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1. The Starting Point

Ontological commitments and other problems concerning existence arise in
connection with various aspects of logical theories. The semantics of quan-
tification theory is usually formulated in such a manner that theorems are
all and only those formulae which come out true under all interpretations in
all non-empty domains. There are several approaches to include the empty
domain. Paradoxically this apparent semantic extension means surrendering
several formulae which are valid and intuitively plausible.
Outside of these questions concerning general existence there are a lot of

difficulties regarding singular existence: Is it a tacit presupposition that any
singular term has a meaning/denotes an entity (Frege)? Does quantifying
singular terms commit us to acknowledge singular existence (Quine)? Is
Existence a first order predicate, a predicate at all? If so, how is it do define?

∃!x
df
= ∃xFx or ∃!x

df
= ∃x(x = a) or x = x?

In this paper I am going to discuss questions of existence connected
with the traditional square of opposites. There are several approaches to
explicate the logical connection. But solutions, if any, are heterogeneous,
incomplete or do not take into consideration the empty domain. After intro-
ducing my two-dimensional system Q I want will demonstrate the expressive
power of such a framework by offering a new explication of the square of
opposites. Two-dimensionality allows the syntactical formalization of exis-
tence conditions explicitly. Negation can be understood as denying only the
explicitly asserted but not the implicitly presumed (existence) part. Regard-
ing categorical inferences both assertion and existence presupposition can
be relevant. A unique two-dimensional translation of the traditional square
of opposites covers all interesting cases.

2. The Two-Dimensional System Q

In this section I introduce the formal background for my discussion of several
two-dimensional ways of representing existence and some interesting variable
quantifiers.

2.1. Primitive symbols

1. Propositional variables: p, q, r, s, p1,. . .
2. Classical functors: ∼, ∧, ∨, ⊃, ≡, 6≡.
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Existence, the Square of Opposites, and Two-Dimensional Logic 137

3. Individual variables: x, y, z, x1,. . .
4. Individual constants: a, b, c, a1, . . .
5. Infinite list of singular, binary etc. functional variables: F 1, G1, H1,
F 11 ,. . . , F

2, G2, H2, F 21 ,. . .
6. Quantifiers: ∀, ∃
7. Equality: =.

8. Operator forming pairs of classical formulae:
[ ]

.

9. Form of 1-placed, 2-placed variable functors: V 1i (1 ¬ i ¬ 4),
V 2j (1 ¬ j ¬ 4

4n).

10. Form of variable quantifiers: ∀i, ∃j.

11. Parentheses: ( )
( )

.

2.2. Formation rules

1. A propositional variable standing alone is a formula of Q.
2. If f is an n-ary functional variable and if a1,a2, . . . ,an are individual
variables or individual constants or both (not necessarily all different),
then f(a1,a2, . . . ,an) and a1 = a2 are formulae of Q.

3. If X and Y are formulae of Q, then ∼ X, (X ∧ Y ), (X ∨ Y ), (X ⊃ Y ),
(X ≡ Y ) and (X 6≡ Y ) are formulae of Q.

4. If X is a formula of Q and a is an individual variable, then ∀xX and
∃xX are formulae of Q.

5. If A, B are formulae of Q formed without reference to the formation

rules 5.–7. (i.e. usual classical formulae), then
[

A
B

]

is a formula of Q.

6. If X, Y are formulae of Q, then V 1X, and V 2XY are formulae of Q.
7. If X is a formula of Q and x is an individual variable, then ∀i xX and
∃j xX are formulae of Q.

8. X is a formula of Q iff its being so follows from 1.–7.

2.3. Types of formulae

CL-formulae A, B, C, D (i.e. classical formulae) are those formulae which
were exclusively formed by means of formation rules 1.–4.

An E-formula E (i.e. elementary formula) is a formula of the form
[

A
B

]

.

F-formulae F are formulae of the forms: V 1i

[

A
B

]

, V 1i A, V
2
j

[

A
B

] [

C
D

]

,

V 2j

[

A
B

]

C, V 2j A
[

B
C

]

, V 2j AB, ∀i x
[

A
B

]

, ∃j x
[

A
B

]

.
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138 Ingolf Max

An NC-formula Z (i.e. a non-classical formula) is a formula of Q which
is neither a CL-formula nor an E-formula.

2.4. Reduction rules

How should reduction rules act in the system Q? Roughly speaking, re-
duction rules should support a complete transformation of any non-classical

formula Z to a formula of the form
[

A
B

]

(i.e. an E-formula of a special kind).

I use the following abbreviation of X =⇒ X[Y1/Y2]: Y1 =⇒ Y2. Both
“X =⇒ X[Y1/Y2]” and “Y1 =⇒ Y2” are read as “From X to inferX[Y1/Y2]”,
with X[Y1/Y2] we mean that formula which is the result of substituting any
formula Y2 for the formula Y1 in all of its occurrences in X.

1. Reduction rules for classical functors and quantifiers:

(i) ∼

[

A

B

]

=⇒

[

∼ A

∼ B

]

(ii)

[

A

B

]

∧

[

C

D

]

=⇒

[

A ∧C

B ∧D

]

[

A

B

]

∧C =⇒

[

A ∧C

B ∧ C

]

A ∧

[

B

C

]

=⇒

[

A ∧B

A ∧ C

]

(iii) Disjunction, implication, equivalence, and negequivalence (exclusive
disjunction) as in 1.2.

(iv) ∀x

[

A

B

]

=⇒

[

∀xA

∀xB

]

∃x

[

A

B

]

=⇒

[

∃xA

∃xB

]

2. Reduction rules for variable functors

The general form of substitution is

SR X =⇒ X[F/E ],

where by X[F/E ] I mean the result of substituting the E-formula E for the
F-formula F in all occurrences of F in X.

The special forms of V-substitution are

(i) V 1
[

A

B

]

=⇒

[

Φ2AB

Ψ2AB

]
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(ii) V 1A =⇒

[

Φ2AA

Ψ2AA

]

(iii) V 2
[

A

B

] [

C

D

]

=⇒

[

Φ4ABCD

Ψ4ABCD

]

(iv) V 2
[

A

B

]

C =⇒

[

Φ4ABCC

Ψ4ABCC

]

(v) V 2A

[

B

C

]

=⇒

[

Φ4AABC

Ψ4AABC

]

(vi) V 2AB =⇒

[

Φ4AABB

Ψ4AABB

]

where Φ2, Ψ2 are 2-placed classical functors, and Φ4, Ψ4 are 4-placed clas-
sical functors definable by given functors (because of the truth-functional
completeness of classical logic). It is immediately clear that V-substitution
2(ii) is a subcase of 2(i), and V-substitutions 2(iv), 2(v), and 2(vi) are sub-
cases of 2(iii).

3. Reduction rules for variable quantifiers

The special forms of Q-substitution are

(i) ∀i x

[

A

B

]

=⇒

[

∀xΦ2AB

∀xΨ2AB

]

∀i xA =⇒

[

∀xΦ2AA

∀xΨ2AA

]

(ii) ∃i x

[

A

B

]

=⇒

[

∃xΦ2AB

∃xΨ2AB

]

∃i xA =⇒

[

∃xΦ2AA

∃xΨ2AA

]

Later special V-reduction and Q-reduction rules will be formu-
lated in such a way, that every NC-formula can be transformed into an
E-formula in a finite number of steps starting from the inside of a given
NC-formula.

Example: Let ¬ be a variable functor and ∀1 be a variable quantifier
characterized by the following reduction rules

¬

[

A

B

]

=⇒

[

∼ A

B

]

∀1 x

[

A

B

]

=⇒

[

∀x(B ⊃ A)

∀x(B ⊃ A)

]

and suppose the following NC-formula is given:

¬¬∀1x

[

Gx

Fx

]

≡ ∀x(Fx ⊃ Gx).
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140 Ingolf Max

Then we can definitely generate a corresponding E-formula using the follow-
ing steps:

¬¬

[

∀x(Fx ⊃ Gx)

∀x(Fx ⊃ Gx)

]

≡ ∀x(Fx ⊃ Gx) (∀1-reduction)

¬

[

∼ ∀x(Fx ⊃ Gx)

∀x(Fx ⊃ Gx)

]

≡ ∀x(Fx ⊃ Gx) (¬-reduction)

[

∼∼ ∀x(Fx ⊃ Gx)

∀x(Fx ⊃ Gx)

]

≡ ∀x(Fx ⊃ Gx) (¬-reduction)

[

∼∼ ∀x(Fx ⊃ Gx) ≡ ∀x(Fx ⊃ Gx)

∀x(Fx ⊃ Gx) ≡ ∀x(Fx ⊃ Gx)

]

(≡-reduction)

2.5. Semantics

Validity and inconsistency of CL-formulae. Let ⊢ A indicate that the
classical formula A is classically valid (is a tautology), i.e. valid in
the usual classical sense.
Furthermore, let 0A indicate that the classical formula A is not clas-

sically valid (is not a tautology).

Validity of E-formulae.

Definition 1. The E-formula
[

A
B

]

is E-valid (symb.: |=
[

A
B

]

) iff ⊢ A

and ⊢ B.

Theorem 1. |=
[

A
B

]

iff ⊢ (A ∧B).

Since all NC-formulae can be reduced to E-formulae this theorem means
that validity in Q is reducible to classical validity. Hence, what follows is
the representation of existence in a classical style.

Validity of NC-formulae

Definition 2. Let Z be any NC-formula and
[

AZ
BZ

]

that E-formula which

is the result of the complete reduction of Z, i.e. that both all occurrences of
variable functors and all occurrences of classical functors outside the scope
of brackets are eliminated:

|= Z iff |=

[

AZ
BZ

]

.
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3. A New Representation of the Square of Opposites

It has been widely discussed that there is apparently no perfect formal rep-
resentation of the traditional square of opposition by using modern formal
translations. Which circumstances are responsible for this situation?

3.1. The traditional square of opposites

Let us begin with a short characterization of the traditional situation: Usu-
ally propositions not compounded of other propositions are called categori-
cal . They have a subject term and a predicate term. In the famous example
“All men are mortal”, “men” is the subject term and “mortal” the predi-
cate term. According to their quantity, categorials can be subdivided into
universals (“All men are mortal”, “No men are mortal”) and particulars
(“Some men are mortal”), and according to their quality, into affirma-
tives (“All men are mortal”, “Some men are mortal”) and negatives (“No
men are mortal”, Some men are not mortal”).

The traditional four forms of categorial propositions are the following:

A-propositions universal affirmatives All F ’s are G’s
E-propositions universal negatives All F ’s are not G’s
I-propositions particular affirmatives Some F ’s are G’s
O-propositions particular negatives Some F ’s are not G’s

The traditional name square of opposites goes back to the fact that propo-
sitions with the same terms in the same order may be opposed in several
ways:

(a) A and O are contradictories A ⊣⊢∼ O
(cannot be jointly true or jointly false)

(b) E and I are contradictories E ⊣⊢∼ I

(c) A and E are contraries ⊢∼ (A ∧E), A ⊢∼ E
(cannot be jointly true)

(d) I and O are subcontraries ⊢ I ∨O, ∼ I ⊢ O
(cannot be jointly false)

(e) A and I are subalterns A ⊢ I and I0A

(f) E and O are subalterns E ⊢ O and O0E
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142 Ingolf Max

If we display this situation as a rectangle — with universals at the top,
particulars at the bottom, affirmatives on the left, negatives on the right —
we get the following picture:

Some F ’s are G’s Some F ’s are not G’s

All F ’s are G’s All F ’s are not G’s

subcontraries

contraries

subalterns subalternscontradictories

3.2. Modern translations

Let us try the usual translation into a Russellian formalism:

A: ∀x(Fx ⊃ Gx)
E: ∀x(Fx ⊃∼ Gx)
I: ∃x(Fx ∧Gx)
O: ∃x(Fx∧ ∼ Gx)

With respect to this translation (a) and (b) are valid, but (c) to (f) are not
valid.1

Leonard (cf. [4], 51) argues that the modern, classical logic is rich enough
to explicate the presupposition.2 Hence, we have to modify the translation
for A- and E-expressions:

A: ∀x(Fx ⊃ Gx) ∧ ∃xFx
E: ∀x(Fx ⊃∼ Gx) ∧ ∃xFx.

1 (a) and (b) are valid including the emty domain, whereas (c) to (f) are not valid
even in all non-empty domains.
2 Following Frege’s ([1], 40) terminology of “selbstverständliche Voraussetzung” with

respect to singular terms Leonard uses the notion “tacit, unexpressed presupposition”
with respect to general terms.
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But now we are faced with a dilemma: on the one hand, we get the result
that (c) to (f) are valid under this circumstances, on the other, we loose
the validity of (a) and (b) and, therefore, the definability of one quantifier
by using the other. Leonard argues that this two-faced solution is a “real
advance”:

Must we say that the traditional logic was in error? Not at all!
On the contrary, it may be held that the traditional logic was a quite
correct abstract system of logic; but that it was set up and developed
with a tacit, or unexpressed presupposition: namely, that its terms, S,
P, etc., were terms having existent exemplars.

At the same time, the modern logic marks a real advance. With its

symbolism for quantifiers, it can represent the universal presupposition

of the traditional logic. Hence, it can express its relevance when it is

relevant (as in inference from A to I, express irrelevance (by omitting

mention of it) when it is irrelevant (as in the inference from A to

not ∼ O and even explore the consequence of its falsity. This gives

the modern logic a much wider applicability then that enjoyed by the

traditional logic. ([4], 51)

It remains an unsolved puzzle to give a unique translation corresponding to
the whole square of opposites. If we take a universe of discourse (the F ’s)
for granted we are able to offer an apparently simple solution:

A: ∀xGx E: ∀x ∼ Gx I: ∃xGx O: ∃x ∼ Gx

It is easy to check the validity of (a) to (f) in the non-empty domains. Quine,
among others (e.g. [6], [2] and [3]), offers an axomatization of the first-order
predicate calculus called inclusive quantification theory , i.e. inclusive of the
empty domain. But there is an easy test regarding the empty domain:

An easy supplementary test enables us anyway, when we please to

decide whether a formula holds for the emty domain. We have only to

mark the universal quantifications as true and the existential ones as

false, and apply truth-table considerations. ([7], 177)

Using this “supplementary test” we have to acknowledge that our last pro-
posal does not work for (c) to (f) in the empty domain.

Strawson ([8], 170f.) offers a “formalistic solution” which is somehow
crazy and gives cause for searching for a better “realistic solution” which
“illuminates some general features of our ordinary speech”([8], 170). Here is
Strawson’s “formalistic solution” without further comment:
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144 Ingolf Max

A: ∀x(Fx ⊃ Gx) ∧ ∃xFx ∧ ∃x ∼ Gx
E: ∀x(Fx ⊃∼ Gx) ∧ ∃xFx ∧ ∃xGx
I: ∃x(Fx ∧Gx) ∨ ∃xFx∨ ∼ ∃xGx
E: ∃x(Fx∧ ∼ Gx) ∨ ∃xFx ∨ ∃x ∼ Gx.

Any tested solution seems to force us to the following alternative: either to
take existential preconditions for granted (tacit presuppositions), i.e. there
is no need for a syntactic or even semantic representation of such precon-
ditions, or to find a syntactic place and formalization of existence which
seems to be possible only by adding a conjunct: . . .∧∃xFx.3 But using logi-
cal conjunction forces us to give up the intuitive difference between explicit
(asserted) and implicit (presupposed) meaning.

My thesis is that a two-dimensional framework allows to leave this pseu-
do-forcing alternative. I offer a unifying syntactic approach without conjunc-
tion at the beginning. The empty domain is also taken into consideration.
But how does it work?

3.3. A two-dimensional representation

of the square of opposites

I interpret the A in the E-expression
[

A
B

]

as assertion, and the B as

presupposition without further qualification.

presupposition-preserving/internal negation: ¬

[

A

B

]

=⇒

[

∼ A

B

]

Given this situation it is useful to introduce the following pseudo 3-valued
reading of E-expressions:

1.
[

A
B

]

= true iff A = 1 and B = 1,

2.
[

A
B

]

= false iff A = 0 and B = 1,

3.
[

A
B

]

= incorrect iff B = 0.

Now it is clear that we should try the following translation of categorical
expressions:

A:

[

∀x(Fx ⊃ Gx)

∃xFx

]

3 Other candidates discussed in the literature are x = x and ∃x(x = a).
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E:

[

∀x(Fx ⊃∼ Gx)

∃xFx

]

I:

[

∃x(Fx ∧Gx)

∃xFx

]

O:

[

∃x(Fx∧ ∼ Gx)

∃xFx

]

.

It is sufficient to explicate existence by using ∃xFx in any of the four cases
(the B-part of E-expressions). The assertion part is identical with the Rus-
sellian translation above. But there is no conjunction-connection between
assertion/first line and existence presupposition/second line.
The next step consists in interpreting any negation whose argument con-

tains E-expressions as presupposition-preserving/internal negations.
This is in accordance with the idea that presuppositions are normally in-
variant regarding negation.

Finally, I introduce a variable functor with the following reduction prop-
erty:

[

A

B

]

→

[

C

D

]

=⇒

[

A ∧B ⊃ C

A ∧B ⊃ D

]

.

We can read the expression “|= X → Y ” as “FromX follows Y ”. Inference in
this sense allows the inclusion of implicit/presupposed premisses explicitly.
Combining these points we obtain a re-formulation of the logical properties
of the square of opposites:

(a) A and O are contradictories |= A→ ¬O and |= ¬O→ A

(b) E and I are contradictories |= E→ ¬I and |= ¬I→ E

(c) A and E are contraries |= A→ ¬E)

(d) I and O are subcontraries |= ¬I→ O

(e) A and I are subalterns |= A→ I and 6|= I→ A

(f) E and O are subalterns |= E→ O and 6|= O→ E.

To give an impression how the apparatus work I show the translation for
each case and the corresponding E-valid reductions:

(a) |=

[

∀x(Fx ⊃ Gx)

∃xFx

]

→ ¬

[

∃x(Fx∧ ∼ Gx)

∃xFx

]

{

⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃∼ ∃x(Fx∧ ∼ Gx)

⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃ ∃xFx

}
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|= ¬

[

∃x(Fx∧ ∼ Gx)

∃xFx

]

→

[

∀x(Fx ⊃ Gx)

∃xFx

]

{

⊢∼ ∃x(Fx∧ ∼ Gx) ∧ ∃xFx ⊃ ∀x(Fx ⊃ Gx)
⊢∼ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∃xFx

}

(b) |=

[

∀x(Fx ⊃∼ Gx)

∃xFx

]

→ ¬

[

∃x(Fx ∧Gx)

∃xFx

]

{

⊢ ∀x(Fx ⊃∼ Gx) ∧ ∃xFx ⊃ ∃x(Fx ∧Gx)
⊢ ∀x(Fx ⊃∼ Gx) ∧ ∃xFx ⊃ ∃xFx

}

|= ¬

[

∃x(Fx ∧Gx)

∃xFx

]

→

[

∀x(Fx ⊃∼ Gx)

∃xFx

]

{

⊢∼ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∀x(Fx ⊃∼ Gx)
⊢∼ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∃xFx

}

(c) |=

[

∀x(Fx ⊃ Gx)

∃xFx

]

→ ¬

[

∀x(Fx ⊃∼ Gx)

∃xFx

]

{

⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃∼ ∀x(Fx ⊃∼ Gx)
⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃ ∃xFx

}

(d) |= ¬

[

∃x(Fx ∧Gx)

∃xFx

]

→

[

∃x(Fx ⊃∼ Gx)

∃xFx

]

{

⊢∼ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∃x(Fx ⊃∼ Gx)
⊢∼ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∃xFx

}

(e) |=

[

∀x(Fx ⊃ Gx)

∃xFx

]

→

[

∃x(Fx ∧Gx)

∃xFx

]

{

⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃ ∃x(Fx ∧Gx)
⊢ ∀x(Fx ⊃ Gx) ∧ ∃xFx ⊃ ∃xFx

}

6|=

[

∃x(Fx ∧Gx)

∃xFx

]

→

[

∀x(Fx ⊃ Gx)

∃xFx

]

{

0∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∀x(Fx ⊃ Gx)
⊢ ∃x(Fx ∧Gx) ∧ ∃xFx ⊃ ∃xFx

}

(f) |=

[

∀x(Fx ⊃∼ Gx)

∃xFx

]

→

[

∃x(Fx∧ ∼ Gx)

∃xFx

]

{

⊢ ∀x(Fx ⊃∼ Gx) ∧ ∃xFx ⊃ ∃x(Fx∧ ∼ Gx)
⊢ ∀x(Fx ⊃∼ Gx) ∧ ∃xFx ⊃ ∃xFx

}

6|=

[

∃x(Fx∧ ∼ Gx)

∃xFx

]

→

[

∀x(Fx ⊃∼ Gx)

∃xFx

]
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{

0 ∃x(Fx∧ ∼ Gx) ∧ ∃xFx ⊃ ∀x(Fx ⊃∼ Gx)
⊢ ∃x(Fx∧ ∼ Gx) ∧ ∃xFx ⊃ ∃xFx

}

.

We observe that in regarding the second (presupposition) line we always get
an elimination of conjunction. In (a) and (b) the same happens regarding the
first (assertion) line. But to prove the assertion in (c) to (f) we necessarily
need the existence premise. Unlike Leonard’s strategy we now have a unified
approach to the traditional square of opposites. It depends only on the
innerlogical structure whether we have to use the represented existential
presupposition.

4. Outlook: Variable Quantifiers

Let us first recall the reduction rules for quantifiers in Q:

∀x

[

A

B

]

=⇒

[

∀xA

∀xB

]

∃x

[

A

B

]

=⇒

[

∃xA

∃xB

]

In this way these quantifiers do not yield the usual form of restricted classical
quantifiers: ∀x(Fx ⊃ Gx), ∃x(Fx ∧Gx), due to

6|= ∀x

[

Gx

Fx

]

≡ ∀x(Fx ⊃ Gx) and 6|= ∃x

[

Gx

Fx

]

≡ ∃x(Fx ∧Gx).

We can take an S5-like variable functor into consideration (cp. [5]):

2

[

A

B

]

=⇒

[

A ∧B

A ∧B

]

.

This allows the simulation of an aspect of quantifying–in difficulties:

6|= ∃x2

[

Gx

Fx

]

≡ 2∃x

[

Gx

Fx

]

because of

0 (∃xFx ∧ ∃xGx) ⊃ ∃x(Fx ∧Gx).

It is, of course, possible to introduce variable quantifiers which act like clas-
sical quantifiers:

∀1 x

[

A

B

]

=⇒

[

∀x(B ⊃ A)

∀x(B ⊃ A)

]

∃1 x

[

A

B

]

=⇒

[

∃x(B ∧A)

∃x(B ∧A)

]

.
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Then, it holds that

|= ∀1x

[

Gx

Fx

]

≡ ∀x(Fx ⊃ Gx) and |= ∃1x

[

Gx

Fx

]

≡ ∃x(Fx ∧Gx).

Despite the logical equivalence between an E-subformula and a CL-sub-
formula we have to make a clear distinction between the classical/external
negation (a functor) and the presupposition-preserving negation (a variable
functor):

|=∼ ∀1x¬

[

Gx

Fx

]

≡ ∃x(Fx ∧Gx) |=∼ ∀1x¬

[

Gx

Fx

]

≡ ∃1x

[

Gx

Fx

]

|=∼ ∃1x¬

[

Gx

Fx

]

≡ ∀x(Fx ⊃ Gx) |=∼ ∃1x¬

[

Gx

Fx

]

≡ ∀1x

[

Gx

Fx

]

Last but not least, it is worth noting that a little modification of the
system Q gives the possibility of introducing mixed variable quantifiers:

∀∃ x

[

A

B

]

=⇒

[

∀x(B ⊃ A)

∃x(B ∧A)

]

∃∀ x

[

A

B

]

=⇒

[

∃x(B ∧A)

∀x(B ⊃ A)

]

It is a matter of further research whether special variable quantifiers can be
interpreted as generalized quantifiers.
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