
Logic and Logical Philosophy
Volume 6 (1998), 77–107

Uwe Petermann
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BUILT-IN HYBRID THEORIES

Abstract. A growing number of applications of automated reasoning exhibits
the necessity of flexible deduction systems. A deduction system should be
able to execute inference rules which are appropriate to the given problem.
One way to achieve this behavior is the integration of different calculi. This
led to so called hybrid reasoning [22, 1, 10, 20] which means the integration
of a general purpose foreground reasoner with a specialized background rea-
soner. A typical task of a background reasoner is to perform special purpose
inference rules according to a built-in theory. The aim of this paper is to
go a step further, i.e. to treat the background reasoner as a hybrid system
itself. The paper formulates sufficient criteria for the construction of com-
plete calculi which enable reasoning under hybrid theories combined from
sub-theories. For this purpose we use a generic approach described in [20].
This more detailed view on built-in theories is not covered by the known
general approaches [1, 3, 6, 20] for building in theories into theorem provers.
The approach is demonstrated by its application to the target calculi of the
algebraic translation [9] of multi-modal and extended multi-modal [7] logic
to first-order logic.
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1. Introduction

Hybrid reasoning is usually understood as the cooperation of a foreground
reasoner with a background reasoner. The foreground reasoner takes care
of the general logical structure of a formula to be proved or refuted. The
background reasoner is consulted whenever the meaning of special built-ins
must be considered. There is a number of results for building in theories [1,
20, 6, 3]. Those results form a general framework for building in theories.
However, those approaches consider the built-in theory as homogeneous.
For our application, the translations of (extended) multi-modal logic

into fragments of first-order logic following [7, 9], we have to take care of
the internal structure of the built-in theory, which is the combination of two
sub-theories. For the target logic of the translation of multi-modal logic one
sub-theory is a definite theory without equality, and the other sub-theory
is an equational theory. For the target logic of the algebraic translation of
the extended multi-modal logic one sub-theory is a definite theory without
equality, and the other part of the theory is an equational theory. Reasoning
within this equational theory may be reduced to associative unification with
unit. Because of the restricted form of the queries to the Horn theory we
just have an instance of constraint reasoning. In the case of the algebraic
translation of extended multi-modal logic the sub-theories are an equational
and definite theory with equality. Both sub-theories share an equational
theory as sub-theory.
Nevertheless, in both cases the constituent parts the unification prob-

lems of the hybrid theories do not interfere. Moreover sufficient criteria for
constructing a complete set of theory connections for the hybrid theory may
be applied. Now, having at hand a complete set of theory connections with
solvable unification problem we may apply the general technique surveyed
in [20] in order to obtain a complete calculus for reasoning within the hybrid
theory. The calculus is based on the connection method. This approach has
been realized in an implementation of the mentioned hybrid theory. The
implementation provides an automatic translation of a given multi-modal
problem into first-order clause logic and the construction of the correspond-
ing constraint theory.
This paper is organized as follows. In Section 2 will be introduced nec-

essary general notions. The algebraic translation of (extended) multi-modal
logic to first-order logic and the resulting target calculi will be discussed in
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Sections 3.1 and 3.2. Section 4 is devoted to the presentation of the generic
approach to building in theories into theorem provers. The application of
the general approach to reasoning under hybrid theories will be presented
in Section 5. The implementation is briefly described in Section 6.

Related work. Theory connections are a generalization of Wolfgang Bibel’s
eq-connections (cf. [4]). The extension of resolution to theory resolution is
due to Mark Stickel. Many improvements of resolution have been shown as
special kinds of theory resolution in [22]. For a treatment of the lifting to the
full first-order calculus see [1] or [19]. Another approach considering theories
given by classes of models has been presented by Hans-Jürgen Bürckert [6].
Our approach carries over to that case if one considers a complete set for
theory connections of each model of the considered class. The translation of
Hans-Jürgen Bürckert’s approach to theory model elimination may be found
in a more recent paper of Peter Baumgartner and Frieder Stolzenburg [3].
The case of constraint reasoning may be seen as a special case of reasoning
in a hybrid theory with one theory being the empty theory. An alternative
translation of modal logic to first-order logic, the relational one, has been
described by Alan Frisch and Richard Scherl as an instance of constraint
reasoning [11]. Similar to the algebraic translation as described in [9] is the
functional translation due to Hans Jürgen Ohlbach [18].

2. Preliminaries

For keeping the paper self-contained we recall basic notions concerning logic
in general and theory reasoning in particular. We assume that the reader is
familiar with the basic notions of first-order logic in clause form (cf. [14]).
We consider only formulas that are conjunctions of universally closed dis-
junctions of literals and we will ask for the unsatisfiability of those formulas
in a theory. That is we formulate our results in the refutational or, in other
words, negative setting. Though our presentation is formulated for clause
logic it may be carried over to full first-order logic. A clause with at most
(exactly) one positive literal will be called a Horn (definite) clause. A definite
clause consisting only of equational literals will be called a conditional equa-
tion. A clause is represented as a multi-set of literals. A matrix is a multi-set
of clauses. Multi-sets will be denoted as sequences of their elements. A set
of copies of clauses of a matrix M will be called an amplification of M
(see [15] for a more general definition of this notion). Clauses will be ab-
breviated also by Γ , C, D etc. Γ1, Γ2 denotes the union Γ1 ∪ Γ2, whereas
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80 Uwe Peterman

Γ,L denotes Γ ∪ {L} etc. A clause L1, . . . , Ln means the universal closure
∀̄ (L1 ∨ · · · ∨ Ln) of the disjunction of its elements. The meaning of a matrix
C1, . . . , Cn is the conjunction ∀̄C1 ∧ · · · ∧ ∀̄Cn.
This paper will focus on a family of proof procedures that generate goal

driven a set of instances of clauses such that its unsatisfiability in a given
theory may be proved by checking a simple sufficient criterion. In order to
formulate this criterion we first of all need the notions of a path and of
a spanning theory mating. A (partial) path (in) through a matrix M is a
multi-set containing (at most) exactly one literal from each clause of M .
Paths will be abbreviated also by p or q. A set of partial paths in a matrix
M is called a mating in M . A partial path u in a matrix M is spanning a
path p through M if u ⊆ p. A mating U in a matrix M is spanning if for
every path p through M exists an element u ∈ U which is spanning p. If
L is a positive literal then L̄ denotes the literal ¬L. If L has the form ¬K
then L̄ denotes the literal K. If p is the path L1, . . . , Ln then p̄ denotes
the clause L̄1, . . . , L̄n. And, vice versa, if Γ is the clause L1, . . . , Ln then
p̄ denotes the path L̄1, . . . , L̄n. The set of variables occurring in a term t,
literal L, clause Γ or path p will be denoted by Var(t), Var(L), Var(Γ ) or
Var(p) respectively.
A substitution is a mapping from the set of variables into the set of terms

which is almost everywhere equal to the identity. The domain of a substitu-
tion σ is the set D(σ) = {X | σ(X) 6= X}. The set of variables introduced
by σ is the set I(σ) =

⋃

x∈D(σ) Var(σ(X)). If the variables X1 . . . , Xn are the
elements of the domain of a substitution σ and the terms t1, . . . , tn are the
corresponding values then σ will be denoted by {X1 7→ t1, . . . ,Xn 7→ tn}.
A substitution σ may be extended canonically to a mapping from the set of
terms into the set of terms. This extension will be denoted by σ too. For a
set of variables V and substitutions σ and ρ we write σ =V ρ if for every
element X ∈ V holds σ(X) = ρ(X). In the previous equation the lower
index V may be omitted if V is the set of all variables. The composition
σθ of substitutions σ and θ is the substitution which assigns to every vari-
able X the term θ(σ(X)). A substitution σ is called idempotent if σ = σσ.
A substitution σ is idempotent iff D(σ) ∩ I(σ) = ∅. If M is the multi-set of
clauses C1, . . . , Cn then M

′ = C ′1, . . . , C
′
k is a sub-matrix of M iff there is

a sequence of pairwise disjoint indices i1, . . . , ik s.t. C
′
l is a sub-multi-set of

Cil for each l with 1 ≤ l ≤ k. A set of matrices which is closed w.r.t. the
application of substitutions, forming amplifications and sub-matrices will be
called a query language. For a path p = L1, . . . , Ln and a query language Q
we will write p ∈ Q in order to abbreviate {{L1} , . . . , {Ln}} ∈ Q.
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Theorem Proving with Built-In Hybrid Theories 81

Let T be an open, i.e. quantifier-free, theory. A T -model is an interpre-
tation satisfying T . A query (a clause, a path, a literal) S is T -satisfiable
if there is a T -model satisfying S. It is T -unsatisfiable else. Let E be the
theory of equality, i.e. the clause set consisting of clauses expressing reflex-
ivity, symmetry, transitivity and functional and predicative substitutivity.
Let T be an arbitrary theory. Then the set of predicate (function) sym-
bols occurring in the formulas of a theory T be denoted by P(T ) (F(T )
respectively).

3. Sample hybrid theories

In this section we discuss two sample classes of hybrid theories. They are
related to the target logics of the algebraic translation of certain multi-modal
logics into first-order logic. Those translations are of great practical interest
because they allow us to use provers, which have been designed for classical
first-order logic, for proving theorems in non-classical logics as well.
Following the Kripke semantics [13] the algebraic translation of modal

logics introduces new semantical items, so called possible worlds. Moreover,
so called transitions — semantical items of a further kind — are introduced.
Transitions allow to pass from one world to another. The features of specific
modal logics are expressed by first-order theories in terms of the target logic.
Those theories consist of certain sub-theories. Thus, they may be considered
as hybrid theories.

3.1. The algebraic translation of multi-modal logic

For a detailed presentation of the algebraic translation the reader is referred
to [9]. Here we can illustrate only basic features of the target logics of this
translation. As an example we consider a slightly more complicated version
of the simplest instance of the wise men puzzle [12].

Puzzle 3.1. There are two wise men, a and b. Both are wearing a hat that
can be either black or white. A wise man cannot see the color of his own
hat. He can only see the color of the other’s hat. Wise man b says that he
does not know the color of his hat. Question: Is this information sufficient
for wise man a in order to determine the color of his own hat?

Figure 1 shows a formalization of the wise men puzzle. Some facts, which
are either given explicitly or common sense consequences of explicitly given
facts, are formulated in natural language and has been written on the left
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a knows that a knows that if a
isn’t wearing a white hat then b
knows this.

2a2a(¬w(a)→ 2b¬w(a))

∀α1:k(a,α1)∀α2:k(a,α2)(¬w(ε!α1!α2, a)→ ∀α3:k(b,α3)¬w(ε!α1!α2!α3, a))

a knows that b knows that a or b
are wearing a white hat.

2a2b(w(a) ∨ w(b))

∀α4:k(a,α4)∀α5:k(b,α5)(w(ε!α4!α5, a) ∨ w(ε!α4!α5, b))

a knows that b doesn’t know that
the color of his own hat is white.

2a¬2bw(b)

∀α6:k(a,α6)¬∀β1:k(b,β1)w(ε!α6!β1, b)

Hypothesis: a knows that his hat
is white.

2aw(a)

¬∀β2:k(a,β2)w(ε!β2, a)

Figure 1. Multi-modal formalization of the wise men puzzle

hand side of this figure. On the right hand side a modal logic formalization
of these sentences has been given. A statement of the form “Wise man a
knows . . . ” can be coded by writing 2a . . . . The question of the puzzle will
be formulated as the hypothesis 2aw(a), saying that wise man a knows that
he is wearing a white hat. The negation1 of the hypothesis should be refuted
assuming the facts formulated in the puzzle and logical properties of the
modal operators. The modalities 2a and 2b are characterized by the axiom
schemes

2aΦ→ 2a2aΦ(1)

2aΦ→ Φ(2)

2bΦ→ 2b2bΦ(3)

2bΦ→ Φ(4)

where Φ denotes an arbitrary formula. Readers which are familiar with
modal logic will observe that both modalities 2a and 2b are characterized
by the modal system S4. Let us consider the translation of the multi-modal

1 For rather accidental reasons often the task of proving that a formula, say 2aw(a),
is a consequence of some assumptions, say A1, . . . , An, is not attacked directly. Rather
it is demonstrated that the conjunction of these assumptions and the negation of the hy-
pothesis, ¬2aw(a), is contradictory to the underlying theory. This, so called, refutational
setting will be used below.
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Theorem Proving with Built-In Hybrid Theories 83

formulas into those of first-order logic with restricted quantifiers. Compare
the multi-modal formalization in the first line in Figure 1 and the first-order
sentence below of it. Modal operators, like 2a, have been translated by a re-
stricted quantifier, like ∀α1:k(a,α1), and each predicate symbol has obtained an
additional argument, ε!α1!α2 for example. First of all let us discuss the role
of this additional argument. It represents a possible world, which has been
coded by a term. The term ε!α1 represents a world, which is accessible from
the initial world ε via the transition α1. Formally this has been expressed by
the operator !, which takes two arguments, a world (here ε) and a possible
transition (here α1), and returns a world accessible from the given world via
that transition. The operator ! associates to the left, therefore brackets will
be omitted wherever possible. Transitions can be combined by the binary
associative operator ∗. Moreover, there is a distinguished transition, which
is denoted by 1. The operations ∗, ! and 1 form a monoid operating on the
set of worlds, i.e. we have the equational theory T consisting of the axioms
(5), . . . , (9) introduced below.

w!1 = w(5)
w!(α1 ∗ α2) = (w!α1)!α2(6)

(α1 ∗ α2) ∗ α3 = α1 ∗ (α2 ∗ α3)(7)

1 ∗ α = α(8)

α ∗ 1 = α(9)

Now let us consider the restricted quantifiers, which have been introduced
by the translation, in more detail. The restricted quantifier ∀α1:k(a,α1) is the
translation of the modal operator 2a. The sort information α1 : k(a, α1)
given by the restricted quantification of variable α1 just says that this vari-
able is related to the interpretation of the modality 2a. The term ε!α1!α2!α3
represents a world which may be accessed by transitions of different sorts
which are related to different modalities. The first two transitions, α1 and
α2, are related to modality 2a, whereas the third transition, i.e. α3, is related
to the modality 2b. The properties of those modalities will be expressed by
the four definite clauses (13), (12), (14), and (15) given below. Finally, let us
mention that relations between different modalities may be expressed as well.
For example, the following, so called interaction axioms schema, 2aΦ→ 2bΦ
corresponds in the target logic to the first-order axiom k(b, α) → k(a, α).
Interaction axioms appear in the example in Section 3.2. We just draw the
reader’s attention to the fact that in the target logic also those relations
between different modalities can be expressed by definite clauses.
Now we consider the translation of the formulas from Figure 1 into clause

normal form. In Figure 2 we write the clause normal form as a matrix with
the literals of each clause forming a row. The 4 clauses in Figure 2 correspond
to the 4 formulas in Figure 1.
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w(ε!α1!α2, a),

w(ε!α4!α5, a),

¬w(ε!α6!f1(ε!α6), b)

¬w(ε!f2(ε), a)

¬w(ε!α1!α2!α3, a)

w(ε!α4!α5, b)

¬k(a, α1),¬k(a, α2),¬k(b, α3)

¬k(a, α4),¬k(b, α5)

¬k(a, α6)
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Figure 2. Matrix form of the translated wise men puzzle

The matrix in Figure 2 has to be proved under the union of the theo-
ries T , consisting of Formulas (5), . . . , (9), and ℜ, consisting of Formulas
(10), . . . , (15) as axioms. Let us recall, that the properties (1), . . . , (4) of
the modal system S4, which characterizes the modalities 2a and 2b, are
expressed by Clauses (12), . . . , (15) in terms of the target logic. Clauses
(10) and (11) characterize the properties of the Skolem functions f1 and f2
which had to be introduced for the negated universal quantifiers ¬∀β1:k(b,β1)
and ¬∀β2:k(a,β2). For details see [9].

¬k(a, α), k(b, f1(ε!α))(10)

k(a, f2(ε))(11)

k(a, 1)(12)

¬k(a, α1), ¬k(a, α2), k(a, α1 ∗ α2)(13)

¬k(b, α1), ¬k(b, α2), k(b, α1 ∗ α2)(14)

k(b, 1)(15)

The proof task in the target logic is to show that the matrix in Figure 2
is unsatisfiable in the union of the theories T and ℜ. The last mentioned
matrix has the following syntactic properties. (1) Equality does not occur as
a predicate symbol in the matrix. (2) Sort literals occurring in clauses with
non-sort literals are negative. From the first observation we deduce that all
theory connections within the boxed part of the matrix in Figure 2 are binary
connections of the form p(t),¬ p(s) where the tuples of terms t and s are
component-wise T -unifiable. The second syntactic property and the form of
theory ℜ make sure that sort literals occurring in the matrix in Figure 2 may
be elements only of unary ℜ-connections. Now we can discuss the remaining
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Theorem Proving with Built-In Hybrid Theories 85

ℜ-connection Used axioms

¬k(a, α1) (13)
¬k(a, α2), ¬k(a, α4), ¬k(a, α6) (11)
¬k(a, α3), ¬k(a, α5) (10), (11)

Table 1. Solving constraints of the matrix in Figure 2

details of Figure 2. Three T -connections are indicated by arcs in the boxed
part. They may be simultaneously T -unified by the substitution

{α1 7→ 1, α2, α4, α6 7→ f2(ε), α3, α5 7→ f1(ε!f2(ε))}(16)

It is easy to verify that every of the sort literals in the dashed boxed
sub-matrix in Figure 2 is a ℜ-connection. Substitution 16 is also a simul-
taneous ℜ-unifier for these ℜ-connections. Table 1 gives for each of those
ℜ-connections the axioms which have to be used for proving this statement.
The mentioned theory connections may be found subsequently by theory
inference steps of the form given in Example 4.6. An appropriate calculus
will be introduced in Section 4.3. The reader may have observed that none
of the equational axioms (5), . . . , (9) has been mentioned in Table 1. Indeed,
the following proposition holds.

Proposition 3.1. Suppose that the equation t = s is valid in the equa-
tional theory T . Then for the literal ¬k(a, s) (and analogously for ¬k(b, s))
holds that ¬k(a, s) is ℜ-unsatisfiable iff ¬k(a, t) is ℜ-unsatisfiable.

From this observation follows that for proving the ℜ-unsatisfiability of
a literal ¬k(a, t) we don’t need to apply equational axioms. Speaking more
operationally, when inferencing within the constraint theory ℜ one does
not need to apply T -unification but only syntactical unification. This is a
useful feature of the target logic of multi-modal logic. Assumption (1) of
Proposition 5.1 is related to this feature.

3.2. The algebraic translation of extended multi-modal logic

Our next example illustrates the extended multi-modal logic. While modali-
ties in the multi-modal logic have been indexed only by constants, now they
may be indexed by arbitrary terms of the discourse domain. Let us consider
a simplified version of the “safe puzzle” from [7].
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It is always true that if something is written on a paper P , then the
helper h(X) of an agent X knows the combination N of some safe S
after he has been instructed by X about the paper P .

[u]∀P,X(w(P ) → [a]X,i(P,h(X))∃S,N [k]h(X)c(N,S))

∀α:u(α)∀P,X(w(ε!α,P )
→ ∀β:a(X,i(P,h(X)),β) ∃S,N ∀γ:k(h(X),γ) c(ε!α!β!γ,N, S))

(17)

It is always true that if N is the combination of a safe S then the safe
will be open after some agent X has dialed N on S.

[u]∀S,N,X(c(N,S) → [a]X,d(N,S)o(S))

∀α:u(α) ∀S,N,X(c(ε!α,N, S) → ∀β:a(X,d(N,S),β) o(ε!α!β, S))(18)

Agent Joe knows that there is a paper P with something written on it.

[k]joe∃Pw(P )

∀α:k(joe,α)∃Pw(ε!α,P )(19)

Hypothesis: Agent Joe knows that some safe can be opened by him and
his helper.

[k]joe∃S〈as〉joe ,h(joe)o(S)

¬∀α:k(joe,α)∃S∃β:as(joe ,h(joe),β)o(ε!α!β, S)(20)

Figure 3. A safe puzzle formulated in extended multi-modal logic

Puzzle 3.2. There is a room with several safes in it. There are some sheets
of paper. Sentences like “N is the combination of the safe S” have been
written on those sheets. Two agents are co-operating. One of them is the
master, the other his helper. The master knows everything his helper knows.
Any master can read sentences (written on a paper) and instruct his helper.
Any helper can try to open a safe dialing the number he has been told. A
safe opens if its number has been dialed. Those informations are known to
all agents and remain true whatever actions are performed. Question: Does
agent Joe know that there is a sequence of actions allowing him and his
helper to open some safe?

Figure 3 presents a more detailed formulation of that problem and a for-
malization of the four statements using the extended multi-modal logic [7].
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The signature of the extended multi-modal logic provides the following
modalities: [u] modeling universal truth, [a]X,A modeling the result of an
action A performed by an agent X, [as]X,Y modeling the result of a se-
quence of actions performed by agents X and Y , and [k]X modeling the
knowledge of an agent X. The sorts of the discourse domain are: X for
agents, A for actions performed by agents, P for sheets of papers with infor-
mation on them, S for safes, and N for numbers. The operation symbols of
the discourse domain are i:P×X→ A for the action of instructing an agent
about (the information on) a paper, d:N × S → A for the action of dialing
a number on a safe, and h:X → X for an helper associated with an agent.
Predicate symbols of the discourse domain and their intended meaning are
c:N × S where the first argument is the combination of the safe being the
second argument, o:S expressing that a safe is open, and w:P expressing
that something has been written on a paper.

The formalization given in Figure 3 will be translated into a many-sorted
first-order logic (see Figure 3). The different modalities are mirrored by
the following predicate symbols: u for universal truth, a for actions, as for
action sequences, and k for the knowledge of agents. The translation of the
safe puzzle into clause logic is given in Figure 4. Skolemization adds the
function symbols s, n, p, and φ for the variables S and N (from Formula
(17)), P (from Formula (19)), and α (from Formula (20)) respectively. The
notation r occurring in the first clause of Figure 4 is a shorthand for the
arguments ε!α1!β1!γ1, n(t), s(t) of the literal c(r) where t abbreviates the
arguments ε!α1!β1, P1,X1 of the Skolem functions s and n. Moreover, we had
to abbreviate i(P1, h(X1)) by i(r

′). Again the matrix has been partitioned
into two sub-matrices. The left one, surrounded by a box, is related to a
sub-theory T which is an equational theory. The right one, surrounded by
a dashed line, corresponds to the constraint theory.

The equational theory T consists again of the equations (5) to (9) from
Subsection 3.1. The constraint theory ℜ which has been obtained by the
translation is more complicated now. For the matrix in Figure 4 we obtain
the definite theory ℜ consisting of the axioms (21), . . . , (32).

k(joe, φ(ε))(21)

¬u(α1), ¬u(α2), u(α1 ∗ α2)(22)

u(1)(23)

¬k(X,α1), ¬k(X,α2), k(X,α1 ∗ α2)(24)

k(X, 1)(25)
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¬w(ε!α1, P1),

¬c(ε!α4, N4, S4),

w(ε!α5, p(ε!α5))

¬o(ε!φ(ε)!β7, S7)

c(r)

o(ε!α4!β4, S4),

¬u(α1),¬a(X1, i(r′), β1),¬k(h(X1), γ1)

¬u(α4), ¬a(X4, d(N4, S4), β4)

¬k(joe , α5)

¬as(joe , h(joe), β7)
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Figure 4. A spanning mating for the translated safe puzzle in matrix form

¬as(X,Y, α1), ¬as(X,Y, α2), as(X,Y, α1 ∗ α2)(26)

as(X,Y, 1)(27)

a(X,A,ψ(X,A))(28)

¬a(X,A,α), as(X,Y, α)(29)

¬a(Y,A, α), as(X,Y, α)(30)

¬as(X,Y, α), u(α)(31)

¬k(X,α), u(α)(32)

Let us discuss the subsequent axioms. Clause (21) had to be included because
of the Skolemization of the goal clause (20). Clauses (22), . . . , (27) express
that the modalities [u], [k]X and [as]X,Y are characterized by the modal
system S4. The appropriate axiom schemes are analogous to Formulas (1)
and (2). Clause (28) expresses the seriality of modality [a]X,A. Clauses (29),
. . . , (32) express interaction axioms between the modalities [as]X,Y , [a]X,A,
[u], and [k]X given by the following axiom schemes.

[as]X,Y Φ→ [a]X,AΦ(33)

[as]X,Y Φ→ [a]Y,AΦ(34)

[u]Φ→ [as]X,Y Φ(35)

[u]Φ→ [k]XΦ(36)

In Figure 4 we display a mating which is spanning the matrix. The
boxed sub-matrix is spanned already be the connections labeled by 1, 2, 3.
Below we give the partial unifiers computed in the subsequent inference steps
finding the indicated connections. The resulting simultaneous T -unifier is
θ = θ1θ2θ3.
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ℜ-connections Axioms needed

4, 5 ¬u(φ(ε)) (21), (32)
6 ¬k(joe , φ(ε)) (21)
7 ¬a(X4, d(n(ε!φ(ε)!β1 , p(ε!φ(ε))),X1 , (28)

s(ε!φ(ε)!β1, p(ε!φ(ε)))),X1 , β4)
8 ¬k(h(X1), γ1) (25)
9 ¬a(X1, i(p(ε!φ(ε)), h(X1)), β1) (28)
10 ¬as(joe , h(joe), (β1 ∗ γ1) ∗ β4) (26), . . . , (29)

Table 2. Solving constraints of the matrix in Figure 4

θ1 = {α4 7→ φ(ε) ∗ δ, β7 7→ δ ∗ β4, S4 7→ S7}(37)

θ2 =

{

α1 7→ φ(ε), δ 7→ β1 ∗ γ1, N4 7→ n(ε!φ(ε)!β1, P1,X1),
S7 7→ s(ε!φ(ε)!β1, P1,X1)

}

(38)

θ3 = {α5 7→ φ(ε), P1 7→ p(ε!φ(ε))}(39)

With this substitution θ the literals in the dash boxed part of the matrix
in Figure 4 become simultaneously ℜ-unifiable. However, different to the
case discussed in the previous subsection, variables have to be instantiated
further, even after the application of the substitution θ. The composition
θ1θ
′
2 of the substitutions given by Equations (40) and (41) will solve the

problem.

θ′1 =

{

β4 7→
ψ(X4, d(n(ε!φ(ε)!β1 ,X1, p(ε!φ(ε))),

h(ε!φ(ε)!β1 ,X1, p(ε!φ(ε)))))

}

(40)

θ′2 = {X1 7→ joe, γ1 7→ 1, β1 7→ ψ(joe , i(p(ε!φ(ε)), s(joe )))}(41)

Table 2 shows each of the ℜ-connections 4, . . . , 10 from Figure 4 after
the substitution θ has been applied. For each of those ℜ-connections Table 2
gives the axioms which have to be used for proving their ℜ-complementarity.
For the ℜ-connections 4, 5 and 6 no further instantiation is necessary.
ℜ-connection 7 needs the application of substitution (40), whereas the re-
maining ℜ-connections 8, 9 and 10 need the application of the substitution
θ′1θ
′
2. Let us conclude this section with the remark that the simultaneous

ℜ-unifiability problem for a wide class of extended multi-modal logics is
decidable (see [7]).
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4. A generic approach to theory reasoning

In the present section we introduce a formal framework for constructing com-
plete total theory reasoning calculi for open, i.e. quantifier free, theories. A
complete theory reasoning calculus for an open theory needs the following
key capabilities: (1) finding theory connections, (2) computing unifiers for
theory connections, and (3) managing amplifications and representations of
sets of paths which are not spanned by a currently found theory mating. The
ingredients for constructing a complete theory reasoning calculus — a com-
plete set of theory connections (Definition 4.3) with a solvable unification
problem (Definition 4.4) and a calculus managing amplifications of matrices
and keeping track of unsolved goals — will be introduced in the subsections
4.1, 4.2 and 4.3 respectively. Implementation issues are discussed in Sec-
tion 6. In the present section we formalize what it means to have for a given
theory “enough” theory connections in order to refute all theory unsatis-
fiable matrices which belong to a given query language. We formulate a
Herbrand theorem by use of this notion (cf. Subsection 4.1). The notion of
a complete set of unifiers for a theory connection generalizes the notion of
complete set of theory unifiers of a pair of terms.

4.1. Complete sets of theory connections

In order to formulate sufficient conditions for the completeness of a theory
reasoning calculus we introduce the notion of a set of theory connections
which is complete with respect to a given query language. For an open theory
first-order T , given as a set of clauses we formalize (see Definition 4.3), what
it means, to have “enough” theory connections in order to refute all theory
unsatisfiable matrices, which belong to a given query language.

Definition 4.1. (T -complementary, T -unifier) A path u is called T -com-
plementary if and only if the existential closure of the conjunction of the
elements of u, ∃̄ (

∧

L∈u L), is T -unsatisfiable. A substitution σ is a T -unifier
of u if and only if σ(u) is T -complementary.

Remark 4.1. The T -complementarity of a path u has been defined via
the T -unsatisfiability of the existential closure of the conjunction of the
elements of u according to the negative representation which has been chosen
in the present paper. In the positive representation T -complementarity of
a path u we would have been defined via the T -validity of the disjunction
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of the elements of u. The remaining notions and results may be defined
independently on the chosen (positive or negative) representation.

Definition 4.2. (Connection, T -Connection) Let T be a theory, M a
matrix, U a set of multi-sets of literals and Q a query language. Any partial
path u in M will be called a T -connection in M if there exists a T -unifier
for u. If T is the empty theory then the prefix T may be omitted.

Definition 4.3. (Complete set of theory connections) Let T be a theory,
M a matrix, U a set of T -connections and Q a query language.

(1) Any set of T -connections in a matrix M which are elements of U is
called a U-mating in M .

(2) A decidable set U of T -connections which is closed w.r.t. application of
substitutions will be called T -complete w.r.t. Q if
(2.1) for each T -complementary ground path p ∈ Q exists u ∈ U such

that u ⊆ p and
(2.2) for each T -complementary ground path of the form σ(u) ∈ U

such that u ∈ Q holds u ∈ U .

Example 4.1. In the simplified version of equational reasoning, discussed
in subsections 3.1 and 3.2, the equality symbol does not occur in the query
language. In terms of Definition 4.3 the set UT of connections of the form
p(t1, . . . , tn),¬p(s1, . . . , sn) for simultaneously pairwise T -unifiable terms ti
and si is complete w.r.t. to the query language QT .

Example 4.2. Let us now consider the query language Qℜ discussed in
Subsection 3.1. It contains only negative clauses with a single predicate sym-
bol k and the function symbols as in Example 4.1. The theory ℜ is formed
from the definite clauses (10) and (11) given in Subsection 3.1. As an example
consider the negative clause ¬k(b, α5),¬k(a, α4) which occurs as a fragment
of the second clause in Figure 2. Each literal of this clause becomes ℜ-unsat-
isfiable after applying the substitution {α5 7→ f1(ε!f2(ε)), α4 7→ f2(ε)}. Since
ℜ is definite all ℜ-connections in queries from Qℜ are units. Thus, the set
Uℜ of negative literals with predicate symbol k having a ℜ-unifier form a set
of ℜ-connections complete with respect to the query language Qℜ.

The less literals a connection consists of the more paths it may span.
Therefore, we are interested to find theory connections which are minimal
with respect to set-theoretical inclusion. Every extra literal may cause that
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additional sub-goals have to be solved. The following proposition makes
sure that a complete set of theory connections contains also all minimal
connections.

Proposition 4.1. (Properties of complete sets of theory connections) Let
the set of T -connections U be T -complete with respect to the query lan-
guage Q. Let u be a path such that u ∈ Q. If u is minimal T -complementary
then u ∈ U .

Having a complete set of theory connections a Herbrand theorem may be
proved. The following version of Herbrand’s theorem applies to the discussed
examples 4.1 and 4.2.

Theorem 4.1. (Herbrand’s theorem) Let T be an open theory, Q a query
language, U a set of T -connections which is complete w.r.t. to Q. Then for
every T -unsatisfiable matrix M ∈ Q there exists an amplification M ′ ofM ,
a U -mating U which is spanning in M ′ and a substitution σ such that σ(u)
is T -complementary for each u ∈ U .

4.2. The unification problem for sets of theory connections

The Herbrand theorem gives neither a hint how to find the substitution σ
nor how to decide the existence of σ. In order to obtain a proof calculus
for a given complete set of T -connections U we also need to be able to
compute or to represent for every u ∈ U all substitutions σ such that σ(u)
is T -unsatisfiable. This will be formulated in the following definition.

Definition 4.4. (more general T -unifier, T -unification problem in U)
Let U be a set of multi-sets of literals.

(1) Let ̺ and σ be T -unifiers of a path u ∈ U such that D(̺),D(σ) ⊆
Var(u). Then ̺ is called more general than σ if there exists η such that
̺η =Var(u) σ. This will be denoted by ̺ ≤ σ.

(2) A set S of T -unifiers of a multi-set u ∈ U will be called complete if for
each T -unifier σ of u exists a substitution ̺ ∈ S such that ̺ ≤ σ.

(3) We say that the T -unification problem in U is solvable if
(3a) for every u ∈ U there exists an enumerable complete set Su of

T -unifiers for u and
(3b) for a given u ∈ U it is decidable whether Su 6= ∅.

(4) A substitution σ will be called a simultaneous T -unifier of a set U of
multi-sets of literals if and only if σ(u) is T -complementary for every
u ∈ U .
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Example 4.3. Let Uupp
T
be the subset of T -connections defined in Ex-

ample 4.1 obeying the following so called unique prefix property (cf. [8]).
A formula or a term has the unique prefix property if the binary symbol
∗ does not occur and for each variable α introduced for a modal operator
holds that it occurs always in the same left context. Formulas obtained by
the algebraic translation have this property. This corresponds to the fact
that each variable introduced for a modal operator occurs always in the
same modal context. For those restricted T -unification problems exists an
efficient unification algorithm [8].

In the case of syntactical unification there exist unification algorithms
which have the following nice property. Whenever for a particular unification
problem is solvable then the algorithm computes such a most general unifier
which introduces only variables occurring already in the unification problem.
Unfortunately, this is not the case for theory unification. Here it is possible
that most general unifiers introduce “new” variables, i.e. those not occurring
already in the unification problem. The following example illustrates the
problem of new variables introduced by a unifier of a theory connection.

Example 4.4. Let T be the theory given in Example 4.1. Then the T -
equational connection (42) has the most general T -unifier (43).

{

p(ε!α4!β4)

¬p(ε!φ(ε)!β7)

}

(42)

{α4 7→ φ(ε) ∗ δ, β7 7→ δ ∗ β4}(43)

This unifier introduces a new variable, i.e. δ. From the semantical point
of view it is important to realize that “new” variables are as other vari-
ables universally quantified. Therefore, introducing “new” variables does not
change the meaning of a matrix. In other words introducing new variables
is semantically safe.

In Prolog based implementations (for example see [21]) the problem is
solved rather immediately in that way that “new” variables are new with
respect to the current problem state. “new” variables must not occur already
in the matrix under consideration. Otherwise they may prevent the solution
of further unification problems. It remains to show that the solvability of
the T -unification problem within a set of theory connections U implies that
for each given finite set X of variables and T -connection u ∈ U it is always
possible to enumerate a complete set of unifiers such that each of its members
introduces only those variables not being element of X.
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Proposition 4.2. Suppose the set of multi-sets of literals U has a solvable
T -unification problem. Then for every u ∈ U and every finite set of variables
X such that X ∩ Var(u) = ∅ may be enumerated a complete set Su of
T -unifiers such that for each σ ∈ Su holds I(σ) ∩X = ∅.

Remark 4.2. Proposition 4.2 can be proved relying only on the notion of
solvable unification problem (cf. Definition 4.4). Thus, Proposition 4.2 holds
on the basis of the notions in our previous papers (e.g. [20]), though, it has
not been formulated there. It closes a gap in the completeness proof of our
theory connection calculus which has been observed in [2].

In a connection calculus we have to find a simultaneous T -unifier of
a spanning mating of T -connections incrementally. The solvability of the
unification problem in a set of theory connections U implies the solvability
of the simultaneous unification problem in U .

Proposition 4.3. Suppose that the T -unification problem is solvable
for the set of T -connections U and that Su denotes the complete set of
T -unifiers for each u ∈ U . Then every simultaneous T -unifier θ of a set
of T -connections U ⊆ U may be found incrementally. Indeed, for each
enumeration u1, . . . , un of the elements of U may be constructed sequences
{σi}

n
i=1, {ηi}

n
i=0, {̺i}

n
i=0 such that

(1) η0 = θ and ̺0 = { } and for every i, 1 ≤ i ≤ n

(2) σi ∈ S̺i−1(ui),

(3) σiηi = ηi−1 and

(4) ̺i = ̺i−1σi.

Example 4.5. Let θ be the simultaneous T -unifier (16) of the 3 connec-
tions indicated by arcs in Fig. 2. That three connections may be found in
3 deduction steps. Those inferences determine the unifiers σ1, σ2 and σ3
which are subsequent approximations of the simultaneous T -unifier of the
three connections. We have θ = σ1σ2σ3 for σ1 = {α1 7→ 1, α2 7→ f2(ε)},
σ2 = {α3 7→ α5, α4 7→ f2(ε)} and σ3 = {α6 7→ f2(ε), α5 7→ f1(ε!f2(ε))}.

4.3. The pool calculus with built-in theory

In this section we introduce a generalization of the pool calculus [17] towards
theory reasoning. For an amplification M ′ of the matrix M to be proved a
pool of so-called hooks represents the set of paths through M ′ which are
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Figure 5. A Sample Deduction

not spanned by the set of theory connections which have been found in
the current proof state. Each hook, denoted by (p ⊥ Γ ), and consisting of
a partial path p in M ′ and a partial clause Γ in M ′, represents all paths
through M ′ continuing p via some literal of Γ . Figure 5 shows a three-step
derivation under the built-in theory T given by the equations (5), . . . , (9). In
each deduction step a T -connection is detected and a most general T -unifier
has to be computed. The three T -connections are drawn as arcs in the
final proof state (the rightmost in Figure 5). The mating U formed by those
T -connections is spanning the matrix in Figure 5. A diagonal arrow pointing
to the current goal appears in every but the rightmost matrix. The current
path p is given by the set of the boxed literals. In each of the inference
steps a T -connection is found which contains the current goal L. In the last
inference the found connection is subset of p∪ {L}. This so-called reduction
step does not generate additional goals. This is not the case in the first two
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inference steps, so-called extension steps. The first extension step solves the
initial goal ¬p(ε!α) with the substitution {α 7→ b ∗ β} but opens a new goal
q((ε!b)!c). This goal is solved by extension step 2, which in turn opens the
goal p(ε!γ). The latter is solved by the last inference. For more details see
[17] and [20].

Definition 4.5. (Pools, hooks) A hook for a matrixM is a pair (p, Γ ) where
p is a partial path in an amplification M ′ of M and Γ is a sub-clause of a
clause Γ ′ ∈ M ′ such that p ∩ Γ = ∅. The hook (p, Γ ) will be denoted by
(p ⊥ Γ ). The partial path p is called the current path. The elements of
Γ are called goals. The set of paths represented by the hook (p ⊥ Γ ) is the
set {p′ | ∃L(p ∪ {L} ⊂ p′, p′ ∩ Γ = {L}), p′ is a path through M ′}. It will be
denoted by Paths (p⊥Γ ). A hook (p ⊥ ∅) will be called a solved hook, and a
hook of the form (∅ ⊥ Γ ) is called an initial hook.

An inference step chooses a hook, removes it from the pool, and even-
tually produces some new hooks. The rules of a calculus describe how to
construct new hooks from a chosen hook.

Definition 4.6. (T -connection inference) Let U be a complete set of T -
connections and M a matrix. A T -connection inference is an inference rule
of the form

(p ⊥ Γ0, L0) Γ1 ∪ {L1} , . . . , Γn ∪ {Ln}

(p ⊥ Γ0), (p, L0 ⊥ Γ1), . . . , (p, L0, . . . , Ln−1 ⊥ Γn)
σ

where (1) (p ⊥ Γ0, L0) is a hook, called the chosen hook, (2) if 0 < n

then the clauses Γ1 ∪ {L1} , . . . , Γn ∪ {Ln} are copies of clauses from M ,
called the extension clauses, (3) σ is a substitution, (4) the hooks (p ⊥ Γ0),
(p, L0 ⊥ Γ1), . . . , (p, L0, . . . , Ln−1 ⊥ Γn) are called new hooks and (5) there
exists a sub-path q of p such that u ∈ U and σ(u) is T -complementary for
the partial path u = q ∪ {L0, . . . , Ln}. A T -connection inference is called
an extension step if n 6= 0 and a reduction step else.

Example 4.6. Let us return to the sample derivation in Figure 5. In that
example an equational theory T has been assumed which contains the equa-
tion (ε!α)!β = ε!(α ∗ β). Let U be the set of all unordered pairs of literals
{p(t1, . . . , tn),¬p(t

′
1, . . . , t

′
n)} such that for each i with 1 ≤ i ≤ n the terms

ti and t
′
i are T -unifiable. A theory extension is an inference rule of the form

(p ⊥ L0, Γ0) L1, Γ1
(p ⊥ Γ0), (p, L0 ⊥ Γ1)

σ
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where (1) L1, Γ1 is a copy of a clause fromM , called the extension clause and
(2) for u = {L0, L1} holds u ∈ U and σ(u) is T -complementary. A theory
reduction rule has the form

(p ⊥ L0, Γ0)
(p ⊥ Γ0)

σ

where for some literal L1 ∈ p and u = {L0, L1} holds u ∈ U and σ(u) is
theory complementary.

Definition 4.7. (Rule application) A rule

h Γ1, . . . , Γn
H

σ

may be applied to a pool P if h ∈ P . The new pool is obtained from P

by removing h, then adjoining those hooks from H which are not solved
and finally applying the substitution σ to the resulting pool. The clause
copies used in an inference within a derivation must have always a set of
new variables, i.e. those not occurring already in the pool. Moreover if u ∈
U is the T -connection chosen in the considered rule application then the
variables from Var(σ) \ Var(u) must not occur in P .

An initial pool in a derivation consists of a single initial hook. Now a
derivation may be defined as a sequence of rule applications which starts
from an initial pool. A derivation is called ground if the unifier in every
T -connection step is empty. A derivation is successful if its last element is
the empty pool. The calculus is sound, because in every state of a derivation
the pool represents all paths, such that there still have to be found theory
connections spanning them.

Proposition 4.4. (Soundness) The theory connection calculus is sound.

The completeness proof consists of the steps Herbrand theorem, ground
completeness and lifting lemma. The Herbrand theorem (4.1) and the lifting
lemma rely on the completeness of a given set of theory connections U and
the solvability of the theory unification problem in U . The proof of the
ground completeness relies on the properties of minimal spanning matings.
The following result may be found already in [20].

Theorem 4.2. (General Completeness theorem) Suppose that for a theory
T and a query language Q there is given a decidable set U of T -connections
which is T -complete w.r.t.Q and the T -unification problem in U is solvable.
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Then for every T -unsatisfiable query from Q exists a clause Γ ∈ Q and a
successful derivation starting from the initial pool {( ⊥ Γ )} such that in each
inference according to Definition 4.6 for the chosen connection u holds u ∈ U
and the chosen T-unifier σ is an element of the complete set of T -unifiers
Su for u.

For an outline of the completeness proof we conclude from the Herbrand
theorem (4.1) that for each T -unsatisfiable matrix M ∈ Q exist an ampli-
fication M ′, a ground substitution σ and a U -mating U spanning M ′ such
that σ is a minimal T -unifier of u for each u ∈ U . We assume U to be
minimal with respect to inclusion and construct a derivation satisfying the
following invariant: There exist a minimal subset U ′ ⊆ U and a substitution
σ′ such that for each unsolved goal L in a hook (p ⊥ L,Γ) exist u ∈ U ′, σ′′

and σ′′′ such that L ∈ σ′(u), σ′′ is a minimal T -unifier, σ′′ ∈ Sσ′(u), and
σ =var(M ′) σ

′σ′′σ′′′. This general theorem will be specialized to the case of
hybrid theories. In Section 5 we introduce sufficient criteria for obtaining a
complete set of theory connections for a hybrid theory if those are given for
its constituents. The criteria can be applied to the target logic of the alge-
braic translation of multi-modal logic and of extended multi-modal logic of
[9] (cf. Section 3.1).

5. Combining theories

In Section 3 we have discussed examples justifying the treatment of the back-
ground reasoner as a hybrid system itself. Let us now forge precise notions
from the observations made for the target logic of the algebraic translation
of multi-modal reasoning. Our goal is to construct a T ∪ℜ-reasoner from a
T -reasoner and a ℜ-reasoner. A formula will be considered as consisting of
a T -layer and an ℜ-layer. The intended T ∪ ℜ-reasoner should try to find
a UT -connection if the current goal is in the T -layer and a Uℜ-connection
if the current goal is in the ℜ-layer. We formulate sufficient conditions such
UT ∪ Uℜ is a complete set of T∪ℜ-connections for Q if so are UT for QT

and Uℜ for Qℜ. Moreover the theory unification problems in both UT and
Uℜ should not interfere. The last condition will us allow to use just the
unification algorithms for the connections belonging to one of both layers
without change.

Definition 5.1. Let a theory be given by its sub-theories T and ℜ which
are formulated within the signatures Σ and ∆ respectively. Then we say
that T and ℜ form a hybrid theory in the union Σ ∪∆ of both signatures.

© 1998 by Nicolaus Copernicus University



Theorem Proving with Built-In Hybrid Theories 99

Definition 5.2. Let the theories T and ℜ form a hybrid theory in the
union Σ ∪∆ of their signatures and let Q be a query language formulated
in a signature which contains Σ ∪∆.
Every clause C in a matrix M ∈ Q contains then two sub-clauses CT

and Cℜ consisting of literals L expressed in signature Σ (respectively L
′

expressed in signature ∆). The set of nonempty sub-clauses CT of M will
be called the T -layer of M . Analogously will be defined the ℜ-layer of M .
By QT (analogously Qℜ) will be denoted the set of all matrices being the
T -layer (respectively the ℜ-layer) of a query from Q. QT (analogously Qℜ)
will be called the T -layer (respectively the ℜ-layer) of Q. If for a matrix
M ∈ Q every of its clauses is the union of its T - and ℜ-layers then M will
be called covered by its T - and ℜ-layers. If every matrix M ∈ Q is covered
by its T - and ℜ-layers then query language Q is said to be covered by its
T - and ℜ-layers.

Example 5.1. In the wise men puzzle in Figure 2 signatures Σ of the
T -layer and ∆ of the ℜ-layer share the function symbols !, ε, f1, f2, a and b.
Σ contains w as the single predicate symbol, ∆ contains k and the equality
symbol =. The target language of the algebraic translation of multi-modal
logic is covered by its T - and ℜ-layers. Since the sets of predicate symbols
of the T -layer and the ℜ-layer are disjoint, for each literal L the sets of T -
and of ℜ-connections L might belong to are disjoint.

Example 5.2. In the safe puzzle from Figure 4 the signatures Σ of the
T -layer and ∆ of the ℜ-layer share the equality symbol = and the function
symbols φ, ψ, h, i, n, s, d, p, joe, 1 and ε. Thus, the sets of predicate symbols
for the T -layer and the ℜ-layer are not disjoint. Σ contains moreover w,
c and o and ∆ contains k, u, a and as as predicate symbols. The target
language of the algebraic translation of extended multi-modal logic is covered
by its T - and ℜ-layers. Again we may show that for each literal L the
sets of T -connections and of ℜ-connections L can belong to are disjoint.
Definition 5.3 introduces a notion for this property.

Definition 5.3. Let T and ℜ form a hybrid theory in the union Σ ∪∆ of
signatures. Let Q be a query language formulated in a signature containing
both signatures Σ and∆. Moreover, let UT and Uℜ be sets of T -connections
and of ℜ-connections. We say that UT and Uℜ are separated w.r.t. Q if and
only if there does not exist connections u ∈ UT and u

′ ∈ Uℜ with ∅ 6= u∩u
′.

The following propositions 5.1 and 5.2 give sufficient criteria for the
theory completeness of the union of sets of theory connections that are
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theory complete with respect to the constituent sub-theories of a hybrid
theory. The case of the target logic of the multi-modal logic will be covered
by Proposition 5.1. The criterion Proposition 5.2 covers the case of the target
logic of the algebraic translation of extended multi-modal logic.

Definition 5.4. Let M be a set of instances of clauses and U a mating
in M . For every literal L in M we define the set RL of clauses reachable
from L via U as the least set being closed with respect to the following
condition: If there exists a connection u ∈ U such that one of the literals
of u is L or a literal in a clause being element of RL then also any clause
containing a literal of u different from L belongs to RL.

Proposition 5.1. Let theories T and ℜ be expressed in the signatures Σ
and ∆ respectively form a hybrid theory such that T ∪ℜ is consistent. The
query language Q is formulated in the union Σ ∪∆ of signatures. Moreover
suppose that:

(1) The sets of T -connections UT and of ℜ-connections Uℜ are complete
w.r.t. QT and Qℜ respectively.

(2) In Q equality literals occur only negative.

(3) In both theories positive equality literals may occur only within condi-
tional equations.

(4) The sets of predicate symbols occurring in T ∪ QT and ℜ ∪ Qℜ are
disjoint.

(5) If equality occurs in T ∪ℜ then let T1 be that of the sub-theories T and
ℜ that does not contain equality and U1 be the set of theory connections
for that sub-theory. Moreover let E be the set of equational axioms in
T ∪ ℜ. For every u ∈ U1 and substitution σ holds E ∪ T1 � σ(

∨

ū) if
and only if T1 � σ(

∨

ū).

Then the sets of T -connections UT and ℜ-connections Uℜ are separated
with respect to Q and UT ∪ Uℜ is T ,ℜ-complete with respect to Q.

Proof. Let us suppose that theories T and ℜ, signatures Σ and ∆, query
language Q and the sets of T -connections UT and of ℜ-connections Uℜ
satisfy the assumptions of the proposition. In order to show that UT and
Uℜ are separated with respect to Q it is sufficient to observe that the sets
of predicate symbols occurring in T ∪ QT and ℜ ∪ Qℜ are disjoint. In
order to show that UT ∪ Uℜ is T ,ℜ-complete with respect to Q we show
first of all that UT ∪ Uℜ has property 2.1 formulated in Definition 4.3. Let
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p be a T ,ℜ-complementary ground path. We have to show there exists a
sub-path such that u ∈ UT ∪ Uℜ. We consider p as a set of unit clauses. By
the compactness theorem for first-order logic there exists a finite set M of
instances of clauses of T and of ℜ and a minimal mating U spanningM ∪p.
Let u be the multi-set of all literals of p which are element of a connection
in U . Then u is not empty because of the consistency of T ∪ ℜ. Because
the sets of predicate symbols occurring in T ∪QT and ℜ∪Qℜ are disjoint
either for every connection u′ ∈ U holds u ∈ QΣ or for every connection
u′ ∈ U holds u ∈ Q∆. Therefore, u is either element of QT or of Qℜ. If
u ∈ QT (the case u ∈ Qℜ may be treated analogously) then there exists
u′′ ∈ UT such that u

′′ ⊆ u, and therefore u′′ ⊆ p, because UT is T -complete
with respect to QT . Both UT and Uℜ satisfy condition 2.2 of Definition 4.3.
Therefore also UT ∪ Uℜ has this property. 2

Example 5.3. Let us observe that in a matrix belonging to the target
language of the algebraic translation of multi-modal logic theory connections
either are in the non-sort part, i.e. those discussed in Example 4.1, or in
the sort part, i.e. those discussed in Example 4.2. This is obvious because
both parts of the hybrid theory are expressed by use of disjoint sub-sets
of predicate symbols and equality does not occur in the query language.
Therefore, in order to obtain a complete set of theory connections for the
hybrid theory consisting of T and ℜ it is sufficient to take just the union of
the complete sets of theory connections UT and Uℜ.

Proposition 5.2. Let theories T and ℜ be expressed in the signatures Σ
and ∆ respectively form a hybrid theory such that T ∪ℜ is consistent. The
query language Q is formulated in the union Σ ∪∆ of signatures. Moreover
suppose that:

(1) The sets of T -connections UT and of ℜ-connections Uℜ are complete
w.r.t. QT and Qℜ respectively.

(2) In Q equality literals may occur only negative.

(3) In both theories T and ℜ positive equality literals may occur only within
conditional equations.

(4) The sets of non-equational predicate symbols occurring in T ∪QT and
ℜ ∪Qℜ are disjoint.

(5) If T=+ (and ℜ=+) are the sets of non-negative equational clauses in T

(and ℜ respectively) then hold T � ℜ=+ and ℜ � T=+.

Then the set UT ∪ Uℜ is T ,ℜ-complete with respect to Q.
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Proof. Analogously to the proof of Proposition 5.1 it is sufficient to show
that for every T ,ℜ-complementary ground path p ∈ Q exists u ∈ UT ∪ Uℜ
such that u ⊆ p. Let p be such path. We consider p as a set of unit clauses.
By the compactness theorem for first-order logic there exists a finite set
M of ground instances of clauses of T and ℜ and a minimal mating U
spanningM ∪ p. Let u′ be the multi-set of all literals of p which are element
of a connection in U . Then u′ is not empty because of the consistency of
T ∪ℜ. In order to complete the proof it will be sufficient to show that u′ is
T -unsatisfiable or ℜ-unsatisfiable. We prepare this proof by the following
three claims.

Claim 1 : Let L be a negative equational literal in M ∪ p. Then every clause
reachable from L via U is a conditional equation and RL � ¬L.

Proof : Immediately from assumption (3) follows that RL consists of condi-
tional equations only. The minimality of U ensures that U also is spanning
RL ∪ L̄. Therefore RL � ¬L.

Claim 2 : Under the assumptions of claim 1 holds: If L ∈ QT — the oppo-
site case may be treated by symmetry — then every conditional equation e
reachable from L and being element of ℜ may be substituted by a set of
clauses R′e ⊆ T such that R′e � e.

Proof : Follows immediately from assumption (5).

Claim 3 : Let L ∈ p be an non-equational literal. If L ∈ QT — again the
opposite case may be treated by symmetry — then every clause Γ ∈ (T ∪
ℜ) ∩RL containing non-equational literals satisfies Γ ∈ T .

Proof : From the assumptions (2), (3) and (4) and follows that the predicate
symbol of every non-equational literal in any clause reachable from L be-
longs to Σ. The assumptions (3) and (4) are important for this conclusion
because they ensure that any clause reachable from an equational literal
in a non-equational clause reachable from L is a conditional equation. We
complete the proof by the following case analysis.

Case 1 : The sub-path u′ of p contains an equality literal L. By assumption
(2) L is negative and by claim 1 all clauses in RL are conditional equations
and RL � ¬L. Therefore u′ = {L} because U is a minimal mating spanning
M ∪ p. Suppose that RL contains clauses being instances of clauses from T

(the case symmetric case may be proved analogously). Then according to
assumption (4) every element e of RL being not an instance of a clause in T

may be substituted by a set of conditional equations implying e. Therefore
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T � ū′. Because UT is T -complete with respect to QT there exists a
T -connection u′′ ⊆ u′ and therefore u′′ ⊆ p.

Case 2 : The subpath u′ of p does not contain any equality literal L. We sup-
pose that u′ contains a T -layer literal — the opposite case may be treated
by symmetry reasoning. Then by claim 3 every non-equational clause in
RL ∩ (T ∪ ℜ) is element of T . By claim 2 every equational clause e being
element of RL \T may be substituted by a finite subset R′e ⊆ T such that
R′e � e. Therefore T �

∨

ū′. 2

Now we discuss briefly the unification problem in sets of hybrid theory
connections. We restrict our attention to the case that for given theories T

and ℜ a complete set of theory connections is given by the union of sets of
theory connections that are complete with respect to the respective theories.
What we have in mind is that unification of a theory connection u is either
T -unification if u is a T -connection or ℜ-unification otherwise. This leads
to the notion of non-interfering unification problems.

Definition 5.5. Let Uℜ and UT be sets of theory connections for the com-
ponents of a hybrid theory T ,ℜ. We say that the unification problems in
Uℜ and UT do not interfere if and only if

(1) for every u ∈ UT and for every substitution σ holds: σ is a T -unifier of
u if and only if σ is T ,ℜ-unifier of u and

(2) for every u ∈ Uℜ and for every substitution σ holds: σ is a ℜ-unifier of
u if and only if σ is T ,ℜ-unifier of u.

Let UT ∪Uℜ be the set of theory connections discussed in Section 3.1 for
the target logic of the algebraic translation of multi-modal logic. Then the
unification problems in UT and Uℜ do not interfere. Let UT and Uℜ be the
sets of theory connections discussed in Section 3.2 for the sub-theories T

and ℜ of the target logic of the algebraic translation of extended multi-modal
logic. Then the unification problems in UT and Uℜ do not interfere.

Proposition 5.3. Let theories T and ℜ, which are expressed in the sig-
natures Σ and ∆ respectively, form a hybrid theory, such that T ∪ ℜ is
consistent. The query language Q is formulated in the union Σ ∪∆ of sig-
natures. Moreover suppose that the assumptions (1)–(5) of Proposition 5.1
(resp. 5.2) are satisfied. Then the unification problems in UT and Uℜ do not
interfere.
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Proof. In the non-trivial direction of the equivalence to be proved we have
to show that every T ∪ ℜ-unifier of a T -connection u ∈ UT is a T -unifier
of u and that every T ∪ℜ-unifier of a ℜ-connection u ∈ Uℜ is a ℜ-unifier of
u. The latter claim is satisfied because T and ℜ have no common predicate
symbols and ℜ does not contain the equality sign. The former claim follows
from assumption (5). 2

Now a completeness theorem for hybrid theories may be proved.

Theorem 5.1. (Completeness theorem for hybrid theories) Let Q be a
query language expressed in a signature containing Σ and ∆. Moreover, let
Qℜ and QT be the ℜ-layer and T -layer of Q respectively. Let Uℜ and UT

be complete sets of ℜ-connections and T -connections which satisfy the as-
sumptions either of Proposition 5.1 or 5.2. Then for every T ,ℜ-unsatisfiable
query M ∈ Q exists a clause Γ ∈ M and a successful derivation starting
from the initial pool {( ⊥ Γ )} such that in each inference according to Def-
inition 4.6 for the chosen connection u holds either u ∈ Uℜ or u ∈ UT and
for the chosen theory unifier σ ∈ Su, with Su being the set of T -unifiers or,
respectively, ℜ-unifiers.

Proof. Due to Proposition 5.1 and 5.2 the set of T ,ℜ-connections Uℜ∪UT

is T ,ℜ-complete w.r.t. query language Q. Due to Proposition 5.3 the unifi-
cation problem in Uℜ∪UT is solvable and applying the T -unification proce-
dure to UT -connections and the ℜ-unification procedure to Uℜ-connections
provides a solution to the Uℜ ∪ UT -unification problem. Thus the assump-
tions of Theorem 4.2 are satisfied and the calculus for the hybrid theory is
complete. 2

Let UT and Uℜ be either the set of theory connections discussed in
Section 3.1 for the target logic of the algebraic translation of multi-modal
logic or those discussed in Section 3.2 for the sub-theories T and ℜ of the
target logic of the algebraic translation of extended multi-modal logic. Then
for both cases we obtain a complete calculi instantiating the theory pool
calculus (cf. Section 4.3) as a corollary of Theorem 5.1.

6. Concluding remarks

A prover for multi-modal logic has been implemented by a joint effort of re-
search groups in Leipzig and Caen. We used the calculi description interface
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CaPrI of the PTTP-prover ProCom [16]. The algebraic translation of Fran-
coise Debart and Patrice Enjalbert from multi-modal logic to a language of
constrained clauses has been implemented by Zoltán Rigó [21]. The trans-
lation generates a constraint theory that provides information about the
interaction between modalities, the properties of the occurring modalities
and the dependencies introduced by Skolemization. For reasoning in the
non-constraint part of a matrix being element of the target language an
A1-unification algorithm due to Francoise Debart and Patrice Enjalbert [8]
is used. The algorithm has been tuned for this application. The used imple-
mentation is due to Gilbert Boyreau [5]. ProCom and his interface has been
implemented by Gerd Neugebauer. He also integrated constraint reasoning
into ProCom.
We examined the algebraic translation of multi-modal logic into a frag-

ment of first-order logic. To the target of this translation we applied a general
framework which allows to build-in theories into provers which are based on
the connection method. For this purpose we introduced the notion of a hy-
brid theory. We obtained a completeness result for a connection method
based calculus dealing with hybrid theories. A brief overview about an im-
plementation has been given. Ongoing research considers the combination
of theories given syntactically with those given semantically.
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