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FIVE THEORIES OF REASONING:
Interconnections and applications to mathematics

Abstract. The last century has seen many disciplines place a greater prior-
ity on understanding how people reason in a particular domain, and several
illuminating theories of informal logic and argumentation have been devel-
oped. Perhaps owing to their diverse backgrounds, there are several con-
nections and overlapping ideas between the theories, which appear to have
been overlooked. We focus on Peirce’s development of abductive reasoning
[39], Toulmin’s argumentation layout [52], Lakatos’s theory of reasoning in
mathematics [23], Pollock’s notions of counterexample [44], and argumen-
tation schemes constructed by Walton et al. [54], and explore some connec-
tions between, as well as within, the theories. For instance, we investigate
Peirce’s abduction to deal with surprising situations in mathematics, rep-
resent Pollock’s examples in terms of Toulmin’s layout, discuss connections
between Toulmin’s layout and Walton’s argumentation schemes, and sug-
gest new argumentation schemes to cover the sort of reasoning that Lakatos
describes, in which arguments may be accepted as faulty, but revised, rather
than being accepted or rejected. We also consider how such theories may
apply to reasoning in mathematics: in particular, we aim to build on ideas
such as Dove’s [13], which help to show ways in which the work of Lakatos
fits into the informal reasoning community.
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1. Introduction. Informal reasoning

1.1. Lessons from Norbury. In one of the few cases in which Sherlock
Holmes was mistaken, “The adventure of the yellow face” [11, pp. 28–46],
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Holmes’s client, Grant Munro, asks the detective for help in decipher-
ing his wife’s recent odd behaviour. Munro’s wife Effie was previously
married and lost her first husband and child to yellow fever, but now
lives in Norbury and is seemingly happy with her life and new husband.
Lately, however, she has requested a large sum of money, without elab-
orating on her reasons, undertaken mysterious outings in the middle of
the night, been spotted secretly visiting the occupants of a neighbour-
ing, only very recently occupied cottage and generally begun to behave
in an extremely guilty fashion. Furthermore, Munro has observed, in
strange circumstances, what appears to be the face of a man watching
him through a window of the neighbouring cottage (though it was viewed
from afar, and thus he cannot be sure that it was a man). From this
information, Holmes concludes, provisionally, that the mysterious figure
is Effie’s first husband, who in fact did not die, and is now blackmailing
her in some way. The truth is revealed later the same day in the form of
Effie’s daughter, and it transpires that she was the mysterious figure at
the window: the first husband did in fact die, but the daughter, whom
Effie was trying to keep secret, survived. These circumstances lead to a
happy ending, with Munro embracing the child and accepting her as one
of his own. Holmes’s flawed reasoning prompts one of his most humble
quotes:

Watson, if it should ever strike you that I am getting a little overcon-
fident in my powers, or giving less pains to a case than it deserves,
kindly whisper ‘Norbury’ in my ear, and I shall be infinitely obliged to
you. [11, p. 46]

Various aspects of the type of reasoning which Holmes follows have
been elucidated by informal logicians or argumentation theorists. They
hold that it is useful to describe the kind of reasoning that people per-
form (as contrasted with normative classical logic). In particular, the
last hundred or so years have seen a big surge in the development of
informal logic. For instance, Peirce [39] developed the notion of abduc-
tion, reasoning from effect to cause, which underpins all Holmesean argu-
ments. Toulmin [52] picked apart argumentation structures and identi-
fied different types of statement which in some way support a claim (the
mysterious figure is Effie’s first husband), such as a specific datum (Effie
has secretly visited the occupants of the cottage), a general statement, or
warrant (if one’s wife secretly goes out then she is hiding something), and
a qualifier on the claim (Holmes believed it provisionally, with a view to
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testing his hypothesis). Lakatos [23] describes the type of reasoning that
mathematicians employ, in particular characterising different reactions
to counterexamples (in the story above Holmes was quick to surrender
his hypothesis when faced with the daughter, but in other situations,
one may continue the train of thought  perhaps the daughter and the
first husband are hiding in the house?). Pollock [44] identified different
kinds of counterexample, defeaters that deny a conclusion, and defeaters
that attack the reason for believing the claim, but not the claim itself.
This type of reasoning is embedded in the story above: if the claim is
that there is a man in the cottage, based on the reason that Munro saw
a man in the window, then the fact that he was far away at the time,
and thus could not see very well, attacks the reason for believing his
claim (although there may still be a man in the cottage). Walton and
colleagues [55, 54] present a catalogue of argumentation schemes and
corresponding critical questions, including Argument from Evidence to a
Hypothesis [54, pp. 331f.] (see §7.5.1) which is perhaps closest to captur-
ing Holmes’s reasoning, but also many other schemes such as Argument
from Expert Opinion [54, pp. 312 f.] or Ethotic Argument [54, p. 336],
describing how we may place more weight on Holmes’s conclusion than
on that of others, since he is so rarely mistaken.1

1.2. The blind men and the elephant. It is probably impossible to ever
give a comprehensive theory of informal reasoning. In this regard we are
like blind men attempting to understand an elephant by each touching a
different part.2 The challenge is made more acute by its strong interdis-
ciplinary nature: many theorists of argumentation bring to the subject
a background in a particular domain, often law or philosophy, but also
science, medicine, mathematics, ethics, AI, etc. This background is often
reflected in the type of argumentation discussed (despite some claims of
generality). Our aim in this paper is to attempt to overlay some of the
most important descriptions of the elephant, exploring similarities both

1 The publication dates by the authors we discuss do not always reflect when they
were written. Roughly speaking, and to the nearest decade, Peirce developed his ideas
on abduction from the 1860’s onwards, Lakatos worked on heuristics for mathematical
discovery during his Ph.D. in the late 1950’s, Toulmin developed (and published) his
work on argument in the late 1950’s, Pollock started work on defeasible logic and
epistemic justification in the late 1960’s, and Walton embarked on his program of
argumentation schemes in the 1990’s

2 For an unusually detailed application of the fable to mathematics in general,
see [35, p. 38f.].
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between different descriptions and within a single description. In Part I
we summarise some salient theories, and in Part II we consider some
connections between them. (Readers who are familiar with the work
of Peirce, Toulmin, Pollock, Lakatos and Walton may safely proceed
straight to Part II.) We consider the theorists mentioned above who,
despite being amongst the best-known writers on informal reasoning,
make surprisingly few references to each other’s work (excepting per-
haps Walton, who brings a contemporary flavour to the paper). The
interdisciplinary nature provides a likely explanation of this oversight:
different motivations behind the development of their theories may have
led to relevant work being unread and some connections going unseen
(for example, in law the focus of argumentation might be on particular
cases, while in mathematics it might be a general rule that is tested).

Because of the importance of background motivation in guiding de-
scription, we must be honest about our own motivation. One of our
long-term goals is to show how theories of informal reasoning can be
applied to mathematical reasoning, an oft-neglected domain. This goal
contrasts claims, often by the theorists themselves, that mathematical
reasoning enjoys a special status and is exempt from such theories. We
take the opportunity to further our aim in this paper, by suggesting how
such theories may apply to mathematics and using examples from math-
ematics, where possible. Because of this focus we emphasise Lakatos’s
work in particular. Possibly because he published in the philosophy
of mathematics, none of the other authors we consider ever referenced
his work, so far as we have been able to determine. Thus we are keen
to point out the relevance of Lakatos’s work to the informal reasoning
community and to firmly embed his work within the field.3

1.3. A note on terminology. Argumentation theorists sometimes write
as though an argument has been pre-constructed and is now in a presen-
tational format designed for communication (perhaps originating with
Aristotle’s distinction between rhetorical syllogisms which are aimed at
persuasion and scientific syllogisms which are aimed at demonstration,
both a form of communication). This contrasts with work on informal
logic or logics of discovery, in which historical case studies are analysed in
order to glean general heuristics for discovery or reasoning at an individ-
ual level. In this paper we do not intend any such distinction, seeing an

3 A goal that others share: see, for example, [13].
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argument as a possibly private chain of thought, and thus argumentation
theory as a subfield of informal logic.

Part I. Some salient theories

2. Peirce’s theory of abduction

Peirce was educated as a chemist and worked for thirty years as a scien-
tist. In addition, he is also considered to be a philosopher, logician and
mathematician.

2.1. Peirce and argumentation Peirce dissected argument into three “ut-
terly irreducible” [39, 2.146]4 forms of reasoning: deduction, induction
and abduction. He saw these three forms as the only elementary modes
of reasoning there are [39, 8.209], and the building blocks for all other
arguments: for instance, he saw analogy as consisting of two stages in-
volving (i) induction and then deduction, and (ii) abduction and then
deduction [39, 2.513]. He distinguished these forms in the following way
[39, 2.623]:

2.1.1. Deduction

Rule All the beans from this bag are white.
Case These beans are from this bag.
∴ Result These beans are white.

2.1.2. Induction

Case These beans are [randomly selected] from this bag.
Result These beans are white.
∴ Rule All the beans from this bag are white.

2.1.3. Hypothesis [Abduction]

Rule All the beans from this bag are white.
Result These beans [oddly] are white.
∴ Case These beans are from this bag.

The three forms can also be described in terms of the three proposi-
tions below, where deduction uses modus ponens to reason from rule (3)
and specific case (1), to (2).

4 Following convention, our references to Peirce’s Collected Papers cite volume
and paragraph number, rather than page number.
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Pm (1)

Qm (2)

∀x(Px → Qx) (3)

It is explicative (analytic) and valid (the conclusion necessarily follows
from the premisses). Induction reasons from many specific cases of (1)
and (2), to general rule (3). (It may be an equivalence relation or the im-
plication may be reversed.) It is ampliative (synthetic) and invalid (the
conclusion does not necessarily follow from the premisses). Mathematical
induction, of course, is deductive reasoning. For a given property P and
natural number n, a mathematician would use the first rule below and
show that the second holds, in order to conclude, via modus ponens, the
third:

((∀n(Pn → P (n + 1))) ∧ P0) → ∀xPx

(∀n(Pn → P (n + 1))) ∧ P0

∀xPx

Abduction reasons from specific case (2) and rule (3) to a possible
explanation for (2), e.g., (1). It is ampliative (synthetic) and invalid.
The conclusion amplifies rather than explicates what is stated in the
premisses.

Peirce thought [39, 8.384] that there are two important characteristics
in each type of reasoning  security (the level of confidence we have in
inferences), and uberty (the value in productiveness). Roughly speaking,
these respectively decrease and increase from deduction to induction to
abduction.

2.2. A focus on abduction. For the purposes of this paper we focus on
abduction. This was regarded by Peirce as the cornerstone of all scientific
discovery: he argued that “Every single item of scientific theory which
stands established today has been due to Abduction.” [39, 8.172], and
“All the ideas of science come to it by way of Abduction.” [39, 5.145]
Peirce’s theory of abduction (also called Hypothesis, Retroduction and
Hypothetic Inference) evolved during his life, from about 1860 to 1911
and has since been developed, for example by Hanson [20]. There is no
single accepted account. Peirce [39, 5.188–89] describes its form as:

The surprising fact C is observed;
But if A were true, C would be a matter of course;
Hence, there is reason to suspect that A is true.
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Abduction consists of two tasks (these tasks are somewhat conflated
in the literature, with abduction being defined at different times as one
or the other):
• generation of different hypotheses
• selection of best hypothesis (to start testing)

Note that the selection in abduction only determines which hypoth-
esis we take on probation, or “set down upon our docket to be tried” [39,
5.602]. This is contrasted with eventual acceptance of a ‘hypothesis’ 
normally called something stronger such as ‘scientific law’  which we
hold to be true (at least for some time).

Peirce claimed that reasons for carrying out both of these tasks are
analogous and determined by what we intend to do with the hypothesis.
He argues that the central problem of abduction therefore comes down
to understanding the criteria for selection of the best hypothesis. These
criteria are:

1. it must explain the surprising fact
2. it must be subject to experimental testing
3. it must be economical; i.e., it must be worth our time to investigate.

We should consider:
(a) the cost of verifying or falsifying the hypothesis (should be low);
(b) the intrinsic value in the hypothesis (should be high)  where

value is defined as (i) its simplicity  follow the principle of Ock-
ham’s razor (all else being equal, prefer the simplest explanation);
and (ii) the likelihood of it being true (estimated by previous ex-
perience).

(c) the effect of the hypothesis on other projects

These are in order of priority. The first two, which Peirce considered to
be either satisfied or not, must be fulfilled before the third, which is on
a sliding scale, is considered. Since it is likely that we’ll have to test (by
induction) many hypotheses, it is important that we select those which
are most economical.

2.3. The role of surprise. Peirce attributes an important role to surprise:
“it is by surprise that experience teaches all she deigns to teach us”
[39, 5.51]. However, although he assumes that the initial fact to be
explained is surprising, this is not a necessary criterion in more recent
writing on abduction. For instance, diagnosis (reasoning from symptoms
to possible causes) is seen as an example of abductive reasoning, yet it
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is not necessarily surprising that someone has certain symptoms. There
is ongoing debate in the creativity world on the role of surprise and its
importance for discovery (see, for example [6, 32]).

2.4. Three stages of enquiry In Peirce’s later writings the three types
of reasoning become three stages of enquiry. Firstly abduction is used
to explain facts; secondly deduction is used to draw out testable con-
sequences of the explanations (make predictions); and finally induction
is used to test these consequences (compare predictions with observed
behaviour), thereby providing support for the explanation by failing to
falsify it, or disproving it by falsification.

3. Toulmin’s argumentation layout

Toulmin was a philosopher, author and educator, with a background in
moral reasoning: he analysed practical arguments which evaluated moral
issues. In Toulmin’s well-known model of argumentation [52], written as
a critique of formal logic, he argued that practical arguments focus on
justification rather than inference. He picked apart argumentation struc-
tures and showed how the traditional “Minor Premise, Major Premise, so
Conclusion” was too crude to represent the way in which people actually
argue. He identified different types of statement which in some way
support a claim C (the conclusion of the argument): data D (facts we
appeal to as the foundation of the claim, or minor premise), warrant
W (the statement authorising the move from the data to the claim, or
major premise), backing B (further reason to believe the warrant), and
a qualifier Q (such as “probably”, “certainly” or “necessarily”, which
expresses the force of the claim). There is only one type of statement in
Toulmin’s layout which opposes a claim: a rebuttal R, which Toulmin
defines as “the exceptional conditions which might be capable of defeat-
ing or rebutting the warranted conclusion” [52, p. 101]. (Reed and Rowe
argue that this can be interpreted in different ways: as a rebuttal to the
claim, a rebuttal to the warrant, a rebuttal to an implicit premise, or as
a statement which supports a refutation of the claim, and its function is
still under debate [47, pp. 15–19].) We show Toulmin’s general layout,
from [52, p. 103], in Figure 1 (initially the backing and warrant were on
the same side as the rebuttal, at some point during Toulmin’s develop-
ment, this flipped to the orientation we present here). Briefly speaking:
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• B is reason to believe W ;
• W and D together are reasons to believe C;
• R tells you when belief in C is not supported; and
• Q is how much to believe C.
This may be illustrated by one of Toulmin’s best known examples: Given
that Harry was born in BermudaD, we can presumablyQ claim that he is
BritishC , since anyone born in Bermuda will generally be BritishW (on
account of various statutes . . . B), unless his parents were aliens, sayR

(derived from [52, p. 104]).

So, presumably, Harry is a British subject

Both his parents were aliens/

he has become a naturalised

American/...

Since

subject
will generally be a British

A man born in Bermuda 

On account of

The following statutes and
other legal provisions:...

Unless

Harry was born 
in Bermuda

Figure 1. Toulmin’s layout.

4. Pollock’s two defeaters

Pollock was a philosopher who contributed to epistemology, philosophical
logic, cognitive science and AI. He pointed out [44] that within epistemic
reasoning, some reasons are conclusive reasons, i.e. they logically entail
their conclusions. But there are also non-conclusive reasons within epis-
temic reasoning that support their conclusions only defeasibly. These are
prima facie reasons. There are two types of considerations that defeat
prima facie reasons: defeaters that deny a conclusion P , and defeaters
that attack the reason for believing P , but not P itself. Pollock’s gen-
eral definition of a defeater is “If P is a reason for S to believe Q, R is a
defeater for this reason if and only if R is logically consistent with P and
(P ∧ R) is not a reason for S to believe Q”. He then specifies rebutting
and undercutting defeaters as follows:
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If P is a prima facie reason for S to believe Q, R is a rebutting
defeater for this reason if and only if R is a defeater (for P as a
reason for S to believe Q) and R is a reason for S to believe
not-Q;

If P is a prima facie reason for S to believe Q, R is an under-
cutting defeater for this reason if and only if R is a defeater (for
P as a reason for S to believe Q) and R is a reason to deny that
P would not be true unless Q were true [43, pp. 38 f.].

Hence a rebutting defeater is a reason for denying a claim which is sup-
ported by a prima facie reason; and an undercutting defeater attacks the
connection between a prima facie reason and the conclusion, rather than
attacking the conclusion directly5. This latter is interesting since it does
not offer any support for statements which refute the conclusion either.

His example argument is as follows: “suppose x looks red to me, but
I know that x is illuminated by red lights and red lights can make objects
look red when they are not. Knowing this defeats the prima facie reason,
but it is not a reason for thinking that x is not red” [44, p. 41].

Pollock claims [44, p. 41] that rebutting and undercutting defeaters
are the only two kinds of defeater necessary for describing the full com-
plexity of defeasible reasoning.

5. Lakatos’s heuristics for discovery

Lakatos was a philosopher of mathematics and science. He held a fal-
libilist picture of mathematics, and outlined various methods by which
mathematical discovery and justification can occur. These methods sug-
gest ways in which concepts, conjectures and proofs gradually evolve via
interaction between mathematicians. He demonstrated his argument by
presenting case studies of the development of Euler’s conjecture that for
any polyhedron, the number of vertices (V ) minus the number of edges
(E) plus the number of faces (F ) is equal to two, and Cauchy’s proof
of the conjecture that the limit of any convergent series of continuous

5 Pollock claims [44, p. 41] to have been the first, in [42], to explicitly point out
defeaters other than a rebuttal. However, Pollock does not seem to have been aware
of Lakatos’s work: [23] was initially published between May 1963 and August 1964
as a series of articles for the British Journal for the Philosophy of Science [25, 26, 27,
28], appearing six years before [42]. Since Lakatos’s work was in the philosophy of
mathematics, there is no reason why Pollock should have been aware of it.
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functions is itself continuous. In [23] Lakatos presented a rational re-
construction of the history of ideas in the philosophy of mathematics as
well as these two mathematical conjectures: this traces psychologism,
intuitionism, rationalism, historicism, pragmatism, dogmatism, Kant’s
idea of infallible mathematics, refutationism, inductivism and deduc-
tivism. He presented his work as a classroom discussion between (very
advanced) students: we follow his convention of naming the students
with letters from the Greek alphabet. We outline Lakatos’s methods
below.

The method of surrender consists of abandoning a conjecture in the
light of a counter-example.

Piecemeal exclusion deals with exceptions by excluding a whole class
of counterexamples. This is done by generalising from a counterexample
to a class of counterexamples which have certain properties. For instance,
the students generalise from the hollow cube to polyhedra with cavities,
and then modify Euler’s conjecture to ‘for any polyhedron without cav-
ities, V − E + F = 2’.

Strategic withdrawal uses positive examples of a conjecture and gen-
eralises from these to a class of object, and then limits the domain of the
conjecture to this class. For instance, the students generalise from reg-
ular polyhedra to convex polyhedra, and then modify Euler’s conjecture
to ‘for any convex polyhedron, V − E + F = 2’.

Monster-barring/monster-adjusting is a way of excluding an un-
wanted counterexample. This method starts with the argument that
a ‘counterexample’ can be ignored because it is not a counterexample,
as it is not within the claimed concept definition. Rather, the object is
seen as a monster which should not be allowed to disrupt a harmonious
theorem. For instance, one of the students suggests that the hollow cube
(a cube with a cube-shaped hole in it) is a counterexample to Euler’s
conjecture, since V − E + F = 16 − 24 + 12 = 4. Another student uses
monster-barring to argue that the hollow cube does not threaten the
conjecture as it is not in fact a polyhedron. The concept polyhedron
then becomes the focus of the discussion, with the definition being for-
mulated explicitly for the first time; as ‘a solid whose surface consists of
polygonal faces’ (according to which, the hollow cube is a polyhedron),
and ‘a surface consisting of a system of polygons’ (according to which,
the hollow cube is not a polyhedron) [23, p. 14]. Using this method, the
original conjecture is unchanged, but the meaning of the terms in it may
change. Monster-adjusting is similar, in that one reinterprets an object



18 Alison Pease, Andrew Aberdein

in such a way that it is no longer a counterexample, although in this case
the object is still seen as belonging to the domain of the conjecture. The
example in [23] concerns the star polyhedron. This entity is raised as a
counterexample since, it is claimed, it has 12 faces, 12 vertices and 30
edges (where a single face is seen as a star polygon), and thus V −E +F

is −6. This is contested, and it is argued that it has 60 faces, 32 vertices
and 90 edges (where a single face is seen as a triangle), and thus V −E+F

is 2. The argument then turns to the definition of ‘face’.

Lemma incorporation works by distinguishing global and local coun-
terexamples. The former is one which is a counterexample to the main
conjecture, and the latter is a counterexample to one of the proof steps
(or lemmas). A counterexample may be both global and local, or one
and not the other. When faced with a counterexample, the first step is
to determine which type it is. If it is both global and local, i.e., there is
a problem both with the argument and the conclusion, then one should
modify the conjecture by incorporating the problematic proof step as
a condition. If it is local but not global, i.e., the conclusion may still
be correct but the reasons for believing it are flawed, then one should
modify the problematic proof step but leave the conjecture unchanged. If
it is global but not local, i.e., there is a problem with the conclusion but
no obvious flaw in the reasoning which led to the conclusion, then one
should look for a hidden assumption in the proof step, then modify the
proof and the conjecture by making the assumption an explicit condition.

Proofs and refutations consists of using the proof steps to suggest
counterexamples (by looking for objects which would violate them). For
any counterexamples found, it is determined whether they are local or
global counterexamples, and then lemma incorporation is performed.

6. Walton’s argumentation schemes

Walton is an argumentation theorist and informal logician, with a par-
ticular interest in legal argumentation and AI. He and his colleagues
have catalogued a hundred or so argumentation schemes: “forms of ar-
gument that model stereotypical patterns of reasoning” [56, 195]. This
underlying idea has a lengthy history, dating back ultimately to Aris-
totle’s Topics, through a ‘topical tradition’ including Cicero, Boethius,
and many mediæval logicians, before eventually falling into disuse in the
early modern era [54, p. 275 f.]. This tradition has been resuscitated
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by modern informal logic. Several subtly different characterizations of
the argumentation scheme (or argument scheme) are now in use. We
shall investigate what has become the most influential treatment, that
of Walton and collaborators, which has been defended in several books
and articles since the early 1990s.

Walton’s argumentation schemes are presented as schematic argu-
ments, typically accompanied by critical questions. The critical ques-
tions itemize known vulnerabilities in the argument, to which its pro-
poser should be prepared to respond. In principle, they can always be
incorporated into the schematic argument as additional premisses [54,
p. 17]. This move has advantages in formal implementations of argu-
mentation schemes, but risks obscuring the dialectical context in which
the schemes are characteristically employed. Many of the schematic
arguments are special cases of modus ponens in which the hypothetical
premise lacks the force of a deductive implication. Hence most of Wal-
ton’s argumentation schemes are presumptive or defeasible, although
deductive inferences can also be understood as argumentation schemes.

Part II. Some salient connections

7. Abduction and other dangerous things

7.1. Abduction and mathematics. Peirce was a mathematician in his own
right, with a whole volume of collected papers devoted to mathematics
[39, vol. 4], developing notions of the infinite, continuity and real num-
bers independently of Dedekind and Cantor (compared in [12]). (His
contributions to mathematics have been highlighted by Carolyn Eisele:
see, in particular, her edition of [40].) It is somewhat surprising therefore,
that there is no indication that Peirce saw abduction as a method to be
employed in mathematics, reserving it for scientific discovery and explic-
itly saying that “Deduction must include every attempt at mathematical
demonstration” [39, 5.590], and that “Deduction is the only necessary
reasoning. It is the reasoning of mathematics” [39, 5.145]. In spite of
this, we strongly believe that Peirce’s abduction can be usefully applied
to mathematical thinking.

There are several candidates for what would constitute an initial, sur-
prising, fact in mathematics. The most obvious would be a conjecture,
C, where the explanation for C would be a proof plan A. This raises



20 Alison Pease, Andrew Aberdein

the question of what comes first, a theorem (conjecture) or its proof (or
proof idea). In some cases it seems that a proof plan came before a
conjecture, such as Euler’s proof of the Basel problem. This is the prob-
lem of finding the sum of the reciprocals of the squares of the natural
numbers.6 Euler drew an analogy between finite and infinite series, and
applied a rule about finite series to infinite series to find his conjectured
value of π2

6 , i.e., he calculated the value (found the conjecture) during
the proof attempt. However, there are many other cases in which a
conjecture exists without proof or even a proof idea: this is shown by
mathematicians having an intuition about (either belief in, or scepticism
of) open conjectures. For example, the four colour theorem was widely
believed to hold before it had been proved; likewise P = NP , although
still open, is widely held to be false. Thus, a mathematician may well be
in the position of trying to explain an initial ‘fact’. Lakatos discusses the
“heuristic precedence of the result over the argument” in his first footnote
on [23, p. 9], citing both modern and ancient mathematicians who hold
that “[. . . ] it is [. . . ] necessary to know beforehand what is sought” ([21,
Bk I, p. 129], cited on [23, p. 9]; see also [49] for discussion on this issue).
Mancosu [33] discusses ways in which mathematical activity mirrors the
occurrence of explanatory hypotheses in science, where mathematics is
seen as hypothetico-deductive in nature. Lakatos is one such writer who
views mathematics in this way, thus the overlap with Peirce’s develop-
ment of abduction: other writers include Mill, Russell and Gödel. Leng
[31, p. 105] also argues that some mathematical proofs are explanatory
and discusses whether theories of scientific explanation, in particular
inference to the best explanation, apply to mathematical explanation.

7.2. Surprise in mathematics. The role of surprise in mathematics mir-
rors that in science and other areas of discovery or invention. It might
be thought to lead to deeper theorems or more important revisions if the
counterexamples are surprising. Surprisingness in mathematics has been
used as a way of evaluating concepts and conjectures in automated the-
ory formation programs. Colton [10, p. 17] describes Epstein’s Graffiti
[15], which discards conjectures it deems unsurprising and his own HR
system [9], which can be set to prioritise surprising conjectures, where
surprisingness is based on semantic information about the concepts in-

6 That is, the exact value of the infinite series 1 + 1

4
+ 1

9
+ 1

16
+ 1

25
+ 1

36
+ . . . .

(see [50, p. 157–165] and [14, pp. 39–60] for commentary).
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volved. He also describes Lenat’s AM program [30], which measures the
surprisingness of concepts (a concept is considered to be more interesting
if it has a property which its parents do not have).

7.3. Abducting proofs and refutations. With our Lakatosian spectacles
on, the obvious initial, surprising, fact would concern the existence of
counterexamples.

We observe a surprising fact, C, that there are counterexamples
to our conjecture;
But if we perform piecemeal exclusion/monster-barring/monster-
adjusting/lemma-incorporation producing a modified conjecture,
A, then C would be a matter of course;
Hence, there is reason to suspect that A is true (in this context
‘useful’ might be a better word).

As an example, following Lakatos’s case study, piecemeal exclusion
can be presented as the following abductive argument.

The surprising fact, C, that “a hollow cube breaks the original
conjecture that for all polyhedra V − E + F = 2” is observed;
But if A = “for all polyhedra except those with cavities V −E+F =
2” were true, then C would be a matter of course;
Hence, there is reason to suspect that A is true.

Thus, different methods present different ‘hypotheses’, to be ‘set
down upon our docket’. We can apply Peirce’s criteria for evaluating
hypotheses to the possible responses. Firstly, they must account for the
counterexamples just found. Secondly, we must be able to test the result-
ing modified conjecture, proof or concept definition (here ‘testable’ re-
lates to some agreed subset of vocabulary or observations). Thirdly, the
modification should be worth investigating: we should be able to prove
or disprove it relatively easily, it should be the simplest explanation we
can find, there shouldn’t be any immediately obvious counterexamples
to the new conjecture, and it should relate to other conjectures, concepts
or proofs in our theory. These criteria are implicit in the discussion in
[23], for instance, when the students discuss the value of a new con-
cept definition. Abduction consists of generating different conjectures
which explain (i.e., allow us to deduce) the surprising fact that partic-
ular counterexamples break a previous conjecture, and deciding which
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of the conjectures are worth further examination. For strategic with-
drawal, Peirce’s abduction can be used to find an initial or a modified
conjecture where the ‘surprising facts’ are actually the supporting exam-
ples. For hidden lemma-incorporation, the initial surprising fact might
be that there is a counterexample which appears to be global but not
local. Peirce’s abduction might be used to identify a suitable assumption
which a mathematician is making in the proof, make it explicit and use
it to repair the conjecture. Note that for the method of proofs and
refutations, the discovery itself usually suggests the explanation.

Whether mathematics fits in with Peirce’s three-stage model of en-
quiry is another question: a possible breakdown in the Lakatosian style
of reasoning might be to firstly use induction to find a naïve conjecture
(Polya describes this process in terms of induction in [45, pp. 35–41]).
The existence of counterexamples is then discovered. Secondly, abduc-
tion is used to find a useful repair, such as a likely conjecture, which
explains the fact of a given counterexample breaking the naïve conjec-
ture (according to our argument above). Thirdly, deduction is used to
draw out and prove consequences of the new conjecture.

7.4. Peirce and Toulmin. Peirce’s abduction could be used to find and
elegantly state the conditions: for instance, rather than state the iso-
lated exception “Harry is not a British subject”, the rebuttal generalises
to “both his parents were aliens”. (This is exactly the same as going
from the ‘surprising’ fact that “the hollow cube does not have an Euler
characteristic of 2”, to finding, evaluating and stating the general rule
that Euler’s conjecture holds “except for polyhedra with cavities”.)

7.5. Walton’s abductive schemes The Argumentation Scheme for Argu-
ment from Verification below is more or less affirming the consequent,
and thereby Peirce’s abduction.

7.5.1. Argument from Verification.
Premise If A (a hypothesis) is true, then B (a proposition reporting an

event) will be observed to be true.
Premise B has been observed to be true, in a given instance.
Conclusion Therefore, A is true.
Critical Questions:

1. Is it the case that if A is true then B is true?
2. Has B been observed to be true?



Five theories of reasoning 23

3. Could there be some reason why B is true, other than its being
because of A being true? [54, pp. 331 f.]

Walton also offers something more specific:

7.5.2. Backward Abductive Argumentation Scheme.
Premise 1 D is a set of data or supposed facts in a case.
Premise 2 Each one of a set of accounts A1, A2, . . . , An is successful in

explaining D.
Premise 3 Ai is the account that explains D most successfully.
Conclusion Therefore, Ai is the most plausible hypothesis in the case.

7.5.3. Forward Abductive Argumentation Scheme.
Premise 1 D is a set of data or supposed facts in a case.
Premise 2 There is a set of argument diagrams G1, G2, . . . , Gn, and

in each argument diagram D represents premisses of an argument
that, supplemented by plausible conditionals and other statements
that function as missing parts of enthymemes, leads to a respective
conclusion C1, C2, . . . , Cn.

Premise 3 The most plausible (strongest) argument is represented
by Gi.

Conclusion Therefore, Ci is the most plausible conclusion in the case.

Critical Questions:

1. How satisfactory is Ai itself as an explanation of D, apart from the
alternative explanations available so far in the dialogue?

2. How much better an explanation is Ai itself as of D than the alter-
native explanations so far in the dialogue?

3. How far has the dialogue progressed? If the dialogue is an inquiry,
how thorough has the search been in the investigation of the case?

4. Would it be better to continue the dialogue further, instead of draw-
ing a conclusion at this point? [54, pp. 329 f.]

The first two questions seem to apply only to the first scheme, but (it
appears that) the last two are intended to apply to both.

8. Laying out the layout

Toulmin initially considered his model to describe non-mathematical ar-
gument. For instance, he argued that “mathematical arguments alone
seem entirely safe” from time and the flux of change, adding that:
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[. . . ] this unique character of mathematics is significant. Pure math-
ematics is possibly the only intellectual activity whose problems and
solutions are ‘above time’. A mathematical problem is not a quandry;
its solution has no time-limit; it involves no steps of substance. As a
model argument for formal logicians to analyse, it may be seducingly
elegant, but it could hardly be less representative. [52, p. 127]

However, he later represented Theaetetus’s proof that there are ex-
actly five platonic solids in his layout [53]. Toulmin’s argumentation
structure can represent more complex mathematical proofs. For example,
one of us has shown how the proof that there are irrational numbers α

and β such that αβ is rational [1], and the classical proof of the Inter-
mediate Value Theorem [2] may be so represented. In addition, Alcolea
[3] has used Toulmin’s argumentation structure to represent meta-level
mathematical argument, modelling Zermelo’s argument for adopting the
axiom of choice in set theory. Alcolea also presents a case study of Appel
and Haken’s computer assisted (object level) proof of the four colour
theorem. (An alternative representation of this theorem, which also uses
Toulmin’s layout, is suggested in [1]). In [2], one of us describes ways of
combining Toulmin’s layout to represent yet more complex arguments,
including the embedding of one layout within another, which is used to
represent the proof that every natural number greater than one has a
prime factorisation.

8.1. Toulmin and Peirce. At first reading, Toulmin’s layout seems in-
tuitive. However, even the process of representing deductive, inductive
and abductive argument in Toulmin’s layout requires some thought and
led us to alternative representations. In Figure 2, we show two inter-
pretations of deductive argument in Toulmin’s layout: interpretation (a)
follows the form of Toulmin’s example arguments, for instance the Harry
from Bermuda example; interpretation (b) is suggested by the way in
which Toulmin describes the components of his layout, in particular the
datum are the facts that we appeal to as a foundation for the claim and
the warrant comprises rules, principles, inference-licences, propositions
which show that the step from data to claim is legitimate [52, p. 98].
For inductive argument, shown in Figure 3 we show both the general
and one specific case (interpretations (a) and (b) respectively). Toul-
min describes Newton’s ideas on “using our observations of regularities
and correlations as the backing for a novel warrant” [52, p. 121], which
suggests that interpretation (b) is closer to what Toulmin had in mind.
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In Figure 4 we show two ways of using Toulmin’s layout to represent
abductive argument. Toulmin distinguishes between warrant-using and
warrant-establishing arguments [52, p. 120], where the former is an argu-
ment in which the data is used to establish some conclusion by appealing
to some accepted warrant, and the latter is an argument in which the
acceptability of a new warrant is established by employing it in a num-
ber of cases in which both data and conclusion have been independently
verified. In the warrant-establishing argument then, it is the warrant,
rather than the conclusion, which is novel and “on trial”. This latter
type of argument sounds very much like abduction, and corresponds to
interpretation (a) in Figure 4, where the backing might comprise the
other arguments in which this warrant has been employed.

QP
P Qnecessarily Qnecessarily

modus ponens

classical logic

P

Interpretation (a) Interpretation (b)

QP

deductive,inductive
or abductive reasons  
for holding the warrant

Figure 2. Two interpretations of deductive argument in Toulmin’s layout

Pa, Qa
Pb, Qb
Pc, Qc

Pa, Qa
Pb, Qb
Pc, Qc

In general, if a rule holds for a large number of
entities of a certain types and no counterexample
has been found, then we can say that probably
the rule holds for all entities of that type

uniformity of nature

probably

 

Interpretation (a) Interpretation (b)

probably Pd Qd

...

for all x, Px         Qx

for all x, Px           Qx

Figure 3. Using Toulmin’s layout to represent: (a) general
and (b) specific inductive argument

8.2. Toulmin and Lakatos. In figures 5 and 6 we show examples of how
Toulmin’s layout can be used to represent different levels of Cauchy’s
proof of Euler’s conjecture in Lakatos’s [23]. Note that one attractive as-
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Q Pprobably

unless we have another rule,

Pprobably

unless we have another rule,

Q

abduction

people reason

Interpretation (b) 

Peirce’s theory of how

Interpretation (a) 

P        Q

P        Q

P          Q, in which case, 
maybe P

P          Q, in which case, 
maybe P

Figure 4. Two interpretations of abductive argument in Toulmin’s layout

pect of Toulmin’s layout is that it can be recursive: the backing, warrant,
data and rebuttal can all themselves be the claim in another argument
(part of the warrant in Figure 6 is the claim in Figure 5).

BACKING

Scientific induction

WARRANT

We can extract general truths about

polyhedra if we can perform a thought

experiment on a particular type of polyhedron

We can remove the face

of a cube and stretch it flat

on a board

DATA

So,

QUALIFIER

probably

Except polyhedra

with cavities

REBUTTAL

CLAIM

Any polyhedron, after having

a face removed, can be

stretched flat on a board

Figure 5. Example of how the first step of Cauchy’s proof of Euler’s conjecture
can be represented in Toulmin’s layout.

However, the roles that each aspect of the layout play can be am-
biguous, and it is possible to express the same argument in multiple
ways. All of Toulmin’s examples in [52, Ch. 3] concern claims about
specific “facts”, supported by specific facts (data) and general princi-
ples (the warrant) which may themselves be supported (the backing)
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BACKING

Step 1

Step 3
Step 2

experiment  on the cube
We can perform this thought

WARRANT

for all platonic (regular)

solids, V − E + F = 2

DATA

probably
V − E + F = 2

for all polyhedra, 

CLAIM

So,

with cavities
Except polyhedra  

QUALIFIER

REBUTTAL

Figure 6. A representation of Cauchy’s proof of Euler’s conjecture, using Toul-
min’s layout, where steps 1–3 are as described in [23, p. 7], taking into consid-
eration the first counterexample. The data are the facts which initially inspire

the conjecture in Lakatos’s 1976.

or may have exceptional conditions (the rebuttal). Toulmin gives the
following example claims: Harry’s hair is not black (p. 97 ibid.); Wilkins
has committed an offence against the Road Traffic Acts (p. 97 ibid.);
Peterson is not a Roman catholic (p. 111 ibid.); Jack has difficulty in
walking (p. 115 ibid.); Anne has red hair (p. 124 ibid.); and, in applied
mathematics, “on level ground this wall will cast a shadow of depth 101

2
ft.”, based on data the height of the wall is 6 ft. and the sun is at an angle
of elevation of 30◦, the warrants are methods of geometrical optics (and
the backing presumably is proof of these methods) (p. 137 ibid.). These
examples suggest that Toulmin intended the input/output (data/claim)
relation to be specific facts and the warrant the bridge between the two.
In this case, the claim in Figure 6 becomes the warrant. In Figure 7 we
represent the arguments surrounding Cauchy’s conjecture in a way more
faithful to Toulmin’s own examples.

8.3. Toulmin and Pollock. In Figure 8 we show how Pollock’s undercut-
ting example might be represented in terms of Toulmin’s layout. Given
the datum that an object x looks red to me, I use the warranted rule
that if x looks red to me then I have reason to believe that it is red
(backed up by the rule that perception sensors are normally reliable)
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So,

with cavities
Except polyhedra  

REBUTTAL

BACKING

WARRANT

probably For this solid, V − E + F = 2

V − E + F = 2

for all polyhedra, 

step 1
step 2
step 3

DATA CLAIMQUALIFIER

this solid is a polyhedron

Figure 7. A different representation of the work discussed
in [23] in Toulminian terms.

to conclude that probably, unless x is illuminated by red lights, x is
red. We further discuss the relationship between Toulmin’s rebuttals
and Pollock’s rebutters and undercutters in §12.3.

perception sensors

are normally reliable

if x looks red to me

then I have reason to

believe that it is red

x looks red to me probably x is red

unless x is

illuminated

by red lights

Figure 8. A representation of Pollock’s undercutting example
in terms of Toulmin’s layout.

8.4. Toulmin and Walton. There is at least a family resemblance between
argumentation schemes and Toulmin layouts. Most schemes could be
expressed as layouts: the data and warrant can be seen as corresponding
to premisses,7 the claim (suitably modified by the qualifier) to the con-

7 Some argumentation theorists, however, such as Hitchcock [22], have argued
that a warrant is not a premise, and that Toulmin’s introduction of the new termi-
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clusion, and the backing and rebuttal both comprise possible answers to
critical questions. However, since schemes are generic and layouts are
(typically) specific (discussed in §8.2), it may be more productive to see
layouts as corresponding to instantiations of schemes. The translation
seems straightforward, at least when going from a layout to a scheme.
Going the other way clearly poses some questions: Which premisses are
data and which warrant? Which is claim and which is qualifier? Which
critical questions are backing and which rebuttal? All of these arise in
any application of layouts, not just to instantiations of schemes. The
first question is a known problem for the application of Toulmin; we also
address this in our figures 2, 3 and 4. Rather facetiously, we may answer
the second question by saying that the qualifier is usually an adverb!
However, there is a genuine problem of what to do when qualifiers are
absent. As Matthew Inglis points out [personal communication], this is
one of the weaknesses of the scheme approach, but could presumably be
remedied by insisting on an explicit qualifier in every scheme. The third
question is tougher. The difference between backing and rebuttal may
track that between critical questions where the burden of proof is on
the proponent or respondent, respectively (a distinction explored in [56,
p. 209]). So the backing would comprise satisfactory answers to critical
questions which the proponent ought to have worked out in advance, and
the rebuttal defeating answers to critical questions the proponent need
not have prepared against. Consider the following passage:

The trustworthiness and consistency critical questions seem to have a
positive burden of proof attached to the side of the questioner. The
other [expertise, field, opinion, backup evidence] critical questions can
just be asked out of the blue, so to speak. Once asked, this type of
critical question must be given an appropriate answer or the original
argument falls down. With these critical questions, the burden of proof
remains on the side of the proponent of the appeal to expert opinion.
Merely asking the question makes the original argument default. Asking
the trustworthiness or consistency critical questions is a harder task.

[56, p. 209]

nology improved on the traditional major premise-minor premise framework in terms
of support for conclusions. Thus, Hitchcock argues, blurring the distinction between
warrant – something in accordance with which the conclusion follows – and premise –
something from which the conclusion follows – would be a step backward: “A warrant
is an inference-licensing rule, not a premise” [22, p. 71].
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Walton and Reed go on to say:

According to this solution, [. . . ] [expertise, field, opinion, and backup
evidence, where the burden is on the proponent] for the appeal to expert
opinion attack some aspect of one of the premisses in a way that under-
cuts the inference structure on which the argument is based. The re-
maining two critical questions bring in additional assumptions on which
the argument is based, but at a deeper level. It is more of a background
assumption that the expert is trustworthy, and is not biased, at least
too heavily. And it is also more of a background assumption that what
the expert says is consistent with what the other experts in the field
say. Both assumptions can be violated and the argument may not be
too badly off. But if either can be backed up strongly enough, it can
certainly attack and destroy the original argument.

[56, p. 210, our emphasis]

This is terminologically unhelpful, since Walton and Reed talk of
undercutting not by a rebuttal but by the absence of backing, and of
background assumptions not in the backing but as contradicting the
rebuttal. But we think it makes sense. The absence of backing undercuts
one of the premisses (the warrant, specifically); a successful rebuttal
contradicts an unstated background assumption.

One solution may be to argue that backing and rebuttal are inter-
changeable, or rather complementary: the backing asserting that the
rebuttal does not apply. However, this is problematic. For instance, in
the case of Harry and Bermuda, as the statutes have changed since 1958,
that may undercut the claim, but ‘unless the statutes have changed’ does
not seem like a rebuttal.8 Conversely, ‘Harry’s parents were not aliens’
has no place in the backing, as it does not support the warrant.

9. Lakatos and his refutations

9.1. Lakatos and Peirce. In terms of background, Lakatos is closest to
Peirce: both were describing techniques for discovery, both emphasised
the importance of guessing, both ascribed importance to the role of
surprise in discovery and, while Peirce was describing heuristics that
people use for scientific discovery and Lakatos the mathematical case,

8 The statutes have certainly changed. By virtue of the British Nationality Act
1981 and the British Overseas Territories Act 2002, Harry would now be a British
Overseas Territories citizen, not a British subject.
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Lakatos (better known for his philosophy of science than his mathemat-
ics) argued that “Mathematical heuristic is very like scientific heuristic 
not because both are inductive, but because both are characterised by
conjectures, proofs and refutations” [23, p. 74]. In a footnote Lakatos
praises Polya for his “correct vision of deep analogy between scientific
and mathematical heuristic” [ibid., p. 74], criticising him only for his
view that science, and therefore mathematics, is inductive: “... being
indoctrinated that the path of discovery is from facts to conjecture, and
from conjecture to proof (the myth of induction), you may completely
forget about the alternative: deductive guessing.” [ibid., p. 73]. This
sounds very much like Peirce.

9.2. Lakatos and Walton We see many of the undercurrents of Walton’s
schemes flowing through the discussion in [23], such as his Pop Scheme
[54, p. 311], in which pressure from a particular group to accept a con-
clusion leads to its acceptance: this mirrors the atmosphere in Lakatos’s
discussion, in which members of the group all accept a specific definition,
for the sake of the argument. (Walton doesn’t specify that the accepter
be a member of the group, although this is the case in [23]; another dif-
ference is that Walton is describing acceptance of conclusions, Lakatos
acceptance of definitions.) Walton’s Ethotic Argument [ibid., 41, pp. 336
f.] could be seen reflected in the authority which Lakatos grants the
teacher in his discussion, whose extra prestige as compared to that of
the students leads his/her words to carry more weight (this varies from
Walton’s scenario in that the extra weight is granted by authority as op-
posed to moral character, but is the same principle). Walton’s Argument
from Analogy [ibid., 7, pp. 315 f.] could be seen as describing the initial
formulation of Euler’s conjecture, in which a relationship between edges
and vertices is noticed in two-dimensional shapes, and thus it is con-
jectured that an analogous relationship may exist for three-dimensional
shapes ([23, p. 6], see also [37]). Indeed, one could re-write much of the
discussion in [23] in terms of Walton’s schemes.

However, the schemes in Walton’s catalogue do not describe Laka-
tos’s explicit and most important methods. The main difference is that
the conclusions of almost all of Walton’s schemes (excepting only Argu-
ment from Precedent [ibid., 57, pp. 344 f.], described in Section 12.4.2
below) result in a recommendation for acceptance or rejection of a con-
clusion (some with qualification, for instance, “there is reason in favour
of A” [ibid., 4, pp. 331 f.]). No suggestions are made for what to do next;
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in particular, how to modify an argument that one has rejected. Con-
versely, Lakatos specialises in heuristics which describe ways in which
flawed arguments may be repaired.

In Sections 10 to 13 we consider both inter- and intra-theory connec-
tions between Lakatos’s theory and other theories of argumentation.

10. Lakatos’s surrender method

While falsification of hypotheses might be thought more characteristic
of empirical science, Lakatos’s account of the development of the Euler
Conjecture describes exactly this type of reasoning, leading to his view
that some aspects of mathematics proceed in a quasi-empirical fashion
[23, p. 5]. He considers his method of surrender, to abandon a conjecture
when faced with a counterexample (“Scrap the false conjecture, forget
about it, and try a radically new approach” [ibid, p. 13]) to be the least
productive of those he identifies. This method is Popper’s naïve falsifica-
tionism applied to mathematics, and corresponds to Pollock’s rebutting
defeater, and to Walton’s scheme for Argument from Falsification. (To-
gether with the Argument from Verification shown above (§7.5.1) these
schemes comprise Argument from Evidence to a Hypothesis.)

Argument from Falsification.

Premise If A (a hypothesis) is true, then B (a proposition reporting an
event) will be observed to be true.

Premise B has been observed to be false, in a given instance.
Conclusion Therefore, A is false.

Critical Questions:

1. Is it the case that if A is true then B is true?
2. Has B been observed to be false?
3. Could there be some reason why B is true, other than its being

because of A being true? [54, pp. 331 f.]

Let A be Euler’s conjecture and B the proposition “the hollow cube
is Eulerian”, then the scheme is simple modus tollens. Argument from
Verification is the chain of reasoning used for supporting examples. Of
the critical questions for Argument from Falsification, negative responses
to CQ1 correspond to monster-barring and to CQ2 to monster-adjusting
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(we describe both in §11). A negative response to CQ3 does not seem
to have an analogue in [23].

11. Lakatos’s definition-changing methods

Definitional change can occur within an argument, for instance, an ar-
gument in which a concept is defined differently in the premisses than in
the conclusion, or the extension of a concept is unclear. Analysis of such
changes dates back at least to Socrates and Plato’s development of the
concept of justice in The Republic.9 This is one of the cornerstones of
Lakatos’s work, reflected in his methods of monster-barring and monster-
accepting (subsequently developed into monster-embracing or accepting)
in which borderline cases can be used to further understanding of a con-
cept. It is perhaps surprising that neither Peirce, Pollock nor Toulmin
consider ambiguity of terms, and that only two of Walton’s schemes
address anything approaching it: Argument from Vagueness of a Verbal
Classification and Argument from Arbitrariness of a Verbal Classification
(sections 11.2.1 and 11.3.1 below).

11.1. The monster-barring method. Lakatos’s monster-barring method
exploits any ambiguity in concepts, in order to defend a conjecture. In
the first statement of Euler’s conjecture, that for all polyhedra, V − E +
F = 2, it is assumed that the extension of polyhedron is known, i.e., we
can distinguish between objects which are and are not polyhedra, even
if the definition is not explicitly agreed. Once an object of ambiguous
status arises, students do explicitly define polyhedra, i.e., they start
with a vague definition and make it more specific; although the new
definition may include ambiguous sub-concepts such as polygon, area,
and edge, whose definitions are also open to debate. The only criterion
for a candidate definition is that it distinguish the agreed polyhedra from
agreed non-polyhedra. The method of monster-adjusting also exploits

9 Simonides proposes that “it is right to give back what is owed” [41, pp. 8–9].
This initial statement is questioned by Socrates with the counterexample of someone
borrowing weapons from a friend who subsequently goes insane, in which case it would
not be right to return the weapons. The discussion in [41] then turns to what it means
to give back what is owed, with Polemarchus suggesting that people owe their friends
good deeds, and their enemies bad ones. The dialogue later turns to what the concept
of doing right means, and leads into Plato’s treatment of justice. Larvor [29] argues
that this discussion is an example of Lakatos’s monster-barring.
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ambiguity in concepts, but reinterprets an object in such a way that it
is no longer a counterexample. The example in [23] concerns the star
polyhedron, which is raised as a counterexample since, it is claimed, it
has 12 faces, 12 vertices and 30 edges (where a single face is seen as a star
polygon), and thus an Euler characteristic of −6. This is contested, and
it is argued that it has 60 faces, 32 vertices and 90 edges (where a single
face is seen as a triangle), and thus an Euler characteristic of 2. The
argument then turns to the definition of ‘face’. Monster-adjusting can be
seen as a type of monster-barring, where the concept in question may be
a concept in the consequent of an implication or equivalence conjecture,
rather than the domain. If we formalise monster-barring as follows:
from conjecture ∀x(Px → Qx), and (known) counterexample m such
that Pm and ¬Qm, (re)define P as P ′ so that for the m in question,
¬P ′m. Monster-adjusting can be seen in terms of this formalisation,
where Q is (re)defined as Q′ in such a way that Q′m.

11.2. Ambiguity in mathematics. The existence of ambiguity can be
a legitimate critique of mathematical argument. Lakatos’s work has
demonstrated how much mathematics can be understood as progres-
sively sharpening the initial vagueness of terms in a mathematical prob-
lem or hypothesis. Increases in rigour might often be understood in
such terms.10 Conversely, vagueness can vitiate mathematical discourse
irreparably: consider Hilbert’s Fourth Problem, read at the International
Congress of Mathematicians in 1900, to construct and study the geome-
tries in which the straight line segment is the shortest connection between
two points, in which notions of distance, or metrics (and thus the meaning
of shortest) are so vague that the problem is considered insolvable in its
given form [17, p. 287]. (Nonetheless, much interesting mathematics has
been developed from this problem, which was at least in part Hilbert’s
aim.) Another example can be found in Hilbert’s sixth problem: to
treat in the same manner, by means of axioms, those physical sciences
in which mathematics plays an important part; in the first rank are the
theory of probabilities and mechanics. The scheme for Argument from
Vagueness of a Verbal Classification is a step in the right direction, but

10 Grosholz [18] discusses ambiguity in mathematics, using historical case studies
of language and notation in areas of mathematics including group theory, geometry,
mechanics, topology and set theory, to show that representation and ambiguity play
key roles in mathematical discovery, and arguing that various advances have been
made because of the irreducible ambiguity in notations and diagrams.
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is still not sufficient, not least because the only response to vagueness
suggested is rejection of the argument. Presumably the proponent then
advances a less vaguely expressed argument, but Walton et al. make no
suggestion as to how, as opposed to Lakatos’s suggested heuristics.

11.2.1. Argument from Vagueness of a Verbal Classification.
Premise If an argument, Arg occurs in a context of dialogue that re-

quires a certain level of precision, but some property F that occurs
in Arg is defined in a way that is too vague to meet the requirements
of that level of precision, then Arg ought to be rejected as deficient.

Premise Arg occurs in a context of dialogue that requires a certain level
of precision that is appropriate for that context.

Premise Some property F that occurs in Arg is defined in a way that
is too vague to meet the requirements of the level of precision appro-
priate for that context.

Conclusion Therefore, Arg ought to be rejected as deficient.
Critical Questions:

1. Does the context of dialogue in which Arg occurs demand some par-
ticular level of precision in the key terms used?

2. Is some property F that occurs in Arg too vague to meet the proper
level or standard of precision?

3. Why is this degree of vagueness a problem in relation to the dialogue
in which Arg was advanced? (cf. [54, pp. 319 f.])

11.3. Arbitrariness in mathematics. It might seem to be a category mis-
take to criticise mathematics for its arbitrariness: at least on one under-
standing, all of mathematics is arbitrary. Arbitrariness is clearly a telling
criticism of the application of mathematics. Consider the familiar case
of a carefully worked out model of dubious fit to the phenomenon under
investigation. Here the arbitrariness is in the assumptions that were
made before the mathematics was begun. But Lakatos’s complaints of
ad hoc-ness, in monster barring for example, might also be understood
as exemplifying this scheme. This criticism is reflected in the bitter
complaining about definitions, for instance, “I admire your perverted
ingenuity in inventing one definition after another as barricades against
the falsification of your pet ideas.” [p. 16], and definitional change called
“linguistic tricks” [pp. 19, 20], “rescue-definitions” [p. 20], “weird shifts
in meaning” [p. 21], “mutilation of concepts”, [p. 22], and an explicit ref-
erence to “arbitrary definitions” [p. 50] (clearly this definitional change is
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not arbitrary with respect to the conjecture under discussion, rather the
criticism is that the proposed new meanings are arbitrary in general).
Certainly avoidance of arbitrariness in the latter sense is desirable, but
again Walton offers no response other than rejection.

11.3.1. Argument from Arbitrariness of a Verbal Classification.
Premise If an argument, Arg occurs in a context of dialogue that re-

quires a non-arbitrary definition for a key property F that occurs in
Arg, and F is defined in an arbitrary way in Arg, then Arg ought to
be rejected as deficient.

Premise Arg occurs in a context of dialogue that requires a non-arbi-
trary definition for a key property F that occurs in Arg.

Premise Some property F that occurs in Arg is defined in a way that
is arbitrary.

Conclusion Therefore, Arg ought to be rejected as deficient.
Critical Questions:

1. Does the context of dialogue in which Arg occurs require a non-
arbitrary definition of F?

2. Is some property F that occurs in Arg defined in an arbitrary way?
3. Why is arbitrariness of definition a problem in the context of dialogue

in which Arg was advanced? (cf. [54, p. 320])

11.4. Methodology in mathematics. The section on monster-barring in
[23] is interspersed with heated debate on methodology: whether mathe-
maticians should study typical, ordinary examples and generate interest-
ing and useful theorems about these, or focus on boundary cases, study-
ing mathematics in its “critical state, in fever, in passion” [23, p. 23].
The teacher concludes that monster-barring is not a valid method; in-
deed, it is presented as the least sophisticated method after the method
of surrender. The main criticisms are that monster-barrers are anti-
falsificationists who defend a conjecture at any cost, which makes the
conjecture deteriorate into meaningless dogma, and that the method
is ad hoc, since the border between monsters and counterexamples is
done in fits and starts. “Using this method one can eliminate any coun-
terexample to the original conjecture by a sometimes deft but always ad
hoc redefinition of the polyhedron, of its defining terms, or the defining
terms of its defining terms. We should somehow treat counterexamples
with more respect, and not stubbornly exorcise them by dubbing them
monsters” (Teacher, in [23, p. 23]). The Duhem-Quine thesis [46], that
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a scientific theory cannot be tested in isolation since a test of one theory
always depends on other assumptions or hypotheses, is also relevant to
this discussion. We cannot falsify a conjecture, rather we can show that
a collection of assumptions, concepts, counterexample and conjecture is
internally inconsistent. The choice then arises as to which of the col-
lection we reject. Monster-barrers would argue that we should reject
the counterexample and certain concept definitions, and retain the con-
jecture, whereas critics of monster-barring might argue that we should
reject the conjecture under discussion.

12. Lakatos’s conjecture-changing methods

12.1. Lakatos’s exception-barring methods. Lakatos’s exception-barring
methods, piecemeal exclusion and strategic withdrawal, are presented
early on in [23, pp. 24–30]; a sign that they are considered unsophisti-
cated and inferior to later methods. However, they are worth considering
in some detail, because their legacy can be seen throughout the book:
his later methods of lemma incorporation are essentially proof-oriented
versions of exception-barring. This is made explicit by Lakatos in his
distinction between “primitive exception-barring”, which makes no use
of a proof, and lemma-incorporation:

The best exception-barrers do a careful analysis of the prohibited area...
in fact your method [the method of lemma-incorporation] is, in this
respect, a limiting case of the exception-barring method [. . . ].

[23, p. 37]

The exception barring methods target propositions which are “hope-
fully false” (as opposed to ones which are true  which should be ac-
cepted, or “hopelessly false”  which should be rejected  p. 26, ibid.),
i.e., propositions which hold for most but not all examples considered.
They consist in determining the domain of validity for a claim, and
result in a modified version of a conjecture (or claim). This may be done
by identifying specific counterexamples, generalising from these to form
a class of exceptions and excluding this class in a Toulminian fashion
(Toulmin’s rebuttal seems to be written with exactly this situation in
mind; stating the conditions under which a claim does not hold). A
second approach is to “withdraw to safety”, by generalising from some
specific supporting examples and limiting the claim to only this class.
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Both methods are criticised as resulting in a “chaotic position” (p. 25,
ibid.), since we can neither know when all exceptions have been identified
and safely excluded, nor even whether some may lie within our suppos-
edly safe stronghold. The latter method is further criticised as even if
the boundaries are drawn so narrowly as to be certain of the truth of our
proposition, if there are further supporting examples which lie outwith
the boundaries then we have not succeeded in our task: the object of
the exercise is to draw the right boundaries  as wide as possible and no
wider  rather the safest boundaries, which result in a dull conservatism
and a failure to illuminate.

12.2. A logical representation of exception-barring. Logically, these
methods can be expressed as follows: given conjecture ∀x(Px → Qx),
a set of counter (or negative) examples Neg such that ∀n ∈ Neg(Pn ∧

¬Qn), and a set of positive examples Pos such that ∀p ∈ Pos(Pp ∧ Qp);
(i) find a concept C1 such that for all n, C1n, and for all p, ¬C1p,

and modify the conjecture to ∀x((Px ∧ ¬C1x) → Qx) (piecemeal
exclusion), and

(ii) find a concept C2 such that for all p, C2p, and for all n, ¬C2n,
and modify the conjecture to ∀x((Px ∧ C2x) → Qx) (strategic with-
drawal).

These two methods are logically equivalent if ∀x(Px → (C1x ∨ C2x)).
For instance, given the property of being an integer (P ), the property
of being a number with an even number of divisors (Q), and an ini-
tial conjecture: ∀x(Px → Qx), this could be modified by examining
counterexamples (1,4,9,16, ...), generalising from them to the property
of being a square number (C1), and excluding this class from the do-
main to get ∀x((Px ∧ ¬C1x) → Qx) (all integers except squares have
an even number of divisors). Alternatively, the same conjecture could
be formed by using strategic withdrawal to generalise from supporting
examples (2,3,5,6,...) to the property of being a non-square number
(C2), resulting in the modified conjecture ∀x((Px ∧ C2x) → Qx) (all
non-square integers have an even number of divisors). This possibility
for logical equivalence is not noted by Lakatos, maybe because none of
his examples of exception-barring result in two concepts where one is the
complement of the other. The fact that this is an equivalence theorem
in mathematics, i.e., ∀x((Px ∧ C2x) ↔ Qx) (x is a non-square integer if
and only if it has an even number of divisors) also raises the question of
how these methods apply to types of conjecture other than implications.
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Again, this is not considered by Lakatos, and is also often overlooked
in argumentation literature: all examples of Toulmin’s claims are of the
type Pa, and his warrants are generally implications ∀x(Px → Qx).11

12.3. A mediæval treatment of defeasibility. Syncategorematic terms
were a preoccupation of many scholastic logicians from the twelfth cen-
tury until the eclipse of traditional logic in the early modern era. These
are terms which have no non-logical sense but which affect the logical
form of a proposition. Reflection on these terms led to a doctrine of
exponible propositions: propositions which could be analysed as con-
junctions or disjunctions of simpler propositions. The scholastic analy-
sis of exceptive syncategorematic terms, such as “besides”, foreshadows
the twentieth century debate over defeasibility which we have been dis-
cussing. Exceptive propositions were analysed as possessing at least
two parts. For example, Walter Burley, writing in the early fourteenth
century, states that:

[E]ach exceptive has two exponents, an affirmative one and a negative
one. For example, ‘Every man besides Socrates runs’ is expounded like
this: ‘Every man other than Socrates runs and Socrates does not run’.
And ‘No man besides Socrates runs’ is expounded like this: ‘No man
other than Socrates runs and Socrates runs’. [7, p. 256]

(Some authors would add a third exponent ‘Socrates is a man’ to each
pair [5, p. 235].) However, on most modern analyses, in each case only
the first exponent is a logical consequence of the original statement. The
second exponent would be seen as an implicature at best.

This historical detour may clarify the relationship between Toulmin’s
rebuttals and Pollock’s rebutters and undercutters. Toulmin’s rebuttals
are introduced with an exceptive term, typically “unless”. If this is under-
stood as modifying the warrant in his layout (something on which there
is less than complete consensus  see §12.5), then the warrant would be
an exceptive proposition. For instance, the warrant in the Harry from
Bermuda example would read ‘anyone born in Bermuda will generally
be British, unless his parents were aliens’. This would characteristically
translate into first order logic as ∀x((Bx ∧ ¬Ax) → Sx), where Bx =
‘x was born in Bermuda’, Sx = ‘x is a British subject’, and Ax = ‘x’s
parents were aliens’. However, on Burley’s reading, the warrant would

11 Gasteren [16] addresses this imbalance, focussing on equivalence conjectures,
and showing how analysis of the form of a conjecture can guide the design of its proof.
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translate as ∀x((Bx ∧ ¬Ax) → Sx) ∧ ∀x(Ax → ¬Sx), which entails
∀x(Bx → (¬Ax ↔ Sx)). Hence, on the narrower, modern reading of
exceptive propositions, Toulmin’s rebuttals are undercutters, but on the
looser, scholastic reading they conjoin an undercutter and a rebutter.
Toulmin preserves this ambiguity by eschewing such explicit formali-
sation, but most of the examples of rebuttals in [52] and [53] provide
reasons to reject the corresponding claim, and would thus support the
scholastic reading. Nonetheless, Toulmin does introduce some examples
of rebuttals most plausibly understood on the modern reading, perhaps
including Harry’s parents being aliens, since that need not have pre-
vented him from acquiring British nationality by naturalisation.

We can also fruitfully consider Lakatos’s exception-barring methods
in terms of exceptives, since the proposition resulting from piecemeal
exclusion will be exceptive, whether affirmative, ‘all polyhedra except
polyhedra with cavities are Eulerian’, or equivalently, negative ‘no poly-
hedra except those with cavities are non-Eulerian’. In the discussion in
[23] Lakatos implies that strategic withdrawal results in a negative ex-
ceptive ‘no polyhedra but convex polyhedra are Eulerian’. (Again, this
is equivalent to an affirmative exceptive, ‘all polyhedra except convex
polyhedra are non-Eulerian’). The discussion on boundaries suggests
that despite the representation of the conjecture as an implication, the
goal is to find an equivalence conjecture, i.e., ‘all polyhedra are Eulerian
if and only if convex’, which suggests that Lakatos was tacitly following
the scholastic reading of his exceptive proposition. This is only explic-
itly discussed in the context of strategic withdrawal: “Could you have
withdrawn too radically, leaving lots of Eulerian polyhedra outside the
walls?” (p. 28, ibid.). Indeed, when the piecemeal-excluded conjecture
is modified to for all polyhedra that have no cavities (like the pair of
nested cubes) and tunnels (like the picture-frame) V − E + F = 2 (p. 26
ibid.), there is an obvious “counterexample” of a pyramid with a tunnel
in it, for which V − E + F is equal to 2 (shown in figure 9), of which
no mention is made in [23]. Thus, in contrast with strategic withdrawal,
Lakatos’s description of piecemeal exclusion seems to focus on the logical
implication, and thereby the modern reading of the exceptive.

12.4. Lakatos and Walton. In terms of Walton’s argumentation schemes,
his Argumentation Scheme for Argument from an Exceptional Case and
Argumentation Scheme for Argument from Precedent, shown below, are
both pertinent to Lakatos’s piecemeal exclusion.
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Figure 9. A pyramid with a tunnel in it. V − E + F = 13 − 20 + 9 = 2, and
thus it is a supporting example for Euler’s conjecture, however it is barred by

the piecemeal-exclusion move to exclude all polyhedra with tunnels.

12.4.1. Argument from an Exceptional Case.

Premise For all x, if the case of x is an exception, then the established
rule does not apply to the case of x.

Premise The case of a is an exception.
Conclusion Therefore, a need not do A.

Critical Questions:

1. Is the case of a a recognized type of exception?
2. If it is not a recognized case, can evidence why the established rule

does not apply to it be given?
3. If it is a borderline case, can comparable cases be cited?

(cf. [54, p. 344])

Here we have an exception utilising step.

12.4.2. Argument from Precedent.

Premise The existing rule says that for all x, if x has property F then
x has property G.

Premise But in this case C, a has property F , but does not have prop-
erty G.

Conclusion Therefore, the existing rule must be changed, qualified, or
given up, or a new rule must be introduced to cover case C.

Critical Questions:

1. Does the existing rule really say that for all x, if x has property F

then x has property G?
2. Is case C legitimate, or can it be explained away as not really in

violation of the existing rule?
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3. Is case C an already recognized type of exception that does not re-
quire any change in the existing rule? (cf. [54, p. 344])

And here an exception establishing step. One can perhaps see how (an
adaptation of) these schemes could be deployed to set up a system of
defeasible rules, procedures or definitions. But we are not yet that close
to Lakatos.

12.5. Revisiting Toulmin’s rebuttal. Although perhaps seemingly obvi-
ous, there is room for ambiguity regarding whether Toulmin’s rebuttal is
intended to be general or specific. As discussed in §8.2, all of Toulmin’s
examples in [52, Ch. 3] concern claims about specific facts. This suggests
to us that Toulmin intended the data and the claim to be specific facts
and the warrant the (general) bridge between the two. In subsequent
work however, such as [1, 2, 3] (discussed in §8), other authors have
shown that Toulmin’s layout can also be used for general claims. Toul-
min’s focus on the specific raises the question of whether he intended the
rebuttal to be specific or general (this is equivalent to asking whether the
rebuttal rebuts the claim or the warrant): in his examples it is specific.
Consider his discussion of Anne’s hair colour [52, p. 117]: based on the
datum that Anne is one of Jack’s sisters, and warrant that any sister of
Jack’s may be taken to have red hair (which itself has the backing that
all his sisters have previously been observed to have red hair) we may
conclude that, unless the rebuttal that Anne has dyed her hair/gone
white/lost her hair holds, subject to the qualifier presumably, Anne now
has red hair. Here, Anne is named in the rebuttal: this is one specific
counterexample. We may have expected a general rebuttal, such as any
sister of Jack’s, who has dyed her hair/gone white/lost her hair ; thus
repairing the general warrant to: any sister of Jack’s who has not dyed
her hair/gone white/lost her hair may be taken to have red hair. The
situation is particularly interesting in Toulmin’s general cases, in which
he uses a pronoun that might be reasonably taken to refer to the general
or the specific case. For example, in “we can presumably claim that
Harry is British, since anyone born in Bermuda will generally be British
. . . , unless his parents were aliens”, does “his” refer to Harry or to anyone
born in Bermuda?

We see an analogue in the method of piecemeal exclusion, although
not noted by Lakatos. In cases where there are few counterexamples (or
only one), it may be preferable to exclude these by name, rather than
generalising to a class and excluding that. For instance, in the conjecture
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all primes are odd, given the counterexample 2 we could generalise to
the (singleton) class of smallest primes and modify our conjecture to all
primes except for the smallest one are odd. However, possibly to avoid
the extra inference step, this theorem is usually expressed as all primes
except 2 are odd. Goldbach’s conjecture, that every even number except 2
can be expressed as the sum of two primes provides a second example, in
which the obvious classification “smallest even number” is passed over for
the simpler “2”. Indeed, examples of this type in mathematics usually,
if not always, involve the smallest member of the domain of a claim,
such as the trivial group, the empty set, the singleton graph, etc. A
theorem which held for all primes except 287, or all groups except for
the real numbers under addition, would be curious in the extreme and
would certainly merit further investigation. In [36] one of us called this
method “counterexample-barring”.

13. Lakatos’s proof-changing methods

13.1. Three types of lemma-incorporation. Lemma-incorporation is trig-
gered by a counterexample, and comes in three flavours, depending on
the type of counterexample. A global counterexample is a counterexample
to the main conjecture, and a local counterexample is a counterexample
to one of the proof steps (Lakatos calls these lemmas). In argumen-
tation terminology (compare, §4), global counterexamples are rebutters
for any argument that P , and local counterexamples are undercutters
for (some step of) some argument that P . That is, a rebutter for an
argument that P is (or implies the existence of) a derivation of ¬P ; an
undercutter for an argument that P is (or implies the existence of) a
defeating answer for one of the critical questions in the derivation of P .
Lakatos considers counterexamples which are both global and local, or
one and not the other. He suggests that the first step, when faced with a
counterexample, is to determine which type it is. If it is both global and
local, i.e., there is a problem with both the argument and the conclu-
sion, then one should use strategic withdrawal to modify the conjecture,
but  crucially  the domain to which we withdraw must be generated
by the problematic proof step Si. That is, we create a concept “all X
which satisfy proof step Si” and then limit the claim to this concept
(in the Euler example it is “simple polyhedra”, that is, polyhedra for
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which step 1 of Cauchy’s proof can be performed [p. 34 ibid.]). This is a
combination of both rebuttal and undercutting, where both of Pollock’s
defeaters come into play. If the counterexample is local but not global,
i.e., the conclusion may still be correct but the reasons for believing it
are flawed, then standard piecemeal exclusion is used on the problematic
proof step. That is, objects which support and refute the problematic
proof step Si are examined, a concept found which is true of all the
supporting examples and false for all the counterexamples and the claim
made in Si then limited to all objects for which this concept holds (in
the Euler example it is “boundary triangles”, that is, step 3 of Cauchy’s
proof is modified to removal of any boundary triangle preserves the Euler
characteristic [p. 11 ibid.]). The global conjecture is left unchanged. This
is an example of just undercutting, which is captured by Pollock’s under-
cutting defeater. If the counterexample is global but not local, i.e., there
is a problem with the conclusion but no obvious flaw in the reasoning
which led to the conclusion, then Lakatos suggests searching for a hidden
assumption in the proof, then modifying the culprit proof step and the
global conjecture by making the assumption an explicit condition. This
is a case of simple rebuttal, i.e. rebuttal without undercutting. Logically,
we would have a global conjecture ∀x(Px → Qx), a set of counter (or
negative) examples Neg such that ∀n ∈ Neg (Pn ∧ ¬Qn), and a set
of positive examples Pos such that ∀p ∈ Pos(Pp ∧ Qp), and a set of
conjectures which constitute proof steps for the global conjecture:

∀x(P1x → Q1x)

∀x(P2x → Q2x)

...

∀x(Pnx → Qnx)

For one of the proof steps it may be possible to find a concept C3 such
that for all n, C3n, and for all p, ¬C3p. In this case the proof step
should be modified to ∀x(Pix → (Qix∧C3x)) (a third form of exception-
barring?): we would then have a global and local counterexample, which
can be dealt with as discussed above.

13.2. A new, fourth type, of lemma-incorporation? While Lakatos does
deal with the surprising case of a counterexample which appears to be
global but not local, he does not consider the fourth scenario, in which
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we have an object which is neither a global nor local counterexample but
still seems surprising and is not what was intended by the original claim.
In this case we would expect to find a hidden assumption in the global
conjecture. For instance, consider the beaker in Figure 10(a). This is
Eulerian, since it has zero vertices, two edges and four faces, and, if we
accept that the cylinder is not a counterexample to any of the proof steps
then this is not either. However, it is (probably) not what was meant
by the initial claim. Thus, while not a counterexample in the traditional
sense, the beaker would constitute a fourth strange object for Lakatos
(the same argument holds for the (topologically equivalent) bowler hat,
in Figure 10(b).12 The modification in this case could involve finding a
hidden assumption in the global conjecture, making it explicit and then
performing exception-barring (for instance, the criterion that the poly-
hedron must be a closed system). An alternative, since Lakatos would
presumably prefer the method to involve the proof, would be to perform
a version of global-only lemma-incorporation, in which an assumption
hidden in the proof is identified, made explicit, and incorporated into
the global conjecture (for instance, the criterion that it is possible to
remove only one face at a time).

(a) The beaker (b) The bowler hat

Figure 10. Both the beaker and the bowler hat are Eulerian, since V −

E + F = 0 − 2 + 4 = 2. However, they are (presumably) not the sort of
objects intended to be covered by Euler’s conjecture.

13.3. Rebutting without a known undercutter in mathematics. Lakatos’s
second case study follows the development of Cauchy’s proof [8] of the
conjecture that ‘the limit of any convergent series of continuous func-
tions is itself continuous’ [23, App. 1]. He shows how hidden lemma-

12 Figure 10(a) is cropped from a photo by AndreyTTL; Figure 10(b) is a photo
by Fozrocket.
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incorporation and the third kind of counterexample was used to repair
the faulty conjecture and proof. The counterexample, found by Fourier is:

cos x −
1

3
cos 3x +

1

5
cos 5x − . . .

which converges to the step function. Lakatos credits Seidel with invent-
ing the method of proofs and refutations, arguing that he discovered it at
the same time as he discovered the proof-generated concept of uniform
convergence, and that he was aware of the importance of his method [23,
p. 136]. He quotes Seidel:

Starting from the certainty just achieved, that the theorem is not uni-
versally valid, and hence that its proof must rest on some extra hidden
assumption, one then subjects the proof to a more detailed analysis. It
is not very difficult to discover the hidden hypothesis.

[51, p. 383], on [23, p. 136]

Given that in this example it took twenty six years after the proof
was published (and thirty five years after Fourier’s series became known)
to identify the hidden assumption of uniform convergence in the proof,
we may question how easy it is to discover a hidden hypothesis. Lakatos,
however, suggested that the main reason for such a long gap, and the
willingness of mathematicians to ignore the contradiction, was a com-
mitment on the part of mathematicians to Euclidean methodology: de-
ductive argument was considered infallible and therefore there was no
place for proof analysis.13 Lakatos’s example of the cylinder in his main
case study appears to have been concocted by himself, as a plausible

13 This example is complicated: Cauchy’s claim is generally regarded as obviously
false, and the clarification of what was wrong is usually taken to be part of the
more rigorous formalisation of the calculus developed by Weierstrass, involving the
invention of the concept of uniform convergence (the historical route is sketched in
[19, pp. 213–17]). The episode was treated by Lakatos in two different ways. Cauchy
claimed that the function defined by pointwise limits of continuous functions must
be continuous [8]. In fact, what we take to be counterexamples were already known
when Cauchy made his claim, as Lakatos points out in his earlier analysis of the
evolution of the ideas involved [23, App. 1]. After discussion with Abraham Robinson,
Lakatos then saw that there was an alternative analysis. Robinson was the founder
of non-standard analysis, which found a way to rehabilitate talk of infinitesimals,
for example, positive numbers greater than zero, but less than any “standard” real
number (see [48], first edition 1966). Lakatos’s alternative reading, presented in [24],
is that Cauchy’s proof was correct, but that his notion of (real) number was different
from that adopted by mainstream analysis to this day.
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nineteenth century addition to the discussion, to show how an important
method may have applied to his Eulerian example. (While [23] is a ratio-
nal reconstruction, much of what the “students” discuss has some histor-
ical correlation, as evidenced by the numerous footnotes. The cylinder,
first introduced by Gamma [23, p. 22], has no associated historical foot-
note.14) The main discussion occurs on pp. 42–50, in which Alpha

puts forward various ‘implicit assumptions’ in Cauchy’s proof, which the
cylinder undercuts. Other students, especially Gamma, argue that such
assumptions have only just been invented, specifically for the purpose of
being violated by the cylinder. In argumentation terms, Alpha argues
that any rebutter must also be an undercutter, although it may undercut
a premise which is initially hidden or missing: proof analysis will make
implicit undercutting explicit. Gamma, on the other hand, argues that
there are cases of mathematical counterexamples which are genuinely
global but not local: that there can be rebutters without undercutters.
The discussion culminates in the Principle of Retransmission of Falsity
(p. 47); the criterion that a proof-analysis is valid and the corresponding
mathematical theorem true if and only if there is no third type of coun-
terexample, i.e., if all global counterexamples must also be local (even
if they locally violate a lemma which is not yet explicit in the proof).

Lakatos’s identification of counterexamples which are global but not
local shows that it is, in some way, possible in mathematics to rebut
without a known undercutter (see ([1, p. 298] and [38, pp. 22–24] for
previous discussion on this). However, his recommendation for dealing
with such counterexamples suggests that he thought that it was possible
to see such entities as undercutters as well as rebutters, with their role
being to make a misleading proof more precise. It is an interesting
question as to whether this situation, in which any rebutter must be an
undercutter, either explicitly or implicitly, is specific to mathematics.
Certainly, in other areas of thought, there are many examples which
appear to rebut without undercutting. The British journalist Bruce
Anderson provides a rather nice example of this:

14 An additional clue that the cylinder may have been conceived by Lakatos is
that when Gamma first appears [23, p. 8] it is to raise questions about Cauchy’s
proof of the Euler conjecture, to which Lakatos appends the following footnote: “The
class is a rather advanced one. To Cauchy, Poinsot, and to many other excellent
mathematicians in the nineteenth century these questions did not occur.” Of course, it
doesn’t follow that all of Gamma’s interjections are anachronistic, but it is interesting
that he’s introduced in this way.
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A generation ago, Reg Prentice was minister of education in a Labour
government. He wrote a paper making the case for increased spending
on nursery schools. The Chief Secretary was Joel Barnett, a tough
little Mancunian accountant. ‘Reg,’ he said, ‘brilliant paper. It was so
moving; reminded me why I came into the Labour movement. Your
arguments are unanswerable. And the answer’s no.’ [4]

We contend that Barnett’s response would be untenable in mathe-
matics (but perhaps only mathematics).

Our analysis of Lakatos’s proof-changing methods from a Waltonian
perspective might resolve the rebutting-without-undercutting problem
(see §13 below).

13.4. Lakatos’s method of proofs and refutations. Lakatos’s method of
proofs and refutations extends his lemma-incorporation, in which he sug-
gests using the proof steps to find counterexamples (by looking for ob-
jects which would violate them). For any counterexamples found, one
should determine whether they are local or global counterexamples, and
then perform lemma-incorporation. This may correspond to using Wal-
ton’s defeating questions to suggest premisses which may be mistaken or
incomplete.

13.5. Extending Walton’s schemes. In sections 13.5.3 to 13.5.5 we sug-
gest extensions to Walton’s schemes, which reflect Lakatos’s proof-chang-
ing methods. In order to understand them, it is useful to suggest a
new procedural scheme first (§13.5.1). We can then instantiate this to
Cauchy’s proof plan (§13.5.2). The procedural proof outlined by Cauchy
may seem a rather curious beast, in that it starts off with one type of
object (a polyhedron), performs various operations on the object (which
change it from a polyhedron to a network, to a triangulated graph),
shows that the resulting object, now of a different type, has a certain
property, and concludes from this that the original object must have an-
other property (Eulerianness). However, this is a common proof strategy
in mathematics: arguably, this is the signature proof strategy of contem-
porary mathematics, perhaps beginning with Galois theory. Marquis [34]
discusses this general approach, and gives a worked example considering
K-theory:

In algebraic K-theory, one starts with the category of rings and ring ho-
momorphisms, then associates to each ring a commutative semigroup
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and to each ring homomorphism a semigroup homomorphism, then ap-
plies the above functor to end up in the category of abelian groups and
group homomorphisms, and thus obtains information about some of the
structural properties of these rings. [34, p. 257]

Another example of this type of reasoning is the application of Galois
theory to demonstrate the impossibility of constructions in Euclidean
geometry. Indeed, Galois’s development of such techniques is arguably
a critical turning point in mathematical method.

We can see these as examples of analogical reasoning in mathemat-
ics, in which there is a known, well-defined, bijective mapping between
a source and target domain. This is a specific and important type of
analogy: inferences made in a target domain can be used to infer certain
knowledge about the source domain. An example of a known, well-
defined, bijective mapping is a symmetrical transformation such as scal-
ing, reflection, and rotation. For instance, analogical inferences about
a kite-shaped quadrilateral with its apex pointing upwards and a kite-
shaped quadrilateral with its apex pointing right, where the mapping
between the two shapes is a rotation of 90◦, will be rigourous. While ana-
logical reasoning is ubiquitous, mathematics is probably a unique domain
in that there exist known, well-defined, bijective mappings, and therefore
analogical inference in this context is a rigourous form of reasoning: in
other domains there is often a ‘verification’ stage after the analogical
inference (clearly this can also occur in mathematical domains in which
the mappings are not well-defined). As such, we can see our following
scheme, Suggested Argumentation Scheme for a Procedural Argument, as
a subcategory of Walton’s Argument from Analogy [54, p. 315] mentioned
in §9. Our scheme differs from Walton’s schemes in a few regards. Most
importantly, it is procedural. Secondly, the scheme contains multiple
inferences: Walton’s schemes in [54, Ch. 9] describe just one inference
(although some of his examples in [54, Ch. 10] describe multiple infer-
ences, such as Argument from Guilt by Association, in which premise 2
follows from premise 1). Thirdly, because of the second point, the order
of the premisses matters. One possibility to bring our scheme closer to a
Waltonian scheme would be to split it into several schemes: we present
it as a single scheme for ease of understanding.

13.5.1. Suggested Argumentation Scheme for a Procedural Argument.
Premise 1 Take an arbitrary x such that Px, say m. Then:

(i) f1 : P → T1, f1(m) = m1 and P1m1,
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(ii) f2 : T1 → T2, f2(m1) = m2 and P2m2,
(iii) f3 : T2 → T3, f3(m2) = m3 and P3m3,
...
(n) fn : Tn−1 → Tn and fn(mn−1) = mn and Pnmn, for functions f1

to fn, types T1 to Tn and properties P1 to Pn.
Premise 2 Therefore (since m was arbitrary), there exist functions f1 to

fn st ∀x(Px → ∃y st (fn(fn−1(. . . f2(f1(x)))))) = y) ∧ Pny).
Premise 3 (Pnmn → Pn−1(f−1

n (mn))) ∧ (Pn−1(mn−1)) →

Pn−2(f−1
n−1(mn−1))) ∧ · · · ∧ (P2m2 → P1(f−1

2 (m2))) ∧

(P1m1 → E(f−1
1 (m1))).

Conclusion ∀x(Px → Ex).

Critical Questions:

1. Is m really arbitrary? Does it have any properties that other objects
with property P might not have?

2. Is the function fi well-defined, for all i? Does it always take objects
of type Ti and output objects of type Ti+1?

3. Does property Pn always hold for mn?
4. What is the relationship between Pn and E? Can we conclude that

because Pm and Pnmn, that Em?

We instantiate this scheme in terms of Lakatos’s description of Cauchy’s
proof sketch, rephrased from [23, pp. 7–8], as the following procedural
scheme, with critical questions all taken from [23, p. 8] (clearly there
would be further critical questions too). Note that the third function in
step (iii) is applied multiple times.

13.5.2. Example Instantiation of the Argumentation Scheme for Proce-
dural Argument.
Premise 1 Take the cube, which is an arbitrary polyhedron. Then:

(i) Remove a face from the cube. We can stretch the remaining
surface flat on the blackboard, and the Euler characteristic of this
surface will be that of the cube, minus one (as we removed a face).
(ii) Triangulate the connected network from step (i). The Euler
characteristic from step (i) is preserved (since for any new edge which
is added, one will always get a new face).
(iii) Drop the triangles one by one from the triangulated map from
step (ii). Again, the Euler characteristic from step (ii) is preserved
(since there are only two alternatives  the disappearance of one edge
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and one face, or else of two edges, one vertex and a face). Apply this
step repeatedly (n times) until a single triangle remains.

Premise 2 The triangle from step (iii) has an Euler characteristic of one
(since V − E + F = 3 − 3 + 1 = 1).

Premise 3 Therefore for any polyhedron, there exist procedures (i), (ii)
and (iii) which will turn the polyhedron into a single triangle, and
that triangle has an Euler characteristic of one.

Premise 4 If we start with a triangle, which has an Euler characteristic
of one, then there is a way in which we can add triangles one by one (n
times), resulting in a triangulated map each time and preserving the
Euler characteristic (we either add one edge and one face, or else of
two edges, one vertex and a face). There is a way of removing edges
to “untriangulate” the map. The Euler characteristic is preserved
from the previous step (since for any new edge which is removed, one
will always get one less face). There is now a way in which we can
add a face and assemble the network into a polyhedron. Since there
is one more face, the Euler characteristic is now two.

Conclusion All polyhedra have an Euler characteristic of two.

Critical Questions:

1. Does the cube have particular properties which allow us to perform
this procedure, which other polyhedra do not share? For instance,
can we perform step (i) on any polyhedron, with the property that
the resulting surface can be stretched flat on a board? (Proposed by
Alpha [ibid.])

2. When we perform step (ii), does the property of preserving the Euler
characteristic always hold (do we always get a new face for any new
edge)? (Proposed by Beta [ibid.])

3. When we perform step (iii), does the property of preserving the
Euler characteristic always hold (do we always remove one edge and
one face, or two edges, one vertex and a face)? Are there always a
countable number of repetitions of step (iii) which will result in a
single triangle? (Proposed by Gamma [ibid.])

We can now outline our suggested argumentation schemes for Lakatos’s
proof-changing methods. In all three schemes, initially only the first two
premisses are noted: given these, Lakatos suggests doing the work in-
volved to find the third premise and then the conclusion may be reached.



52 Alison Pease, Andrew Aberdein

13.5.3. Suggested Argumentation Scheme for Global and Local Lemma-
Incorporation.

Premise C1 is a global counterexample to conjecture P , that is C1 ⇒

¬P .
Premise C1 is a local counterexample to conjecture P , that is at least

one of the premisses on which P depends, Premi is itself a conclusion
in an (instantiation of) a scheme which contains critical question(s)
which must receive a defeating answer if C1 holds.

Premise X is the concept of objects for which Premi holds.
Conclusion Replace P by X ⇒ P .

Note that if P is the proposition R ⇒ Q, then the replacement is
(R ∧ X) ⇒ Q, which is clearly in line with our Lakatosian example. As
noted earlier (p. 43) this is a form of strategic withdrawal in which the
concept to which one withdraws is provided by the notion of a problem-
atic premise being satisfied.

13.5.4. Suggested Argumentation Scheme for Local and not Global
Lemma-Incorporation.

Premise C1 is a local counterexample to conjecture P , that is at least
one of the (instantiations of) the schemes upon which the derivation
of P depends, Premi, contains critical question(s) CQi which must
receive a defeating answer if C1 holds.

Premise C1 is not a global counterexample to conjecture P , that is C1 6⇒

¬P .
Premise X is the concept of objects for which Premi fails
Conclusion Replace Premi by ¬X ⇒ Premi.

Again, note that if Premi is the proposition R ⇒ S, then the replace-
ment is (R ∧ ¬X) ⇒ S, which is in line with the Lakatosian example.
We also noted earlier (p. 44) that this is a form of piecemeal exclusion,
in which the concept which one excludes is designed to exactly cover the
cases in which a problematic premise fails.

13.5.5. Suggested Argumentation Scheme for Global and not Local
Lemma-Incorporation.

Premise C1 is a global counterexample to conjecture P , that is C1 ⇒

¬P .
Premise C1 is not a local counterexample to conjecture P , that is none

of the (instantiations of) schemes upon which the derivation of P

depends contains critical question(s) CQi which must receive a de-
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feating answer if C1 holds (∀i st 1 ¬ i ¬ n, Pi ⇒ C1, where n is the
number of premisses).

Premise Premi is a premise in the derivation of P which contains an
unstated assumption, A1 such that (A1 ∧ Premi) ⇒ ¬C1.

Conclusion Replace P by A1 ⇒ P , and Premi by A1 ∧ Premi.
The absence of an undercutter follows from the incompleteness of the

set of critical questions. Hence, in a narrow sense, we can have rebutting
without undercutting. But the incompleteness can always (in principle)
be remedied: there is always an A1 for the proof analysis to find. Once
it has been remedied, the undercutter has been found, since C1 ⇒ ¬A1

(by transposition), and thus the question ‘Does A1 hold?’ must receive
a defeating answer if C1 holds.

The unstated assumption may well be a further property in one of the
proof steps (from premise 1 in argumentation scheme in §13): this is the
case in Lakatos’s examples. That is, fi : Ti−1 → Ti and fn(mi−1) = mi

and Pimi and there is a further property P ′ such that P ′mi, for some
1 ¬ i ¬ n. Initially this further property is not explicit, but it holds for
all (known) positive examples and fails for all (known) global but not
local counterexamples. The patch is then to make it explicit, by adding it
to the relevant proof step. The presence of an unstated assumption in the
derivation suggests that the set of critical questions is incomplete. (At
some point the question ‘Does A1 hold?’ should have been posed, since a
negative answer would undercut the derivation.) There is nothing intrin-
sically wrong with this  it is informal logic after all  but it does indi-
cate that the proof analysis is shoddy, which is of course Lakatos’s point.

Closing remarks

Whether we are schemifying Toulmin or Toulminizing abduction, an
analysis of where our five protagonists may agree and disagree suggests
all kinds of fascinating new areas. Connections between the different
theories have typically been neglected, to the extent that our most con-
temporary thinker, Walton, is the only author to discuss any of the
others in the works we cite, and even he does not consider Lakatos.
Finding and expanding such connections may well be a fruitful avenue
of research, so that different descriptions of our elephant may, possibly,
begin to converge. Additionally, we hope that our particular breed of in-
terest, the mathematical elephant, will prove to be similar in many areas
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to other breeds, and both informal logic and the philosophy of mathe-
matical practice will benefit. In any case, we shall enjoy enormously the
attempt to describe it in such a way.
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