⋃
{FuP : P is clopen}.

To verify that (o3) holds requires some effort. Assume, for any clopen set
P , that (u, v) ∈ R∗P and P ∩

⋃
DF
u 6= ∅. We have already shown that DF

u

is an onion, so we may infer that there exists a sphere Z µ (DF
u ∩� P ); that

is, Z is the smallest sphere in DF
u to intersect P . By condition (ii) above,

FuP ⊆ Z. Hence, with the help of inclusion, FuP ⊆ P ∩Z. We must now
prove that FuP = P ∩ Z. To this end, define

X =
⋃
{FuQ : Q is clopen & P ⊆ Q}.
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We contend that X is a sphere under Fu. There are three conditions to
check. Condition (i): Take any w ∈ X. Then, for some Q such that P ⊆
Q, w ∈ FuQ. Condition (ii): Suppose R ∩ X 6= ∅, for some clopen R.
Then R ∩ FuQ 6= ∅, for some clopen Q such that P ⊆ Q. Note that, by
inclusion, the fact that FuQ 6= ∅ implies that Fu(Q∪R) 6= ∅. Suppose that
R∩Fu(Q∪R) = ∅. Then, again because of inclusion, Fu(Q∪R) ⊆ Q. Hence
arrow yields FuQ = Q ∩ Fu(Q ∪R) = Fu(Q ∪R). This is in contradiction
with the fact that R ∩ FuQ 6= ∅. Consequently, R ∩ Fu(Q ∪ R) 6= ∅. By
arrow we can infer that FuR = R ∩ Fu(Q ∪ R). But Fu(Q ∪ R) ⊆ X,
since the fact that P ⊆ Q implies that P ⊆ Q ∪ R. Hence FuR ⊆ X, as we
wanted. Condition (iii): We saw above that Z intersects P ; say v ∈ P ∩ Z.
Since Z is a sphere under Fu there is some clopen set Q such that v ∈ FuQ.
By moneys, Fu(P ∪ Q) 6= ∅. By definition of X, Fu(P ∪ Q) ⊆ X. Hence
X 6= ∅. The proof that X is a sphere under Fu is now complete. Finally, we
observe that P ∩X = P ∩

⋃
{FuQ : P ⊆ Q} =

⋃
{P ∩ FuQ : P ⊆ Q}. Using

arrow, we conclude that P ∩ X = FuP . Thus X = Z. This proves that
FuP = P ∩ Z, and so condition (o3) is satisfied.

Condition (o4) follows from condition (s4), as does (o5) from (s5).

3. Completeness

Theorem 3.1. Let Σ be a set of formulæ of full DDL. The following state-

ments are equivalent:

(i) Σ is consistent in DDL-AGM,

(ii) Σ is satisfiable in a closed-onion AGM frame,

(iii) Σ is satisfiable in a selector AGM frame.

Proof. The equivalence of clauses (ii) and (iii) can be proved by extending
the analysis given in [3]. That each clause implies (i) is clear: all theorems
of DDL-AGM are valid in all AGM closed-onion frames as well as all AGM
selector frames. Hence it will be enough to show that (i) implies (iii). This
is the task to which the rest of this section is devoted.

As usual in canonical model proofs we give it in a general form. Let
L be any finitary normal logic. We designate by UL the set of maximal
L-consistent formula sets. For all formulæ ϕ, define

|ϕ|L = {Γ ∈ UL : ϕ ∈ Γ}.
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Let TL be the topology for which the family of sets |ϕ|L, where ϕ is a for-
mula — call those sets the propositions in TL — is a base. It is clear that
TL is Stone and that the set of propositions coincides with the set of clopen
subsets of UL. Define

RB

L = {(Γ,∆) : ∀χ(Bχ ∈ Γ ⇒ χ ∈ ∆)},

RK

L = {(Γ,∆) : ∀χ(Kχ ∈ Γ ⇒ χ ∈ ∆)},

and, for every formula ϕ,

R∗ϕ
L = {(Γ,∆) : ∀χ([∗ϕ]χ ∈ Γ ⇒ χ ∈ ∆)},

FΓL |ϕ|L = {∆ : ∀χ([∗ϕ]Bχ ∈ Γ ⇒ χ ∈ ∆)}.

(It is easy to prove that, thanks to the fact that L is closed under replacement
of provable equivalents, the definitions are formally correct. In other words,
if ϕ ≡ ψ is a theorem of L then |ϕ|L = |ψ|L and R∗ϕ

L = R∗ψ
L and FΓL |ϕ|L =

FΓL |ψ|L.) Define FL = (UL, TL, RL, FL). It is clear that FL is a selector
frame. The condition VL(P) = |P|L, for all propositional letters, defines
a valuation in (UL, TL). Let ML be the model defined on FL by VL. By
a familiar argument, first used in modal logic by E. J. Lemmon and Dana
Scott, it follows that, for all maximal L-consistent sets Σ and all formulæ ϕ,

ML �Σ ϕ if and only if ϕ ∈ Σ.

Now let us assume that L, still normal and finitary, is an extension of DDL-
AGM. It is easy to see that this assumption makes (UL, TL, RL) serial and
functional. Thus all we need to do is to verify that FL satisfies the special
AGM conditions (s1)–(s5) above.

In order to improve readability, from now on we will drop the subscript
from expressions such as RL, FL, and |ϕ|L. Upper case Greek letters Γ , ∆,
Θ will be used to denote maximal L-consistent sets.

Condition (s1). Assume that (Γ,∆) ∈ RB. First suppose that (Γ,Θ) ∈
RB. Suppose that [∗⊤]Bχ ∈ Γ . Then Bχ ∈ Γ by postulate (∗3). Hence
χ ∈ Θ, which shows that Θ ∈ FΓ |⊤|. Conversely, suppose that Θ ∈ FΓ |⊤|.
Take any χ such that Bχ ∈ Γ . Thanks to the assumption, b⊤ ∈ Γ . By
postulate (∗4), therefore, [∗⊤]Bχ ∈ Γ . Hence χ ∈ Θ, which shows that
(Γ,Θ ∈ RB.

Condition (s2). Assume that ∆ /∈ C(
⋃
{FΓ |ϕ| : ϕ is a formula}). Then

there is a formula ψ such that C(
⋃
{FΓ |ϕ| : ϕ is a formula}) ⊆ |ψ| but

∆ /∈ |ψ|. In other words, FΓ |ϕ| ⊆ |ψ|, for every formula ϕ. In particular,
FΓ |¬ψ| ⊆ |ψ|, so in fact, thanks to postulate (∗2), FΓ |¬ψ| = ∅. Suppose,
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for a reductio argument, that Kψ /∈ Γ . Then [∗ (¬ψ)]B⊥ 6∈ Γ , by postulate
(∗5). Hence < ∗ (¬ψ)>b⊤ ∈ Γ , and so by a familiar argument there is some
maximal L-consistent set Θ such that, for all χ, [∗ϕ]Bχ ∈ Γ only if χ ∈ Θ.
In other words, Θ ∈ FΓ |¬ψ|, which is impossible. Consequently, Kψ ∈ Γ .
But ψ 6∈ ∆! Hence (Γ,∆) /∈ RK.

Conversely, assume that ∆ ∈
⋃
{FΓ |ϕ| : ϕ is a formula}. Then there

is a particular formula ϕ such that ∆ ∈ FΓ |ϕ|. Suppose that Kχ ∈ Γ .
First suppose that kϕ ∈ Γ . Then [∗ϕ]Kχ ∈ Γ , by postulate (K ∗1).
Hence [∗ϕ]Bχ ∈ Γ , by postulate (KB) and modal logic. Next suppose that
K¬ϕ ∈ Γ . Then [∗ϕ]K⊥ ∈ Γ by postulate (K ∗2). By (KB) and modal
logic we conclude, first that [∗ϕ]B⊥ ∈ Γ and then that [∗ϕ]Bχ ∈ Γ . Thus
in either case [∗ϕ]Bχ ∈ Γ , which implies that χ ∈ ∆. This argument shows
that (Γ,∆) ∈ RK. Thus we have established that {Θ : (Γ,Θ) ∈ RK} in-
cludes

⋃
{FΓ |ϕ| : ϕ is a formula} as a subset. But {Θ : (Γ,Θ) ∈ RK} =⋂

{|χ| : Kχ ∈ Γ} is a closed set; therefore {Θ : (Γ,Θ) ∈ RK} includes
C(

⋃
{FΓ |ϕ| : ϕ is a formula}) as well.
Condition (s3). Assume that (Γ,∆) ∈ R∗ϕ.
First suppose thatΘ ∈ FΓ |ϕ|. Say that [∗⊤]Bχ ∈ ∆. Then Bχ ∈ ∆, by

postulate (∗3). Hence < ∗ϕ>Bχ ∈ Γ , whence [∗ϕ]Bχ ∈ Γ , by postulate
(∗F). Hence χ ∈ Θ. This shows that Θ ∈ F∆|⊤|.

Conversely, suppose that Θ ∈ F∆|⊤|. Since ⊥ /∈ Θ, < ∗⊤>B⊥ /∈ ∆.
By maximality of ∆, < ∗⊤>b⊤ ∈ ∆. By Lemma 1.1.(b), k⊤ ∈ ∆, so
K⊥ /∈ ∆. Hence [∗ϕ]K⊥ /∈ Γ , whence K⊥ /∈ Γ by postulate (K ∗2).
Hence k⊤ ∈ Γ , and therefore < ∗ϕ>bχ ∈ Γ by (∗5) and modal logic, and
so [∗ϕ]b⊤ ∈ Γ by (∗F). Now, by postulate (∗4) and modal logic, Γ contains
the formula [∗ϕ]b⊤ ⊃ ([∗ϕ]Bχ ⊃ [∗ϕ][ [∗⊤]]Bχ). Modus Ponens, twice
applied, yields [∗ϕ] [∗⊤]Bχ ∈ Γ , whence [∗⊤]Bχ ∈ ∆. Hence χ ∈ Θ. This
argument shows that Θ ∈ FΓ |ϕ|.

Condition (s4). Assume that (Γ,∆) ∈ R∗ϕ. First suppose that
Θ ∈ FΓ |ϕ|. Say [∗ϕ]Bχ ∈ ∆. Then, with the help of postulate (∗F),
[∗ϕ] [∗ϕ]Bχ ∈ Γ . Hence [∗ϕ]Bχ ∈ Γ , by Lemma 1.1.(e). Consequently,
χ ∈ Θ. This argument shows that Θ ∈ F∆|ϕ|.

Next assume that Θ ∈ F∆|ϕ|. Say that [∗ϕ]Bχ ∈ Γ . By Lemma 1.1.(f),
[∗ϕ] [∗ϕ]Bχ ∈ Γ . Hence [∗ϕ]Bχ ∈ ∆, and so χ ∈ Θ. This argument shows
that Θ ∈ FΓ |ϕ|.

Putting the two arguments together, we have shown that FΓ |ϕ| = F∆|ϕ|.
(This result is even stronger than the one we needed to prove.)

Condition (s5). Assume that (Γ,∆) ∈ R∗ϕ and FΓ |ϕ| = ∅. Hence the
set {χ : [∗ϕ]Bχ ∈ Γ} is L-inconsistent. Using compactness, we infer that
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[∗ϕ]B⊥ ∈ Γ . Hence K¬ϕ ∈ Γ by postulate (∗5). Hence [∗ϕ]K⊥ ∈ Γ by
postulate (K ∗2). Therefore K⊥ ∈ ∆. Then, for all ψ, Kψ ∈ ∆, and in
particular, for all ψ, K¬ψ ∈ ∆. Thus, by Lemma 1.1.(a), [∗ψ]B⊥ ∈ ∆, for
all ψ. Consequently, F∆|ψ| = ∅, for all ψ.

This ends the proof that clause (iii) of Theorem 3.1 implies clause (i).

4. Comparison with AGM

Notwithstanding the title of this paper, it cannot be claimed that the mod-
elling presented here really reflects the work of Alchourrón, Gärdenfors and
Makinson; there are certainly features of our system that have no foundation
in AGM. The most that can be claimed is that our modelling is a reasonable
extrapolation. What makes comparison difficult is that in full DDL all com-
binations of change operators and doxastic operators are allowed. In their
classic papers the three fathers of the logic of theory change pay little atten-
tion to the question of iterated change; to the question of nested belief they
pay even less. Indeed, nested belief is difficult to discuss in their favoured
idiom. Consider the following «dictionary», where T is a set of formulæ and
ϕ and χ are formulæ:

χ ∈ T Bχ the agent believes that χ
χ ∈ T ∗ ϕ [∗ϕ]Bχ after revising his beliefs by ϕ,

the agent believes that χ.

The first and second columns are how AGM and DDL, respectively, render
the informal condition in the third column. There is no problem for AGM
to talk about iterated change: the expression χ ∈ (T ∗ ϕ) ∗ ψ is meaningful,
corresponding to the formula [∗ϕ] [∗ψ]Bχ of DDL. But as long as B is not
an operator of the object language, a DDL formula such as BBϕ has no
natural counterpart in AGM — to resort to expressions like (ϕ ∈ T ) ∈ T
invites complication, if not worse.

Nevertheless, the system presented here has one great advantage over
the (iterated) basic version presented in [6]: it avoids the embarrassment
over what was there called the Postulate of Unique Methodology. If onions
represent belief states, belief change consists in going from one onion to
another. In basic DDL the points that make up the universes of our frames
are interpreted as «states of the world», while in full DDL we think of them
as «possible worlds». The difference is that in basic DDL the agent’s beliefs
are seen as outside the world, whereas in full DDL they are part of it. It is not
surprising that, in full DDL, each possible world determines the onion (the
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belief state) — it is what you would expect! But if AGM is to be rendered
in (iterative) basic DDL, then it is the belief set that must determine the
next onion, something that is philosophically implausible and technically
awkward. So, in some ways, the modelling presented here may be more
faithful to the spirit of AGM than those of [6].

5. Conclusion

The system presented above provides the schema known as Preservation
(schema (d) of Lemma 1.1):

(∗P) bϕ ⊃ (Bχ ⊃ [∗ϕ]Bχ).

However, this schema is known to give rise to Moore’s paradox. For example,
putting ¬Bϕ or B¬ϕ for χ in (∗P) yields the schemata

bϕ ⊃ (B¬Bϕ ⊃ [∗ϕ]B¬Bϕ),

bϕ ⊃ (BB¬ϕ ⊃ [∗ϕ]BB¬ϕ),

which against the background of (∗2) and modal logic is unintuitive. The
undesirability of (∗P) in full DDL was noted already by van Linder, van der
Hoek and Meyer ([4], p. 114); ways of avoiding it were discussed at length
by Lindström and Rabinowicz ([5], p. 139f.).

The validity of (∗P) deprives our result of some of the interest it would
otherwise have. Nevertheless, there are two reasons for publishing it. One
is to show that full DDL, like other modal logics, can yield to the methods
of traditional modal logic. The other — related to the first — is the hope
of finding more acceptable modellings for which completeness proofs can be
given along the lines of the completeness proof outlined here. The author
hopes to pursue this topic in a future paper.∗
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