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PARAINCONSISTENCY,

or inconsistency tamed,

investigated and exploited

Introduction

1. Any educated person knows, or at least should know1, that most
cases of incoherences, impossibilities and — in a theoretical framework —
inconsistencies are rather suspicious members of a domain.

In particular, being inconsistent is a rather bad property of a theory. But
why?

2. Our aim in the paper is, firstly, to discuss several answers to the
question, and secondly, and more importantly to provide a proper frames
to explain and to exploit inconsistencies. The framework which will force
inconsistencies to work in a positive way, i.e., to enlarge and to deep our
understanding of problems involved.

Two domains of inconsistencies

3. Let me first distinguish two main domains of inconsistencies:

The theoretical domain, where inconsistencies occur in the realm
of reasoning. The chief problems involved here are therefore logical and
cognitive ones.

1 With exceptions of Hegel, Hegelians, etc.
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6 Jerzy Perzanowski

The objective domain, where inconsistencies occur (or seem to occur)
in the realm of what is given (including psychological phenomena), or in the
broader realm of what is real. Sometimes we consider even incoherences
from the borderline of the ontological space of all possibilities, including
impossibilities of several types. In consequence, such items considered here
occur in a common extension of these two domains, i.e., in the realm of what
is possible plus the realm of what is impossible.

The problem of theoretical inconsistency is, as we noted above, a log-
ical and cognitive one, whereas in the case of objective inconsistencies (or
rather — incoherences) it is either the problem of common sense and sci-
ence (for what is given and what is real) or the problem of ontology (for the
realm of possibilities — the ontological space sensu stricto, plus the realm of
impossibilities, which form together the ontological space sensu largo).

General preliminaries

4. Let me start with differentiating inconsistencies from incoherences,
both objective and theoretical.

4.1. An objective incoherence is any internal tension or contradiction in
the object under consideration. They are quite common in many domains. In
particular, in the domain of mind (take, for example, emotional ambivalence),
in the domain of beliefs (Tertulian’s dictum credo, quia absurdum, which is
a quite reasonable position for irrational believers), in the domain of physics
(take, for example, simultaneous attraction and repulsion).

Usually, objective inconsistencies are not so easy to find. Sometimes their
discovery is indeed a great achievement.

4.2. Theoretical incoherences usually are global (the incoherence of a
system, etc.), whereas theoretical inconsistencies primarily are local (the in-
consistency of two opposite statements) and only secondarily are they global
(of a theory, etc.). As we will see, in many cases it depends on which basic
logic is chosen. Let me add that they frequently occur during discussions.

4.3 Some additional remarks concerning distinctions between incoher-
ences and impossibilities in a modal framework will be given later on.

Metalogical preliminaries

5. Return to the initial observation that nearly everybody knows that
inconsistency is a rather unpleasant (most of students of logic simply think —
bad!) property of a theory. Let us ask again: Why?
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Parainconsistency . . . 7

5.1. From an epistemological (or cognitive) point of view both serious
inconsistencies and/or incoherences are bad, for 1) they limit or even stop our
(illusion of?) understanding of a subject hosting them, 2) they can shake a
system of our knowledge or beliefs, and last but not least, 3) they can stupefy
us by producing false impressions or the illusion of understanding.

5.2. To see this more carefully let us distinguish between paradoxes,
which are claims, observations or results incoherent with our basic assump-
tions, opinions, beliefs, intuitions, etc.; and antinomies, which are statements
(results) inconsistent with claims of a given theory.

Some of them are explicit, some implicit. The question of their explication
is important and does not invite a quick reply.

Antinomies need a theory, hence logic; whereas paradoxes not necessarily.
Usually, theoretical paradoxes are antinomies; sometimes also conversely.

6. To be more strict, let me distinguish now between inconsistency and
overflowing.2 To be strict enough we need a bit of metalogic.

A logical calculus (or simply calculus) is a consequence operator C on
a given language. Its logics are all its systems (or theories), i.e., sets of
formulas closed on C, which, in addition, are closed on substitution.

Suppose that the language is such that we can distinguish between: An

inconsistency sign, say inc: inc ∈ C(X) iff C(X) is inconsistent, and an

overflowing sign, say ⊥: ⊥ ∈ C(X) iff C(X) = FOR.

For a calculus in a language with a “proper” negation, a common incon-
sistency sign is, for suitable A, the formula A ∧ ¬A.

Overflowing is, for sure3, quite bad, for it demolishes the theoretical use-
fulness of the overflowed C(X). By accepting it we cannot distinguish be-
tween theorem and non-theorem, between truth and falsity.

7. Let me add that the role of negation in the inconsistency sign is
not essential. First of all, the negation used in it must indeed be negation,
what occurs, for example, in intuitionistic or classical like logics. For many
nonclassical logics negation is, however, negation by name only.

On the other hand, quite often the inconsistency sign is a positive formula,
as in the case of classical arithmetic “0 = 1”.

8. Now, it is easy to explain why inconsistencies are dreadful from the
point of view of classical — like logics.

2 In the original Jaśkowski’s terminology. Some people like to talk about explosions.
3 At least for people not too crazy. Postmodern “thinkers” are with their “deconstruc-

tion” of the limit between Truth and Falsity — and not only in this case — exceptions.
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The classical, so called Scotian, calculus consists in following claims:

(i) The signs of overflowing and inconsistency are logically equivalent:
C(⊥) = C(inc),

(ii) Both of them are equivalent (more exactly – equal) to the standard
classical sign of inconsistency: A ∧ ¬A, using real, boolean or pseudo-
boolean negation. Hence

(iii) C(A ∧ ¬A) = FOR.

Thus for classical-like logics the problem of paraconsistency4 reduces to
the question of validity of the Duns Scotus rule: A ∧ ¬A/B. A calculus is
paraconsistent, if the rule is invalid for some A, whereas it is not such in the
contrary case.

It is such, for a given calculus C in a language with the true negation
and with A ∧ ¬A being its sign of inconsistency

(1) For any theory T , that T is overflowed is equivalent to that T is

inconsistent iff T is closed on Duns Scotus rule RDS: A ∧ ¬A/B.

As a matter of fact it is quite reasonable to take a stronger position.
Strong paraconsistency for a given calculus C is defined by a stronger condi-
tion: For all A, C(A ∧ ¬A) 6= FOR.

9. Paraconsistent logics are non-Scotian ones. Hence, we accept that:

(i) their signs of inconsistency are not equivalent to suitable signs of over-
flowing (if any),

(ii) A∧¬A is not necessary their common sign of overflowing, but in most
cases it is its sign of inconsistency.

Hence, in a paraconsistent logic

(2) For at least one A, C(A ∧ ¬A) 6= FOR.

Paraconsistent logics are thereby logics for studying inconsistencies ex-
pressed in the classical way.5

10. Jaśkowski’s problem (1948, [2], [3]): Find an interesting and rich6

(i.e., close to classical logic as far as reasonable) as well as well-motivated
paraconsistent logic.

4 Standard name introduced in the late 1970s by F. M. Quesada.
5 This can be, and indeed was, generalized to some non-classical cases.
6 But not too rich!
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In his seminal works Jaśkowski was explicitly motivated by Jan Łukasie-
wicz’s 1910 great book [5], being the starting work for Polish Logic, and also
by the philosophy of Veihinger als ob popular at the beginning of the last
century.

In the papers cited above Jaśkowski, not only stated the problem but
also provided an answer — the first solution to it, which is probably still the
best.7

11. The richness of a given paraconsistent logic can be estimated in a
standard way. The problem of being “interesting” is more subtle and somehow
pragmatic. One point at least is however clear. An interesting paraconsistent
logic should not only block inconsistency overflowing but also supply us with
an understanding of how inconsistency emerges in a given domain and give an
insight into its machinery, thus opening the way to the better understanding
of the domain itself.

Parainconsistency

12. The title of the present paper immediately gives the basic idea and
the program I would like to present and defend in my talk. It offers also
something like a definition of the notion of parainconsistency.

Notice first that the popular name “paraconsistent logic” is, in a sense,
misleading. It suggests that such logics are consistent in a special, weak sense.
But, as we known, it is just exactly the reverse. They are simply inconsistent,
but unlike the classical logic they are able to work with inconsistencies.

Thus, the situation is quite similar to the misleading naming of the “law
of consistency”, which in many textbooks is named the “law of inconsistency”.

13. Let me also add a few opening words on the status of classical-like log-
ics in our subject. In the case of domains with inconsistencies they are useless
for investigating them, for the classical calculus suggests that the only effect
of inconsistency is overflowing, i.e., trivialization of an appropriate theory.

Even worse, the classical logic states that all inconsistencies are equiva-
lent, despite our well-founded experiences and intuitions.

14. The basic paraconsistent logics are parainconsistent, for they are
inconsistent in a special — para — sense. They are inconsistent, for they
contain at least one inconsistent formula, but they tolerate it and can be
made to work in pursuit of better understanding of a domain under dis-
cussion. This mean that they are invented not only to block or eliminate

7 Pace G. Priest.
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inconsistencies, but rather for the study of inconsistencies (in Portuguese:
para inconsistencies, because Portuguese para means English for).

We observe that Jaśkowski’s logic as well as many paraconsistent logics
built up in the last 55 years are parainconsistent in the above sense.

15. Parainconsistent logics are therefore logics for the investigation of
serious and real inconsistencies. We must find a framework for understanding
them, and in consequence to tame and to exploit them.

16. Our feelings concerning such delicate questions depend, as you will
see, upon quite different attitudes to the inconsistencies we can chose.

A few remarks on inconsistencies

17. Let me distinguish, first of all, several types of inconsistencies: We
move from stupid claims (like “I am here and also I am not”), which are not
even jokes and should be thoroughly ignored; through several nice logical
jokes (like “Have you lost your rush-mats”), to serious puzzles, paradoxes
and antinomies.

They have appeared several times and are still appearing, sometimes
challenging the very foundations of our knowledge. From a theoretical point
of view only serious inconsistencies deserve our attention and research.

18. To organize our procedure let me list here a few paradigmatic cases
of serious inconsistencies:

The Paradox of the Liar: It is not a logical joke or puzzle, but a real
paradox for the classical, Platonic theory of truth and falsity. The theory
says that, where A is an indicative proposition: A is true if just what it

claims is, and A is false if just what it claims is not is based on our most
natural and convincing intuitions. Therefore the famous and very ingenious
counterexample against bivalence invented by Eubulides of Megara really
shook the background of our common-sense knowledge. The paradox was
also very productive in forcing us to a much deeper analysis of the notions
of truth and falsity.

Zeno’s paradoxes of motion (or in general — change): They are true and
challenging inconsistencies in some theories of motion and still a source of
interesting investigations as well as one of the starting points for the modern
theory of dynamics.

The case of infinitesimals in Mathematical Analysis gives the false impres-
sion that the Calculus is grounded on inconsistent statements. The solution
of the problem took nearly 200 years (Cauchy, Weierstrass) and another one
hundred years to see that the classical approach of Newton and Leibniz was

© 2001 by Nicolaus Copernicus University



Parainconsistency . . . 11

not as bad as many people had believed after Berkeley’s critique (consider
the case of Nonstandard Analysis of Abraham Robinson). Notice here a
very characteristic reaction of mathematicians: they were still developing
the Calculus by means of classical logic, bracketing the paradox.

Quite a similar story has happened in the case of set-theoretical para-
doxes shown by the pragmatic reaction of Cantor. Many people used to
say, and still do say, quite naively that Cantor’s theory was “naive”. Not so
naive, however. Just after discovering the first paradoxes Cantor changed
his previous view that basic mathematics is free of inconsistent items and
distinguished between consistent multiplicities (sets) and inconsistent ones,
being in such a way a pioneer of von Neumann’s type of set theory (which
was next developed by Bernays and Gödel) as well as of a modal approach
to set theory, which is still waiting for further investigation.

We recall also several paradoxes of Quantum Mechanics, which are still
the subject of hard work; as well as Bohr’s theory of atoms, and the delta

function of Dirac (which is, in fact, not a function defined in the standard
way, but — as was discovered next — a special distribution).

19. In what way do people react after such serious inconsistencies’
emerge? We can distinguish at least three positions — two extreme and
one mediatory:

• Inconsistency enemies (sometimes even inquisitors): Any inconsistency is
an offense to reason, a sort of high treason. It is a sign of logical disease
(A. Tarski) and should be treated in a proper way.

• Inconsistency believers (sometimes lovers): inconsistencies really exist and
play a most important, positive role. Among believers we find quite a lot
of Hegelians.8

• Inconsistency investigators: They do not accept inconsistencies, but they
treat them as a challenge, both logical and essential. “Contradiction is not
a failure, it is an opportunity” (A.N. Whitehead).

8 The position has rather a long tradition, starting with the sophists, Nicolas of Cusa,
Hegel and Hegelians of several types (including the dialectic philosophers). In our time
the position is defended by several Australian philosophers, including the late Richard
Routley (laser Sylvan), Chris Mortensen, and, under the name of dialethism, by Graham
Priest.

I have been for several years rather suspicious on it. Now, when I am fighting with
cancer of the colon, I came to the opinion that most (or even any) case of cancer is an
inconsistency occurring in the world, which should be taken as the paradigmatic case by
any true dialectical theory. I am therefore preparing myself to become a Hegelian after
death.
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12 Jerzy Perzanowski

An opportunity to extend our understanding, is offered, obviously, only
by serious and challenging inconsistencies. Which inconsistencies are such,
however?

Notice, that between investigators are many Leibnizians. In what follows,
I will take a moderate investigator’s position.

20. Global versus local effects. Overflowing (or explosion).
For a given theory T a paradox (or inconsistency) occurring in it is global,

if it affects the full content of the theory; local — if it affects only its proper
part.

From a point of view of classical-like logics, overflowing is global. From a
material, or essential, point of view it, however, must not be such. Therefore,
in the case of an important theory having a serious inconsistency destroying
it, we usually stay with the theory, searching for a remedy and trying to
extend our understanding.

In most cases we try to revise an inconsistent theory. As a first step
we try to weaken the theory, hoping to extend it in a reasonable way in
subsequent steps.

To this end, we try first to localize the paradox, i.e., to find its place and
essential sources of it, in the hope of showing that the inconsistency under
investigation is local. Quite often the theory is then revised, by enlarging its
domain with new elements (like extending the standard domain of rational
numbers by irrational numbers after discovering them) or by the differentia-

tion of several kinds of objects in the domain caused by inconsistencies (like
distinction between classes and sets introduced by Cantor after discovering
the set-theoretical paradoxes).

21. For a successful localization it is important to stop the overflow-
ing effect (i.e., classical explosion). Parainconsistent logics then show their
usefulness.

Notice that moderate investigators wish to use parainconsistent logics as
auxiliary devices, in addition to classical logic, which, at least in a metamath-
ematical setting, remains the basic practical logic. To paraphrase Whitehead:
“One God, one country, one logic” (but with several auxiliary logics).9

9 And one wife with several female assistants as well. One logic here means the classical
one. Paraincosistent logics are in most cases auxiliary ones.
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Modal, or Polish, approaches to parainconsistency

Definition and short history

22. A modal approach to parainconsistency, for a classical-like language
with calculi and logics expressed in it, is undertaken by the introduction of
an auxiliary modal language with suitable calculi and logics used for para-
phrasing the inconsistency problem in a way that provides it with a new
reading and way of understanding it.

The approach was introduced in 1948 by Stanisław Jaśkowski. His moti-
vation will be discussed in one of the forthcoming sections.

The approach was rediscovered, or rather reintroduced, by several Amer-
ican scholars in late 1970s in quite a similar way but differently motivated.
It started to play an important role in the development of non-monotonic
logics. In the last few years it has again been investigated, though without
a deep understanding what is behind it.

23. The basic historical data are as follows. Let me start with some
remarks concerning the land of its birth.

In Poland, its prehistory is the famous book of Jan Łukasiewicz [5], 1910.
This book, written by one of the two fathers of Polish logic, started by
challenging the very traditional, Aristotelian Principle of Noncontradiction:

since the contradiction of the statement cannot be true at the same
time of the same thing, it is obvious that contraries cannot apply at
the same time to the same thing. [. . . ] Therefore if it is impossible at
the same time to affirm and deny a thing truly, it is also impossible for
contraries to apply to a thing at the same time [. . . ].10

After distinguishing metaphysical, logical and psychological versions of the
Principle, Łukasiewicz argued that none of them is well — motivated and
thereby should be considered as doubtful. This consideration together with
parallel investigation of the question of determinism and sentences speaking
about the future led Łukasiewicz in the next decade to introduce the family
of his many — valued logics.

As regards the Consistency Principle Łukasiewicz considered it as ethi-
cal Principle11, being foundation of logical rationalism. Łukasiewicz position
started a very vivid discussion and has never been forgotten amongst Polish

10 Aristotle, Metaphysics, IV, vi, 10–11. Translated by Hugh Tredennick.
11 Notice a great similarity between Łukasiewicz’s position and the well-known view of

Ludwig Wittgenstein from the 1930s.
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14 Jerzy Perzanowski

scholars. Obviously, it is also the chief starting point for Jaśkowski’s investi-
gation.

As regards other scholars: Stanisław Leśniewski had defended the Prin-
ciple from the very beginning (the first paper on the subject was published
in 1912). It was taken next as his own position by his pupil Alfred Tarski.
A somewhat similar position was taken independently in the same time by
Leon Chwistek (1912).

On the other hand, the breakdown step, though whilst keeping the spirit
of Łukasiewicz with respect to parainconsistent logics, was taken in 1948
by Stanisław Jaśkowski [2], [3]. His work was continued from the 1960s to
the 1980s by his pupils Lech Dubikajtis and Jerzy Kotas. In particular,
in the early sixties Lech Dubikajtis started the close co-operation of Polish
scholars with the father of Brazilian paraconsistent logics, Newton da Costa.
In the seventies the Torunian group became especially active, which included
Jerzy Kotas and his pupils (Tomasz Furmanowski, Wiesław Dziobiak, Jerzy
Błaszczuk, and Max Urchs). Some generalization of the full research project
was in 1975 given by Jerzy Perzanowski [8].

Outside the main stream let me mention: In the eighties — Witold Łuka-
szewicz & non-monotonic logicians from Warsaw, and working in the spirit
of Meinong, Jacek Paśniczek from Lublin.

24. American scholars started the modal investigation of inconsistency
with David Kaplan’s post-Carnapian approach to axiomatization of the on-
tology of Wittgenstein’s Tractatus which is itself modal in spirit indeed. This
was led out in the famous doctoral dissertation of Kaplan [4] from the early
1960s. In his dissertation Kaplan introduced the modal theory (or rather
the family of such theories) named S13 which is defined as the extension of
Lewis’ modal logic S5 by a pair of contingency statements {3A,3¬A}.

The Kaplan’s approach was implicitly touched upon by Steve Thomason
in his famous preprint on dialectical logics from the early 1970s, which was
finally published in Reports on Mathematical Logic as [11] in the 1990s.

Next, in the 1980s Nicholas Rescher and Robert Brandom published an
influential book [1], whose basic idea is simply a repetition of Jaśkowski’s
main idea re-expressed in the apparatus of relational semantics for modal
logics.

At almost the same time, M. McDermott published his important paper
[6] on modal approach to non-monotonic logic, which is also close in its basic
ideas to those of Jaśkowski.

I believe that most of these similarities are accidental and independent.
There is simply one truth which shows its face on several occassions. An
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exact and careful comparison of these approaches are, to the best of my
knowledge, still waiting for discussion.

25. Finally, let me add that an important approach to paraconsistency
invented by relevance logicians, should also be considered to be implicitly
modal due to the implicit connection of relevance to modalities.

Preliminaries on modal logic

26. Before coming to a discussion of Jaśkowski’s approach we need to
recall some basic data on modal logics.

26.0. Modal language. Is defined in a standard way from the set of propo-
sitional variables by means of the following functors: ¬, ∧, ∨, →, ↔, 3, 2.

26.1. Two Aristotelian definitions of contingency.

Ct∗ A := 3A ∧ 3¬A symmetric, or two-sided

CtA := A ∧ 3¬A non-symmetric, or one-sided

26.2 Rules and axioms.

Rules

MP
A A → B

B
Modus Ponens

RE
A ↔ B

2A ↔ 2B
rule of extensionality, or congruence

RM
A → B

2A → 2B
rule of monotonicity

RAM
A → B

2B → 2A
Rule of antimonotonicity

RD
A

3A
Aristotle’s rule of possibilization

RG
A

2A
Gödel’s rule of necessitation

RJ
3A

A
Jaśkowski’s rule of depossibilization

Both Gödel’s rule of necessitation as well as Jaśkowski’s rule of depossibi-
lization are rather unusual from a woman (or man) usual point of view. We
are living in a world full of contingencies, whereas both rules taken in their
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full generality say something contrary: in the first case contingencies become
necessary truths, whereas — in the second case — contingencies are facts.

Notice that Gödel’s rule RG is closely connected with relational seman-
tics in its Dana Scott’s standard version; whereas Jaśkowski’s rule RJ is
important for the axiomatization of Jaśkowki’s logic.

Axioms

K 2(A → B) → (2A → 2B) Kripke’s axiom of regularity

D 2A → 3A Aristotle’s basic axiom

T 2A → A von Wright’s basic axiom

R 3A → 2A, or ¬Ct∗ A Leibniz’s axiom of metaphysical
rationalism

4 2A → 22A Lewis’ axiom of transitivity

5 32A → 2A Lewis’ axiom of euclidity

B 32A → A Kripke’s Brouwerian axiom of
symmetry

GL 2(2A → A) → 2A Gödel-Löb’s axiom of provability

26.3. Calculi. Logics and their classes.

Calculi

C – based on classical tautologies expressed in modal language
and MP

Ce – extension of C by RE

Cm – extension of C by RM

Cam – extension of C by RAM

Cg – extension of C by RG

Cn – extension of C by RG and K

Logics

CL := C(∅) the classical logic in ML

K := Cn(∅) Kripke’s minimal normal logic

D := Cn(D) Deontic standard logic of von Wright

T := Cn(T) Gödel-Feys-von Wright’s logic of common
sense universe

BK := Cn(T,B) Brouwerian logic of Kripke
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S4 := Cn(T, 4) Lewis’ fourth modal logic

S5 := Cn(T, 5) Lewis’s fifth modal logic

R := Cn(R) Leibniz’s logic of metaphysical rationalism

GL := Cn(GL) Gödel-Löb’s logic of provability

GLs := C(GL, T) Gödel-Solovay’s logic of provability

Crucial logics

which are crucial for a topography of modal logics, cf. [9].

TR := C(2A ↔ A) the modal identity logic

NEG := C(2A ↔ ¬A) the modal negation logic

VER := C(2A) the modal verum logic

FALS := C(3A) = C(Ct∗ A) the modal falsum logic

Notice that VER is the logic of very extreme rationalism (for it claims
that everything is necessary); whereas FALS is the Cartesian logic of total
contingentialism (due to its claim that everything is possible, and hence that
everything is contingent).

Classes of logics

MOD := {P : P is a logic of C} the class of all modal logics

CON := {P : P is a logic of Ce} the class of all congruential,
or classical modal logics

MON := {P : P is a logic of Cm} the class of all monotonic

modal logics

AMON := {P : P is a logic of Cam} the class of all antimonotonic

modal logics

NR := {P : P is a logic of Cn} Krike’s class of all normal

modal logics

QNR := {P : P is a modal overlogic of K} the class of all quasinormal

modal logics

26.4. Homogenous counterparts (cf. [8]). Let P be a modal logic.

M(P ) := {A : P ⊢ 3A} 3-counterpart

L(P ) := {A : P ⊢ 2A} 2-counterpart

Ct(P ) := {A : P ⊢ CtA} Ct-counterpart

Ct∗(P ) := {A : P ⊢ Ct∗ A} Ct∗-counterpart
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27. Investigation of M(P ) — 3-counterpart of P plays quite fundamen-
tal role in the construction of Jaśkowskian logics.

Stanisław Jaśkowski’s seminal contribution, cf. [2], [3]

28. Consider a classical-like language L with the usual connectives: ¬,
∧, ∨, →, ↔; and its modal counterpart ML with 2 and its dual 3 added.
In the future the language ML will be treated as metalanguage of L.

Let P be a modal logic. To define its parainconsistent counterpart con-
sider Jaśkowski’s transformation

J: L ⇒ ML

defined by putting, with two further characteristic conditions:

pJ := p,

(¬A)J := ¬AJ,

(A ∨ B)J := AJ ∨ BJ,

(A ∧ B)J := AJ ∧ 3BJ

(A → B)J := 3AJ → BJ.

It is sometimes reasonable to use a more regular, symmetric, condition for ∧:

(A ∧ B)J
∗

:= 3AJ∗ ∧ 3BJ∗ .

29. Define now Jaśkowski’s logic based upon P :

J(P ) := {A ∈ FOR : P ⊢ 3AJ}.

In particular, Jaśkowski’s original logic D2 := J(S5).
30. Jaśkowski in fact provided two motivations for his construction.

The first, a methodological consideration based on Veihinger philosophy als

ob, says that — at least in science — everything should be treated in a pure
hypothetical way.

As for the second, what happens in serious discussions is taken into ac-
count. In such discussions, at least at their beginning, I should take my
opponent seriously, which means that his claim B should be considered at
least as possible: 3B. Therefore, if I am comparing my position A with the
position of my opponent B, I should use a description which leads immedi-
ately to the idea of discussive conjunction: A ∧d B := A ∧ 3B. Similarly, if
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I am considering the consequences of the position of my opponent, expressed
by A, then the discussive implication is represented as an entailment between
my presentation of my opponent’s view 3A and its consequence B. In such
a way, we come to the idea of discussive implication: A →d B := 3A → B.

Jaśkowski’s logic proved its usefulness and power. Observe, however, lack
of an ontological motivation for it. Let me therefore ask: What does it add
to our understanding of parainconsistency? What is behind its construction?
How many similar logics can be constructed?

I will return to these fundamental questions in the forthcoming, last parts
of the paper.

Several basic facts and observations

31. Let me establish first a connection between M — counterpart of a
given logic and Jaśkowski-type logics based on it.

(3) If M(P ) = M(Q) then J(P ) = J(Q).

Therefore Jaśkowski’s logics based on P and Q are fully defined by their
M-counterpart.

In his doctoral dissertation [7] of 2002 Marek Nasieniewski observed that
under a special proviso the reverse is also true.

(4) Let P and Q be normal logics. Then J(P ) = J(Q) implies that
M(P ) = M(Q).

32. Now let me discuss Jaśkowski — type logics based on the crucial
logics:

(5) M(TR) = TR = L(TR), hence J(TR) = CL. Also Ct(TR) = ∅ =
Ct∗(TR).

On the other hand

(6) M(FALS) = FOR, hence J(FALS) = FOR! But L(FALS) = ∅.

(7) M(VER) = ∅, hence J(VER) = ∅. But L(VER) = FOR.

(8) M(NEG) = NEG¬ = L(NEG), hence J(NEG) = CL¬;
where NEG¬ and CL¬ are respectively families of all negations of
theorems of NEG and CL.

33. By a generalization of a criterion formulated for normal logics by
Perzanowski [8] we can prove a rather general and quite useful condition:
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(9) Let P be monotonic or antimonotonic. M(P ) = ∅ iff P ≤ VER;
and L(P ) = ∅ iff P ≤ FALS.

The first part of it says that in a quite big class of logics we cannot
fruitfully repeat Jaśkowski’s construction. Hence

(10) M(GL) = ∅. But

(11) C(M(GLs)) = VER.

The last observation suggests that a very promising Jaśkowskian logic is
generated by GLs, Gödel-Solovay’s logic of provability.

34. The research of parainconsistent Jaśkowskian logics also leads to an
investigation of Ct∗-counterparts.

(12) If P is included in TR, or in VER, or in NEG, then Ct∗(P ) = ∅.

But

(13) Ct∗(FALS) = FOR. Also

(14) If P ⊢ R, then for any Q including P , Ct∗(Q) = ∅.

35. Let me mention also, that in the case of C-logics FALS plays quite
a distinguished role in comparing impossibility and standard inconsistency.
Namely

(15) P ⊢ ¬3A ↔ A ∧ ¬A iff P = FALS.

In this case impossibility is equivalent to inconsistency only in the logic FALS!

Polish parainconsistency revisited and generalized

36. Now we are ready to discuss the basic questions of §§ 5 and 30.
36.1. First of all, ML with logics expressed in it should be treated as

the modal metalanguage for the classical language L with its classical-like
logics and theories, including parainconsistent ones (in particular Jaśkowski’s
discussive logic) built upon it.

Therefore, Jaśkowski’s transformation defined in § 28 J: L ⇒ ML is, in
fact, an embedding of the classical language L of the calculus D2 into its
modal metalanguage ML.

36.2. What happens with inconsistencies through this transformation?
It is easy to see that in the case of L-inconsistency A ∧ ¬A its J-image
is Ct(AJ), i.e., the claim that AJ is Ct-contingent; whereas when we use

© 2001 by Nicolaus Copernicus University



Parainconsistency . . . 21

the more regular version J∗, then J∗-image of the inconsistency under J∗ is
Ct∗(AJ∗), i.e., the claim that AJ∗ is Ct∗-contingent. In both cases inconsis-
tencies are transformed into contingencies!

37. To see the point, let me recall the quite fundamental classification
of concepts (in our case — of propositions), given by Leibniz, into necessary

ones, which are finitely analytical and are the immediate subject of the prin-
ciple of consistency, and contingent propositions, which usually are empirical
and the subject of the principle of sufficient reason.

Seen trough Jaśkowskian eyes, inconsistencies are thereby implicit and
special contingencies! Which ones, however?

38. Let me recall also the second deep insight of Leibniz: contingencies
are also analytical, but they are calculable in infinite number of steps. There-
fore, in a finite world of our everyday experience we can only approximate
contingent truths.

39. Indeed, there exist quite a lot of natural contingencies in the world,
like my being and speaking here in Gent, during the First World Congress
on Paraconsistent Logics. We should therefore be careful and ask which
contingencies (if any) encode inconsistencies? They, for sure, must be a sort
of theoretical contingencies.

40. To shed light on this very problem let me compare now Jaśkowski’s
approach with the celebrated provability interpretation of modalities by
Gödel.

As we know, it compares the classical language of elementary arithmetic
extended by Gödelian provability operators Prov( ) and Cons( ), which are
purely arithmetical formulas, with the modal language ML defined by the
conditions:

3A := Cons(pAq),

2A := Prov(pAq).

41. Observe that Gödel’s interpretation of modalities goes in the reverse
direction:

G: ML ⇒ L.

Let us now ask for a Gödelian interpretation of contingencies. Clearly
G(3A∧3¬A) is equal to Cons(pAq)∧Cons(p¬Aq), with respect to a given,
and rich enough theory. Hence contingency in the provability interpretation
means simply — on the metalevel — metalogical independence!

42. To derive a further lesson let us compose both interpretations. Let
T be an inconsistent theory in L.
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Through Jaśkowski’s interpretation we reach several contingencies in its
modal metatheory MT . The picture of T -inconsistency by J becomes MT -
contingency, which, in turn, by Gödel’s interpretation (if applicable) encodes
that some statement is independent with respect to some hidden kernel of
the theory T , say Ker(T ).

43. Just as in the case of Russell’s paradoxical statement for Cantorian
set theory CST, which was shown to be independent with respect CST-kernel
defined to be ZF part of Cantorian (and von Neumann’s and Gödel-Bernays’)
extension of ST:

Ker(CST) = ZF.

44. Let us take another example. S13p as we remember is Kaplan’s
Wittgensteinian system written more carefully (with its parameter p indi-
cated). Now it is easy to see that

Ker(S13p) = S5.

45. The best place to test this connection is in the logic of arithmetical
truths GLs, which, as we noticed before, is interested in both interpretations.

Schema for the revision of (not only) inconsistent theories

46. By its depth both Jaśkowski’s interpretation and Gödel’s interpreta-
tion are conjugate and based on the same fundamental idea: the connection
of inconsistencies with theoretical contingencies (or logically independent
statements).

They also suggests that the construction of J(T ) can be used to search
for a hidden kernel Ker(T ) of (caused by inconsistencies) theory T .

47. The idea is simple. If you have difficulties with a theory T please go
to its kernel and next add what is possible in a reasonable direction.

The most important question now is therefore to define in a proper way
the kernel of the theory. Which way is proper, however?

48. We have several options. Let T be an inconsistent theory in the
language L with its conjugate theory MT in the modal metalanguage ML.

Then Jaśkowski’s receipt is the following one:

KerMT (T ) := J(T ), i.e., {A : 3AJ ∈ MT}.

In particular, D2 = KerS5(T ), where T is an inconsistent theory based on
classical, or intuitionistic, logic.
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On the other hand, Gödel’s receipt is the following one:

KerPA(T ) := {A : AG ∈ PA}.

It was shown by Solovay that

(16) KerPA(T ) = GL.

49. Finally, let us state probably the most natural candidates, for a
given transformation ∗, to play the role of the kernel of a given theory T
with respect to a fixed logic P .

Strong version: KerP (T ) := {A : 2A∗ ∈ P };
Weak (but broader) version: KerP (T ) := {A : 3A∗ ∈ P }.

Conclusion

50. As we can see, the success of Jaśkowski’s approach is not an accident.
Behind it is to be found a combination of the most powerful and fruitful ideas
of modal philosophy and logic.

51. To finish the paper, let me summarize its essentials via the diagram:

Language L Modal Metalanguage ML

Theory T Its metatheory MT

Ker(T )

J

G

J(MT)

52. To resume, Jaśkowski’s logic D2 can be understood as the kernel of a
suitable theory through S5 according to the above scheme.
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