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Swap Kripke Models for Deontic LFIs

Abstract. We present a construction of nondeterministic semantics for
some deontic logics based on the class of paraconsistent logics known as
Logics of Formal Inconsistency (LFI s), for the first time combining swap
structures and Kripke models through the novel notion of swap Kripke mod-
els. We start by making use of Nmatrices to characterize systems based on
LFI s that do not satisfy axiom (cl), while turning to RNmatrices when the
latter is considered in the underlying LFI s. This paper also presents, for
the first time, a full axiomatization and a semantics for the CD

n hierarchy,
utilizing the aforementioned mixed semantics with RN matrices. It includes
the historical system CD

1 of da Costa and Carnielli (1986), the first deontic
paraconsistent system proposed in the literature.

Keywords: deontic logic; paraconsistent logic; da Costa logics; nondeter-
ministic semantics; Nmatrices; swap structures; moral dilemmas

1. Introduction

The pioneering work on paraconsistent deontic logic by da Costa and
Carnielli (1986) proposed dealing with deontic paradoxes by changing
the base logic from classical logic to a paraconsistent logic. The logic
that should then be used for such an enterprise is da Costa’s C1. This
logic blocks trivialization derived from conflict of obligations since the
occurrence of a formula of the form α∧¬α does not trivialize the system.
The modal logics which have C1 as their propositional fragment also
preserve this characteristic, thus being conjectured by the authors to be
a well motivated project.

Another motivation for such an account is the fact that C1 is the
first logic in a hierarchy of logics, the da Costa’s Cn. It is suggested by
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the end of the 1986 paper that the technique of adding a modal deontic
operator could be applied to any logic in the Cn hierarchy, but this,
in fact, was hitherto never accomplished. Indeed, the modal systems
based on Cn were never given a formal (syntactic and/or semantical)
treatment. Our aim is to fill these gaps in the literature.

With the passing of years, the notion of deontic paraconsistency has
evolved. Many works used similar ideas as those initially presented by da
Costa and Carnielli, for instance: (Beirlaen and Straßer, 2011; McGinnis,
2007; Puga and da Costa, 1987a,b; Puga et al., 1988; Coniglio and Peron,
2009; Peron and Coniglio, 2008; Coniglio, 2009).

In particular, a series of works (Peron and Coniglio, 2008; Coniglio
and Peron, 2009; Coniglio, 2009) investigates the applications of deontic
axioms to LFI s.1 In these works, the authors present explicitly the
notion of deontic paraconsistency which is defined as follows: a logic is
deontically paraconsistent if it is not deontically explosive, i.e., for some
α, β in the set of formulas, we have the following:

Oα,O¬α 0 Oβ.

Moreover, a logic is a Logic of Deontic Inconsistency, LDI for short, if
it is not deontically explosive and there is a unary connective (primitive
or defined) �̄ for which the following holds:2
• For some sentences α, α′, β, β′,

– �̄(α),Oα 1 Oβ,
– �̄(α′),O¬α′ 1 Oβ′.

• For any α, β
– �̄(α),Oα,O¬α 
 Oβ.
Any normal modal logic based on an LFI can be seen as an LDI

simply by taking �̄(α) := O◦α. The original semantics for LDI s based
on LFI s provided in (Peron and Coniglio, 2008; Coniglio, 2009; Coniglio
and Peron, 2009) was given in terms of Kripke structures together with
bivaluation semantics.3

1 Also to some other logics, such as Batens’ CLuN (1980a; 1980b), previously
named DPI.

2 As in the case of LFI s, in the general case �̄(p) can be considered as being
a set of modal formulas depending on a single propositional letter p. LDI s where
introduced by Coniglio in (2009). Additional developments and applications of LDI s
can be found in (Coniglio and Peron, 2009).

3 It is worth noting that Bueno-Soler has introduced a wide class of paraconsistent
modal systems based on LFI s, also with a semantics given by Kripke structures
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The recent years have seen a rise in developments in the area of non-
deterministic semantics, with prominent works (in chronological order)
by Coniglio et al. (2015), Omori and Skurt (2016), Coniglio and Golzio
(2019), Grätz (2021), Pawlowski and Skurt (2025), Coniglio et al. (2025)
and Leme et al. (2025), among others. In general, these works show that
Nmatrices and RNmatrices (i.e., restricted Nmatrices) allow for the char-
acterization of many non-normal modal logics. These results motivated
the aim to approach the semantics of deontic LFI s nondeterministically
and the pursue to cover the whole Cn hierarchy, as envisioned by da
Costa and Carnielli (1986).

It is important to note that, although the works of Coniglio and
Peron, as well as Bueno-Soler, cover a portion of the LFI s’ hierarchy,
some of the LFI s were not studied at the time. Pertaining to the latter
were the systems satisfying axiom (cl), which are not characterizable
by finite Nmatrices, following the proof of the Dugundji-like theorem
by Avron (2007, Theorem 11). That roadblock was moved by Coniglio
and Toledo (2022), where the authors present a new possibility for a
nondeterministic semantical characterization of the logics in Cn. Inspired
by this work, we expand the treatment to present a characterization of
modal Cn.

Having these details in mind, this paper initially presents a semantics
for some deontic LFI s, starting with DmbC. The novelty at this point
is that, different to the previous approaches to modal LFI s found in the
literature, we present a semantics given by a combination between swap
structures and Kripke models. We take sets of worlds and relations as
a frame, where each of the worlds is nondeterministic. We then move
to extensions of this logic eventually reaching DmbCcl, which, by previ-
ous known results, is not characterizable by finite Nmatrices. We then
show, following the results presented in (Coniglio and Toledo, 2022),
that the combination between RNmatrices and Kripke models allows for
a characterization of this logic, as well as its extensions. In particular,
we focus our attention on a few of its extensions, namely DCila (which
is the conservative reduct of CD1 ) and the hierarchy extension CDn , for
all Cn. Regarding the latter, we present for the first time an explicit
characterization of these logics, describing their axioms and respective
semantics (once again in terms of swap Kripke models), given that the

equipped with bivaluation semantics, and alternatively with a possible-translations
semantics (see, e.g., Bueno-Soler, 2010).
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deontic systems for the whole hierarchy were never explicitly described.
We end this paper with a brief discussion of our results, applying the
CDn hierarchy to moral dilemmas.

2. The paraconsistent deontic system DmbC

We give a modal account of the fundamental LFI, mbC together with
a modalization proposed in (Coniglio, 2009; Peron and Coniglio, 2008;
Coniglio and Peron, 2009), which is a deontic version of mbC, which we
call DmbC.

Definition 2.1. Let Σ = {→,¬,∨,∧,O, ◦} be a signature for LFI s.
The logic DmbC defined over Σ is the system characterized by all CPL+

axioms, that is, the axioms corresponding to the positive fragment of
classical propositional logic, plus the following axioms for ¬ and ◦:

α ∨ ¬α (EM)
◦α→ (α→ (¬α→ β)) (bc)

together with the following modal axioms, where ⊥α := (α ∧ ¬α) ∧ ◦α:

O(α→ β)→ (Oα→ Oβ) (O-K)
O⊥α → ⊥α (O-E)

such that the only inference rules are Modus Ponens and O-necessitation.

Observe that O-necessitation is a global inference rule (i.e., it only
can be applied to premises which are theorems). From this, the notion of
derivation from premises needs to be adjusted in DmbC, as it is usually
done in normal modal systems.

Definition 2.2. Let Γ ∪ {ϕ} ⊆ For(Σ).
1. A derivation of ϕ in DmbC is a finite sequence of formulas

ϕ1, . . . , ϕn such that ϕn = ϕ and, for every 1 ¬ i ¬ n, either ϕi is
an instance of an axiom, or ϕi follows from ϕj and ϕk = ϕj → ϕi (for
j, k < i) by Modus Ponens, or ϕi = Oϕj follows from ϕj (for j < i) by
O-necessitation. In this case, we say that ϕ is derivable in DmbC, or it
is a theorem of DmbC, which will be denoted by `DmbC ϕ.

2. We say that ϕ is derivable from Γ in DmbC, denoted by Γ `DmbC
ϕ, if either `DmbC ϕ, or there exist formulas γ1, . . . , γk ∈ Γ (for a finite
k ­ 1) such that `DmbC (γ1 ∧ · · · ∧ γk)→ ϕ.
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Observe that ∅ `DmbC ϕ iff `DmbC ϕ. We know that in DmbC
the deduction metatheorem and proof-by-cases hold, as the results by
Coniglio (2009) show.

Notice that we define ⊥α as being equivalent to (α∧¬α)∧◦α. Since
mbC is a minimal LFI (Carnielli et al., 2007), it contains the consistency
operator ◦. This operator is interpreted in such a way that it indicates
when a certain formula α is metatheoretically well-behaved in the system
from a logical perspective. By taking ∼α := (α → ⊥α), we recover
classical negation and can again define permission, denoted Pα, as being
equivalent to ∼O∼α. This allows us to add (O−E) for characterizing
DmbC instead of the usual deontic axiom (O−D):
(O−D) Oα→ Pα

So let us take ⊥ to be a bottom formula in CPL. By our definition
of Pα, the following result ensues:

Oα→ ∼O∼α ≡ Oα→ (O∼α→ ⊥) ≡ (Oα ∧ O∼α)→ ⊥

and given that Oα ∧ O∼α ≡ O(α ∧ ∼α), then we get O(α ∧ ∼α) → ⊥
or, equivalently, ∼O(α ∧ ∼α) (another standard way to represent the
deontic axiom). In turn, if we define fα := (α∧∼α), then the last result
is equivalent to Ofα → fα. The equivalence used to obtain the last
result is target for many criticisms in deontic logics, however, it will not
be within the scope of this paper to address such criticisms.

2.1. Swap Kripke models for DmbC

Swap structures are multialgebras of a particular kind, defined over ordi-
nary algebras. The domains of swap structures are the truth values of a
certain logic, but presented as finite sequences of values of the underlying
algebra. These sequences, called snapshots, represent (semantical) states
of a given formula, described by the components of the sequence. For
DmbC, the snapshots consists of pairs over the two-element Boolean
algebra with domain 2 = {0, 1} representing the semantical state of a
formula and of its paraconsistent negation ¬. The consistency (or clas-
sicality) operator ◦ is defined in terms of its relation with contradiction
w.r.t. the paraconsistent negation.

Definition 2.3. Let A3 := 〈A, ∧̃, ∨̃, ¬̃, →̃, Õ, ◦̃〉 be a multialgebra with
domain A = {T, t, F}. Let D = {T, t} denote the designated truth values
and defineM3 := 〈A3,D〉 to be an Nmatrix over signature Σ.
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Remark 2.1. As mentioned above, the domain of the multialgebras in
which we are interested is formed by pairs over 2 intending to repre-
sent the (simultaneous) values in 2 = {0, 1} assigned to the formu-
las ϕ and ¬ϕ. That domain is the set of truth values for such logic.
Thus, we let A ⊆ 22 and define T := (1, 0) (ϕ is true, ¬ϕ is false);
t := (1, 1) (ϕ is true, ¬ϕ is true); and F := (0, 1) (ϕ is false, ¬ϕ is
true). We remove from the domain the pair (0, 0) (ϕ is false, ¬ϕ is false)
since the paraconsistent negation is assumed to satisfy the excluded-
middle law (EM) (recall Definition 2.1). From now on, we mention
whenever possible the snapshots instead of their labels. Notice that
D = {(1, 0), (1, 1)} = {z ∈ A : z1 = 1}.

Definition 2.4. The modal swap structure for DmbC is A3 (cf. Defi-
nition 2.3) such that its domain is BDmbCA3

= {(c1, c2) ∈ A : c1 t c2 = 1}
and the multioperations ∧̃, ∨̃, →̃, ¬̃, ◦̃, as well as a special multioperator
Õ : ℘+(A) → ℘+(A),4 are defined as follows, for every a, b ∈ A and
∅ 6= X ⊆ A:

1. a∧̃b := {(c1, c2) ∈ A : c1 = a1 u b1},
2. a∨̃b := {(c1, c2) ∈ A : c1 = a1 t b1},
3. a→̃b := {(c1, c2) ∈ A : c1 = a1 ⊃ b1},
4. ¬̃a := {(c1, c2) ∈ A : c1 = a2},
5. ◦̃a := {(c1, c2) ∈ A : c1 ¬ ∼(a1 u a2)},
6. Õ(X) := {(c1, c2) ∈ A : c1 =

d
{x1 : x ∈ X}}.

Remark 2.2. The symbols u,t,⊃,∼ refer to the Boolean operations of
meet, join, implication and Boolean complement in 2, respectively. The
symbol

d
is applied to a non-empty subset of 2 and denotes the meet of

all the elements of that set.

Remark 2.3. BDmbCA3
= A via the analytical representation of the truth

values, shown in the previous remark. The non-deterministic truth-
tables for the non-modal operators are displayed below, where U = {F}
is the set of non-designated truth values.

∧̃ T t F

T D D U
t D D U
F U U U

∨̃ T t F

T D D D
t D D D
F D D U

4 In this paper, ℘+(Y ) will denote the set of non-empty subsets of a set Y .
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→̃ T t F

T D D U
t D D U
F D D D

¬̃
T U
t D
F D

◦̃
T A

t U
F A

Definition 2.5. Let W be a non-empty set (of possible worlds), and
R ⊆W 2 be an accessibility relation onW . For each w,w′ ∈W a function
vw : For(Σ)→ A is a swap valuation for DmbC if every condition below
is satisfied, for α, β ∈ For(Σ):
1. vw(α ∧ β) ∈ vw(α)∧̃vw(β),
2. vw(α ∨ β) ∈ vw(α)∨̃vw(β),
3. vw(α→ β) ∈ vw(α)→̃vw(β),
4. vw(¬α) ∈ ¬̃vw(α),
5. vw(◦α) ∈ ◦̃vw(α),
6. vw(Oα) ∈ Õ

(
{vw′(α) : wRw′}

)
.

Definition 2.6. Let W be a non-empty set of worlds, R ⊆ W 2 be a
serial accessibility relation5 and {vw}w∈W a family of swap valuations
for DmbC. We say that the triple M = 〈W,R, {vw}w∈W 〉 is a swap
Kripke model for the logic DmbC.
Remark 2.4. Let i ∈ {1, 2} and w ∈ W . We define πi(vw(α)) to be
the projection of the pair vw(α) on its i-th coordinate. For the sake of
simplicity, we adopt the notation α(i,w) to denote πi(vw(α)).
Lemma 2.1. Let w ∈ W and α, β ∈ For(Σ). Moreover, let vw be as in
Definition 2.5. Then
1. (α ∧ β)(1,w) = α(1,w) u β(1,w),
2. (α ∨ β)(1,w) = α(1,w) t β(1,w),
3. (α→ β)(1,w) = α(1,w) ⊃ β(1,w),
4. (¬α)(1,w) = α(2,w),
5. (◦α)(1,w) ¬ ∼(α(1,w) u α(2,w)),
6. (Oα)(1,w) =

d
{α(1,w′) : wRw′}.

Proof. Items 1 through 5 are immediate from our definitions. For item
6, consider Õ

(
Xw,α

)
for Xw,α = {vw′(α) : wRw′}. By Definition 2.4,

Õ
(
Xw,α

)
=
{
c ∈ A : c1 =

d
{x1 : x ∈ Xw,α}

}
=
{
c ∈ A : c1 =

d
{α(1,w′) : wRw′}

}
.

Thus, our result follows by item 6 of Definition 2.5. a
5 Recall that a relation R ⊆W 2 is serial if, for every w ∈W , there exists w′ ∈W

such that wRw′.
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Remark 2.5. By the very definitions, for any w ∈ W and for any α ∈
For(Σ), vw(α) ∈ D if and only if α(1,w) = 1.
Remark 2.6. We can now give a clear picture of what our models will
look like. In particular, we show how any model of DmbC satisfy axiom
(O-E). It is easy to see that vw(O⊥α) = vw(⊥α). Indeed, by item 6 of
Lemma 2.1, (O⊥α)(1,w) =

d
{(⊥α)(1,w′) : wRw′} =

d
{0 : wRw′} = 0,

given that (⊥α)(1,w′) = 0 for every w′ ∈ W (by Lemma 2.1 items 1, 4
and 5), and {w′ ∈W : wRw′} 6= ∅, since R is serial.

Definition 2.7. LetM = 〈W,R, {vw}w∈W 〉 be as in Definition 2.6. For
any formula α ∈ For(Σ), we say that α isM-true in a world w, denoted
M, w � α, if vw(α) ∈ D.

Definition 2.8. Let Γ ∪ {α} ⊆ For(Σ). We say that α is a logical
consequence of Γ in DmbC, denoted Γ �DmbC α, if for allM for DmbC
and w ∈W : M, w � Γ implies thatM, w � α.

Theorem 2.1 (Soundness of DmbC w.r.t. swap Kripke models).
For every Γ ∪ {ϕ} ⊆ For(Σ), if Γ `DmbC ϕ, then Γ �DmbC ϕ.

Proof. We first show that the theorem holds for the axioms of DmbC.
The result for the CPL+ axioms follows from Lemma 2.1.

For (bc), we must show that (◦α)(1,w)→̃(α → (¬α → β))(1,w) = 1.
Suppose that (◦α)(1,w) = α(1,w) = 1. Hence, ∼(α(1,w) ∧ α(2,w)) = 1,
and so (¬α)(1,w) = α(2,w) = 0. From this, (¬α → β)(1,w) = 1 and so
(α→ (¬α→ β))(1,w) = 1.

For (O-K), assume (O(α→ β))(1,w) = 1 and that (Oα)(1,w) = 1. We
then have that (α→ β)(1,w′) = 1 and that α(1,w′) = 1 for every w′ ∈W
such that wRw′. Hence, it follows that β(1,w′) = 1 for every w′ such that
wRw′, i.e., (Oβ)(1,w) = 1.

The proof for (O-E) follows from Remark 2.6.
For Modus Ponens, it is immediate to see that it satisfies the criteria,

by definition of →̃. For Necessitation, suppose α is a theorem. Then for
every w ∈ W , α(1,w) = 1. In particular, it is the case for every w′ ∈ W
such that wRw′, from which it follows that (Oα)(1,w) = 1. a

In order to prove completeness for DmbC, we build canonical models
based on swap structures. We use the method of ψ-saturation for con-
struction of maximal consistent sets, together with the denecessitation
for the accessibility relation.
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Definition 2.9. Given a Tarskian and finitary6 logic L, a set of formulas
∆ is ψ-saturated in L if ∆ 0 ψ and, if ϕ /∈ ∆, then ∆ ∪ {ϕ} ` ψ.

Remark 2.7. It is well-known that any ψ-saturated set is a closed theory.
Moreover, if Γ 0 ψ in L then there exists a set ∆ which is ψ-saturated
in L and contains Γ . In particular, this property holds for DmbC and
all the other logics to be considered in this paper.

Definition 2.10. Consider the set
Wcan = {∆ ⊆ For(Σ) : ∆ is a ψ-saturated set in DmbC,

for some ψ ∈ For(Σ)}.

Definition 2.11. Let Den(∆) := {ϕ ∈ For(Σ) : Oϕ ∈ ∆}.

Definition 2.12. Let Rcan ⊆W ×W be given for all for ∆,Θ ∈W , by:

∆RcanΘ iff Den(∆) ⊆ Θ.

Definition 2.13. For each ∆ ∈ Wcan, let v∆ : For(Σ)→ A3 defined as
follows:

v∆(α) =


T, if α ∈ ∆,¬α /∈ ∆
t, if α,¬α ∈ ∆
F, if ¬α ∈ ∆,α /∈ ∆

Lemma 2.2. For any ∆ ∈Wcan, the following holds:
1. α ∧ β ∈ ∆ iff α, β ∈ ∆
2. α ∨ β ∈ ∆ iff α ∈ ∆ or β ∈ ∆
3. α→ β ∈ ∆ iff α /∈ ∆ or β ∈ ∆
4. if ¬α /∈ ∆ then α ∈ ∆
5. if α ∈ ∆ and ¬α ∈ ∆ then ◦α /∈ ∆
6. Oα ∈ ∆ iff α ∈ ∆′ for all ∆′ ∈W such that ∆Rcan∆

′.

Proof. Items 1 through 5 are immediate from the definitions and the
fact that ∆ is ψ-saturated, hence, by Remark 2.7, it is closed under

6 A logic L is Tarskian if, for any set of formulas Γ , ∆ and formulas ϕ, ψ, the
following holds:
• Reflexivity: for every ϕ ∈ Γ , Γ ` ϕ;
• Monotonicity: if Γ ` ϕ and Γ ⊆ ∆, then ∆ ` ϕ;
• Cut: if Γ ` ϕ for every ϕ ∈ ∆ and ∆ ` ψ, then Γ ` ψ.

L is finitary if it satisfies
• Finiteness: Γ ` ϕ implies Γ0 ` ϕ, for some finite Γ0 ⊆ Γ .
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logical consequences. In particular, it contains any instance of the axioms
of DmbC, and it is closed under Modus Ponens.

To prove the right-to-left direction for 6, assume that Oα /∈ ∆. Since
∆ is closed under logical consequences, it follows that 0DmbC α, be-
cause of the O-necessitation rule. Suppose, for a contradiction, that
Den(∆) `DmbC α. By Definition 2.2, there are β1, . . . , βn ∈ Den(∆) (for
n ­ 1) such that `DmbC β → α, where β = β1 ∧ · · · ∧ βn. By applying
necessitation and (K), `DmbC Oβ → Oα. Observe now that Oβi ∈ ∆,
by definition of Den(∆), hence Oβ1 ∧ · · · ∧ Oβn ∈ ∆, by item 1. But

`DmbC (Oβ1 ∧ · · · ∧ Oβn)→ Oβ.

So, Oβ ∈ ∆. Using again that ∆ is closed under logical consequences,
we infer that Oα ∈ ∆, which contradicts our initial assumption.

We conclude, therefore, that Den(∆) 0DmbC α. But then, there is
some ∆′ such that Den(∆) ⊆ ∆′ and ∆′ is α-saturated. Therefore, there
is ∆′ ∈Wcan such that ∆Rcan∆

′ and α /∈ ∆′.
The proof of the left-to-right direction for 6 is immediate from the

definitions. Indeed, if Oα ∈ ∆ and ∆Rcan∆
′ then α ∈ ∆′, given that

α ∈ Den(∆). a

Proposition 2.1. The tripleM = 〈Wcan, Rcan, {v∆}∆∈Wcan〉 is a swap
Kripke model for DmbC such that v∆(α) ∈ D if and only if α ∈ ∆ if
and only if α(1,∆) = 1.

Proof. Observe first that Rcan is serial. To see this, let ∆ ∈ Wcan.
Then, ∆ is ϕ-saturated, for some formula ϕ. Suppose that Oα ∈ ∆, for
every formula α. Then, Oα,O¬α,O◦α ∈ ∆ and so, since ∆ is a closed
theory, O⊥α ∈ ∆. This shows that ⊥α ∈ ∆, by (O−E) and so ϕ ∈ ∆,
a contradiction. From this, Oα /∈ ∆ for some α. By reasoning as in the
proof of item 6 of Lemma 2.2, we infer that Den(∆) 0DmbC α and so
there exists some ∆′ such that Den(∆) ⊆ ∆′ and α /∈ ∆′. This shows
that Rcan is serial. The rest of the proof is an immediate consequence
from Remark 2.5 and Definition 2.13. a

Theorem 2.2 (Completeness of DmbC w.r.t. swap Kripke models).
For any set Γ ∪ {ϕ} ⊆ ForΣ, if Γ �DmbC ϕ, then Γ `DmbC ϕ.

Proof. Suppose, to the contrary, that Γ 0DmbC ϕ. Thus, by Re-
mark 2.7, there is a ϕ-saturated ∆ ∈ Wcan such that Γ ⊆ ∆. Since
∆ 0DmbC ϕ, then ϕ /∈ ∆. Let M be the canonical swap model for
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DmbC. Then,M, ∆ � Γ , since Γ ⊆ ∆, butM, ∆ 2 ϕ. This proves that
Γ 2DmbC ϕ. a

3. Some extensions of DmbC

Definition 3.1. Consider the following axioms over the signature Σ:

◦α ∨ (α ∧ ¬α), (ciw)
¬◦α→ (α ∧ ¬α), (ci)
¬¬α→ α. (cf)

The following systems can be thus defined:
• DmbCciw := DmbC ∪ {(ciw)},
• DmbCci := DmbC ∪ {(ci)},
• DbC := DmbC ∪ {(cf)},
• DCi := DmbCci ∪ {(cf)}.

Remark 3.1. This section will talk about results that can be easily adapt-
able to each of the systems above. Let L belong to {DmbCciw,DmbCci,
DbC,DCi}. The notion of derivation Γ `L ϕ in L is as in Definition 2.2
(with the corresponding set of axioms of each logic).

The multialgebras to accommodate each of the axioms are defined as
follows:

Definition 3.2. Let A3 be the swap structure for DmbC. The multi-
operators of the swap structure for DbC are defined as in Definition 2.4,
with the exception of ¬̃, which is substituted for

¬̃1a = {c ∈ A : c1 = a2 and c2 ¬ a1}.

The non-deterministic truth-table for ¬̃1 is as follows:
¬̃1

T {F}
t {T, t}
F {T}

Definition 3.3. Let A3 be the swap structure for DmbC. The mul-
tioperators of the swap structure for DmbCciw, DmbCci and DCi are
defined as in Definition 2.4, with exception of the multioperators that
are mentioned in this definition, which are substituted accordingly.
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1. In DmbCciw: ◦̃1a := {c ∈ A : c1 = ∼(a1 u a2)}.
2. In DmbCci: ◦̃2a = {(∼(a1 u a2), a1 u a2)}.
3. In DCi, take ◦̃2 from DmbCci and ¬̃1 from DbC.
The non-deterministic truth-tables for ◦̃1 and ◦̃2 are as follows:

◦̃1
T {T, t}
t {F}
F {T, t}

◦̃2
T {T}
t {F}
F {T}

Definition 3.4. For each w ∈W , we establish the following:
• The swap valuations for DmbCciw, vDmbCciww , are defined as in

Definition 2.5 for all operators, except for ◦, which satisfies the following
condition:

vDmbCciww (◦α) ∈ ◦̃1vDmbCciww (α).
• The swap valuations for DmbCci, vDmbCciw , are defined as in Def-

inition 2.5 for all operators, except for ◦, which satisfies the following
condition:

vDmbCciw (◦α) ∈ ◦̃2vDmbCciw (α).
• The swap valuations for DbC, vDbCw , are defined as in Definition 2.5

for all operators, except for ¬, which satisfies the following condition:

vDbCw (¬α) ∈ ¬̃1v
DbC
w (α).

• The swap valuations for DCi, vDCiw , are defined as in Definition 2.5
for all operators, except for ¬, which is defined using ¬̃1 as in the case
of DbC and for ◦, which is defined using ◦̃2 as in the case of DmbCci.
Definition 3.5. The structureM = 〈W,R, {vL

w}w∈W 〉 is a swap Kripke
model for the logic L.
We maintain an analogous notation to the one presented in Remark 2.4.
Notice that this implies that vL

w(α) ∈ D if and only if α(1,w) = 1. We
use this fact in the next proof.
Lemma 3.1. Conditions 1–6 listed in Lemma 2.1 hold for L. Moreover,
consider the following conditions:
5′. (◦α)(1,w) = ∼(α(1,w) u α(2,w)).
5∗. (◦α)(1,w) = ∼(α(1,w) u α(2,w)) and (◦α)(2,w) = (α(1,w) u α(2,w)).
7. (¬α)(2,w) ¬ α(1,w).
Then, condition 5′ holds in DmbCciw; condition 5∗ holds in DmbCci;
condition 7 holds in DbC; and conditions 5∗ and 7 hold in DCi.
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Proof. For DbC, condition 7 follows by Definitions 3.2 and 3.4, that is:
vDbCw (¬α) ∈ ¬̃1v

DbC
w (α), and so (¬α)(2,w) ¬ α(1,w). For DmbCciw and

DmbCci, condition 5′ and 5∗ follow, respectively, by Definition 3.3 and
Definition 3.4. The case of DCi follows from DmbCci and DbC. a

Definition 3.6. Let M = 〈W,R, {νL
w}w∈W 〉 be as above. Then, a

formula α ∈ ForΣ is said to beM-true in a world w, denoted byM, w �
α, if it is the case that νL

w (α) ∈ D.

Definition 3.7. Let Γ ∪ {α} ⊆ ForΣ. We say that α is a logical
consequence of Γ in L, denoted by Γ �L α, if for all M for L and
w ∈W : M, w � Γ implies thatM, w � α.

Theorem 3.1 (Soundness).
For every Γ ∪ {ϕ} ⊆ For(Σ), if Γ `L ϕ, then Γ �L ϕ.

Proof. Consider first DmbCciw. Given a valuation vw and a formula
α, it must be shown that (◦α ∨ (α ∧ ¬α))(1,w) = 1. By the definition of
the multioperator ∨̃ in Definition 2.4, the latter is equivalent to prove
that either (◦α)(1,w) = 1 or (α∧¬α)(1,w) = 1. But this is immediate, by
property 5′ of vw given in Lemma 3.1 and the fact that (α ∧ ¬α)(1,w) =
α(1,w) u α(2,w).

In DmbCci, it must be shown that (ci) is valid. Given vw, assume
that (¬◦α)(1,w) = 1. Thus, we have (¬◦α)(1,w) = (◦α)(2,w) = (α(1,w) u
α(2,w)) = 1, by property 5∗ of vw. This shows that vw satisfies any
instance of axiom (ci).

For DbC, the case for (cf) follows from property 7 in Lemma 3.1.
Soundness of DCi follows from soundness of DmbCci and DbC. a

For every logic L as above, we define WL
can, R

L
can and νL

∆ following
the definitions for DmbC and adapting to each L accordingly. Notice
that each ∆ is now a ψ-saturated set in WL

can This allows us to state the
following lemma:

Lemma 3.2. For any ∆ ∈WL
can, all statements 1 through 6 in Lemma 2.2

hold. For DmbCciw, we have the following strengthening of item 5:
5+

1 . α ∈ ∆ and ¬α ∈ ∆ iff ◦α /∈ ∆
For DmbCci, we have an additional condition for ◦:

5+
2 . If ¬◦α ∈ ∆, then α ∈ ∆ and ¬α ∈ ∆.

For DbC, we have an additional condition for ¬:
5+

3 . If ¬¬α ∈ ∆, then α ∈ ∆.
For DCi, both conditions 5+

2 and 5+
3 are added.
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Proof. All conditions are easily proven by using the respective new
axiom of L, and the fact that ∆ is saturated (hence it is a closed theory).

a

Proposition 3.1. The triple ML = {WL
can, R

L
can, {νL

∆}∆∈Wcan} is a
swap Kripke model for L such that νL

∆(α) ∈ D if and only if α ∈ ∆
if and only if α(1,∆) = 1.

Proof. It is an immediate consequence from Lemma 3.2 and Defini-
tion 2.13. For instance, to prove that νDmbCci∆ (◦α) ∈ ◦̃2νDmbCci∆ (α), let
z := νDmbCci∆ (α). Suppose first that z ∈ {T, F}. By Definition 2.13,
either α /∈ ∆ or ¬α /∈ ∆. By 5+

1 and 5+
2 of Lemma 3.2, ◦α ∈ ∆ and

¬◦α /∈ ∆. From this, νDmbCci∆ (◦α) = T ∈ {T} = ◦̃2z. Now, if z = t
then α,¬α ∈ ∆ and so, by 5+

1 , ◦α /∈ ∆. Hence, νDmbCci∆ (◦α) = F ∈
{F} = ◦̃2z. In turn, in order to prove that νDbC∆ (¬α) ∈ ¬̃1ν

DbC
∆ (α),

let z := νDbC∆ (α). If z = T then α ∈ ∆ and ¬α /∈ ∆. From this,
νDbC∆ (¬α) = F ∈ {F} = ¬̃1z. If z = t then α,¬α ∈ ∆. From this,
νDbC∆ (¬α) ∈ {T, t} = ¬̃1z. Finally, if z = F then α /∈ ∆ and ¬α ∈ ∆.
By 5+

3 of Lemma 3.2, ¬¬α /∈ ∆ and so νDbC∆ (¬α) = T ∈ {T} = ¬̃1z.
The other cases are treated analogously. a

The proof of the following theorem is analogous to the one for the
DmbC case.

Theorem 3.2 (Completeness).
For any set Γ ∪ {ϕ} ⊆ For(Σ), if Γ �L ϕ, then Γ `L ϕ.

4. The da Costa axiom: the case of DmbCcl

In this section, as well as in Sections 5, 6 and 7, we will consider axiomatic
extensions of DmbC which include, among others, the so-called da Costa
axiom

¬(α ∧ ¬α)→ ◦α. (cl)

This move has strong consequences: as it was shown in (Avron, 2007,
Theorem 11), the logic mbCcl, obtained by adding (cl) to mbC, cannot
be semantically characterized by a single finite Nmatrix.7 As shown

7 This fact is also applicable to other extensions of mbCcl. An important system
that extends mbCcl is Cila, the version of da Costa’s system C1 in a signature with ◦.
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in (Coniglio and Toledo, 2022), this issue can be overcome by consider-
ing a suitable (finite–valued) Nmatrix and restrict the set of permitted
valuations by a (decidable) criterion, through the notion of restricted
Nmatrices (or RNmatrices). We will adapt this technique to our swap
Kripke models, in order to deal with the deontic expansions of mbCcl.

The logic DmbCcl is the extension of DmbC by adding axiom (cl).
It is easy to show that DmbCcl is a proper extension of DmbCciw: this
follows from the fact that the system mbCcl is a proper extension of the
system mbCciw, which is obtained from mbC by adding (ciw) (Carnielli
and Coniglio, 2016, Corollary 3.3.30). We thus present a swap Kripke
semantics for DmbCcl as the corresponding one for DmbCciw, together
with a restriction on their valuations.

Definition 4.1. A swap Kripke modelM = 〈W,R, {vDmbCclw }w∈W 〉 for
DmbCcl is a swap Kripke model for DmbCciw such that each valuation
vDmbCclw satisfies, in addition, the following condition:

If vDmbCclw (α) = t, then vDmbCclw (α ∧ ¬α) = T.

Definition 4.2. Let M = 〈W,R, {vDmbCclw }w∈W 〉 be a swap Kripke
model for DmbCcl. We say that a formula α ∈ For(Σ) is M-true in a
world w, denoted byM, w � α, if vDmbCclw (α) ∈ D.

Definition 4.3. Let Γ ∪ {α} ⊆ For(Σ). We say that α is a logical
consequence of Γ in DmbCcl, denoted by Γ �DmbCcl α, if for allM for
DmbCcl and all w ∈W : M, w � Γ implies thatM, w � α.

The following lemma will be useful for showing soundness of DmbCcl
w.r.t. swap Kripke models semantics.

Lemma 4.1. Given the notation on Remark 2.4, let vDmbCclw be a valua-
tion in a swap Kripke modelM for DmbCcl. Then, the following holds,
for every formula α:
5∗∗. (◦α)(1,w) = (α ∧ ¬α)(2,w).

Hence, any instance of axiom (cl) is true in any world of any swap Kripke
model for DmbCcl.

Proof. By Lemma 3.1, (◦α)(1,w) = ∼(α(1,w) u α(2,w)). Suppose that
(◦α)(1,w) = 1. Then, α(1,w) u α(2,w) = (α ∧ ¬α)(1,w) = 0. By definition
of A, it follows that (α ∧ ¬α)(2,w) = 1 = (◦α)(1,w). Now, suppose that
(◦α)(1,w) = 0. Then, α(1,w) uα(2,w) = α(1,w) u (¬α)(1,w) = (α∧¬α)(1,w)
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= 1. From this, α(1,w) = α(2,w) = 1, which means that vDmbCclw (α) =
(1, 1) = t. By Definition 4.1, vDmbCclw (α ∧ ¬α) = T = (1, 0). Hence,
(α ∧ ¬α)(2,w) = 0 = (◦α)(1,w).

The latter shows that any instance of axiom (cl) is true in any world
of any swap Kripke model for DmbCcl. a

From soundness of DmbCciw and Lemma 4.1 we get:

Theorem 4.1 (Soundness of DmbCcl w.r.t. swap Kripke models).
For every Γ ∪ {ϕ} ⊆ For(Σ), if Γ `DmbCcl ϕ, then Γ �DmbCcl ϕ.

In order to prove completeness for DmbCcl, we will use canonical
models, to be constructed as in the case for DmbCciw. Since the restric-
tion occurs only on the valuations, we take only those valuations that
are restricted appropriately. Hence,WDmbCcl

can , RDmbCclcan and νDmbCcl∆ are
defined as in DmbCciw. Now, each ∆ ∈ WDmbCcl

can is a ψ-saturated set
in DmbCcl. Thus we have:

Lemma 4.2. For any ∆ ∈WDmbCcl
can , all statements for DmbCciw stated

in Lemma 3.2 hold. Besides, we add the following statement:

7. If ¬(α ∧ ¬α) ∈ ∆, then ◦α ∈ ∆.

Proof. Given that DmbCcl extends DmbCciw, it is an immediate con-
sequence of Lemma 3.2, axiom (cl), and the fact that ∆ is a closed
theory. a

Proposition 4.1. The triple

M = {WDmbCcl
can , RDmbCclcan , {νDmbCcl∆ }∆∈WDmbCcl

can
},

constructed as in the case of DmbC, is a swap Kripke model for DmbCcl
such that νDmbCcl∆ (α) ∈ D if and only if α ∈ ∆ if and only if α(1,∆) = 1.

Proof. Observe that each valuation νDmbCcl∆ is defined according to
Definition 2.13. Since DmbCcl extends DmbCciw, it follows thatM is
a swap Kripke model for DmbCciw such that νDmbCcl∆ (ϕ) ∈ D if and
only if ϕ ∈ ∆ if and only if α(1,∆) = 1. In order to show that each
νDmbCcl∆ satisfies the additional condition of Definition 4.1, suppose that
νDmbCcl∆ (α) = t. By Definition 2.13, α,¬α ∈ ∆ and so α ∧ ¬α ∈ ∆.
Suppose that ¬(α ∧ ¬α) ∈ ∆. By Lemma 4.2, ◦α ∈ ∆. But then, by
axiom (bc), β ∈ ∆, for every formula β, a contradiction. From this,
¬(α∧¬α) /∈ ∆, therefore νDmbCcl∆ (α∧¬α) = T , by Definition 2.13. This
shows thatM is, in fact, a swap Kripke model for DmbCcl. a
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From the previous results and the construction above, it is easy to
show that completeness holds for DmbCcl.

Theorem 4.2 (Completeness of DmbCcl w.r.t. swap Kripke models).
For any set Γ ∪ {ϕ} ⊆ For(Σ), if Γ �DmbCcl ϕ, then Γ `DmbCcl ϕ.

5. Swap Kripke models for DCila

Consider the following axiom schemas for consistency propagation for
# ∈ {∧,∨,→}:

(◦α ∧ ◦β)→ ◦(α#β). (ca#)

We now add to DmbC the axioms (ci), (cl), (cf), and (ca#), obtaining
a logic called DCila. Equivalently, DCila is obtained from DmbCcl by
adding axioms (ci), (cf), and (ca#). The non-modal fragment of DCila
is called Cila, and corresponds to da Costa logic C1 presented over the
signature with ◦ (see Carnielli et al., 2007, Section 5.2). Indeed, Cila is
a conservative expansion of da Costa’s C1. As proved in (Avron, 2007,
Theorem 11 and Corollary 6), Cila and C1 are not characterizable by a
single finite Nmatrix.

Based on the results presented in the previous section, as well as
the characterization of Cila in terms of a 3-valued RNmatrix found in
(Coniglio and Toledo, 2022), in the sequel we will characterize DCila by
means of swap Kripke models based on a suitable 3-valued RNmatrix
for Cila.

Definition 5.1. A swap Kripke model M = 〈W,R, {vDCilaw }w∈W 〉 for
DCila is a swap Kripke model for DCi such that each valuation vDCilaw

satisfies the following conditions, for # ∈ {∧,∨,→}:

If vDCilaw (α) = t, then vDCilaw (α ∧ ¬α) = T.8

If vDCilaw (α), vDCilaw (β) ∈ {T, F}, then vDCilaw (α#β) ∈ {T, F}.

The notions of satisfaction of a formula α in a world w of a swap
Kripke model M for DCila, denoted by M, w � α, as well as the se-
mantical consequence of DCila w.r.t. swap Kripke models, denoted by
�DCila, are defined as in the previous cases.

The above definitions guarantee that the axioms (cl) and (ca#) hold.

8 This condition coincides with the one for vDmbCcl
w .
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Lemma 5.1. Any instance of the axioms (cl) and (ca#) are true in any
world of any swap Kripke model for DCila.

Proof. Concerning (cl), the result holds by Lemma 4.1 and Defini-
tion 5.1. Fix now # ∈ {∧,∨,→} and vDCilaw . Observe that, for any α,
vDCilaw (α) ∈ {T, F} iff α(1,w) 6= α(2,w) iff α(1,w)uα(2,w) = 0 iff (◦α)(1,w) =
∼(α(1,w) u α(2,w)) = 1. From this, vDCilaw (◦α ∧ ◦β) ∈ D implies that
(◦α ∧ ◦β)(1,w) = 1, which implies that (◦α)(1,w) = (◦β)(1,w) = 1. As
observed above, the latter implies that vDCilaw (α), vDCilaw (β) ∈ {T, F},
and so vDCilaw (α#β) ∈ {T, F}, by Definition 5.1. But this implies that
(◦(α#β))(1,w) = 1, that is, vDCilaw (◦(α#β)) ∈ D. This shows that any
instance of axiom (ca#) is true in any world of any swap Kripke model
for DCila. a

As shown in (Coniglio and Toledo, 2022), the above characterization
of Cila by means of a 3-valued RNmatrix induces a decision procedure
for this logic. Given that Standard Deontic Logic SDL is decidable (for
instance, by tableaux systems), so is its modal extension DCila.

Now, soundness of DCila w.r.t. swap Kripke models follows from the
previous results. From soundness of DCi and Lemma 5.1 we get:

Theorem 5.1 (Soundness of DCila w.r.t. swap Kripke models).
For every Γ ∪ {ϕ} ⊆ For(Σ), if Γ `DCila ϕ, then Γ �DCila ϕ.

The proof of completeness is a straightforward adaptation of the
case for DmbCcl, by building the canonical model as in the case for
DCi, and by imposing suitable restrictions on the valuations. Thus,
WDCila

can , RDCilacan and νDCila∆ are defined as in DCi, but now each ∆ ∈
WDCila

can is a ψ-saturated set in DCila.

Lemma 5.2. For any ∆ ∈ WDCila
can , all statements for DCi stated in

Lemma 3.2 hold. Besides, ∆ satisfies the following statements:

7. If ¬(α ∧ ¬α) ∈ ∆, then ◦α ∈ ∆.
8. If ◦α, ◦β ∈ ∆, then ◦(α#β) ∈ ∆, where # ∈ {∧,∨,→}.

Proof. DmbCcl extends DCi. From this, the result is an immediate
consequence of Lemma 3.2, axioms (cl) and (ca#), and the fact that ∆
is a closed theory. a

Proposition 5.1. The triple

M = {WDCila
can , RDCilacan , {νDCila∆ }∆∈WDCila

can
},
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constructed as in the case of DmbC, is a swap Kripke model for DCila
such that νDCila∆ (α) ∈ D if and only if α ∈ ∆ if and only if α(1,∆) = 1.

Proof. Notice that each valuation νDCila∆ is defined according to Defi-
nition 2.13. Given that DCila extends DCi, it follows thatM is a swap
Kripke model for DCi such that νDCila∆ (ϕ) ∈ D if and only if ϕ ∈ ∆
if and only if α(1,∆) = 1. Let us prove now that every νDCila∆ satisfies
the additional conditions of Definition 5.1. The first condition is proved
analogously to the case for DmbCcl (see the proof o Proposition 4.1).
In order to prove the second condition of Definition 5.1, observe first the
following:
Fact. νDCila∆ (α) ∈ {T, F} if and only if ◦α ∈ ∆.

Indeed, suppose first that νDCila∆ (α) ∈ {T, F}. By Definition 2.13,
either α /∈ ∆ or ¬α /∈ ∆. In both cases, α∧¬α /∈ ∆, hence ¬(α∧¬α) ∈ ∆.
By axiom (cl) and the properties of ∆, ◦α ∈ ∆. Conversely, suppose that
◦α ∈ ∆. By axiom (bc) and the properties of∆, either α /∈ ∆ or ¬α /∈ ∆.
By Definition 2.13, νDCila∆ (α) ∈ {T, F}.

Fix now # ∈ {∧,∨,→}, and suppose that vDCila∆ (α), vDCila∆ (β) ∈
{T, F}. By the fact, ◦α, ◦β ∈ ∆. By axiom (ca#) and by taking into
account that ∆ is a closed theory, ◦(α#β) ∈ ∆. By the fact once again,
we infer that vDCila∆ (α#β) ∈ {T, F}.

This shows thatM is, in fact, a swap Kripke model for DCila. a

From the previous results and the construction above, it is easy to
show that completeness holds for DCila.

Theorem 5.2 (Completeness of DCila w.r.t. swap Kripke models).
For any set Γ ∪ {ϕ} ⊆ For(Σ), if Γ �DCila ϕ, then Γ `DCila ϕ.

6. The pioneering system CD
1

We briefly mentioned above that Cila is a conservative expansion of C1,
since it has ◦ in its signature. This allows Cila to refer to consistency
by using ◦ as an unary operator, while C1 defines consistency in terms
of non-contradictoriness. That is to say, C1 is defined over the signature
ΣC1 = {→,¬,∨,∧} such that α◦ := ¬(α∧¬α), for any α ∈ For(ΣC1). It
is easy to show that if we substitute any appearance of ◦α in the axioms
or rules for Cila for α◦, we get C1. Moreover, the valid inferences in
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Cila in the signature ΣC1 coincide with the ones in C1 (see Carnielli et
al., 2007, Theorem 110).

Also noticeable is the treatment of strong negation in C1, usually de-
fined as ∼α := ¬α∧α◦. Let ΣC1

D := {→,¬,∨,∧,O}. Because of the close
relationship between Cila and C1, the ΣC1

D -reduct of the swap Kripke
models for DCila characterize the deontic expansion DC1 of C1, defined
over ΣC1

D by adding to C1 the modal deontic axioms of Definition 2.1,
but now by considering ⊥α := (α∧¬α)∧α◦. Observe that, in C1, axioms
(bc) and (ca#) are now replaced by the following, where # ∈ {∧,∨,→}:

α◦ → (α→ (¬α→ β)) (bc′)
(α◦ ∧ β◦)→ (α#β)◦ (ca′#)

In turn, axioms (cl) and (ci) are not considered in C1 (since they
hold by the very definition of (·)◦, as well as by axiom (cf)).

One other striking fact is that the pioneering paraconsistent deontic
system CD1 (also defined over ΣC1

D ) proposed in (da Costa and Carnielli,
1986) has one more axiom in addition to the ones of DC1, namely

α◦ → (Oα)◦ (ca′O)

The system proposed, so far, however, does not validate (ca′O). Consider
the following possible model of CD1 . Each node x shows a set Γ as a
label. This indicates that for every ϕ ∈ Γ , vC1

Γ (ϕ) ∈ D. We will use an
analogous notation in a few more examples:

Figure 1. A representation of a counterexample to (ca′O), when not adding the
suitable restrictions to the models.

According to this model, (α◦)(1,w) = 1. But this does not say any-
thing about any of the worlds w′ accessible to w. Notice that the
following holds: vDC1

w ((Oα)◦) /∈ D if and only if vDC1
w (Oα) ∈ D and

vDC1
w (¬Oα) ∈ D. But this is perfectly possible, since when assigning
a truth value for Oα, only the first coordinate of the snapshot is de-
termined. Since the first coordinate of vDC1

w (¬Oα) is given by reading
the second coordinate of vDC1

w (Oα), then vDC1
w (Oα) = (1, 1) = t is the

value that falsifies the formula correspondent to the axiom. Hence, in
order to give a proper semantics for the original CD1 , we need one more
restriction.
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From now on, for ease of notation, we will write vC1
w instead of vC

D
1

w .

Definition 6.1. A swap Kripke modelM = 〈W,R, {vC1
w }w∈W 〉 for CD1

is a swap Kripke model for DCila (over the ΣC1
D -reduct) such that each

valuation vC1
w satisfies, in addition, the following condition, for # ∈

{∧,∨,→}:
if vC1

w (α) ∈ {T, F}, then vC1
w (Oα) ∈ {T, F}.

Remark 6.1. A family of maps vC1
w : For(ΣC1

D ) → A satisfies Defini-
tion 6.1 iff it satisfies the following conditions, for every α, β ∈ For(ΣC1

D )
and # ∈ {∧,∨,→}:
1. items 1–3 and 6 of Definition 2.5;
2. vC1

w (¬α) ∈ ¬̃1v
C1
w (α), where ¬̃1 is as in Definition 3.2;

3. if vC1
w (α) = t, then vC1

w (α ∧ ¬α) = T ;
4. if vC1

w (α), vC1
w (β) ∈ {T, F}, then vC1

w (α#β) ∈ {T, F};
5. if vC1

w (α) ∈ {T, F}, then vC1
w (Oα) ∈ {T, F}.

Theorem 6.1 (Soundness of CD1 w.r.t. swap Kripke models).
For every Γ ∪ {ϕ} ⊆ For(ΣC1

D ), if Γ `CD
1
ϕ, then Γ �CD

1
ϕ.

Proof. Let vC1
w be as in Definition 6.1. Let us start by showing the

following:
Fact. vC1

w (α◦) ∈ D if and only if vC1
w (α) ∈ {T, F}.

Indeed, suppose that vC1
w (α◦) ∈ D. Then, (α◦)(1,w) = 1. Recalling

that α◦ = ¬(α ∧ ¬α), it follows that (α ∧ ¬α)(2,w) = 1, and so vC1
w (α ∧

¬α) 6= T . By the first condition in Definition 5.1 we infer that vC1
w (α) 6=

t, hence vC1
w (α) ∈ {T, F}. Conversely, if vC1

w (α) ∈ {T, F} then α(1,w) u
α(2,w) = (α∧¬α)(1,w) = 0. From this, (α◦)(1,w) = (α∧¬α)(2,w) = 1 and
so vC1

w (α◦) ∈ D.
Now, assume that vC1

w (α◦) ∈ D. By the fact, vC1
w (α) ∈ {T, F}. By

Definition 6.1, vC1
w (Oα) ∈ {T, F}. Using the fact once again, we infer

that vC1
w ((Oα)◦) ∈ D, and so axiom (ca′O) is valid w.r.t. swap Kripke

models for CD1 .
The validity of axiom (bc′) follows immediately from the fact. In

turn, the validity of axiom (ca′#) is a consequence of the first condition
stated in Definition 5.1 and the fact. The validity of the other axioms of
CD1 follows from the soundness of DCila w.r.t. swap Kripke models. a

In order to prove completeness of CD1 w.r.t. swap Kripke models,
some adaptations are required in the construction of the canonical swap
Kripke model and the canonical valuations.
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Observe first that the ϕ-saturated sets in CD1 are subsets of For(ΣC1
D )

(◦ is now a defined connective).

Lemma 6.1. Let ∆ ⊆ For(ΣC1
D ) be a ϕ-saturated set in CD1 . Then, it

satisfies the following properties, for every α, β ∈ For(ΣC1
D ):

I. Items 1–4 and 6 of Lemma 2.2.
II. Item 5+

3 of Lemma 3.2.
III. α◦ ∈ ∆ iff α /∈ ∆ or ¬α /∈ ∆.
IV. If α◦, β◦ ∈ ∆, then (α#β)◦ ∈ ∆, where # ∈ {∧,∨,→}.
V. If α◦ ∈ ∆, then (Oα)◦ ∈ ∆.

Proof. Items I and II are immediate, given that CD1 contains all the
schemas of DmbC and DbC over signature ΣC1

D .
Item III: The “only if” part is a consequence of axiom (bc′). Now,

suppose that α◦ /∈ ∆. By property 4 of item I, ¬(α◦) ∈ ∆. That is,
¬¬(α∧¬α) ∈ ∆ and so α∧¬α ∈ ∆, by item II. By property 1 of item I,
α,¬α ∈ ∆.

Item IV and V follow immediately from axioms (ca′#) and (ca′O). a

Define now WC1
can, R

C1
can and vC1

∆ as in DCila, but now each ∆ ∈
WC1

can is a ϕ-saturated set in CD1 . Observe that each valuation vC1
∆ :

For(ΣC1
D )→ A is defined according to Definition 2.13.

Proposition 6.1. The structure M = 〈WC1
can, R

C1
can, {v

C1
∆ }∆∈WC1

can
〉 is a

swap Kripke model for CD1 such that, for every α ∈ For(ΣC1
D ), vC1

∆ (α) ∈
D iff α ∈ ∆.

Proof. Taking into account Remark 6.1, it is an immediate consequence
of Lemma 6.1 and Definition 2.13. Indeed, by adapting the proofs for
the previous systems, it follows that vC1

∆ (α#β) ∈ vC1
∆ (α)#̃vC1

∆ (β) (for
# ∈ {∧,∨,→}) and vC1

∆ (¬α) ∈ ¬̃1v
C1
∆ (α). In order to prove that vC1

∆

satisfies the requirements 3–5 of Remark 6.1, suppose first that vC1
∆ (α) =

t. Then, α,¬α ∈ ∆ and so α∧¬α ∈ ∆ and ¬(α∧¬α) = α◦ 6∈ ∆, by items
I and III of Lemma 6.1. This means that vC1

∆ (α ∧ ¬α) = T , validating
requirement 3. For 4, observe first that vC1

∆ (α) ∈ {T, F} iff either α /∈ ∆
or ¬α /∈ ∆ iff, by III, α◦ ∈ ∆. Now, let # ∈ {∧,∨,→} and suppose that
vC1
∆ (α), vC1

∆ (β) ∈ {T, F}. By the previous observation, it follows that
α◦, β◦ ∈ ∆. By IV of Lemma 6.1, (α#β)◦ ∈ ∆. Using the observation
above once again, this implies that vC1

∆ (α#β) ∈ {T, F}. The proof for 5
is analogous. By the very definitions, vC1

∆ (α) ∈ D iff α ∈ ∆. a
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Completeness follows immediately, with slight adaptations, from the
lemma above and completeness for DCila.

Proposition 6.2 (Completeness of CD1 w.r.t. swap Kripke models).
For any set Γ ∪ {ϕ} ⊆ For(ΣC1

D ), if Γ �CD
1
ϕ then Γ `CD

1
ϕ.

7. Swap Kripke models for CD
n

We start this section by defining extensions of notions presented in the
previous section for the rest of the hierarchy Cn, for n ­ 2. For this,
consider once again the signatures ΣC1 for Cn and ΣC1

D for the calculi
CDn . We define the following notation over For(ΣC1

D ):
• α0 = α,
• αn+1 = ¬(αn ∧ ¬αn),
• α(n) = α1 ∧ · · · ∧ αn.
We also follow the presentation of Cn given in (Coniglio and Toledo,
2022). This comprises of all axioms for CPL+, plus (EM), (cf) and the
following axioms:

α(n) → (α→ (¬α→ β)), (bcn)
(α(n) ∧ β(n))→ ((α→ β)(n) ∧ (α ∨ β)(n) ∧ (α ∧ β)(n)). (Pn)

Observe that the classical negation is represented in Cn by means of the
formula ∼(n)α := ¬α ∧ α(n). From this, the new version of (D) reads

Oα→ ∼(n)O∼(n)α. (Dn)

We also highlight that some decisions must be made along the way in
order to get to a full axiomatization of these logics. If we want to follow
the presentation of CD1 on (da Costa and Carnielli, 1986) and extend
the ideas presented there, as we did in the previous section, we need to
reformulate the classicality propagation axiom, namely, α◦ → (Oα)◦, as
follows:

α(n) → (Oα)(n). (POn)

We call it the general classicality propagation axiom in CDn . Notice that
when n = 1, α(n) = α◦ = α1 = ¬(α ∧ ¬α). Also notice that this has
an influence on how strong a negation has to be in order to recover
classicality. For n = 1, strong negation is already sufficient to introduce
deontic explosion back into the system, but taking n = 2, we have,
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besides ¬ and ∼, one more negation. We are in fact dealing with an
increasing number of negations, or, more precisely, for each n, CDn has
n+ 1 negations.9

We are now a position to characterize the family of systems CDn , for
n ­ 1. Also notice that the case where n = 1 was already studied in the
previous section. We also refrain in this from deeply investigating the
philosophical considerations tied to these systems. We opt for a technical
development of a semantics for the systems proposed, with the general
propagation of classicality and a distinct version of (D). We attempt
to maintain the general spirit of the system originally presentation in
the paper by da Costa and Carnielli, while presenting a mix between
RNmatrices and Kripke semantics.10

We thus follow the presentation given in (Coniglio and Toledo, 2022)
to define the base system. So for each n ­ 2, the multialgebra for Cn
will have domain An of size n + 2, where each element of An ⊆ 2n+1 is
an n+ 1-tuple. Hence, the swap structures for Cn is one where the set
of snapshots is:

An = {z ∈ 2n+1 : (
∧
i¬k zi) ∨ zk+1 = 1 for every 1 ¬ k ¬ n}.

This produces exactly the following n+ 2 truth values:
Tn = (1, 0, 1, . . . , 1)
tn0 = (1, 1, 0, 1, . . . , 1)
tn1 = (1, 1, 1, 0, 1, . . . , 1)
...
tnn−2 = (1, 1, 1, 1, . . . , 0)
tnn−1 = (1, 1, 1, 1, . . . , 1)
Fn = (0, 1, 1, . . . , 1).

Definition 7.1. let An be as in the definition above. We define the
following subsets of An:

1. Dn := An \ {Fn} (designated values),
9 Although the fact is easy to observe, the argument that each one of them is, in

fact, a negation will be discussed in a future paper.
10 It is possible to construct such a system by means of restricted swap structures

only, following the technique shown in (Coniglio et al., 2025). The modal operator
could then be assigned one dimension in the tuple, hence its truth value being fully
nondeterministic. This permits to semantically characterize logics in which the modal
operator does not satisfy any of the standard inference rules or axioms assumed for
such an operator.
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2. Un := An \Dn = {Fn} (undesignated values),
3. In := An \ {Tn, Fn} (inconsistent values),
4. Boon = An \ In = {Tn, Fn} (Boolean or classical values).

Now we can introduce the multiagebra ACD
n
:

Definition 7.2. LetACD
n

= (An, ∧̃, ∨̃, →̃, ¬̃, Õ) be the multialgebra over
ΣC1
D defined as follows, for any a, b ∈ An:

1. ¬̃a = {c ∈ An : c1 = a2 and c2 ¬ a1}

2. a∧̃b =
{
{c ∈ Boon : c1 = a1 u b1} if a, b ∈ Boon
{c ∈ An : c1 = a1 u b1} otherwise

3. a∨̃b =
{
{c ∈ Boon : c1 = a1 t b1} if a, b ∈ Boon
{c ∈ An : c1 = a1 t b1} otherwise

4. a→̃b =
{
{c ∈ Boon : c1 = a1 ⊃ b1} if a, b ∈ Boon
{c ∈ An : c1 = a1 ⊃ b1} otherwise

5. Õ(X) = {c ∈ An : c1 =
d
{x1 : x ∈ X}}, where X 6= ∅ and X ⊆ An.

Remark 7.1. Observe that the non-deterministic truth-tables for the non-
modal operators of ACD

n
are the ones displayed below, where 0 ¬ i, j ¬

n− 1.

∧̃ Tn tnj Fn
Tn {Tn} Dn {Fn}
tni Dn Dn {Fn}
Fn {Fn} {Fn} {Fn}

∨̃ Tn tnj Fn
Tn {Tn} Dn {Tn}
tni Dn Dn Dn

Fn {Tn} Dn {Fn}

¬̃
Tn {Fn}
tni Dn

Fn {Tn}

→̃ Tn tnj Fn
Tn {Tn} Dn {Fn}
tni Dn Dn {Fn}
Fn {Tn} Dn {Tn}

Definition 7.3. Let W 6= ∅ be a set of worlds, R ⊆W ×W be a serial
relation and vnw = For(ΣC1

D ) → An for each w ∈ W , such that, for any
α, β ∈ For(ΣC1

D ), the following holds:

1. vnw(¬α) ∈ ¬̃(vnw(α)),
2. vnw(α#β) ∈ vnw(α)#̃vnw(β), for # ∈ {∧,→ ¬},
3. vnw(Oα) ∈ Õ

(
{vnw′(α) : wRw′}

)
.

Definition 7.4. A structure M = (W,R, {vnw}w∈W ) with properties
as in Definition 7.3 is said to be a swap Kripke pre-model for CDn . A
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formula α ∈ For(ΣC1
D ) is true in a world w ofM, denoted byM, w � α,

if vnw(α) ∈ Dn. A formula α is valid in a pre-model M, denoted by
M � α, if M, w � α for every w ∈ W . As it was done before, given
a non-empty set Γ of formulas we will write M, w � Γ to denote that
M, w � α for every α ∈ Γ .

We recall the fact that for any α ∈ For(ΣC1
D ), w ∈ W and vnw,

vnw(α) ∈ Dn if and only if vn(1,w)(α) = 1, given a natural adaptation of
the notation presented in Remark 2.4 and the definitions above.

In order to characterize CDn we add first the following restrictions,
thus simulating the behavior of the RNmatrix for Cn:

Definition 7.5. Given a swap Kripke pre-model for CDn , consider the
following additional restrictions on the valuations vnw:
1. vnw(α) = tn0 implies vnw(α ∧ ¬α) = Tn,
2. vnw(α) = tnk implies vnw(α ∧ ¬α) ∈ In and vnw(α1) = tnk−1,

for every 1 ¬ k ¬ n− 1.

Remark 7.2. We observe that the additional restrictions in Definition 7.5
only consider valuations in which the values of α(n) are in Boon, such as
shown in (Coniglio and Toledo, 2022, pp. 621–622), for each world w ∈
W . Moreover, in any swap Kripke pre-model for CDn as in Definition 7.5,
and for a fixed w ∈W , each valuation vnw belongs to the set of valuations
of the RNmatrix characterizing Cn introduced in (Coniglio and Toledo,
2022). From this, all the results concerning the non-modal operators of
CDn will hold w.r.t. the valuations of such a swap Kripke pre-models.

The restrictions on the valuations made in Definition 7.5 can be dis-
played by means of a very useful table (see Coniglio and Toledo, 2022,
Table 1, p. 622). For the reader’s convenience, Table 1 reproduces a
slightly expanded version of that table, which represents the possible
scenarios concerning restricted valuations for Cn (and so, for the non-
modal fragment of CDn ), according to Definition 7.5. In that table, X∗
means that the value X is forced by a restriction on the corresponding
valuation.

It is worth observing from Table 1 that the truth-tables of the con-
nectives (·)(n) and ∼(n)α = ¬α ∧ α(n) are as follows, for 0 ¬ i ¬ n− 1:

α α(n)

Tn {Tn}
tni {Fn}
Fn {Tn}

α ∼(n)α

Tn {Fn}
tni {Fn}
Fn {Tn}
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Table 1.

We need, however, to be sure that our restricted valuations preserve
validity when looking at the modal operator. It is easy to see that axioms
(K) and the strong version (Dn) of (D) are valid w.r.t. the swap Kripke
pre-models of Definition 7.5:

Lemma 7.1. Consider a swap Kripke pre-model M for CDn . Then, the
following holds for any α, β ∈ For(ΣC1

D ), and w inM:
1. If vnw(O(α→ β)) ∈ Dn and vnw(Oα) ∈ Dn, then vnw(Oβ) ∈ Dn.
2. If vnw(Oα) ∈ Dn, then vnw(∼(n)O∼(n)α) ∈ Dn, assuming thatM is as

in Definition 7.5.

Proof. For the first item, assume both vnw(O(α → β)) ∈ Dn and
vnw(Oα) ∈ Dn. This means that vn(1,w)(O(α → β)) = vn(1,w)(Oα) = 1.
But then, by Definitions 7.2 and 7.3 we have that vn(1,w′)(α → β) =
vn(1,w′)(α) = 1 and so vn(1,w′)(β) = 1, for every w′ such that wRw′. From
this, vn(1,w)(Oβ) = 1, that is, vnw(Oβ) ∈ Dn.

The second item follows from the nature of ∼(n) (see its truth-tables
above). a

Remark 7.3. Notice that, since n ­ 2, the restrictions in Definition 7.5
fail to validate (D) in its strong negation form, i.e., w.r.t. ∼α := ¬α∧α1.

As an example, consider CD2 . Picture a model as below:
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Assume that v2
w(Oα) ∈ D2 and that v2

w′(α) = t21. Thus, by Defini-
tion 7.5, this means that v2

w′(α1) = t20 and that v2
w′(¬α) ∈ D2. Hence,

v2
(1,w′)(∼α) = 1. That implies v2

w(O∼α) ∈ D2, so when v2
w(O∼α) = T2,

v2
w(∼O∼α) = F2. The argument for any n ­ 2 is similar. Besides, a
similar counterexample can be found for the paraconsistent negation ¬.
Remark 7.4. Also notice that the version of (D) with ∼(n) is validated by
requiring the restrictions in Definition 7.5. Without the restrictions, it is
possible to construct a model and a valuation in worlds that would falsify
the axiom. Picture again the model used in the previous remark, while
working in CD2 . Assume further that v2

w(Oα) ∈ D2, with v2
w′(α) ∈ I2.

This means that v2
w′(¬α) ∈ D2, hence v2

w′(α ∧ ¬α) ∈ D2. Since no
restriction is given to the value assigned to (α ∧ ¬α), then it is possible
that v2

w′(α ∧ ¬α) ∈ I2, and also that v2
w′(¬(α ∧ ¬α)) = v2

w′(α1) ∈ I2.
These assignments allow for v2

w′(¬(¬(α∧¬α)∧¬¬(α∧¬α))) = v2
w′(α2) ∈

D2. But then, v2
w′(∼(2)α) ∈ D2. As we did in the previous case, taking

v2
w(O∼(2)α) = T2 implies v2

w(∼(2)O∼(2)α) = F2. This is also similarly
extended to any n ­ 2.

To see that indeed the restrictions guarantee that the axiom holds,
assume vnw(Oα) ∈ Dn. Thus for all w′ such that wRw′, vnw′(α) ∈ Dn.
Now either vnw′(α) = Tn or vnw′(α) ∈ In. If the first case, then vnw′(¬α) =
Fn. Otherwise, vnw′(α(n)) = Fn. In any case, vnw′(∼(n)α) = Fn, hence
vnw(O∼(n)α) = Fn, thus vnw(∼(n)O∼(n)α) ∈ Dn.

The following is easily proved, taking into consideration Remark 7.2
and Table 1:

Lemma 7.2. Consider a swap Kripke pre-model for CDn as in Defi-
nition 7.5, and let 1 ¬ k ¬ n. Then, the following holds for any
α ∈ For(ΣC1

D ) and any w ∈W :
1. If vnw(α) = Tn, then vnw(αk) = Tn.
2. If vnw(α) = tni for some 1 ¬ i ¬ k − 2, then vnw(αk) = Tn.
3. If vnw(α) = tnk−1, then vnw(αk) = Fn.
4. If vnw(α) = tni for some k ¬ i ¬ n− 1, then vnw(αk) = tni−k.
5. If vnw(α) = Fn, then vnw(αk) = Tn.
6. If vnw(α) = tni for some 0 ¬ i ¬ n−1, then: vnw(αk) = Fn iff k = i+1.

Lemma 7.3. LetMn be a swap Kripke pre-model for CDn as in Defini-
tion 7.5. Then, vnw(α(n)) ∈ Dn if and only if vnw(α) ∈ Boon.

Proof. Suppose vnw(α) /∈ Boon. Then, vnw(α) ∈ In. By item 3 of
Lemma 7.2 it follows that, for 0 ¬ k < n, vnw(αk+1) = Fn, hence
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vnw(α(n)) = Fn and so vnw(α(n)) /∈ Dn. Now, if vnw(α) ∈ Boon then,
for any 1 ¬ k ¬ n, vnw(αk) = Tn, by items 1 and 5 of Lemma 7.2. Thus,
vnw(α(n)) = Tn, so vnw(α(n)) ∈ Dn. a

There is only one more modal axiom to check, namely, (POn). In its
original formulation, that is, when n = 1, it was already covered in the
previous section. We thus add a similar restriction in order to validate
this version of the axiom:

Definition 7.6. A swap Kripke pre-model for CDn is said to be a swap
Kripke model for CDn if the valuations satisfy, in addition, the restrictions
of Definition 7.5 plus the following constraint:

If vnw(α) ∈ Boon, then vnw(Oα) ∈ Boon.

Now we can prove the validity of (POn) w.r.t. swap Kripke models
for CDn .

Lemma 7.4. The following holds in any swap Kripke model for CDn :

3. If vnw(α(n)) ∈ Dn, then vnw((Oα)(n)) ∈ Dn.

Proof. From Lemma 7.3, vnw(α(n)) ∈ Dn implies that vnw(α) ∈ Boon.
By Definition 7.6, vnw(Oα) ∈ Boon. By Lemma 7.3 once again, it follows
that vnw((Oα)(n)) ∈ Dn. a

Recall the notions and notation introduced in Definition 7.4, which
can be also applied to swap Kripke models for CDn .

Definition 7.7. Given a set Γ ⊆ For(ΣC1
D ), we say that α is a logical

consequence of Γ in CDn , denoted by Γ �CD
n
α, if the following holds:

for every swap Kripke modelM for CDn , and for every world w inM, if
M, w � Γ thenM, w � α.

Theorem 7.1 (Soundness of CDn w.r.t. swap Kripke models).
Let Γ ∪ {ϕ} ⊆ For(ΣC1

D ). Then: Γ `CD
n
ϕ only if Γ �CD

n
ϕ.

Proof. The validity of the propositional (non-modal) axioms was al-
ready proven in (Coniglio and Toledo, 2022). Since our construction is
similar to that, we simply refer to the proof thus given, taking into con-
sideration Remark 7.2. The cases for the modal axioms follow from Lem-
mas 7.1 and 7.4. Clearly, O-necessitation preserves validity, by item 6 of
Definition 2.5. a



30 Mahan Vaz and Marcelo E. Coniglio

In order to prove completeness, on the other hand, we need a canon-
ical construction that satisfies our new restrictions. Let W (n)

can be the set
of all the sets ∆ ⊆ For(ΣC1

D ) such that ∆ is a ψ-saturated set in CDn , for
some ψ ∈ For(ΣC1

D ). The binary relation R(n)
can on W (n)

can is defined as in
the previous cases. Then:

Lemma 7.5 (Truth Lemma for CDn ). For any ∆ ∈W (n)
can, all the following

statements hold, for every α, β ∈ For(ΣC1
D ):

1. α ∧ β ∈ ∆ iff α, β ∈ ∆.
2. α ∨ β ∈ ∆ iff α ∈ ∆ or β ∈ ∆.
3. α→ β ∈ ∆ iff α /∈ ∆ or β ∈ ∆.
4. If α /∈ ∆, then ¬α ∈ ∆.
5. If ¬¬α ∈ ∆, then α ∈ ∆.
6. If α /∈ ∆ or ¬α /∈ ∆, then α1 ∈ ∆ and ¬(α1) /∈ ∆.
7. If α,¬α ∈ ∆ then, for every 1 ¬ i ¬ n: if αi /∈ ∆, then αj ∈ ∆ for

every 1 ¬ j ¬ n with j 6= i.
8. If α,¬α ∈ ∆ then there exists a unique 1 ¬ k ¬ n such that αk /∈ ∆.
9. α(n) ∈ ∆ iff α /∈ ∆ or ¬α /∈ ∆.

10. Oα ∈ ∆ iff α ∈ ∆′ for all ∆′ ∈W (n)
can such that ∆R(n)

can∆′.
11. If α(n) ∈ ∆, then (Oα)(n) ∈ ∆.

Proof. Conditions 1–5 and 10–11 are proven as in the previous cases,
taken into account the axioms and rules of CDn .

6: Suppose that α /∈ ∆ or ¬α /∈ ∆. By item 1, α ∧ ¬α /∈ ∆ and so
α1 = ¬(α ∧ ¬α) ∈ ∆, by item 4. Since α ∧ ¬α /∈ ∆ then, by item 5,
¬(α1) = ¬¬(α ∧ ¬α) /∈ ∆.

7: Observe that item 6 is equivalent to the following:

If α1 /∈ ∆ or ¬(α1) ∈ ∆, then α,¬α ∈ ∆. (∗)

By induction on 1 ¬ i ¬ n it will be proven that

P (i) := for every α, if α,¬α ∈ ∆ and αi /∈ ∆, then αj ∈ ∆
for every 1 ¬ j ¬ n with j 6= i

holds, for every 1 ¬ i ¬ n (for a given n ­ 2).
Base i = 1: Assume that α,¬α ∈ ∆ and α1 /∈ ∆. By item 6 (applied

to α1) it follows that α2 ∈ ∆ and ¬(α2) /∈ ∆. By applying iteratively
the same reasoning, we infer that αj ∈ ∆ for every 1 ¬ j ¬ n with j 6= 1.
That is, P (1) holds.
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Inductive step: Assume that P (i) holds for every 1 ¬ i ¬ k ¬ n− 1,
for a given 1 ¬ k ¬ n − 1 (Inductive Hypothesis, IH). Let α,¬α ∈ ∆
and suppose that αk+1 = (αk)1 /∈ ∆. By item 4, ¬((αk)1) ∈ ∆ and so
αk,¬(αk) ∈ ∆, by (∗). Since (αk)1 /∈ ∆ then, by (IH) applied to αk, it
follows that (αk)j ∈ ∆ for every 1 ¬ j ¬ n with j 6= 1. Since αk ∈ ∆,
this implies that: (i) αj ∈ ∆ for every k ¬ j ¬ n with j 6= k + 1.

In turn, since ¬((αk−1)1) = ¬(αk) ∈ ∆, then αk−1,¬(αk−1) ∈ ∆,
by (∗). By applying iteratively the same reasoning, we infer that: (ii)
αj ∈ ∆ for every 1 ¬ j ¬ k − 1.

From (i) and (ii) it follows that αj ∈ ∆, for every 1 ¬ j ¬ n with
j 6= k + 1. That is, P (k + 1) holds.

8: It is an immediate consequence of item 7.
9: The “only if” part is immediate, by axiom (bcn) and the fact that

∆ is a closed, non-trivial theory. Now, assume that α /∈ ∆ or ¬α /∈ ∆.
By item 6, α1 ∈ ∆ and ¬(α1) /∈ ∆. By item 6 applied to α1, and taking
into account that ¬(α1) /∈ ∆, it follows that α2 ∈ ∆ and ¬(α2) /∈ ∆. By
applying iteratively the same reasoning, we infer that αj ∈ ∆ for every
1 ¬ j ¬ n, hence α(n) ∈ ∆, by item 1. a

Definition 7.8. For each ∆ ∈ W (n)
can, define νn∆ : For(ΣC1

D ) → An such
that for each ∆ ∈W (n)

can we have:

vn∆(α) =


Tn, if α ∈ ∆,¬α /∈ ∆

tnk , if α,¬α ∈ ∆ and αk+1 /∈ ∆

Fn, if α /∈ ∆,¬α ∈ ∆

Corollary 7.1. Let ∆ ∈W (n)
can. Then, the following holds:

1. The function vn∆ is well-defined.
2. vn∆(α) ∈ {Tn, Fn} iff α /∈ ∆ or ¬α /∈ ∆ iff α(n) ∈ ∆.
3. vn∆(α) = tni iff αi+1 /∈ ∆.

Proof. Item 1 is an immediate consequence of item 8 of Lemma 7.5.
In turn, item 2 follows by item 9 of Lemma 7.5 and the definition of vn∆.
Finally, item 3 is a consequence of item 1 and the definition of vn∆. a

Consider now the relation R
(n)
can ⊆ W

(n)
can × W

(n)
can defined as in the

previous cases.
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Proposition 7.1. The structureMn = 〈W (n)
can, R

(n)
can, {vn∆}∆∈W (n)

can
〉 is a

swap Kripke model for CDn such that, for every α ∈ For(ΣC1
D ), vn∆(α) ∈

Dn iff α ∈ ∆.

Proof. Observe first that, by Definition 7.8, for every ∆ and every α
it holds: (∗) vn∆(α) ∈ Dn iff α ∈ ∆.

(I) Let us prove now that each function vn∆ satisfies the properties
stated in Definition 7.3. Concerning conjunction, observe that, by (∗)
and item 1 of Lemma 7.5, vn∆(α ∧ β) ∈ Dn iff vn∆(α), vn∆(β) ∈ Dn. In
turn, z, w ∈ Dn implies that z∧̃w ⊆ Dn, and z = Fn or w = Fn implies
that z∧̃w = {Fn}. Moreover, by item 2 of Corollary 7.1: vn∆(α), vn∆(β) ∈
Boon implies that α(n), β(n) ∈ ∆ and so (α ∧ β)(n) ∈ ∆, by (Pn), then
vn∆(α∧β) ∈ Boon. Given that z, w ∈ Boon implies that z∧̃w ⊆ Boon, we
infer from the previous considerations that vn∆(α ∧ β) ∈ vn∆(α)∧̃vn∆(α).
Analogously, we prove that vn∆(α#β) ∈ vn∆(α)#̃vn∆(α) for # ∈ {∨,→}.
Concerning negation, suppose that vn∆(α) = Tn. Then, α ∈ ∆ and
¬α /∈ ∆, and so vn∆(¬α) = Fn ∈ {Fn} = ¬̃Tn = ¬̃ vn∆(α). If vn∆(α) = Fn
the proof is analogous. Now, suppose that vn∆(α) = tni . Then, ¬α ∈ ∆
and so, by (∗), vn∆(¬α) ∈ Dn = ¬̃ tni = ¬̃ vn∆(α). Finally, by (∗), if
vn∆(Oα) ∈ Dn then Oα ∈ ∆ and so α ∈ ∆′ for all ∆′ ∈ W

(n)
can such

that ∆R(n)
can∆′, by item 10. of Lemma 7.5. This means that vn∆′(α) ∈

Dn for all ∆′ ∈ W (n)
can such that ∆R(n)

can∆′, by (∗) once again, therefore
vn∆(Oα) ∈ Dn = Õ

(
{vn∆′(α) : ∆R

(n)
can∆′}

)
. Now, if vn∆(Oα) = Fn then

Oα /∈ ∆, by (∗), hence there exists some ∆′ ∈W (n)
can such that ∆R(n)

can∆′

and α /∈ ∆′, by item 10. of Lemma 7.5. This means that vn∆′(α) = Fn

for some ∆′ ∈ W (n)
can such that ∆R(n)

can∆′, by (∗) once again. From this,
vn∆(Oα) ∈ {Fn} = Õ

(
{vn∆′(α) : ∆R

(n)
can∆′}

)
.

(II) Let us see now that each vn∆ satisfies the restrictions imposed
in Definitions 7.5 and 7.6. Thus, assume first that vn∆(α) = tn0 . Then,
α,¬α ∈ ∆ and α1 /∈ ∆. Hence, (α ∧ ¬α) ∈ ∆, by item 1 of Lemma 7.5,
and ¬(α ∧ ¬α) = α1 /∈ ∆. From this, vn∆(α ∧ ¬α) = Tn. Now, suppose
that vn∆(α) = tnk for some 1 ¬ k ¬ n − 1. By Definition 7.8, α,¬α ∈ ∆
and αk+1 /∈ ∆. From this, (α ∧ ¬α) ∈ ∆ and ¬(α ∧ ¬α) = α1 ∈ ∆, by
items 1 and 8 of Lemma 7.5. By Definition 7.8, vn∆(α∧¬α) ∈ In. Suppose
that ¬(α1) /∈ ∆. By item 6 of Lemma 7.5 applied to α1, it follows that
α2 ∈ ∆ and ¬(α2) /∈ ∆. By applying iteratively item 6 of Lemma 7.5
to α2, α3 and so on, we conclude that αk+1 ∈ ∆, a contradiction. This
means that ¬(α1) ∈ ∆. Since α1 ∈ ∆ and (α1)k = αk+1 /∈ ∆, we
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conclude by Definition 7.8 that vn∆(α1) = tnk−1. This shows that the
restrictions of Definition 7.5 are satisfied by the functions vn∆. Finally,
suppose that vn∆(α) ∈ Boon. By item 2 of Corollary 7.1, α(n) ∈ ∆.
By (POn), (Oα)(n) ∈ ∆ and so, by item 2 of Corollary 7.1 once again,
vn∆(Oα) ∈ Boon. This shows that the condition of Definition 7.6 are also
satisfied by the functions vn∆. a

Theorem 7.2 (Completeness of CDn w.r.t. swap Kripke models).
For any set Γ ∪ {ϕ} ⊆ For(ΣC1

D ), if Γ �CD
n
ϕ then Γ `CD

n
ϕ.

Proof. Suppose that Γ 0CD
n
ϕ. Then, there is a ϕ-saturated set Γ ⊆ ∆

such that ϕ /∈ ∆. From Proposition 7.1,Mn is a swap Kripke model for
CDn and ∆ is a world inMn such thatMn, ∆ � Γ butMn, ∆ 2 ϕ. This
implies that Γ 2CD

n
ϕ. a

7.1. A small addition

We briefly mention that in order to validate (D) in standard formulation,
that is, using the primitive paraconsistent negation ¬ of Cn, we need one
more restriction added to our valuations, namely:

Definition 7.9. A swap Kripke model for CDn is said to be strict if the
valuations satisfy, in addition, the following constraint:

If vnw(Oα) ∈ Dn then, for every w′ ∈W such that wRw′, vnw′(α) = Tn.

Then it is easy to see that (D) (formulated with ¬) is valid w.r.t.
strict swap Kripke models for CDn .

Proposition 7.2. Axiom schema

Oα→ ¬O¬α (SDn)

is valid w.r.t. strict swap Kripke models for CDn .

Proof. Let M be a strict swap Kripke model for CDn , and suppose
that, for some formula α and some world w in M, vnw(Oα) ∈ Dn but
vnw(¬O¬α) = Fn. The latter implies that vnw(O¬α) = Tn ∈ Dn. By
Definition 7.9 it follows that, for every w′ in M such that wRw′, it is
the case that vnw′(α) = Tn = vnw′(¬α). But this is a contradiction, since
¬̃Tn = {Fn}. This shows thatM � Oα → ¬O¬α for every strict swap
Kripke model for CDn and for every formula α. a
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It also interesting to notice that these strict models collapse the
two notions of permission. Whereas in the first formulation of CnD one
would formally be able to characterize two distinct notions of permis-
sion, namely ∼(n)O∼(n)α and ¬O¬α, in this strict formulation there is
a collapse, since whenever Oα holds in w, in all the worlds accessible
to w, α behaves classically and is true. It is an easy exercise to see
the preservation of soundness and completeness of CDn plus (SDn) w.r.t.
strict swap Kripke models.

8. Applications of CD
1 and CD

n to moral dilemmas

The motivation behind applying the logics in the CDn -hierarchy to moral
dilemmas stems from the original work on the topic (da Costa and
Carnielli, 1986) together with other works published on the topic, (Puga
and da Costa, 1987a,b; Puga et al., 1988). The work by da Costa and
Carnielli focuses on the idea of building a system that tolerates deontic
conflicts without resulting in deontic trivialization, and trivialization as
a result of O-aggregation. The others work cited diversify the topics
investigated.

To give an overview on the ways they diversify the topics, we briefly
mention the overall topics discussed in the aforementioned papers. In
(Puga et al., 1988), the authors expand the original work to bimodal
systems that satisfy instances of Kant’s Law (KL) and Hintikka’s Law
(HL), respectively,

Oα→ ♦α, (KL)
�α→ Oα, (HL)

where � and ♦ are alethic modalities, dually interdefinable. The works
presented in (Puga and da Costa, 1987a,b) relate legal and moral modal-
ities, assigning to each notion a distinct deontic modality, Ol and Om

respectively, which are independently defined and brought together by
bridge axioms.

Although the aforementioned works motivate the presentation of new
deontic systems on top of the ones presented in (da Costa and Carnielli,
1986), they reserve themselves to only lay the formal grounds upon which
the philosopher interested in Ethics or Moral Philosophy can develop
their work (Puga and da Costa, 1987b, pp. 35–36). However, as pointed
out in (Vaz and Maruchi, 2025), paraconsistent deontic logics seem to
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be well-suited systems to deal with conflicting obligations that occur in
the context of moral dilemmas. Hence, we envision that discussing the
application of CDn to these contexts seems a fruitful enterprise. Moreover,
the expansion of the original system CD1 to bimodal systems (and po-
tentially to multimodal systems) already present in the literature makes
it reasonable to infer that the same could be done by the techniques
presented in this paper and not only having CD1 as a base logic, but any
logic in the CDn hierarchy.

Moral dilemmas are usually stated as follows:

Oα ∧ Oβ ∧ ¬♦(α ∧ β),

where ♦ is an alethic modality. Clearly, when β = ¬α, we have con-
flicting obligations. A standard example of moral dilemmas is Sophie’s
Dilemma, in which a prisoner of a Nazi camp has to decide to save either
her daughter or her son, who are scheduled to be executed and if she
decides not to pick between one of them, both are executed.

We allow ourselves to state a few remarks here. First, the authors in
(Vaz and Maruchi, 2025) claim that conflicting obligations are the root
cause of the eventual trivializations in moral dilemmas, thus relegating
a secondary role to the alethic operator. Second, the negation appearing
outside the scope of the alethic operator could be, as an alternative for-
mulation, a distinct negation which behaves classically, so that it would
it would render impossible the solution of a moral dilemma to be given
by paraconsistent logic alone. Our focus is to solve the problem deon-
tically, with paraconsistency being a feature of the deontic systems we
are studying. In other words, we want the focus of our discussion to be
formulas that are deontic and have negations only inside the scope of
the modal operator.

If we look at the system CD1 , there are a few options on how to solve
moral dilemmas. The first and obvious route is to try and differenti-
ate the negation happening in the scope of the modal operator. Thus,
for example, if the formula occurring in a moral dilemma is of the form
Oα∧O¬α, then this is perfectly acceptable in our model for CD1 , although
such an explanation can be deemed insufficient. We should not only point
towards a formal solution, but also give a satisfying philosophical inter-
pretation to the formulas so that they make sense in a deontic setting.

For example, we can interpret O¬α as representing a notion of weak
prohibition. Such an interpretation would result in a different scenario
than that one pictured in Sophie’s Dilemma. Rather, one could think
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of such a prohibition to be a minor one, in which no significant results
would follow when choosing either horn of the dilemma, while failing to
satisfy the other.11

Instead, since the consequences of not saving one of the children
in Sophie’s Dilemma potentially result in their death, we are forced to
formalize those cases as Oα∧O∼α, thus using a notion of strong prohibi-
tion12, i.e., O∼α. Under such an interpretation α behaves classically in a
deontic setting and thus deontic explosion is recovered. This shows that,
although CD1 allows for weak dilemmas to occur without trivialization
of the system, the same cannot be said about strong dilemmas, as those
occurring in Sophie’s Dilemma.

We also notice that when we start to interpret moral dilemmas in
other systems that are members of the CDn hierarchy, we might trace finer
distinctions between levels of “strength” that dilemmas might present.
The CDn -hierarchy allows us to account for stronger dilemmas in a cer-
tain system. Since we move the classical behavior of the negation up
the hierarchy, strong negation understood as ¬α ∧ α1 can work as part
of a definition of a “strong obligation”, while we have room to define
other kinds of “stronger obligations”. In this sense, we would have the
conflicting obligations in Sophie’s Dilemma being assigned a designated
value in the system without trivializing the system.

Another discussion that is necessary in order to bring these systems
to their full potential is whether or not these distinctions between weak
and strong obligations in fact play a role in the actual situations we are
trying to formalize. This, however, is a discussion that the authors will
delve into in further papers.

In summary, while CD1 allows for some distinction between weak
and strong prohibitions in a naive sense, it does not accommodate for

11 For example, picture the following scenario: you have a class on Friday night
and a friend calls you offering a ticket for a concert that they can not attend anymore
due to personal reasons. By attending the concert, you miss class and potentially
fail your course, but it happens that is a band you really like, and might be your
last opportunity to see them live, and as a big fan of art, you have a principle to
always support the artists you like whenever possible. This could count as a minor
dilemma, since the consequences of this act would not have big consequences, such as
somebody’s death or the starting of a war.

12 We diverge from the usual talk about ’weak’ and ’strong’ modalities in deontic
logics, usually referring to permissions, as presented in (Hansson, 2013), since our
notion is heavily dependent on the kind of negation inside the scope of the modal
operator, and not on the fact that the obligation is satisfied or fails to be satisfied.
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a conflict between an obligation and a strong prohibition, thus limiting
its usefulness to formalize and deal with moral dilemmas. On the other
hand, it is just the first step of a whole hierarchy, which, in turn, allows
for both cases to be formalized and dealt with, with trivialization.

9. Concluding Remarks

This paper presented a new way to give semantics to modal LFI s con-
flating possible worlds and nondeterministic endeavours via swap struc-
tures. Although our approach here is not fully deterministic, it maintains
a good balance between Nmatrices, RNmatrices and Kripke semantics,
showing that it is possible to mix them, by satisfactorily characterizing
these logics in such a setting. In particular, we described many logics
along the LDI s hierarchy, for the special case where �̄(α) := O◦α (recall
Section 1). Our investigations started with DmbC, the minimal LFI
equipped with the modal axioms for SDL, and walking up the hierarchy
basing our propositional semantics on Nmatrices.

By adding (cl) to DmbC, we strengthen our systems in such a way
that it becomes impossible to characterize them in terms of finite Nma-
trices alone. We then resort to a reading of RNmatrices adapted to swap
structures, namely, a restriction in the admissible swap valuations. This
move allows us to characterize DmbCcl and also stronger logics, such as
DCila, and the whole of CDn hierarchy.

Regarding the latter, the developments here presented are entirely
new. In the case of CD1 , a sketch of its semantics, by means of bivalu-
ations, was given in (da Costa and Carnielli, 1986). In this paper, we
fully develop those proofs by means of the novel notion of swap Kripke
structures, giving proofs for both DCila and CD1 . For CDn in general, it
is the first time this family of systems is fully developed and semantically
characterized. We also discuss briefly the different systems that can be
defined given the multiple notions of negation these system are able to
express. A thorough survey of such systems would require a paper on its
own, and our objective here is to lay down the technical grounds upon
which this discussion is allowed to be attained.

We believe this combination between nondeterministic semantics and
possible worlds semantics can be fruitful in the conception of new se-
mantics for logical systems, since it allows for the introduction of new
concepts into the logic, for example, detaching modal notions from pos-
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sible world semantics, thus allowing for a higher expressivity of these
nondeterministic modal systems. The mix between them also allow for
systems in which each world is nondeterministic and, as seen in the case
for CDn , the modal operator that has its truth conditions based on these
nondeterministic worlds inherits the nondeterministic behavior, as well
as being sufficiently expressive as to accommodate for two notions of
prohibition in its full capabilities. This allows a more or less fine-grained
distinctions of dilemmas, depending on how far into the hierarchy the
dilemma is modeled. We also point out that further investigation should
look deeper into the philosophical aspects of such systems, as well how
they fare when modeling other paradoxes of deontic logics.

Acknowledgments. We thank the anonymous referee for the deep and
thorough comments on an earlier version of this paper. This feedback
helped us to improve the overall quality of the manuscript. Vaz holds
a PhD scholarship from the São Paulo Research Foundation (FAPESP,
Brazil), grant 2022/16816-9, and was also financed by the German Aca-
demic Exchange Service (DAAD, Germany), under the Bi-nationally su-
pervised/Cotutelle Doctorate degree program. Coniglio acknowledges
support by an individual research grant from the National Council for
Scientific and Technological Development (CNPq, Brazil), grant 309830/
2023-0. All the authors were supported by the São Paulo Research
Foundation (FAPESP, Brazil), thematic project Rationality, logic and
probability – RatioLog, grant 2020/16353-3.

References

Avron, A., 2007, “Non-deterministic semantics for logics with a consistency
operator”, International Journal of Approximate Reasoning 45: 271–287.
DOI: 10.1016/j.ijar.2006.06.011

Batens, D., 1980a, “A completeness-proof method for extensions of the im-
plicational fragment of the propositional calculus”, Notre Dame Journal of
Formal Logic 21(3): 509–517. DOI: 10.1305/ndjfl/1093883174

Batens, D., 1980b, “Paraconsistent extensional propositional logics”, Logique
et Analyse 23(90/91): 195–234.

Beirlaen, M. and C. Straßer, 2011, “A paraconsistent multi-agent framework
for dealing with normative conflicts”, pages 312–329 in J. Leite et al., (eds.),
Computational Logic in Multi-Agent Systems, volume 6814 of Lecture Notes
in Computer Science (LNAI). DOI: 10.1007/978-3-642-22359-4_22

http://dx.doi.org/10.1016/j.ijar.2006.06.011
http://dx.doi.org10.1305/ndjfl/1093883174
http://dx.doi.org/10.1007/978-3-642-22359-4_22


Swap Kripke models for deontic LFI s 39

Bueno-Soler, J., 2011, “Two semantical approaches to paraconsistent modali-
ties”, Logica Universalis 4(1): 137–160. DOI: 10.1007/s11787-010-0015-0

Carnielli, W., and M.E. Coniglio, 2016, Paraconsistent Logic: Consistency,
Contradiction and Negation, volume 40 of Logic, Epistemology, and the Unity
of Science, Springer Nature, Cham. DOI: 10.1007/978-3-319-33205-5

Carnielli, W., M.E. Coniglio, and J. Marcos, 2007, “Logics of formal incon-
sistency”, pages 1–93 in D.M. Gabbay and F. Guenthner (eds.), Handbook
of Philosophical Logic, volume 14, Springer, Dordrecht. DOI: 10.1007/978-
1-4020-6324-4_1

Coniglio, M.E., 2009, “Logics of deontic inconsistency”, Revista Brasileira de
Filosofia 233:162–186 (preprint available at CLE e-Prints, 7(4), 2007.

Coniglio, M.E., L. Fariñas del Cerro, and N.M. Peron, 2015, “Finite non-
deterministic semantics for some modal systems”, Journal of Applied Non-
Classical Logics 25(1): 20–45. DOI: 10.1080/11663081.2015.1011543

Coniglio, M.E., and A.C. Golzio, 2019, “Swap structures semantics for Ivlev-
like modal logics”, Soft Computing 23(7): 2243–2254. DOI: 10.1007/s00500-
018-03707-4

Coniglio, M.E., P. Pawłowski, and D. Skurt, 2025, “RNmatrices for
modal logics”, The Review for Symbolic Logic 18(3): 744–774. DOI:
10.1017/S1755020325100737

Coniglio, M.E., and N.M. Peron, 2009, “A paraconsistentist approach to
Chisholm’s paradox”, Principia: An International Journal of Epistemology
13(3): 299–326. DOI: 10.5007/1808-1711.2009v13n3p299

Coniglio, M.E., and G.V. Toledo, 2022, “Two decision procedures for da
Costa’s Cn logics based on restricted Nmatrix semantics”, Studia Logica
110(3): 601–642. DOI: 10.1007/s11225-021-09972-z

da Costa, N.C.A., and W. Carnielli, 1986, “On paraconsistent deontic logic”,
Philosophia 16(3–4): 293–305. DOI: 10.1007/BF02379748

Grätz, L., 2021, “Truth tables for modal logics T and S4, by using three-valued
non-deterministic level semantics”, Journal of Logic and Computation 32(1):
129–157. DOI: 10.1093/logcom/exab068

Hansson, S.-O., 2013, “The varieties of permission”, pages 195–240 in D. Gab-
bay et al., (eds.), Handbook of Deontic Logic and Normative Systems, College
Publications, London. DOI: 10.1002/9781444367072.wbiee217.pub2

Leme, R., C. Olarte, E. Pimentel, and M.E. Coniglio, 2025, “The modal cube
revisited: Semantics without worlds” pages 181–200 in G. L. Pozzato and
T. Uustalu (eds.), Automated Reasoning with Analytic Tableaux and Re-
lated Methods, volume 15980 of Lecture Notes in Computer Science (LNAI),
Springer Nature, Cham. DOI: 10.1007/978-3-032-06085-3_10

http://dx.doi.org/10.1007/s11787-010-0015-0
https://doi.org/10.1007/978-3-319-33205-5
https://doi.org/10.1007/978-1-4020-6324-4_1
https://doi.org/10.1007/978-1-4020-6324-4_1
https://doi.org/10.1080/11663081.2015.1011543
https://doi.org/10.1007/s00500-018-03707-4
https://doi.org/10.1007/s00500-018-03707-4
https://doi.org/10.1017/S1755020325100737
http://dx.doi.org/10.5007/1808-1711.2009v13n3p299
https://doi.org/10.1007/s11225-021-09972-z
http://dx.doi.org/10.1007/BF02379748
http://dx.doi.org/10.1093/logcom/exab068
https://doi.org/10.1002/9781444367072.wbiee217.pub2
http://dx.doi.org/10.1007/978-3-032-06085-3_10


40 Mahan Vaz and Marcelo E. Coniglio

McGinnis, C., 2007, “Paraconsistency and deontic logic: Formal systems for
reasoning with normative conflicts”, PhD thesis, University of Minnesota.

Omori, H., and D. Skurt, 2016, “More modal semantics without possible
worlds”, IFCoLog Journal of Logic and its Applications 3(5): 815–846.

Pawlowski, P. and D. Skurt, 2024, “� and ♦ in eight-valued non-deterministic
semantics for modal logics”, Journal of Logic and Computation, 35(2):
exae010. DOI: 10.1093/logcom/exae010

Peron, N.M., and M.E. Coniglio, 2008, “Logics of deontic inconsistencies and
paradoxes”, CLE e-prints, 8(6).

Puga, L. Z., N.C.A. da Costa, and W. Carnielli, 1988, “Kantian and non-
Kantian logics”, Logique Et Analyse, 31(121/122): 3–9.

Puga, L. Z., and N.C.A. da Costa, 1987a, “Sobre a lógica deôntica não-
clássica”, Crítica: Revista Hispanoamericana de Filosofía, 19(55): 19–37.
DOI: 10.22201/iifs.18704905e.1987.639

Puga, L. Z., and N.C.A. da Costa, 1987b, “Logic with deontic and legal modal-
ities, preliminary account”, Bulletin of the Section of Logic, 16(2): 71–75.

Vaz, M., G. and Maruchi, 2025, “Modeling deontic inconsistencies in moral
dilemmas”, Perspectiva Filosófica 52(2): 174–206. DOI: 10.51359/2357-
9986.2025.263881

Mahan Vaz
Instituto de Filosofia e Ciências Humanas (IFCH)
Universidade Estadual de Campinas (UNICAMP), Brazil
Institut für Philosophie I, Logik und Erkenntnistheorie
Ruhr-Universität, Bochum, Germany
mahanvaz@gmail.com
https://orcid.org/0000-0002-0187-731X

Marcelo E. Coniglio
Instituto de Filosofia e Ciências Humanas (IFCH)
Centro de Lógica, Epistemologia e História da Ciência (CLE)
Universidade Estadual de Campinas (UNICAMP), Brazil
coniglio@unicamp.br
https://orcid.org/0000-0002-1807-0520

https://doi.org/10.1093/logcom/exae010
http://dx.doi.org/10.22201/iifs.18704905e.1987.639
https://doi.org/10.51359/2357-9986.2025.263881
https://doi.org/10.51359/2357-9986.2025.263881
https://orcid.org/0000-0002-0187-731X
https://orcid.org/0000-0002-1807-0520

	Introduction
	The paraconsistent deontic system DmbC
	Swap Kripke models for DmbC

	Some extensions of DmbC
	The da Costa axiom: the case of DmbCcl
	Swap Kripke models for DCila
	The pioneering system CD1
	Swap Kripke models for CDn
	A small addition

	Applications of CD1 and CDn to moral dilemmas
	Concluding Remarks
	References


