
Logic and Logical Philosophy
Volume 5 (1997), 61–74

Cezary Gorzka

ON RUSSELL’S DEFINITION

OF MOMENTS OF TIME

Abstract. In the paper two definitions of moments of time as the sets of
events are considered. The first one is Russell’s definition based on a relation
simultaneity of events. The second one is my construction of moments of time
grounded on a relation of being immediately preceding.
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In the philosophy of time, “reductionism” refers to a standpoint concern-
ing the nature of moments of time that, although ontologically primitive,
are time-extended processes called events, whereas moments are derivative
entities. Adherents of such mean reductionism come from different, often op-
posed philosophical traditions. To them, reduction has varied meanings. In
this paper the problem of reduction of moments of time to events is meant
according to standards of logical philosophy, i.e. as logical definability of
moments of time in terms of sets of events.
One pioneer of such an approach to the problem was Bertrand Russell.

In the book Our Knowledge of the External World as a Field for Scien-
tific Method in Philosophy (published in 1912) he presented a definition
of moment which has become a specific “paradigm” for other research in
the domain, for example Whitehead’s and Newton-Smith’s. To be sure, the
main idea of Russell’s theory of events and his definition of moment are
well known, but they are usually presented superficially, with omissions of
many important assumptions on which his reduction of moments to events
is grounded. A more detailed analysis of his theory reveals some weak points
and suggests the need to search for alternative solutions. The first part of
the paper is devoted to a critical analysis of Russell’s theory. In the second
part, I present my own theory of events which, is in a sense, an answer to
the objections to Russell’s theory raised in the first part.

1. Russell’s proposal

Let ‘E’ denote the set of all events1. We shall assume that the set is non-
empty. Individual variables ranking over the set E will be the letters ‘u’,
‘w’, ‘x’, ‘y’ and ‘z’, whereas the capital letters ‘X’ and ‘Y ’ will be variables
for the subsets of the set E.
The primitive notion of this theory is a binary relation P defined in the

set E, i.e. P ⊆ E×E. The expression ‘xP y’ we read: “the event x wholly
precedes the event y” or “x is earlier then y”. By means of the relation
P we shall define in the set E a relation of simultaneity (denoted by ‘S’)

xS y
df
⇐⇒ ¬ xP y ∧ ¬ y P x.(def S)

The expression ‘xS y’ we read: “x is simultaneous with y”.

1 By an event we shall understand a one-dimensionally extended process conceiving
as a mereological set.
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On Russell’s Definition of Moments of Time 63

The following theorems are immediate consequences of the above defini-
tion.

∀x,y(xS y ⇔ y S x),(T1)

i.e. S is a symmetric relation to the set E.

∀x,y(xP y ∨ y P x ∨ xS y),(T2)

i.e. the sum of relation P and S (i.e. P ∪ S) is a connected relation to E.
The following two axioms express the fundamental properties of the re-

lations P and S.
∀x ¬ xP x,(A1)

i.e. P is irreflexive in E.

∀u,x,y,z(uP x ∧ xS y ∧ y P z ⇒ uP z).(A2)

Remark 1. Instead of the axiom (A2) Russell has assumed only the asym-
metricity and transitivity of the relation P . However the axioms are too weak
to prove the theorems (T12) and (T13). Hence my proposal to strengthen
them to the form expressed by (A2). 2

An immediate consequence of (A1) is the theorem:

∀x xS x,(T3)

i.e. the relation S is reflexive in E. From the axioms (A1) and (A2) it is easy
to obtain the following theorems:

∀x,y(xP y ⇒ ¬ y P x),(T4)

i.e. the relation P is asymmetric in E. Indeed, let xP y and suppose that
y P x. Hence and from (T3) we have xP y ∧ y S y ∧ y P x. So, by virtue of
(A2), xP x holds, which contradicts the axiom (A1).

∀x,y,z(xP y ∧ y P z ⇒ xP z),(T5)

i.e. P is transitive in E. Suppose that xP y and y P z. Then xP y ∧ y S y ∧
y P z. Hence, by virtue of (A2), we have xP z.

∀x,y,z(xP y ∧ y S z ⇒ ¬ z P x).(T6)

Let xP y and y S y and suppose, in spite of our thesis, that z P x. Thus, in
accordance with (A2), we have xP x what contradicts the axiom (A1).
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64 Cezary Gorzka

Combining2 the relation S with the relation P and with its converse3

P̆ we obtain the following four relations: (a) S ◦ P , (b) S ◦ P̆ , (c) P ◦ S
and (d) P̆ ◦ S such that their holding between any events x and y mean
respectively: (a) x begins before y, (b) x ends after y, (c) x ends
before y, (d) x begins after y.

(T7) ∀x ¬ xS ◦ P x,

(T8) ∀x,y(xS ◦ P y ⇒ ¬ y S ◦ P x),

(T9) ∀x,y(xS ◦ P y ⇔ y P̆ ◦ S x),

(T10) ∀x,y(xS ◦ P̆ y ⇔ y P ◦ S x).

Let S := {X ∈ P(E) \ {∅} : ∀x,y∈X xS y}. Thus the set S is a family of
nonempty sets consisting of simultaneous events.
A moment we shall define indirectly as any elements of the set M which

are a family of maximal (in the sense of inclusion) sets of simultaneous
events.

M := {X ∈ S : ∀Y ∈S(X ⊆ Y ⇒ X = Y )}.

A moment is to be said any element of the setM. Thus a moment is any
nonempty and maximal, in the sense of the inclusion, set of events such that
any two of its elements are simultaneous events. The maximality condition
of the set X ensures that any moment is uniquely determined by the set of
simultaneous events.

Remark 2. A moment can be also defined directly (i.e. without mediation
of the family M) as any set X fulfilling the following condition:

X ∈ P(E) \ {∅} ∧ X =
⋂
{ Y : ∃z∈X Y = S[{z}]},

where S[X] is an image of the set X under the relation S, i.e. S[X] :=
{ y ∈ E : ∃x∈X xS y} (in particular S[{x}] = { y ∈ E : xS y}). Thus
moments are fixed points of the mapping f :P(E) \ {∅} → P(E) having
form f(X) :=

⋂
{ Y : ∃z∈X Y = S[{z}]}. 2

The letter ‘m’ (possibly with indices) will be the variable ranking over
the set of moments M.
In the set M a counterpart of the relation P is a relation ≺ defined in

the following way:

m1 ≺ m2
df
⇐⇒ ∃x∈m1∃y∈m2 xP y.(def ≺)

2 xS ◦ P y
df
⇐⇒ ∃z(xS z ∧ z P y).

3 x P̆y
df
⇐⇒ y P̆ x.
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On Russell’s Definition of Moments of Time 65

A moment m1 precedes a moment m2 iff there is some event belonging to
m1 and preceding some event from m2.
Immediate consequences of definition (def ≺) and axiom (A1) is theo-

rem (T11) expressing irreflexivity of the relation ≺:

∀m¬m ≺ m.(T11)

From (def ≺) and (A2) we have transitivity of the relation ≺:

∀m,m1,m2(m1 ≺ m ∧ m ≺ m2 ⇒ m1 ≺ m2).(T12)

From (T11) and (T12) we have asymmetricity of the relation ≺:

∀m1,m2(m1 ≺ m2 ⇒ ¬m2 ≺ m1).(T13)

Moreover, we have connectivity of the relation ≺:

∀m1,m2(m1 6= m2 ⇔ m1 ≺ m2 ∨ m2 ≺ m1).(T14)

Proof. Since the sets m1 and m2 are maximal in the sense of the relation
of inclusion, so m1 6= m2 iff ∃x(x ∈ m1 ∧ x 6∈ m2 iff ∃x,y(x ∈ m1 ∧ y ∈
m2∧¬xS y) iff ∃x,y(x ∈ m1∧y ∈ m2∧(xP y∨y P x)) iff ∃x,y((x ∈ m1∧y ∈
m2 ∧ xP y) ∨ (x ∈ m1 ∧ y ∈ m2 ∧ y P x)) iff (m1 ≺ m2 ∨ (m1 ≺ m2). 2

Remark 3. The simple model below shows that the assumptions of irreflex-
ivity, asymmetricity and transitivity of the relation P do not suffice to prove
the theorems (T12) and (T13). For this purpose we need the axiom (A2).
Indeed, let E be the following set of numbers {1, 2, 3, 4} and put P =

{〈1, 2〉, 〈4, 3〉}, i.e. only 1P 2 and 4P 3 hold. It is obvious that a relation
defined as P is irreflexive, asymmetric and transitive. But it does not fulfill
the axiom (A2). Indeed, we have 1P 2, 2S 4 and 4P 3, but it is not true
that 1P 3 holds. Notice that in this interpretation the theorem (T13) is
also untrue. Indeed, it suffices to take into account the moments {1, 3} and
{2, 4}. For these we have: {1, 3} ≺ {2, 4} (because 1P 2) and {2, 4} ≺ {1, 3}
(because 4P 3), what contradicts the theorem (T13). Moreover, this fact
contradicts the theorem (T12) (because {1, 3} ⊀ {1, 3}, by (T11)). 2

We shall say that an event x happens at the moment m iff x ∈ m. This
relationship of an occurrence of an event x at a moment m we shall denote
by ‘⊲’. We shall prove that every event happens at some moment.

∀x∃m x ⊲ m.(T15)
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66 Cezary Gorzka

Proof. Let x be an event and Sx be a family of sets of events defined in the
following way:

Sx := {X ∈ S : ∀y∈X y S x}.

The set Sx be nonempty because it contains the singleton {x}. Moreover it is
partially ordered by the relation of inclusion. Then, by virtue of Hausdorff’s
lemma, the set Sx contains some maximal chain S0. Making m =

⋃
S0, we

have the thesis (T15). 2

Remark 4. Notice that the theory of events does not exclude the existence
of an atomic event i.e. such event u that ∀x,y(xS u ∧ y S u ⇒ xS y). For
any atomic event u a moment m such that u ⊲ m is identical with the set⋃
Su defined in the proof of the theorem (T15). In this case the existence
of the moment is independent from the axiom of choice. Moreover, for any
atomic event there exists exactly one moment such that the event happens
at that moment. 2

The theorems (T11)–(T14) show that the relation ≺ linearly orders
the set M. In order to ensure dense ordering of the set M by relation ≺
Russell has assumed the axiom:

∀x,y(xP y ⇒ ∃z(xP z ∧ z P y)).(A3)

The below theorem is an immediate consequence of the axiom, the definition
of relation ≺ and the theorem (T15).

∀m1,m2(m1 ≺ m2 ⇒ ∃m(m1 ≺ m ∧m ≺ m2)).(T16)

2. Critical comments

Russell’s pioneering attempt to reduce moments of time to the set of events,
although formally and logically quite correct, is less satisfactory from a philo-
sophical point of view. First of all some reservations arise from the fact that,
in general, in order to prove the existence of moments of time we have to
use the axiom of choice. To be sure, at present the axiom does not raise any
doubts amongst mathematicians. Nevertheless its strong non-constructive
character brings Russell’s attempt into a question

. . . to show the kind of way in which, given a world with the kind

of properties that psychologists find in the world of sense, it may be

possible, by means of purely logical constructions, to make it amenable

to mathematical treatment by defining series or classes of amenable
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On Russell’s Definition of Moments of Time 67

to sense-data which can be called respectively particles, points, and

instants. If such construction are possible, then mathematical physics is

applicable to the real world, in spite of the fact that its particles, points,

and instants are not to be found among actually existing entities.4

I think that the building of a bridge between the world of sense and
the entities of theoretical physics by means of constructions grounded on
this axiom is rather not too sound. In such constructions it is important
not only that individual events should be sensually perceivable but that
these constructions should be an idealization of some sensually observable
procedures. It seems to me that any construction based on the axiom of
choice fails to fulfill the last condition.
For any nonatomical event the theorem (T15) leaves unanswered the

question of existence of its initial and its terminal moment. In order to ensure
their existence Russell had to assume some additional axioms which limit
the set of admissible — in his theory — events, and in this way they lessen
its generality. In order for any event X to have its initial and its terminal
moment, the following two conditions have to hold: P̆ [S[{x}]] = P̆ [S[{x}] \
P̆ [S[{x}]]] and P [S[{x}]] = P [S[{x}]\P [S[{x}]]]. The first one excludes the
possibility that for any event y different from x and simultaneous with x
there is an event earlier than y and simultaneous with x. Similarly for the
second condition.
The axiom (A3) also has a restrictive character, which excludes the ex-

istence of tangential events. It seems to me that the axiom is an ad hoc
hypothesis assumed by Russell only to ensure a dense ordering of the set
of moments. But it is not clear if we should retain such kind of ordering of
moments in the case of atomical events.
In the latter part of the paper I shall present a theory of events which on

the one hand is grounded on some rather natural axioms and on the other
hand makes possible such a definition of moment to which none of the above
reservations applies.

3. An alternative proposal

The starting point for an alternative — in comparison with the Russellian —
definition of moment as a set of events is the rejection of the axiom (A3).
This give us the possibility to define in terms of relation P a next relation

4 Bertrand Russell: Our Knowledge of the External World, revised ed. George Allen &
Unwin, London 1929, p. 122.
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68 Cezary Gorzka

between events which in Russell’s theory — by virtue of axiom (A3) — is an
empty relation. This new relation we shall denote by ‘IP ’. The expression
‘x IP y’ we read “x immediately precedes y”.

x IP y
df
⇐⇒ xP y ∧ ¬∃z(xP z ∧ z P y).(def IP)

Analogicaly we define the next relation holding between the events x and y
iff y happens immediately after x. This relation we denote by ‘IA’.5

x IA y
df
⇐⇒ xP̆y ∧ ¬∃z(xP̆ z ∧ zP̆ y).(def IA)

From these definitions we have:

(t1) ∀x,y(x IP y ⇒ xP y),

(t2) ∀x,y(x IA y ⇒ y P x),

(t3) ∀x,y(x IP y ⇔ y IAx),

(t4) ∀x,y,z(x IP y ∧ y IP z ⇒ ¬ x IP z).

The axiomatic foundations of this theory of events are axioms (A1) and (A2)
from the first section and an additional axiom expressing a fundamental
property of the relation IP.

∀u,x,y,z(u IP x ∧ u IP y ∧ z IP x ⇒ z IP y).(A3∗)

An analogical axiom for the relation IA in not needed because the
following theorem holds:

∀u,x,y,z(u IAx ∧ u IA y ∧ z IAx ⇒ z IA y).(t5)

Indeed, let u IAx∧u IA y∧z IAx. This conjunction — by (t3) — is equivalent
to x IP u ∧ y IP u ∧ x IP z. Hence — by virtue of (A3∗) — we have y IP z,
i.e. z IA y. We shall assume another axiom ensuring nonemptiness of the
relations IP and IA.

∀x∃y,z y IP x ∧ z IAx.(A4)

Remark 5. (a) The theory grounded on the axioms (A1), (A2), (A3∗) and
(A4) is consistent, what follows from the following simple model: E = Z (the
set of rational numbers) and P is the relation < in the set Z. So S is the
identity relation in the set Z, x IP y ⇔ y = x + 1 and x IA y ⇔ x = y + 1.
Under this interpretation: the truth of (A1) it follows from the condition

5 A prototype of our relations IP and IA is the Whiteheadian relation of extensive
connection). Cf. A. N. Whitehead, Process and Reality, Corrected edition, The Free
Press, New York–London 1978, p. 294 and n.
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On Russell’s Definition of Moments of Time 69

∀x∈Z¬ x < x; the implication (A2) has a false antecedent; (A3
∗) it follows

from transitivity of identity; (A4) is expressing a self-evident property of in-
tegers ∀x∈Z∃y,z∈Z (x = y+1∧z = x+1). In the model all events are atomical.
In this case the moments (in the sense from the first section) are all

singleton subsets of the set Z. It is obvious that {x} ≺ {y} ⇔ x < y.
(b) It is also possible to construct a more «intuitive» model of the pre-

senting theory. For the rationals p, q ∈ Q such, that p < q we define an
«open rational segment» making (p, q) := {r ∈ Q : p < r < q}. Let E
be the set of all such segments. In this set the relation P is defined by
condition: (p1, q1)P (p2, q2) ⇔ q1 ¬ p2. With such an interpretation the
truth of (A1) follows from ∀p,q∈Q(p < q ⇒ ¬ q ¬ p). In this model the
relation of simultaneity is expressed by condition: (p1, q1)S (p2, q2) ⇔ q1 >
p2 ∧ q2 > p1. Then the truth of the axiom (A2) follows from the property:
∀p,q,r,s∈Q(p ¬ q ∧ q < r ∧ r ¬ s ⇒ p < s). Under this interpretation the
relations IP and IA are expressed respectively by the following conditions:
(p1, q1) IP (p2, q2) ⇔ q1 = p2 and (p1, q1) IA (p2, q2) ⇔ p1 = q2. The truth
of axioms (A3∗) is (A4) self-evident. In the model there is no atomical events.
In the model the set of moments (in the sense of Russell’s proposal) is

equinumerous with the set Q. More exactly: the pair 〈M,≺〉 is izomorfic with
the pair 〈Q, <〉. For each moment m corresponds (in a one-to-one manner)
to such a number r ∈ Q, that m = { (p, q) ∈ E : p < r < q}, i.e. M =
{{ (p, q) : p < r < q} : r ∈ Q}. Moreover, for r1, r2 ∈ Q: { (p, q) : p < r1 <
q} ≺ { (p, q) : p < r2 < q} ⇔ r1 < r2.
(c) In order to obtain a model with atomical events it is enough to extend

the universe from (b) on all singletons from the set Q and to add (to the
definition of the relation P ) the following conditions: (p, q)P {r} ⇔ q ¬
r, {r}P (p, q) ⇔ r ¬ p and {r1}P {r2} ⇔ r1 < r2. Then, besides the
condition from (b), we also have: {r1}S {r2} ⇔ r1 = r2 and (p, q)S {r} ⇔
{r}S(p, q) ⇔ p < r < q. In this model the «singletons» are just atomical
events. It is easy to see that {r} IP (p, q) ⇔ r = p, (p, q) IP {r} ⇔ q = r
and «singletons» do not precede themselves immediately. Analogicaly we
may extend the relation IA. The truth of axioms in such an interpretation
we verify in the same manner as in point (b).
As in (b), for every moment m corresponds (in a one-to-one manner) to

such a number r ∈ Q, that m = { (p, q) ∈ E : p < r < q} ∪ {r}. 2

We shall define in the set IP (included in E×E) some auxiliary, binary
relation ⋍ (included in IP × IP):

〈u,w〉 ⋍ 〈x, y〉
df
⇐⇒ u IP y.(def ⋍)
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70 Cezary Gorzka

We shall prove that the relation ⋍ is reflexive, symmetric and transitive
in the set IP, i.e. we shall prove that the relation is an equivalency relation
in the set IP. Reflexivity is an immediate consequence of definition (def ⋍):

〈u,w〉 ⋍ 〈u,w〉.(t6)

Symmetricity follows from axiom (A3∗):

〈u,w〉 ⋍ 〈x, y〉 ⇒ 〈x, y〉 ⋍ 〈u,w〉.(t7)

Indeed, if 〈u,w〉 ⋍ 〈x, y〉, then u IP y, u IP w and x IP y. Hence — by virtue
of (A3∗) — we have x IP w, i.e. 〈x, y〉 ⋍ 〈u,w〉. Transitivity is easy to obtain
from (A3∗):

〈u,w〉 ⋍ 〈x, y〉 ∧ 〈x, y〉 ⋍ 〈z, z1〉 ⇒ 〈u,w〉 ⋍ 〈z, z1〉.(t8)

Indeed, by hypothesis u IP y and x IP z1. Moreover x IP y. Hence, by virtue
of (A3∗), we have u IP z1.
By moment we shall mean any class of abstraction of relation ⋍, i.e. a

moment is any element of set IP/⋍. In the set of all moments the relation
≺ is defined in the following way:

m1 ≺ m2
df
⇐⇒ ∃x,y,u,w(〈x, y〉 ∈ m1 ∧ 〈u,w〉 ∈ m2 ∧ xP w ∧ ¬ x IP w).

Remark 6. (a) In the model presented in Remark 5a the relation ⋍ is
an identity relation to the set IP. This follows from transitivity of identity
in Z. So, the moments, in the model, are all singletons from the set IP, i.e.
M = {{〈x, x + 1〉} : x ∈ Z}. Moreover, for any x, y ∈ Z: {〈x, x + 1〉} ≺
{〈y, y + 1〉} ⇔ x < y.
(b) In the model presented in remark 5b the relation ⋍ is expressed in

the terms of IP by the condition: 〈(p1, q1), (q1, r1)〉 ⋍ 〈(p2, q2), (q2, r2)〉 ⇔
q1 = q2. For every moment m corresponds (in a one-to-one manner) to
such a number r ∈ Q, that m = {〈(p, r), (r, q)〉 : p, q ∈ Q ∧ p < r < q},
i.e. M = {{〈(p, r), (r, q)〉 : p, q ∈ Q ∧ p < r < q} : r ∈ Q}. Moreover
[〈(p1, r1), (r1, q1)〉]⋍ ≺ [〈(p2, r2), (r2, q2)〉]⋍ ⇔ r1 < r2. Then in this model
any pair 〈M,≺〉 is izomorfic with 〈Q, <〉.
(c) In the model from remark 4c the following situations 〈(p1, q1), (q1, r1)〉

⋍ 〈(p2, q2), {q2}〉, 〈(p1, q1), (q1, r1)〉 ⋍ 〈{q2}, (q2, r2)〉, 〈{q1}, (q1, r1)〉 ⋍

〈{q2}, (q2, r2)〉, 〈(p1, q1), {q1}〉 ⋍ 〈(p2, q2), {q2}〉, 〈(p1, q1), {q1}〉 ⋍ 〈{q2},
(q2, r2)〉 hold iff q1 = q2. Moreover, the pair 〈{q1}, (q1, r1)〉 is never in rela-
tion ⋍ with the pair 〈(p2, q2), {q2}〉. Such as in (b), for every m corresponds
in a one-to-one manner such r ∈ Q, that m = {〈(p, r), (r, q)〉 : p < r < q}
∪{〈(p, r), {r}〉 : p < r} ∪ {〈{r}, (r, q)〉 : r < q}. 2
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On Russell’s Definition of Moments of Time 71

An immediate consequence of the definition of ≺ is the theorem:

∀m¬m ≺ m.(t9)

To prove the further theorems about moments we shall need the following
auxiliary theorem:

∀x,y,z,u(xP y ∧ ¬ x IP y ∧ x IP z ∧ u IP y ⇒ ¬ uP z).(t10)

Proof. Let xP y, (1) ¬x IP y and (2) x IP z. From xP y, (1) and the defini-
tion of IP we get ∃z1(xP z1∧z1 P y). From this and from (2) we have: ¬z1 P z,
i.e. z1 S z∨z P z1. Let u be any event such that (3) u IP y. Suppose — in spite
of the thesis — that uP z. If u IP z, then from (2), (3) and the axiom (A3∗)
it follows x IP y, contrary to (1). If ¬ u IP z, then ∃z2(uP z2 ∧ z2 P z). For
z1 S z we have z2 P z ∧ z1 S z ∧ z1 P y. Hence — by (A2) — z2 P y. If z P z1
then z2 P z ∧ z P z1 ∧ z1 P y. So — by transitivity of P — z2 P y. In this way
we have proved that ∃z2(uP z2 ∧ z2 P y), contrary to (3). 2

∀x,y,z,u(x IP z ∧ y IP z ∧ xP u ⇒ y P u).(t11)

Proof. Let x IP z, (1) y IP z and xP u. If x IP u then — by (A3∗) — y IP u.
Hence y P u. Suppose that (2) ¬ x IP u. By (A4) there exists an event z1
such that (3) z1 IP u. From this and from xP u, x IP z and (2)— by virtue
of (t10) — we have ¬ z1 P z. Therefore either z P z1 or z S z1. If z P z1 then
(by (1), (3)) we get y P z ∧ z P z1 ∧ z1 P u. Hence y P u. If z S z1 then — also
by (1), (3)—we have y P z ∧ z S z1 ∧ z1 P u. So, by (A2), we get y P u. 2

Analogicaly we may prove the theorem:

∀x,y,z,u(z IP x ∧ z IP y ∧ uP x ⇒ y P x).(t12)

By means of the above theorems we shall prove the asymmetricity of
relation ≺:

∀m1,m2(m1 ≺ m2 ⇒ ¬m2 ≺ m1).(t13)

Proof. Let m1 ≺ m2 and suppose — contrary to the thesis —m2 ≺ m1.
So there are pairs 〈x, y〉, 〈x1, y1〉 ∈ m1 and pairs 〈u,w〉, 〈u1, w1〉 ∈ m1 such
that (1) xP w ∧ ¬ x IP w and u1 P y1. Moreover, in accordance with the
definition of moment, we have u IP w, u1 IP w1, u IP w1, and x IP y, x1 IP y1
and x IP y1. From this — by (A3

∗) — it follows that u1 IP w and x1 IP y. By
(t11), from u1 IP w, u IP w and u1 P y1 we get uP y1. By (t12) from x1 IP y,
x1 IP y1 and uP y1 we have uP y. As a consequence, by the fact that (1),
x IP y and u IP w hold, we have a contradiction with (t10). 2
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Finally we shall prove the transitivity and connectivity of relation ≺:

∀m,m1,m2(m1 ≺ m ∧ m ≺ m2 ⇒ m1 ≺ m2).(t14)

Proof. Suppose that m1 ≺ m and m ≺ m2. So, there are pairs 〈x, y〉 ∈
m1, 〈u,w〉, 〈u1, w1〉 ∈ m and 〈z, z1〉 ∈ m2 such that (1) xP w ∧ ¬ x IP w
and u1 P z1 ∧ ¬ u1 IP z1. From the first argument of the second conjunction
and from u IP w1 and u1 IP w1— by virtue of (t11) — we get (2) uP z1.
Analogicaly we prove that (3) ¬u IP z1. Since (2), (3), u IP w and (4) z IP z1
hold, so — by (t10) — we have ¬z P w, i.e. either wP z or wS z. In the first
case from (1), (4) and the transitivity of P we have xP z1. In the second
case from (1), (4) and the axiom (A2) we also get xP z1. Moreover, it is easy
to check that from ¬ x IP w follows ¬ x IP z1. So, m1 ≺ m2. 2

∀m1,m2(m1 6= m2 ⇔ m1 ≺ m2 ∨ m2 ≺ m1).(t15)

Proof. The implication “⇐” is an immediate consequence of the definition
of moment. Suppose that m1 6= m2, i.e. there are pairs 〈x, y〉 ∈ m1 and
〈u,w〉 ∈m2 such that ¬x IP w. We shall consider only the case when xS w.
Then — by (A2) — uP y, because uP w ∧ xS w ∧ xP y. So m2 ≺ m1. 2

We have shown that ≺ is an irreflexive, anti-symmetric, transitive and
connected relation on the set of moments — as we might expect in the case
of time-preceding relation.

A moment m is said to be an initial (resp. a terminal) moment of
the event u iff there exists in m such ordered pair that the event u is its
second (resp. first) element. From the axiom (A4) and from the definition
of moment it immediately follows that for every event there exists its initial
and its terminal moment and these moments are different.

At present the occurrence of an event u at a moment m will be defined
in another way than previously. Namely

u ⊲ m
df
⇐⇒ ∃x,y(〈x, y〉 ∈ m ∧ xS u ∧ y S u).

If the relation ⊲ is meant in the above way, the existence of a moment at
which an event u happens is equivalent to nonatomicity of the event u, i.e.
∃x,y(xS u ∧ y S u ∧ ¬ xS y). Notice that — according to this definition —
no event happens at its initial and its terminal moment.

∀u (u is nonatomic ⇔ ∃m u ⊲ m).(t16)
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Proof. Let u be nonatomic event. So there exist some events x and y such
that xS u, y S u and ¬xS y. If x IP y or y IP x then it is enough to putm =
[〈x, z〉]⋍. In the opposite case there exists — by virtue of (A4) — an event z
such that x IP z. Let m = [〈x, z〉]⋍. In order to prove that u ⊲ m we have
to show that z S u. Let us assume the opposite, i.e. ¬ z S u. If z P u, then —
by xS u, xP z and (A2) — we have z P z. So uP z. Without the loosing of
the generality of the proof we may assume that xP y. From the axiom (A4)
follows the existence of w such that w IP y. Since wP y, y S u and uP z
hold, so wP z. Finally we have got contradiction with the theorem (t10),
because xP y ∧ ¬ x IP y ∧ x IP z ∧ w IP y holds. The implication in the
opposite direction is obvious. 2

It is easy to check that the set of moments is linearly and densely ordered
by the relation ≺ iff there is no atom in the set E. In the opposite case
there exists such pairs of different moments that between them there is no
moment. These moments are the initial and terminal moments of an event. In
the frame of the theory — in opposition to Russell’s — existence of moments
of time is insured independently from the axiom of choice. Moreover every
event has its initial and its terminal moment. The existence of these moments
is insured by the axiom (A4).

Remark 7. The axioms (A3∗) and (A4) are independent from the remaining
ones. In the case of axiom (A4) it is obvious. The independence of the axiom
(A3∗) shows the following — constructed in the set of integral numbers Z—
graph, where the arrow ‘→’ denotes the transitive relation P .
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It is easy to see that the axioms (A1) and (A4) are satisfied in this graph.
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In order to verify the truth of the axiom (A2) in this model it is enough
to notice that S = {〈1, 3〉, 〈3, 1〉, 〈2, 3〉, 〈3, 2〉}, i.e. only 1S 3, 3S 1, 2S 3 and
3S 2 hold. It is easy to see (from the diagram) that for any u, z ∈ Z if uP 2
and 3P z then xP y. Similarly for remaining pairs of simultaneous events
〈3, 2〉, 〈1, 3〉 and 〈3, 1〉. So it is true that for any u, x, y, z ∈ Z if uP x and
xS y and y P z, then uP z.
Notice finally that in the model we have: 0 IP 2, 0 IP 3 and 1 IP 2 al-

though it is not the case that 1 IP 3 holds. So, the axiom (A3∗) is untrue in
this interpretation i.e. it is independent from the remaining axioms. 2

4. Concluding remarks

In this paper we have presented two ways of defining of moments of time as
distributive sets of events.
In the interpretation intended here, in which the events are meant as

one-dimensional mereological sets, Russell’s definitions reflect the idea that
a moment is determined by events having shorter and shorter (converging
to zero) «duration». So the main idea of Russell’s conception is the concept
of approximation carried to the basis of mereological sets and based on a
timely extension of events.
In my theory the existence of moments is a consequence of the fact

that every event has its beginning and its end, and every event is tangen-
tially connected with another event. In such treatment of the existence of
moments, their construction is effective. It is not clear whether and how
effective the theories based on the idea of approximation are, i.e. how far
they are depending on the axiom of choice.
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