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Swap Kripke Models for Deontic LFIs

Abstract. We present a construction of nondeterministic semantics for
some deontic logics based on the class of paraconsistent logics known as
Logics of Formal Inconsistency (LFIs), for the first time combining swap
structures and Kripke models through the novel notion of swap Kripke mod-
els. We start by making use of Nmatrices to characterize systems based on
LFIs that do not satisfy axiom (cl), while turning to RNmatrices when the
latter is considered in the underlying LFIs. This paper also presents, for
the first time, a full axiomatization and a semantics for the C? hierarchy,
utilizing the aforementioned mixed semantics with RN matrices. It includes
the historical system CP of da Costa and Carnielli (1986), the first deontic
paraconsistent system proposed in the literature.

Keywords: deontic logic; paraconsistent logic; da Costa logics; nondeter-
ministic semantics; Nmatrices; swap structures; moral dilemmas

1. Introduction

The pioneering work on paraconsistent deontic logic by da Costa and
Carnielli (1986) proposed dealing with deontic paradoxes by changing
the base logic from classical logic to a paraconsistent logic. The logic
that should then be used for such an enterprise is da Costa’s C. This
logic blocks trivialization derived from conflict of obligations since the
occurrence of a formula of the form aA—« does not trivialize the system.
The modal logics which have C; as their propositional fragment also
preserve this characteristic, thus being conjectured by the authors to be
a well motivated project.

Another motivation for such an account is the fact that C; is the
first logic in a hierarchy of logics, the da Costa’s C),. It is suggested by
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the end of the 1986 paper that the technique of adding a modal deontic
operator could be applied to any logic in the C,, hierarchy, but this,
in fact, was hitherto never accomplished. Indeed, the modal systems
based on C,, were never given a formal (syntactic and/or semantical)
treatment. Our aim is to fill these gaps in the literature.

With the passing of years, the notion of deontic paraconsistency has
evolved. Many works used similar ideas as those initially presented by da
Costa and Carnielli, for instance: (Beirlaen and Strafier, 2011; McGinnis,
2007; Puga and da Costa, 1987a,b; Puga et al., 1988; Coniglio and Peron,
2009; Peron and Coniglio, 2008; Coniglio, 2009).

In particular, a series of works (Peron and Coniglio, 2008; Coniglio
and Peron, 2009; Coniglio, 2009) investigates the applications of deontic
axioms to LFIs.! In these works, the authors present explicitly the
notion of deontic paraconsistency which is defined as follows: a logic is
deontically paraconsistent if it is not deontically explosive, i.e., for some
«, B in the set of formulas, we have the following:

Oa, O—a ¥ Op.

Moreover, a logic is a Logic of Deontic Inconsistency, LDI for short, if
it is not deontically explosive and there is a unary connective (primitive
or defined) B for which the following holds:?
e Tor some sentences o, o', 3, 3,

— B(a),0a k¥ 08,

- B(),0-a’ ¥ 0p".
e For any o, 8

~ B(a),0a,0-a - 08.

Any normal modal logic based on an LFI can be seen as an LDI
simply by taking B(a) := Ooa. The original semantics for LDIs based
on LFIs provided in (Peron and Coniglio, 2008; Coniglio, 2009; Coniglio
and Peron, 2009) was given in terms of Kripke structures together with
bivaluation semantics.?

L Also to some other logics, such as Batens’ CLuN (1980a; 1980b), previously
named DPI.

2 As in the case of LFIs, in the general case H(p) can be considered as being
a set of modal formulas depending on a single propositional letter p. LDIs where
introduced by Coniglio in (2009). Additional developments and applications of LDIs
can be found in (Coniglio and Peron, 2009).

3 Tt is worth noting that Bueno-Soler has introduced a wide class of paraconsistent
modal systems based on LFIs, also with a semantics given by Kripke structures
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The recent years have seen a rise in developments in the area of non-
deterministic semantics, with prominent works (in chronological order)
by Coniglio et al. (2015), Omori and Skurt (2016), Coniglio and Golzio
(2019), Gratz (2021), Pawlowski and Skurt (2025), Coniglio et al. (2025)
and Leme et al. (2025), among others. In general, these works show that
Nmatrices and RNmatrices (i.e., restricted Nmatrices) allow for the char-
acterization of many non-normal modal logics. These results motivated
the aim to approach the semantics of deontic LFIs nondeterministically
and the pursue to cover the whole C,, hierarchy, as envisioned by da
Costa and Carnielli (1986).

It is important to note that, although the works of Coniglio and
Peron, as well as Bueno-Soler, cover a portion of the LFIs’ hierarchy,
some of the LFIs were not studied at the time. Pertaining to the latter
were the systems satisfying axiom (cl), which are not characterizable
by finite Nmatrices, following the proof of the Dugundji-like theorem
by Avron (2007, Theorem 11). That roadblock was moved by Coniglio
and Toledo (2022), where the authors present a new possibility for a
nondeterministic semantical characterization of the logics in C,. Inspired
by this work, we expand the treatment to present a characterization of
modal C,,.

Having these details in mind, this paper initially presents a semantics
for some deontic LFIs, starting with DmbC. The novelty at this point
is that, different to the previous approaches to modal LFIs found in the
literature, we present a semantics given by a combination between swap
structures and Kripke models. We take sets of worlds and relations as
a frame, where each of the worlds is nondeterministic. We then move
to extensions of this logic eventually reaching DmbC'cl, which, by previ-
ous known results, is not characterizable by finite Nmatrices. We then
show, following the results presented in (Coniglio and Toledo, 2022),
that the combination between RNmatrices and Kripke models allows for
a characterization of this logic, as well as its extensions. In particular,
we focus our attention on a few of its extensions, namely DCila (which
is the conservative reduct of C{) and the hierarchy extension C2, for
all C,,. Regarding the latter, we present for the first time an explicit
characterization of these logics, describing their axioms and respective
semantics (once again in terms of swap Kripke models), given that the

equipped with bivaluation semantics, and alternatively with a possible-translations
semantics (see, e.g., Bueno-Soler, 2010).
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deontic systems for the whole hierarchy were never explicitly described.
We end this paper with a brief discussion of our results, applying the
CD hierarchy to moral dilemmas.

2. The paraconsistent deontic system DmbC

We give a modal account of the fundamental LFI, mbC together with
a modalization proposed in (Coniglio, 2009; Peron and Coniglio, 2008;
Coniglio and Peron, 2009), which is a deontic version of mbC', which we
call DmbC.

DEFINITION 2.1. Let ¥ = {—,—,V,A,0,0} be a signature for LFIs.
The logic DmbC' defined over ¥ is the system characterized by all CPL™
axioms, that is, the axioms corresponding to the positive fragment of
classical propositional logic, plus the following axioms for = and o:

aV (EM)
oa — (a = (ma — ) (bc)

together with the following modal axioms, where L, = (a A =) A o

O(a = B) = (O — Op) (0-K)
Ola — Lo (O-E)

such that the only inference rules are Modus Ponens and O-necessitation.

Observe that O-necessitation is a global inference rule (i.e., it only
can be applied to premises which are theorems). From this, the notion of
derivation from premises needs to be adjusted in DmbC), as it is usually
done in normal modal systems.

DEFINITION 2.2. Let I'U {¢} C For(X%).

1. A derivation of ¢ in DmbC is a finite sequence of formulas
©1,.-.,pn such that ¢, = ¢ and, for every 1 < i < n, either ¢; is
an instance of an axiom, or ¢; follows from ¢; and ¢ = ¢; — ¢; (for
J,k < i) by Modus Ponens, or ¢; = Oyp; follows from ¢; (for j < i) by
O-necessitation. In this case, we say that ¢ is derivable in DmbC', or it
is a theorem of DmbC', which will be denoted by Fp.ec -

2. We say that ¢ is derivable from I" in DmbC', denoted by I" Fpmpc
@, if either Fp,pc p, or there exist formulas 7, ...,v, € I' (for a finite
k > 1) such that Fpmpe (1 A - AYk) = ©.
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Observe that 0 Fpupe ¢ iff Fpmee . We know that in DmbC
the deduction metatheorem and proof-by-cases hold, as the results by
Coniglio (2009) show.

Notice that we define L, as being equivalent to (v A ) A ocr. Since
mbC' is a minimal LFI (Carnielli et al., 2007), it contains the consistency
operator o. This operator is interpreted in such a way that it indicates
when a certain formula « is metatheoretically well-behaved in the system
from a logical perspective. By taking ~a := (o — L,), we recover
classical negation and can again define permission, denoted Pa, as being
equivalent to ~O~a. This allows us to add (O—FE) for characterizing
DmbC instead of the usual deontic axiom (O—D):

(0—D) Oa — Pa

So let us take L to be a bottom formula in CPL. By our definition

of Pa, the following result ensues:

Oa - ~O~a =0a — (O~a — L) = (Oa A O~a) — L

and given that Oa A O~a = O(a A ~a), then we get O(a A ~a) — L
or, equivalently, ~O(a A ~a) (another standard way to represent the
deontic axiom). In turn, if we define f, := (A ~a), then the last result
is equivalent to Of, — fo. The equivalence used to obtain the last
result is target for many criticisms in deontic logics, however, it will not
be within the scope of this paper to address such criticisms.

2.1. Swap Kripke models for DmbC

Swap structures are multialgebras of a particular kind, defined over ordi-
nary algebras. The domains of swap structures are the truth values of a
certain logic, but presented as finite sequences of values of the underlying
algebra. These sequences, called snapshots, represent (semantical) states
of a given formula, described by the components of the sequence. For
DmbC', the snapshots consists of pairs over the two-element Boolean
algebra with domain 2 = {0, 1} representing the semantical state of a
formula and of its paraconsistent negation —. The consistency (or clas-
sicality) operator o is defined in terms of its relation with contradiction
w.r.t. the paraconsistent negation.

DEFINITION 2.3. Let As := (A,A,V,5,5,0,38) be a multialgebra with
domain A = {T,t, F'}. Let D = {T,t} denote the designated truth values
and define M3 := (A3, D) to be an Nmatrix over signature X.
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Remark 2.1. As mentioned above, the domain of the multialgebras in
which we are interested is formed by pairs over 2 intending to repre-
sent the (simultaneous) values in 2 = {0,1} assigned to the formu-
las ¢ and —p. That domain is the set of truth values for such logic.
Thus, we let A C 22 and define T := (1,0) (yp is true, -y is false);

= (1,1) (¢ is true, -y is true); and F' := (0,1) (¢ is false, - is
true). We remove from the domain the pair (0,0) (¢ is false, - is false)
since the paraconsistent negation is assumed to satisfy the excluded-
middle law (EM) (recall Definition 2.1). From now on, we mention
whenever possible the snapshots instead of their labels. Notice that
D={(1,0,(L,)}={z€ A : z =1}

DEFINITION 2.4. The modal swap structure for DmbC' is A3z (cf. Defi-
nition 2.3) such that its domain is BY™ = {(c1,c2) € A: ey Uy =1}
and the multioperations A, V, =, =, 3, as well as a special multioperator
O : 9 (A) — o (A),* are defined as follows, for every a,b € A and
h#+XCA:

1. aAb —{(61,02) €A :all_lbl},

2. aVb: {(01,02) €A :cg=a U bl},

3. a>b:={(c1,c2) €A : ¢1 =a1 Db},

4. =a {(Cl,CQ) € A D =as},

5. fza ={(c1,c2) € 1 < ~(a1Mag)},

6. O(X) := {(01,02)€A ca=[Hz1 : ze X}}

Remark 2.2. The symbols M, LI, D, ~ refer to the Boolean operations of
meet, join, implication and Boolean complement in 2, respectively. The
symbol []is applied to a non-empty subset of 2 and denotes the meet of
all the elements of that set.

Remark 2.3. BD mbC — A via the analytical representation of the truth
values, shown in the previous remark. The non-deterministic truth-
tables for the non-modal operators are displayed below, where U = {F'}
is the set of non-designated truth values.

AT|t|F VI T|t|F
T|D|D|U T|D|D|D
t |D|D|U t |D|D|D
Flulu\|u F|D|D|U

4 In this paper, p+(Y) will denote the set of non-empty subsets of a set Y.
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= |T |t | F = G
T |D|D|U T | U T| A
t D|D|U t | D t | U
F |\D|D|D F | D F| A

DEFINITION 2.5. Let W be a non-empty set (of possible worlds), and
R C W?2 be an accessibility relation on W. For each w, w’ € W a function
Uyt For(X) — A is a swap valuation for DmbC' if every condition below
is satisfied, for a, € For(X):
L. vp(a A B) € vy(a)Avy,(B),
V(@ V B) € vy(a)Vou(B),

(a - 6) € Uw( );H]w(ﬁ)a

Ow(mar) € Sy (),

vw (o) € Svy(a),
vw(Oa) € O({vy (@) : wRw'}).
DEFINITION 2.6. Let W be a non-empty set of worlds, R C W? be a
serial accessibility relation® and {vy }wew a family of swap valuations

for DmbC. We say that the triple M = (W, R, {vy }wew) is a swap
Kripke model for the logic DmbC.

Remark 2.4. Let @ € {1,2} and w € W. We define m;(vy()) to be
the projection of the pair v, (a) on its i-th coordinate. For the sake of
simplicity, we adopt the notation a; ) to denote m;(vy ().

@.U‘F.W.N

LEMMA 2.1. Let w € W and «, 3 € For(X). Moreover, let v,, be as in
Definition 2.5. Then

L (@A B) 1w = 1w M Ba,w);

2. (aVB)aw) = a@1,w) UBw,

3. (= B)aw) = a(1,w) D B1,w)s

4. (_‘Oé)(lyw) = Q(2,w)>
5. (00)(1,w) < ~((1,0) M 2,w));
6. (0c)1,w) =[He@w) @ wRw'}.

PROOF. Items 1 through 5 are immediate from our definitions. For item
6, consider O(Xy,q) for X,y o = {vw (@) : wRw'}. By Definition 2.4,

O(Xw,a) ={ceA:co=[Ho1:2€ Xpal}}
={ceA:c =[Hapuw) : wRw'}}.
Thus, our result follows by item 6 of Definition 2.5. —

5 Recall that a relation R C W? is serial if, for every w € W, there exists w’ € W
such that wRw’.
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Remark 2.5. By the very definitions, for any w € W and for any o €
For(%), vy(a) € D if and only if a () = 1.

Remark 2.6. We can now give a clear picture of what our models will
look like. In particular, we show how any model of DmbC' satisfy axiom
(O-E). It is easy to see that v,,(OLy) = vy(Lls). Indeed, by item 6 of
Lemma 2.1, (OLa)(1,0) = [ H(La)a,w) @ wRw'} =[]{0 : wRw'} =0,
given that (Ly)(1,u) = 0 for every w’ € W (by Lemma 2.1 items 1, 4
and 5), and {w' € W : wRw'} # (), since R is serial.

DEFINITION 2.7. Let M = (W, R, {vy, }wew) be as in Definition 2.6. For
any formula a € For(X), we say that « is M-true in a world w, denoted
M, wE a, if v,(a) € D.

DEFINITION 2.8. Let I' U {a} C For(¥). We say that « is a logical
consequence of I in DmbC, denoted I' Epnpe @, if for all M for DmbC
and w € W: M,w F I' implies that M, w F «.

THEOREM 2.1 (Soundness of DmbC w.r.t. swap Kripke models).
For every I' U{¢} C For(X), if I Fpmpc @, then I' Fpmpc .

PRrOOF. We first show that the theorem holds for the axioms of DmbC'.
The result for the CPL™ axioms follows from Lemma 2.1.

For (bc), we must show that (oa)( )=+ (a = (ma = B))(1,0) = 1.
Suppose that (oa)1,w) = a1,w) = 1. Hence, ~(a1,w) A a@2.w) = 1,
and so (=a)1,w) = q(2,w) = 0. From this, (ma — £)1,,) = 1 and so
(= (ma = B))aw = 1.

For (O-K), assume (O(a — ))(1,w) = 1 and that (Oa),.,) = 1. We
then have that (o« — 3)(1,.) = 1 and that a( ) = 1 for every w’ € W
such that wRw'. Hence, it follows that 3 ) = 1 for every w’ such that
wa/, i.e., (Oﬁ)(l,w) =1.

The proof for (O-E) follows from Remark 2.6.

For Modus Ponens, it is immediate to see that it satisfies the criteria,
by definition of =. For Necessitation, suppose « is a theorem. Then for
every w € W, a(1,,) = 1. In particular, it is the case for every weW
such that wRw’, from which it follows that (Oc)(1 ) = 1. -

In order to prove completeness for DmbC, we build canonical models
based on swap structures. We use the method of i-saturation for con-
struction of maximal consistent sets, together with the denecessitation
for the accessibility relation.
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DEFINITION 2.9. Given a Tarskian and finitary® logic L, a set of formulas
A is ¢-saturated in L if A¥ ¢ and, if ¢ ¢ A, then AU {p} F 9.

Remark 2.7. It is well-known that any 1-saturated set is a closed theory.
Moreover, if I" ¥ 1) in L then there exists a set A which is y-saturated
in L and contains I'. In particular, this property holds for DmbC and
all the other logics to be considered in this paper.

DEFINITION 2.10. Consider the set

Wean = {A C For(X) : A is a 1-saturated set in DmbC),
for some ¢ € For(X)}.

DEFINITION 2.11. Let Den(A) :={¢ € For(X) : Op € A}.
DEFINITION 2.12. Let Ry, € W x W be given for all for A,© € W, by:

AR 0,0 iff Den(A) C 6.

DEFINITION 2.13. For each A € Wy, let va: For(X) — As defined as
follows:
T, faceA-a¢ A
vala) =qt, ifa,~ae A
F, if-aeAag¢A
LEMMA 2.2. For any A € W, the following holds:

anNfeAifa,f e A

avVpfeAifae Aor e A

a—peAifag AorpeA

if ~a ¢ A then o € A

ifa € A and ~a € A then oo ¢ A

Oac Aiffac A for all A’ €¢ W such that AR g, A .

A e

ProOF. Items 1 through 5 are immediate from the definitions and the
fact that A is ¢y-saturated, hence, by Remark 2.7, it is closed under

6 A logic L is Tarskian if, for any set of formulas I", A and formulas ¢, 9, the
following holds:
o Reflexivity: for every o € I', I' - ¢;
e Monotonicity: if I'F ¢ and I' C A, then A& ¢;
e Cut: if I'F ¢ for every ¢ € A and A+ 1, then I' F 1.
L is finitary if it satisfies
e Finiteness: I' F ¢ implies Iy F ¢, for some finite Iy C I
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logical consequences. In particular, it contains any instance of the axioms
of DmbC', and it is closed under Modus Ponens.

To prove the right-to-left direction for 6, assume that Oa ¢ A. Since
A is closed under logical consequences, it follows that ¥ pnwc «, be-
cause of the O-necessitation rule. Suppose, for a contradiction, that
Den(A) Fpmpc . By Definition 2.2, there are (1, ..., 3, € Den(A) (for
n > 1) such that Fppe B — «, where 5 = 81 A--- A B,. By applying
necessitation and (K), Fpmec O — Oa. Observe now that Of; € A,
by definition of Den(A), hence OB A --- A OB, € A, by item 1. But

Fombe (OB A---ANOB,) — Of.

So, OB € A. Using again that A is closed under logical consequences,
we infer that Oa € A, which contradicts our initial assumption.

We conclude, therefore, that Den(A) ¥ pmpc «. But then, there is
some A’ such that Den(A) C A" and A’ is a-saturated. Therefore, there
is A" € Wiy, such that AR, A" and o ¢ A'.

The proof of the left-to-right direction for 6 is immediate from the
definitions. Indeed, if Oa € A and AR 4, A’ then @ € A’, given that
a € Den(A). =

PROPOSITION 2.1. The triple M = (Wean, Rean, {va}aew,,,) is a swap
Kripke model for DmbC' such that va(a) € D if and only if « € A if

and only if a2y = 1.

PROOF. Observe first that R.,, is serial. To see this, let A € Ween.
Then, A is p-saturated, for some formula ¢. Suppose that Oa € A, for
every formula a. Then, Oa, O—a, Ooca € A and so, since A is a closed
theory, OL, € A. This shows that L, € A, by (O—FE) and so ¢ € A,
a contradiction. From this, Oa ¢ A for some «. By reasoning as in the
proof of item 6 of Lemma 2.2, we infer that Den(A) ¥ pmpc o and so
there exists some A’ such that Den(A) C A’ and o ¢ A’. This shows
that R.., is serial. The rest of the proof is an immediate consequence
from Remark 2.5 and Definition 2.13. —

THEOREM 2.2 (Completeness of DmbC' w.r.t. swap Kripke models).
For any set I' U {p} C Fory, if I' Epmsc @, then I' Fpope .

PROOF. Suppose, to the contrary, that I' ¥pmnesc ¢. Thus, by Re-
mark 2.7, there is a @-saturated A € W,, such that I' C A. Since
A Fpmbe @, then ¢ ¢ A. Let M be the canonical swap model for
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DmbC. Then, M, AE I', since I' C A, but M, A ¥ . This proves that
F#Dmbc ®- _|

3. Some extensions of DmbC

DEFINITION 3.1. Consider the following axioms over the signature X:

oa V (a A —a), (ciw)
—oax — (a0 A\ —av), (ci)
= . (cf)

The following systems can be thus defined:
DmbCciw := DmbC U {(ciw)},
DmbCci := DmbC U {(ci)},

DbC' := DmbC U {(cf)},

DC'i := DmbCeci U {(cf)}.

Remark 3.1. This section will talk about results that can be easily adapt-
able to each of the systems above. Let L belong to { DmbC'ciw, DmbClci,
DbC, DCi}. The notion of derivation I' b, ¢ in L is as in Definition 2.2
(with the corresponding set of axioms of each logic).

The multialgebras to accommodate each of the axioms are defined as
follows:

DEFINITION 3.2. Let A3z be the swap structure for DmbC. The multi-
operators of the swap structure for DbC' are defined as in Definition 2.4,
with the exception of =, which is substituted for

“ja={c€A : ¢y =azand ¢ < a1}.

The non-deterministic truth-table for = is as follows:

T {;’1}
t | {T,t)
F| (T}

DEFINITION 3.3. Let A3 be the swap structure for DmbC. The mul-
tioperators of the swap structure for DmbCciw, DmbCci and DC1i are
defined as in Definition 2.4, with exception of the multioperators that
are mentioned in this definition, which are substituted accordingly.
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1. In DmbCciw: 61a:={c€ A : ¢1 =~(a1 MNaz)}.
2. In DmbCeci: d3a = {(~(ay Maz),a1 Masz)}.
3. In DCi, take &5 from DmbCci and =7 from DbC.

The non-deterministic truth-tables for ; and &5 are as follows:

T {TO1 7 T {013}
t | {F} t | {F}
F [ {T.4} F{T}

DEFINITION 3.4. For each w € W, we establish the following:

e The swap valuations for DmbCciw, ’Uﬁ’mbcei“’, are defined as in

Definition 2.5 for all operators, except for o, which satisfies the following

condition:

UDmchiw

DmbCci
D m czw(a).

(ocr) € 311y,

e The swap valuations for DmbCci, vgmbCCi, are defined as in Def-

inition 2.5 for all operators, except for o, which satisfies the following
condition:

vgmchi(oa) c 62'[}£mb06i(0[).
DbC

e The swap valuations for DbC, v,;°%, are defined as in Definition 2.5
for all operators, except for =, which satisfies the following condition:

v (ma) € A1y, ().

e The swap valuations for DCi, v2¢? are defined as in Definition 2.5

for all operators, except for =, which is defined using = as in the case
of DbC' and for o, which is defined using S5 as in the case of DmbClci.

DEFINITION 3.5. The structure M = (W, R, {vL} ,cw) is a swap Kripke
model for the logic L.

We maintain an analogous notation to the one presented in Remark 2.4.
Notice that this implies that v} («) € D if and only if o1, = 1. We
use this fact in the next proof.

LEMMA 3.1. Conditions 1-6 listed in Lemma 2.1 hold for L. Moreover,
consider the following conditions:

5. (oa)(Lw) = N(a(Lw) 1 a(g’w)).
5*. (oa)(lyw) = N<a(1,w) I Oé(g’w)) and (OO&)(27w) = (a(l,w) M Oé(g,w)).

7. (_‘a)(Q,w) < Q(1,w)-

Then, condition 5’ holds in DmbCciw; condition 5* holds in DmbC'ci;
condition 7 holds in DbC'; and conditions 5* and 7 hold in DC'.
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Proor. For DbC, condition 7 follows by Definitions 3.2 and 3.4, that is:
oD (—a) € 5100 (a), and so (=) (2,4) < (1,4). For DmbCeiw and

DmbCci, condition 5" and 5* follow, respectively, by Definition 3.3 and
Definition 3.4. The case of DC'% follows from DmbC'ci and DbC. =

DEFINITION 3.6. Let M = (W, R, {vL},ew) be as above. Then, a
formula o« € Fory is said to be M-true in a world w, denoted by M, w E
a, if it is the case that vL(a) € D.

DEFINITION 3.7. Let I' U {a} C Fory. We say that « is a logical
consequence of I' in L, denoted by I' Fr «, if for all M for L and
we W: M,wkE I" implies that M, w F a.

THEOREM 3.1 (Soundness).
For every I' U {p} C For(X), if I' b1, ¢, then I" Fr, .

Proor. Consider first DmbCeciw. Given a valuation v, and a formula
@, it must be shown that (oa V (a A =a))(1,4) = 1. By the definition of
the multioperator V in Definition 2.4, the latter is equivalent to prove
that either (ocr)(1,,) = 1 or (¢ A—=a)(1,,) = 1. But this is immediate, by
property 5 of v,, given in Lemma 3.1 and the fact that (& A —a)(1,.) =
1) M2

In DmbCei, it must be shown that (ci) is valid. Given v,,, assume
that (ﬁoa)(l’w) =1. ThUS, we have (—\005)(1’11)) = (oa)(zw) = (a(l,w) M
04(2’11,)) = 1, by property 5* of v,. This shows that v, satisfies any
instance of axiom (ci).

For DbC, the case for (cf) follows from property 7 in Lemma 3.1.

Soundness of DC'% follows from soundness of DmbC'ci and DbC'.

L RE and vk following
the definitions for DmbC' and adapting to each L accordingly. Notice
that each A is now a t-saturated set in WL  This allows us to state the
following lemma:

For every logic L as above, we define WL RL

LEMMA 3.2. Forany A € WL all statements 1 through 6 in Lemma 2.2
hold. For DmbCciw, we have the following strengthening of item 5:
57. a€ Aand ~a € A iffoa ¢ A
For DmbClci, we have an additional condition for o:
55. If moar € A, then a € A and ~a € A.
For DbC', we have an additional condition for —:
55. If ==a € A, then a € A.
For DCi, both conditions 55 and 53 are added.
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PRrROOF. All conditions are easily proven by using the respective new
axiom of L, and the fact that A is saturated (hence it is a closed theory).
_|

PROPOSITION 3.1. The triple My = {WL 'RL {vElacw., } is a
swap Kripke model for L such that vk(a) € D if and only if a € A
if and only if a4y = 1.

PROOF. It is an immediate consequence from Lemma 3.2 and Defini-
tion 2.13. For instance, to prove that ™ (oq) € 5,0 BmbCel(q), let
z = vRmPCei(q). Suppose first that z € {T, F}. By Definition 2.13,
either « ¢ A or ma ¢ A. By 5] and 55 of Lemma 3.2, oo € A and
—oar ¢ A. From this, v™C¢(oq) = T € {T} = 332. Now, if z = ¢
then o, - € A and so, by 57, oa ¢ A. Hence, v5™ ¢ (0a) = F €
{F} = 33z. In turn, in order to prove that v5"“(-a) € 5,05 (a),
let z := vR*(a). If z = T then @ € A and ~a ¢ A. From this,
vR¥(=a) = F € {F} = =yz. If z = t then a,~a € A. From this,
vR¥(-a) € {T,t} = 512 Finally, if 2 = F then a ¢ A and —a € A.
By 53 of Lemma 3.2, =—a ¢ A and so vR%“(=a) = T € {T} = =z
The other cases are treated analogously. -

The proof of the following theorem is analogous to the one for the
DmbC case.

THEOREM 3.2 (Completeness).
For any set I' U{¢} C For(X), if I' Fr, ¢, then I' Fr, .

4. The da Costa axiom: the case of DmbCcl

In this section, as well as in Sections 5, 6 and 7, we will consider axiomatic
extensions of DmbC which include, among others, the so-called da Costa
axiom

—(a A —a) = oau. (cl)

This move has strong consequences: as it was shown in (Avron, 2007,
Theorem 11), the logic mbC¢l, obtained by adding (cl) to mbC', cannot
be semantically characterized by a single finite Nmatrix.” As shown

7 This fact is also applicable to other extensions of mbCecl. An important system
that extends mbC'cl is C'ila, the version of da Costa’s system C1 in a signature with o.
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in (Coniglio and Toledo, 2022), this issue can be overcome by consider-
ing a suitable (finite-valued) Nmatrix and restrict the set of permitted
valuations by a (decidable) criterion, through the notion of restricted
Nmatrices (or RNmatrices). We will adapt this technique to our swap
Kripke models, in order to deal with the deontic expansions of mbC'cl.

The logic DmbCcl is the extension of DmbC' by adding axiom (cl).
It is easy to show that DmbCcl is a proper extension of DmbCciw: this
follows from the fact that the system mbCcl is a proper extension of the
system mbC'ciw, which is obtained from mbC' by adding (ciw) (Carnielli
and Coniglio, 2016, Corollary 3.3.30). We thus present a swap Kripke
semantics for DmbC'cl as the corresponding one for DmbC'ciw, together
with a restriction on their valuations.

DEFINITION 4.1. A swap Kripke model M = (W, R, {vD™bCel} ) for
DmbCcl is a swap Kripke model for DmbC'ciw such that each valuation
vPmbCel gatisfies, in addition, the following condition:

If vDm0Ccl(q) = ¢, then vD™Cl(q A =a)=T.

DEFINITION 4.2. Let M = (W, R, {vDPmCell /) be a swap Kripke
model for DmbC'cl. We say that a formula o € For(X) is M-true in a
world w, denoted by M, w F «, if vD™mbCel(a) € D.

DEFINITION 4.3. Let I' U {a} C For(X¥). We say that « is a logical
consequence of I in DmbCecl, denoted by I' Epmpcea @, if for all M for
DmbCecl and all w € W: M,w E I" implies that M, w F a.

The following lemma will be useful for showing soundness of DmbC'cl
w.r.t. swap Kripke models semantics.

LEMMA 4.1. Given the notation on Remark 2.4, let vE™*C°l be a valua-
tion in a swap Kripke model M for DmbC'cl. Then, the following holds,
for every formula «:

5**. (Oa)(l’w) = (a A _|Oé)(27w).

Hence, any instance of axiom (cl) is true in any world of any swap Kripke
model for DmbC'cl.

PROOF. By Lemma 3.1, (oa)(1,w) = ~((1,w) M (2,w)). Suppose that
(0a)(1,w) = 1. Then, a1 ) M a(2,0) = (@ A =) ,w) = 0. By definition
of A, it follows that (o A —a)(2,) = 1 = (0a)(1,m). Now, suppose that
(oa)(lyw) = 0. Then, Q1,w) M 2w) = 01w) I (ﬁ(l)(l’w) = (Oé N _‘a)(l,w)
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= 1. From this, a(1,4) = @(2,w) = 1, which means that pPmbCel(q) =

(1,1) = t. By Definition 4.1, vD™*Ccl(q A =) = T = (1,0). Hence,
(@ A=) (2,0) = 0 = (o) (1,w)-

The latter shows that any instance of axiom (cl) is true in any world
of any swap Kripke model for DmbC'cl. o

From soundness of DmbCciw and Lemma 4.1 we get:

THEOREM 4.1 (Soundness of DmbC'cl w.r.t. swap Kripke models).
For every Iy {QD} - FOT‘(Z), if I FDmbCel ©, then I' Epmbce ©.

In order to prove completeness for DmbCecl, we will use canonical
models, to be constructed as in the case for DmbCciw. Since the restric-
tion occurs only on the valuations, we take only those valuations that
are restricted appropriately. Hence, W2mbCel pDmbCcl gyq 5, fmbCel are

defined as in DmbCciw. Now, each A € WPmbCel i5 a yp-saturated set
in DmbCecl. Thus we have:

LEMMA 4.2. For any A € WPmbCel a1l statements for DmbC'ciw stated

in Lemma 3.2 hold. Besides, we add the following statement:

7. If =(a AN ~a) € A, then o € A.

PRrROOF. Given that DmbCecl extends DmbCciw, it is an immediate con-
sequence of Lemma 3.2, axiom (cl), and the fact that A is a closed
theory. 4

ProposiTION 4.1. The triple

M = {WDmchl’ RDmchl’ {ngbCCl}AGWDmbCCZ},

can can can

constructed as in the case of DmbC', is a swap Kripke model for DmbC'cl
such that v8™*““!(a) € D if and only if & € A if and only if a4y = 1.

PROOF. Observe that each valuation vR™*¢e is defined according to

Definition 2.13. Since DmbCcl extends DmbCciw, it follows that M is
a swap Kripke model for DmbCciw such that vEm*C<(p) € D if and
only if ¢ € A if and only if a;,4) = 1. In order to show that each
vRmbCel gatisfies the additional condition of Definition 4.1, suppose that
vRmbCel(q) = t. By Definition 2.13, a,~a € A and so a A ~a € A.
Suppose that =(a A =) € A. By Lemma 4.2, oo € A. But then, by
axiom (bc), f € A, for every formula (3, a contradiction. From this,
—(aA=a) ¢ A, therefore vE™Cl(q A —a)) = T, by Definition 2.13. This
shows that M is, in fact, a swap Kripke model for DmbC'cl. =
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From the previous results and the construction above, it is easy to
show that completeness holds for DmbC'cl.

THEOREM 4.2 (Completeness of DmbCcl w.r.t. swap Kripke models).
For any set I' U {QO} - FOT(Z), if I' Epmbce @, then I' - popcel -

5. Swap Kripke models for DC'ila

Consider the following axiom schemas for consistency propagation for
#e{NV, o}
(cax A of8) = o(a#p3). (cay)

We now add to DmbC' the axioms (ci), (cl), (cf), and (cax), obtaining
a logic called DC'ila. Equivalently, DC'la is obtained from DmbCcl by
adding axioms (ci), (cf), and (cay). The non-modal fragment of DC'ila
is called C'ila, and corresponds to da Costa logic C; presented over the
signature with o (see Carnielli et al., 2007, Section 5.2). Indeed, Cila is
a conservative expansion of da Costa’s Cy. As proved in (Avron, 2007,
Theorem 11 and Corollary 6), Cila and Cy are not characterizable by a
single finite Nmatrix.

Based on the results presented in the previous section, as well as
the characterization of C'ila in terms of a 3-valued RNmatrix found in
(Coniglio and Toledo, 2022), in the sequel we will characterize DC'ila by
means of swap Kripke models based on a suitable 3-valued RNmatrix

for Cila.

DEFINITION 5.1. A swap Kripke model M = (W, R, {vP¢"e}, ) for
DClila is a swap Kripke model for DCi such that each valuation v2¢@
satisfies the following conditions, for # € {A,V, —}:

If vPC1(q) = t, then vD"(a A=) =T.5

If vDCe (o), wDCNe(B) € {T, F}, then v2C!(a#p) € {T, F}.

» FYw

The notions of satisfaction of a formula « in a world w of a swap
Kripke model M for DC'ila, denoted by M,w F «, as well as the se-
mantical consequence of DC'ila w.r.t. swap Kripke models, denoted by
EDcila, are defined as in the previous cases.

The above definitions guarantee that the axioms (cl) and (cay) hold.

8 This condition coincides with the one for v2 ™t
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LEMMA 5.1. Any instance of the axioms (cl) and (cay) are true in any
world of any swap Kripke model for DClila.

Proor. Concerning (cl), the result holds by Lemma 4.1 and Defini-
tion 5.1. Fix now # € {A,V,—} and v2¢"?  Observe that, for any «,
,UBCila(a) S {T, F} iff a(l,w) 75 Q(2,w) iff al(Lw)I_Ia(g,w) = 0iff (Oa)(l,w) =
~(a@,w) Ma(2w)) = 1. From this, vPCla(onq A of) € D implies that
(o A of8)(1,w) = 1, which implies that (oa)(1,,) = (08)(1,0) = 1. As
observed above, the latter implies that v2¢%e(a),vP¢4e(3) € {T, F},
and so vP¢"e(a#B3) € {T, F}, by Definition 5.1. But this implies that
(o(a#B))(1,w) = 1, that is, vJ"*(o(a#3)) € D. This shows that any
instance of axiom (cay) is true in any world of any swap Kripke model
for DClla. =

As shown in (Coniglio and Toledo, 2022), the above characterization
of C'ila by means of a 3-valued RNmatrix induces a decision procedure
for this logic. Given that Standard Deontic Logic SDL is decidable (for
instance, by tableaux systems), so is its modal extension DCila.

Now, soundness of DC'ila w.r.t. swap Kripke models follows from the
previous results. From soundness of DCi and Lemma 5.1 we get:

THEOREM 5.1 (Soundness of DCila w.r.t. swap Kripke models).
For every I' U{p} C For(X), if I' Fpcita p, then I' Epcila -

The proof of completeness is a straightforward adaptation of the
case for DmbCcl, by building the canonical model as in the case for
DC'i, and by imposing suitable restrictions on the valuations. Thus,
Wwpheila pDCila and pRCaare defined as in DC4, but now each A €

can

WDCila js 5 9p-saturated set in DCila.

can

LEMMA 5.2. For any A € WEPCla 3]l statements for DCi stated in

can

Lemma 3.2 hold. Besides, A satisfies the following statements:

7. If =(a A —a) € A, then o € A.
8. Ifoa,08 € A, then o(a#3) € A, where # € {\,V,—}.

ProoF. DmbCecl extends DC4%. From this, the result is an immediate
consequence of Lemma 3.2, axioms (cl) and (cax), and the fact that A
is a closed theory. -

ProposiTION 5.1. The triple

_ DCila pDCila DC'ila )
M = {Wcan 7Rcan 7{1/A }AEW{%E”“}?
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constructed as in the case of DmbC', is a swap Kripke model for DC'ila
such that vR“"*(a) € D if and only if o € A if and only if oy a) = 1.

PROOF. Notice that each valuation ¥R is defined according to Defi-
nition 2.13. Given that DC'ila extends DC'1, it follows that M is a swap
Kripke model for DCi such that vR"? () € D if and only if p € A
if and only if a(;,4) = 1. Let us prove now that every vRCia gatisfies
the additional conditions of Definition 5.1. The first condition is proved
analogously to the case for DmbCecl (see the proof o Proposition 4.1).
In order to prove the second condition of Definition 5.1, observe first the

following:
Fact. vRC1(q) € {T, F} if and only if o € A.

Indeed, suppose first that v5°%¢(a) € {T, F}. By Definition 2.13,
either a ¢ Aor —a ¢ A. In both cases, aA—a ¢ A, hence =(aA—a) € A.
By axiom (cl) and the properties of A, o € A. Conversely, suppose that
oa € A. By axiom (bc) and the properties of A, either a« ¢ A or ~«v ¢ A.
By Definition 2.13, v§¢"(a) € {T, F}.

Fix now # € {A,V,—}, and suppose that vR¢"(a), vR(B) €
{T, F}. By the fact, oa,08 € A. By axiom (cay) and by taking into
account that A is a closed theory, o(a#p3) € A. By the fact once again,
we infer that vRC1e(a#3) € {T, F}.

This shows that M is, in fact, a swap Kripke model for DCila. -

From the previous results and the construction above, it is easy to
show that completeness holds for DC'ila.

THEOREM 5.2 (Completeness of DC'ila w.r.t. swap Kripke models).
For any set I' U {¢} C For(X), if I' Epciia ¢, then I' Fpcita -

6. The pioneering system C?

We briefly mentioned above that C'ila is a conservative expansion of Cf,
since it has o in its signature. This allows C'ila to refer to consistency
by using o as an unary operator, while C; defines consistency in terms
of non-contradictoriness. That is to say, Cy is defined over the signature
YO = {— =V, A} such that a® := =(aA-a), for any a € For(X¢1). Tt
is easy to show that if we substitute any appearance of o« in the axioms
or rules for Cila for a°, we get C;. Moreover, the valid inferences in
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Cila in the signature ! coincide with the ones in C; (see Carnielli et
al., 2007, Theorem 110).

Also noticeable is the treatment of strong negation in C, usually de-
fined as ~a := ~aAa®. Let Zgl :={—,—,V, A, O}. Because of the close
relationship between C'ila and Cq, the Egl—reduct of the swap Kripke
models for DC'ila characterize the deontic expansion DC of Cy, defined
over Zgl by adding to C; the modal deontic axioms of Definition 2.1,
but now by considering L, := (e A—a)Aa®. Observe that, in C7, axioms
(bc) and (cay) are now replaced by the following, where # € {A,V, —}:

a® = (a— (~a— B)) (bc’)
(@® A B°) = (a#B)° (caly)

In turn, axioms (cl) and (ci) are not considered in C; (since they
hold by the very definition of (-)°, as well as by axiom (cf)).

One other striking fact is that the pioneering paraconsistent deontic
system CP (also defined over ') proposed in (da Costa and Carnielli,
1986) has one more axiom in addition to the ones of DCy, namely

a® — (Oa)° (cag)

The system proposed, so far, however, does not validate (cag). Consider
the following possible model of CP. Each node z shows a set I" as a
label. This indicates that for every ¢ € I', v5! () € D. We will use an
analogous notation in a few more examples:

{a®,0a, -Oa}

’LU—>'w/

Figure 1. A representation of a counterexample to (cag), when not adding the
suitable restrictions to the models.

According to this model, (a®)(1,,) = 1. But this does not say any-
thing about any of the worlds w’ accessible to w. Notice that the
following holds: v2¢*((0a)°) ¢ D if and only if v29(0a) € D and
vPC(=0a) € D. But this is perfectly possible, since when assigning
a truth value for Oc, only the first coordinate of the snapshot is de-
termined. Since the first coordinate of v2¢1(=0q) is given by reading
the second coordinate of v2¢1(0Oa), then v21 (0a) = (1,1) = t is the
value that falsifies the formula correspondent to the axiom. Hence, in
order to give a proper semantics for the original C, we need one more
restriction.
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. . . . ch
From now on, for ease of notation, we will write vgl instead of vy! .

DEFINITION 6.1. A swap Kripke model M = (W, R, {v$ }ew) for CP
is a swap Kripke model for DCila (over the ¥5!-reduct) such that each
valuation v$! satisfies, in addition, the following condition, for # €
{N\,V,—}:

if v91 () € {T, F}, then v (0a) € {T, F}.

Remark 6.1. A family of maps v$1: For(2$') — A satisfies Defini-
tion 6.1 iff it satisfies the following conditions, for every «, § € For(Egl)
and # € {A,V,—}:

items 1-3 and 6 of Definition 2.5;

0§ (ma) € 9105 (), where 5y is as in Definition 3.2;

if v (a) = t, then v (a A —a) = T}

if vgl (Oz),'l)gl (B) € {T7 F}v then Ugl (04#6) € {Tv F};

if v§1(a) € {T, F}, then v$ (Oa) € {T, F}.

THEOREM 6.1 (Soundness of C{ w.r.t. swap Kripke models).
For every I'U{p} C For(S3}), if I' Fep @, then I' Fep .

CU W=

PROOF. Let v$1 be as in Definition 6.1. Let us start by showing the
following:
FacT. v (a®) € D if and only if v () € {T, F}.

Indeed, suppose that v (a°) € D. Then, (@®)(1,w) = 1. Recalling
that a® = =(a A —a), it follows that (o A =) (2.4,) = 1, and so v5 (o A
—a) # T. By the first condition in Definition 5.1 we infer that v (o) #
t, hence v$' (o) € {T, F}. Conversely, if v5* (o) € {T, F} then cq ) M
2,0y = (@A=a) ) = 0. From this, (a°),,) = (€A —a) @, = 1 and
so vi1(a®) € D.

Now, assume that v$1(a°) € D. By the fact, v$*(a) € {T, F}. By
Definition 6.1, v$1(Oa) € {T, F}. Using the fact once again, we infer
that v ((0)°) € D, and so axiom (cay) is valid w.r.t. swap Kripke
models for CP.

The validity of axiom (bc’) follows immediately from the fact. In
turn, the validity of axiom (cal,) is a consequence of the first condition
stated in Definition 5.1 and the fact. The validity of the other axioms of
CP follows from the soundness of DCila w.r.t. swap Kripke models.

In order to prove completeness of Cf w.r.t. swap Kripke models,
some adaptations are required in the construction of the canonical swap
Kripke model and the canonical valuations.
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Observe first that the g-saturated sets in CF are subsets of For(Egl)
(o is now a defined connective).

LEMMA 6.1. Let A C For(X$') be a p-saturated set in CP. Then, it
satisfies the following properties, for every a, 3 € FO’/‘(Egl).‘

1. Items 1-4 and 6 of Lemma 2.2.
II. Item 55 of Lemma 3.2.
II. a® € Aiff a ¢ A or ~a ¢ A.
IV. If a°, 8° € A, then (a#p)° € A, where # € {A,V,—}.
V. If a® € A, then (Oa)° € A.

PROOF. Items I and II are immediate, given that CP contains all the
schemas of DmbC and DbC' over signature Egl.

Item III: The “only if” part is a consequence of axiom (bc’). Now,
suppose that a® ¢ A. By property 4 of item I, =(a®) € A. That is,
——(aA-a) € Aand so a A—a € A, by item II. By property 1 of item I,
a, o € A.

Item IV and V follow immediately from axioms (cal,) and (cag). -

Define now W< RS and vgl as in DCila, but now each A €
WS is a g-saturated set in CP. Observe that each valuation vgl :

For(2$!) — A is defined according to Definition 2.13.

PROPOSITION 6.1. The structure M = (WG, RS, {05} 1 yper) I a
swap Kripke model for CP such that, for every a € For(25!), v§! () €

Diff « € A.

Proor. Taking into account Remark 6.1, it is an immediate consequence
of Lemma 6.1 and Definition 2.13. Indeed, by adapting the proofs for
the previous systems, it follows that v5' (a#8) € v$ (a)#vS () (for
# € {A,V,—=}) and v (ma) € =105 (a). In order to prove that v}
satisfies the requirements 3—-5 of Remark 6.1, suppose first that vgl (o) =
t. Then, a, 7o € A and so aA—a € A and ~(aA—-a) = a® € A, by items
I and IIT of Lemma 6.1. This means that v5'(a A =) = T, validating
requirement 3. For 4, observe first that v () € {T, F} iff either o ¢ A
or ~a ¢ A iff, by III, a® € A. Now, let # € {A,V,—} and suppose that
v$ (), v$(B) € {T,F}. By the previous observation, it follows that
a®,5° € A. By IV of Lemma 6.1, (a#3)° € A. Using the observation
above once again, this implies that vgl (a#B) € {T, F}. The proof for 5
is analogous. By the very definitions, vgl(a) eDiff a € A. -
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Completeness follows immediately, with slight adaptations, from the
lemma above and completeness for DC'ila.

PROPOSITION 6.2 (Completeness of C w.r.t. swap Kripke models).
For any set I' U {p} C For(25!), if I Fop ¢ then I' oo .

7. Swap Kripke models for Cf

We start this section by defining extensions of notions presented in the
previous section for the rest of the hierarchy C,,, for n > 2. For this,
consider once again the signatures ¢ for C,, and Egl for the calculi
CP. We define the following notation over For(X$%!):

e o' =nq,

o "l =(a™ A-am),

o a™=0a'A---Aam.

We also follow the presentation of C,, given in (Coniglio and Toledo,
2022). This comprises of all axioms for CPL, plus (EM), (cf) and the

following axioms:
o™ = (= (ma — B)), (ben)
(@ A B™) = (= A A @V A A@AB)™). (P

Observe that the classical negation is represented in C,, by means of the
formula ~(™a := =a A a(™. From this, the new version of (D) reads

Oa — ~M0o~ Mg, (D,,)

We also highlight that some decisions must be made along the way in
order to get to a full axiomatization of these logics. If we want to follow
the presentation of O on (da Costa and Carnielli, 1986) and extend
the ideas presented there, as we did in the previous section, we need to
reformulate the classicality propagation axiom, namely, a® — (O«)°, as
follows:

o™ — (0a)™. (PO,,)

We call it the general classicality propagation axiom in CP. Notice that
when n = 1, o™ = a° = a® = =(a A —~a). Also notice that this has
an influence on how strong a negation has to be in order to recover
classicality. For n = 1, strong negation is already sufficient to introduce
deontic explosion back into the system, but taking n = 2, we have,
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besides = and ~, one more negation. We are in fact dealing with an
increasing number of negations, or, more precisely, for each n, CnD has
n + 1 negations.”

We are now a position to characterize the family of systems CP, for
n > 1. Also notice that the case where n = 1 was already studied in the
previous section. We also refrain in this from deeply investigating the
philosophical considerations tied to these systems. We opt for a technical
development of a semantics for the systems proposed, with the general
propagation of classicality and a distinct version of (D). We attempt
to maintain the general spirit of the system originally presentation in
the paper by da Costa and Carnielli, while presenting a mix between
RNmatrices and Kripke semantics.'®

We thus follow the presentation given in (Coniglio and Toledo, 2022)
to define the base system. So for each n > 2, the multialgebra for C,
will have domain A,, of size n 4+ 2, where each element of A, C 27T is
an n + 1-tuple. Hence, the swap structures for C,, is one where the set
of snapshots is:

A, ={ze2"t! . 1. 2;)V 21 =1 for every 1 <k < n}.
i<k + Yy

This produces exactly the following n 4 2 truth values:
T, =(1,0,1,...,1)
¢=1(1,1,0,1,...,1)
r=(1,1,1,0,1,...,1)

DEFINITION 7.1. let A, be as in the definition above. We define the
following subsets of A,,:

1. D, := A, \ {F,} (designated values),

9 Although the fact is easy to observe, the argument that each one of them is, in
fact, a negation will be discussed in a future paper.

10 Tt is possible to construct such a system by means of restricted swap structures
only, following the technique shown in (Coniglio et al., 2025). The modal operator
could then be assigned one dimension in the tuple, hence its truth value being fully
nondeterministic. This permits to semantically characterize logics in which the modal
operator does not satisfy any of the standard inference rules or axioms assumed for
such an operator.
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2. Uy := A, \ D, ={F,} (undesignated values),
3. I, .= A, \ {Ty, F,} (inconsistent values),
4. Boo, = A\ I, = {T,, F\,} (Boolean or classical values).

Now we can introduce the multiagebra Acp:

DEFINITION 7.2. Let Acp = (A, A, V, =, 5, O) be the multialgebra over
Egl defined as follows, for any a,b € A,:

1. sa={c€ A, : ¢c; =az and c2 < a1}

5 kb {c€ Boo, : c1 =a1MNb} ifa,be Boo,
. aAb =
{c€e A, : c1=a1Mb} otherwise
. {c€ Boo,, : ¢ =a;Ub} ifa,be Boo,
3. avVb = i
{c€e A, : c;=a1Ubi} otherwise
€ Boo,, : = Ob if a,b € Boo,
L assh— {c 00 c1 =ag 1} ifa ' 00
{c€e A, : c1=a1 Db} otherwise

5 0(X)={ccA, : cs =[|{z1:2 € X}}, where X # fand X C A,,.

Remark 7.1. Observe that the non-deterministic truth-tables for the non-
modal operators of Acp are the ones displayed below, where 0 < ¢, j <
n—1.

A T, t7 F, V] T, [ & ] F
Tn | {Tw} | Dn | {Fu} To | {Tn} | Dy | {T0n}
7 D, D, | {F.} 7 D, | D, | D,
Eo | {Fn} | {Fn} | {Fn} Fo | {Tn} | Do | {Fn}
= S T, | & ] Fu
Tn {Fn} Tn {Tn} Dn {Fn}
[ D, t" | D, | Dy | {F.}

DEFINITION 7.3. Let W # () be a set of worlds, R C W x W be a serial
relation and v? = For(2$') — A, for each w € W, such that, for any
a,fB € For(Egl), the following holds:

L vy (ma) € S(vg (@),
2. vy (a#B) € vy (a)#vy(B), for # € {A, — -},
3. v (0a) € O({v! (o) : wRw'}).

DEFINITION 7.4. A structure M = (W, R, {v}} }wew) with properties
as in Definition 7.3 is said to be a swap Kripke pre-model for CP. A
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formula a € For(Egl) is true in a world w of M, denoted by M, w E «,
if v7'(a) € D,. A formula « is valid in a pre-model M, denoted by
ME a, if M,wE « for every w € W. As it was done before, given
a non-empty set I’ of formulas we will write M, w F I' to denote that
M,w E a for every a € I'.

We recall the fact that for any o € For(Zgl), w € W and v},
vy () € Dy if and only if vfy ,\(a) = 1, given a natural adaptation of
the notation presented in Remark 2.4 and the definitions above.

In order to characterize CL we add first the following restrictions,
thus simulating the behavior of the RNmatrix for C,,:

DEFINITION 7.5. Given a swap Kripke pre-model for C2 consider the
following additional restrictions on the valuations v}, :
1. vl (a) = t§ implies v} (o A ) = Ty,
2. v (a) = t% implies v7 (a A ~a) € I, and v2(al) =12,
for every 1 <k <n—1.

Remark 7.2. We observe that the additional restrictions in Definition 7.5
only consider valuations in which the values of (™ are in Boo,, such as
shown in (Coniglio and Toledo, 2022, pp. 621-622), for each world w €
W. Moreover, in any swap Kripke pre-model for C2 as in Definition 7.5,
and for a fixed w € W, each valuation v}, belongs to the set of valuations
of the RNmatrix characterizing C,, introduced in (Coniglio and Toledo,
2022). From this, all the results concerning the non-modal operators of
C’f? will hold w.r.t. the valuations of such a swap Kripke pre-models.

The restrictions on the valuations made in Definition 7.5 can be dis-
played by means of a very useful table (see Coniglio and Toledo, 2022,
Table 1, p. 622). For the reader’s convenience, Table 1 reproduces a
slightly expanded version of that table, which represents the possible
scenarios concerning restricted valuations for C,, (and so, for the non-
modal fragment of CP), according to Definition 7.5. In that table, X*
means that the value X is forced by a restriction on the corresponding
valuation.

It is worth observing from Table 1 that the truth-tables of the con-
nectives (-)(”) and ~Ma = =a A a(™ are as follows, for 0 <i < n — 1:

a | o™ a | ~Ma
T, | {T.} T, | {Fun}
i | {Fn} | {Fn}
E, | {T} F. | {T.}
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a an-a| a | A=(@) | @ | @? A(a?) a1l a" A=) | e | a®

" F, | T, F, T, F, T, F, L,| T,
% T, | b F, T, F, T, F, T, | F
i L T, Fy E, T, F, T, | F,
f L I, fo I T, F, T, | F
s | I |5 1 fes 1 T, E, T, | F
ta | L7 15 I, fa 1 E, F, T, | F,
T M e I fyes I ]t Ty F, | F,
F, F, | T, F, T, F, T, F L, T,

Table 1.

We need, however, to be sure that our restricted valuations preserve
validity when looking at the modal operator. It is easy to see that axioms
(K) and the strong version (D,,) of (D) are valid w.r.t. the swap Kripke
pre-models of Definition 7.5:

LEMMA 7.1. Consider a swap Kripke pre-model M for CP. Then, the

following holds for any «, 8 € For(Egl), and w in M:

1. If v} (O(ae — B)) € D,, and v]},(O«) € D,,, then v'(OB) € D,,.

2. Ifv(Oa) € D, then v7 (~™ O~Maq) € D,,, assuming that M is as
in Definition 7.5.

PrOOF. For the first item, assume both v/ (O(a — f)) € D, and
vy, (Oa) € Dy. This means that vy ) (O(a = B)) = v(y ) (Oa) = 1.
But then, by Definitions 7.2 and 7.3 we have that vf; (o — B8) =
V(1 oy (@) = L and so vy, (B) = 1, for every w’ such that wRw’. From
this, vf; ,,)(0B) = 1, that is, v;;,(08) € Dn.

The second item follows from the nature of ~(™ (see its truth-tables
above). =

Remark 7.3. Notice that, since n > 2, the restrictions in Definition 7.5
fail to validate (D) in its strong negation form, i.e., w.r.t. ~a := =aAal.
As an example, consider C2. Picture a model as below:

/

w w
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Assume that v2(Oa) € Dy and that v2,(a) = t3. Thus, by Defini-
tion 7.5, this means that v2,(a!) = 3 and that v2,(-a) € Dy. Hence,
v}y (~a) = 1. That implies v; (O~a) € D2, so when v, (O~a) = T,
v2 (~O~a) = F,. The argument for any n > 2 is similar. Besides, a
similar counterexample can be found for the paraconsistent negation —.
Remark 7.4. Also notice that the version of (D) with ~() is validated by
requiring the restrictions in Definition 7.5. Without the restrictions, it is
possible to construct a model and a valuation in worlds that would falsify
the axiom. Picture again the model used in the previous remark, while
working in CP. Assume further that v2(Oa) € Ds, with v2,(a) € Is.
This means that v2,(—«a) € Ds, hence v2,(a A =) € Ds. Since no
restriction is given to the value assigned to (o A —a), then it is possible
that v2,(a A —a) € Iz, and also that v2,(=(a A —a)) = v2,(al) € L.
These assignments allow for v2, (=(=(aA—a) A==(aA—a))) = v2,(a?) €
D5. But then, v (~ (2)04) € D2 As we did in the previous case, taking
v2 (0~Pa) = Tg implies v2 (~20~?q) = Fp. This is also similarly
extended to any n > 2.

To see that indeed the restrictions guarantee that the axiom holds,
assume v]'(Oa) € D,,. Thus for all w’ such that wRw’, v, () € D,,.
Now either v, (o) = T}, or v}l (a) € I,. If the first case, then v}, () =
F,. Otherwise, v", (a(™) = F,. In any case, v" (~™a) = F,, hence
v (0~Ma) = F,, thus v (~(M0~Ma) € D,,.

The following is easily proved, taking into consideration Remark 7.2
and Table 1:

LEMMA 7.2. Consider a swap Kripke pre-model for CP as in Defi-
nition 7.5, and let 1 < k < n. Then, the following holds for any
o € For(¥$}) and any w € W:

1. If v (a) = Ty, then v (a¥) = T,,.

2. If v () = t? for some 1 <i < k — 2, then v (a¥) = T,,.

3. If vl (o) = t_,, then v ( ¥) = F,.

4. If v(a) = P for some k < i < n—1, then v (o) =7 ,.

5. If v () = F,, then v (a*) = T,.

6. Ifv"(a) =t for some 0 < i < n—1, then: v (a¥) = F, iff k =i+1.

LEMMA 7.3. Let M,, be a swap Kripke pre-model for CP as in Defini-
tion 7.5. Then, v (™) € D,, if and only if v () € Boo,.

PROOF. Suppose v} () ¢ Boo,. Then, v]'(a) € I,. By item 3 of
Lemma 7.2 it follows that, for 0 < k& < n, v"(a**!) = F,, hence
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v (™) = F, and so v"(a™) ¢ D,. Now, if v"(a) € Boo, then,
for any 1 < k < n, v (a*) = T,,, by items 1 and 5 of Lemma 7.2. Thus,
v (™) =T, so vl (a™) € D,. =

There is only one more modal axiom to check, namely, (PO,,). In its
original formulation, that is, when n = 1, it was already covered in the
previous section. We thus add a similar restriction in order to validate
this version of the axiom:

DEFINITION 7.6. A swap Kripke pre-model for C2 is said to be a swap
Kripke model for CL if the valuations satisfy, in addition, the restrictions
of Definition 7.5 plus the following constraint:

If vy, (a) € Booy,, then vy, (Oa) € Boo,.

Now we can prove the validity of (PO,,) w.r.t. swap Kripke models
for CP.

LEMMA 7.4. The following holds in any swap Kripke model for C2:
3. If v (a™) € D, then v ((0a)™) € D,,.

ProoF. From Lemma 7.3, v (™) € D,, implies that v”(a) € Boo,.
By Definition 7.6, v!! (O«a) € Boo,. By Lemma 7.3 once again, it follows
that v7 ((0a)™) € D,,. o

Recall the notions and notation introduced in Definition 7.4, which
can be also applied to swap Kripke models for C'2.

DEFINITION 7.7. Given a set I" C For(Egl), we say that « is a logical
consequence of I' in CP denoted by I' Fep a, if the following holds:
for every swap Kripke model M for CP and for every world w in M, if

M,wE I" then M, w E a.

THEOREM 7.1 (Soundness of C2 w.r.t. swap Kripke models).
Let I'U{} C For(2$!). Then: T’ Fep g only if I' Eop .

PrOOF. The validity of the propositional (non-modal) axioms was al-
ready proven in (Coniglio and Toledo, 2022). Since our construction is
similar to that, we simply refer to the proof thus given, taking into con-
sideration Remark 7.2. The cases for the modal axioms follow from Lem-
mas 7.1 and 7.4. Clearly, O-necessitation preserves validity, by item 6 of
Definition 2.5. —
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In order to prove completeness, on the other hand, we need a canon-

ical construction that satisfies our new restrictions. Let Wc(:% be the set
of all the sets A C For(25!) such that A is a ¢-saturated set in C2, for

some Y € For(Zgl). The binary relation R(CZZL on Wég% is defined as in
the previous cases. Then:

LEMMA 7.5 (Truth Lemma for C’f?). For any A € WC(ZJQL, all the following
statements hold, for every a, 8 € FOT(Egl):

1. anpeAiff a,f € A.

aVvVpeAifae Aor e A

a—peAifag Aorfpe A

If a ¢ A, then —~a € A.

If ==« € A, then a € A.

Ifa¢ Aor—a¢ A, then o' € A and —(a!) ¢ A.

If a,~a € A then, for every 1 < i < n: ifa’ ¢ A, then o/ € A for
every 1 < j < n with j #1i.

8. If a, ~a € A then there exists a unique 1 < k < n such that o ¢ A.
9. oM ecAiffag¢g Aor-adA.

10. Oa e Aiffa € A for all A" € WC(QT)L such that AR(CZ%A',

11. If o™ € A, then (Oa)™ € A.

N Ot W

Proor. Conditions 1-5 and 10-11 are proven as in the previous cases,
taken into account the axioms and rules of C'2.

6: Suppose that o ¢ A or ~a ¢ A. By item 1, a A ma ¢ A and so
al = =(a A —a) € A, by item 4. Since a A ~a ¢ A then, by item 5,
=(al) = —=(a A -a) ¢ A.

7: Observe that item 6 is equivalent to the following:

If a' ¢ Aor ~(a') € A, then o, ~a € A. (%)

By induction on 1 < ¢ < n it will be proven that

P(i) := for every a, if a,—~a € A and o' ¢ A, then o/ € A
for every 1 < j < n with j #1

holds, for every 1 < i < n (for a given n > 2).

Base i = 1: Assume that a, ~a € A and o' ¢ A. By item 6 (applied
to al) it follows that o € A and —(a?) ¢ A. By applying iteratively
the same reasoning, we infer that o/ € A for every 1 < j < n with j # 1.
That is, P(1) holds.
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Inductive step: Assume that P(i) holds for every 1 <i < k<n—1,
for a given 1 < k < n — 1 (Inductive Hypothesis, IH). Let a, ~a« € A
and suppose that o*t1 = (a)! ¢ A. By item 4, —=((a*)!) € A and so
a¥, —(a®) € A, by (). Since (a®)! ¢ A then, by (IH) applied to o, it
follows that (ak)j € A for every 1 < j < n with j # 1. Since o € A,
this implies that: (i) o/ € A for every k < j < n with j # k + 1.

In turn, since =((a*~ 1) = =(a*) € A, then of~ 1 =(aF71) € A,
by (x). By applying iteratively the same reasoning, we infer that: (ii)
al € Aforevery 1 <j<k—1.

From (i) and (ii) it follows that o/ € A, for every 1 < j < n with
j # k+ 1. That is, P(k + 1) holds.

8: It is an immediate consequence of item 7.

9: The “only if” part is immediate, by axiom (bc,) and the fact that
A is a closed, non-trivial theory. Now, assume that @ ¢ A or —av ¢ A.
By item 6, o' € A and —(a!) ¢ A. By item 6 applied to o', and taking
into account that —(a!) ¢ A, it follows that a? € A and —(a?) ¢ A. By
applying iteratively the same reasoning, we infer that o/ € A for every
1 < j < n, hence a(™ € A, by item 1. -

DEFINITION 7.8. For each A € W), define v%: For(S$') — A, such
that for each A € W% we have:
T, ifaeA-a¢A
Vi) = t0,  ifa,—a € Aand ol ¢ A

F,, ifa¢gA-acA

COROLLARY 7.1. Let A€ W, Then, the following holds:
1. The function v’} is well-defined.

2. vi(a) € T, F,} iffa ¢ A or ~a ¢ A iff o™ € A.

3. v} (o) =t iff o't ¢ A.

PRrROOF. Item 1 is an immediate consequence of item 8 of Lemma 7.5.
In turn, item 2 follows by item 9 of Lemma 7.5 and the definition of v}.
Finally, item 3 is a consequence of item 1 and the definition of v’;. -

Consider now the relation R(CZBL C WC((Z)L X WC((Z)L defined as in the
previous cases.
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PROPOSITION 7.1. The structure M,, = ( C(ZZ%,R(CZZL, {UZ}AGWW) is a

swap Kripke model for CP such that, for every o € For(2$}), v'}(a) €
D, iffa € A.

PROOF. Observe first that, by Definition 7.8, for every A and every «
it holds: (x) v4(a) € D,, iff a € A.

(I) Let us prove now that each function vy satisfies the properties
stated in Definition 7.3. Concerning conjunction, observe that, by (x)
and item 1 of Lemma 7.5, vi(a A B) € D, iff vi(a),v4(B8) € Dy. In
turn, z,w € D,, implies that zAw C D,,, and 2z = F}, or w = F}, implies
that zAw = {F,, }. Moreover, by item 2 of Corollary 7.1: v} (a), v’4(8) €
Boo,, implies that a(™, 3™ € A and so (a A )™ € A, by (P,,), then
vi (@A) € Boo,,. Given that z,w € Boo,, implies that zAw C Boo,,, we
infer from the previous considerations that v’y (a A 8) € v’i () Av’i ().
Analogously, we prove that v’ (a#3) € v’ (a)F#v% (o) for # € {V, =}
Concerning negation, suppose that v4(a) = T,,. Then, « € A and
—a ¢ A, and so Vi (—a) = F, € {F,} =T, = 2vi(«a). fvi(a) = F,
the proof is analogous. Now, suppose that v () = t7. Then, —a € A
and so, by (%), v4(-a) € D, = =t = Sv%(a). Finally, by (), if
v4(0a) € D,, then O € A and so a € A’ for all A" € W) such
that AR, A’, by item 10. of Lemma 7.5. This means that v, (a) €
D,, for all A’ € W(EZZ% such that AREZ%A’ , by (*) once again, therefore
v (0a) € D, = O({v% () : ARULA'}). Now, if v (Oa) = F, then
Oa ¢ A, by (*), hence there exists some A’ € Wég% such that AR(CZZLA’
and a ¢ A, by item 10. of Lemma 7.5. This means that v}, (o) = F),
for some A’ € WC(QT)L such that ARE;Z%A’ , by (%) once again. From this,
v (0a) € {F,} = O({vy (@) : ARGLAY).

(IT) Let us see now that each v’y satisfies the restrictions imposed
in Definitions 7.5 and 7.6. Thus, assume first that v’4(a) = t7. Then,
a,—a € Aand ol ¢ A. Hence, (a A —~a) € A, by item 1 of Lemma 7.5,
and =(a A —a) = o' ¢ A. From this, v (o A =a) = T,. Now, suppose
that v'4 (o) = t7 for some 1 < k < n — 1. By Definition 7.8, o, ma € A
and of*! ¢ A. From this, (& A =a) € A and —(a A —~a) = ol € A, by
items 1 and 8 of Lemma 7.5. By Definition 7.8, v’4 (aA—«) € I,,. Suppose
that —(a') ¢ A. By item 6 of Lemma 7.5 applied to o, it follows that
a? € A and —(a?) ¢ A. By applying iteratively item 6 of Lemma 7.5
to a2, &® and so on, we conclude that o**! € A, a contradiction. This
means that —(a!) € A. Since o' € A and (a')f = ot ¢ A we
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conclude by Definition 7.8 that v’ (a') = ¢7_,. This shows that the
restrictions of Definition 7.5 are satisfied by the functions v’;. Finally,
suppose that v"i(a) € Boo,. By item 2 of Corollary 7.1, o™ € A.
By (PO,), (0a)™ € A and so, by item 2 of Corollary 7.1 once again,
v’4(Oa) € Boo,. This shows that the condition of Definition 7.6 are also
satisfied by the functions v’4. =

THEOREM 7.2 (Completeness of C2 w.r.t. swap Kripke models).
For any set I' U {¢} C FOT’(Egl), if I' Fop ¢ then I' b .

PROOF. Suppose that I"¥cp . Then, there is a p-saturated set I' C A
such that ¢ ¢ A. From Proposition 7.1, M,, is a swap Kripke model for
CP and A is a world in M,, such that M,,, A E I" but M,,, A ¥ . This
implies that I' Fcp . .

7.1. A small addition

We briefly mention that in order to validate (D) in standard formulation,
that is, using the primitive paraconsistent negation — of C,,, we need one
more restriction added to our valuations, namely:

DEFINITION 7.9. A swap Kripke model for C'? is said to be strict if the
valuations satisfy, in addition, the following constraint:

If v}, (Oa) € D,, then, for every w’ € W such that wRw', vy, (a) = T,,.

w

Then it is easy to see that (D) (formulated with —) is valid w.r.t.
strict swap Kripke models for CP.

PROPOSITION 7.2. Axiom schema

Oa — O« (SD,,)

is valid w.r.t. strict swap Kripke models for C.

PROOF. Let M be a strict swap Kripke model for C2 and suppose
that, for some formula « and some world w in M, v/, (O«a) € D,, but
v (-0—a) = F,. The latter implies that v} (O—-a) = T;,, € D,,. By
Definition 7.9 it follows that, for every w’ in M such that wRw’, it is
the case that v]!, (o) = T}, = v]!,(—a). But this is a contradiction, since
=T, = {F,}. This shows that M F Oa — =O-a« for every strict swap
Kripke model for CP and for every formula . o
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It also interesting to notice that these strict models collapse the
two notions of permission. Whereas in the first formulation of C'}} one
would formally be able to characterize two distinct notions of permis-
sion, namely ~(™ O~ q and ~O—a, in this strict formulation there is
a collapse, since whenever O« holds in w, in all the worlds accessible
to w, a behaves classically and is true. It is an easy exercise to see
the preservation of soundness and completeness of C2 plus (SD,,) w.r.t.
strict swap Kripke models.

8. Applications of C’f and CE to moral dilemmas

The motivation behind applying the logics in the C:P-hierarchy to moral
dilemmas stems from the original work on the topic (da Costa and
Carnielli, 1986) together with other works published on the topic, (Puga
and da Costa, 1987a,b; Puga et al., 1988). The work by da Costa and
Carnielli focuses on the idea of building a system that tolerates deontic
conflicts without resulting in deontic trivialization, and trivialization as
a result of O-aggregation. The others work cited diversify the topics
investigated.

To give an overview on the ways they diversify the topics, we briefly
mention the overall topics discussed in the aforementioned papers. In
(Puga et al., 1988), the authors expand the original work to bimodal
systems that satisfy instances of Kant’s Law (KL) and Hintikka’s Law
(HL), respectively,

Oa — Qa, (KL)

Oa — O« (HL)

where [ and ¢ are alethic modalities, dually interdefinable. The works
presented in (Puga and da Costa, 1987a,b) relate legal and moral modal-
ities, assigning to each notion a distinct deontic modality, O; and O,,
respectively, which are independently defined and brought together by
bridge axioms.

Although the aforementioned works motivate the presentation of new
deontic systems on top of the ones presented in (da Costa and Carnielli,
1986), they reserve themselves to only lay the formal grounds upon which
the philosopher interested in Ethics or Moral Philosophy can develop
their work (Puga and da Costa, 1987b, pp. 35-36). However, as pointed
out in (Vaz and Maruchi, 2025), paraconsistent deontic logics seem to
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be well-suited systems to deal with conflicting obligations that occur in
the context of moral dilemmas. Hence, we envision that discussing the
application of C to these contexts seems a fruitful enterprise. Moreover,
the expansion of the original system CP to bimodal systems (and po-
tentially to multimodal systems) already present in the literature makes
it reasonable to infer that the same could be done by the techniques
presented in this paper and not only having C{ as a base logic, but any
logic in the C2 hierarchy.
Moral dilemmas are usually stated as follows:

Oa ANOB A -=O(aNpB),

where ¢ is an alethic modality. Clearly, when § = —«, we have con-
flicting obligations. A standard example of moral dilemmas is Sophie’s
Dilemma, in which a prisoner of a Nazi camp has to decide to save either
her daughter or her son, who are scheduled to be executed and if she
decides not to pick between one of them, both are executed.

We allow ourselves to state a few remarks here. First, the authors in
(Vaz and Maruchi, 2025) claim that conflicting obligations are the root
cause of the eventual trivializations in moral dilemmas, thus relegating
a secondary role to the alethic operator. Second, the negation appearing
outside the scope of the alethic operator could be, as an alternative for-
mulation, a distinct negation which behaves classically, so that it would
it would render impossible the solution of a moral dilemma to be given
by paraconsistent logic alone. Our focus is to solve the problem deon-
tically, with paraconsistency being a feature of the deontic systems we
are studying. In other words, we want the focus of our discussion to be
formulas that are deontic and have negations only inside the scope of
the modal operator.

If we look at the system CP, there are a few options on how to solve
moral dilemmas. The first and obvious route is to try and differenti-
ate the negation happening in the scope of the modal operator. Thus,
for example, if the formula occurring in a moral dilemma is of the form
OaAO—a, then this is perfectly acceptable in our model for CP, although
such an explanation can be deemed insufficient. We should not only point
towards a formal solution, but also give a satisfying philosophical inter-
pretation to the formulas so that they make sense in a deontic setting.

For example, we can interpret O—q as representing a notion of weak
prohibition. Such an interpretation would result in a different scenario
than that one pictured in Sophie’s Dilemma. Rather, one could think
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of such a prohibition to be a minor one, in which no significant results
would follow when choosing either horn of the dilemma, while failing to
satisfy the other.!!

Instead, since the consequences of not saving one of the children
in Sophie’s Dilemma potentially result in their death, we are forced to
formalize those cases as OaAO~a, thus using a notion of strong prohibi-
tion'?, i.e., O~a. Under such an interpretation a behaves classically in a
deontic setting and thus deontic explosion is recovered. This shows that,
although CP allows for weak dilemmas to occur without trivialization
of the system, the same cannot be said about strong dilemmas, as those
occurring in Sophie’s Dilemma.

We also notice that when we start to interpret moral dilemmas in
other systems that are members of the C'2 hierarchy, we might trace finer
distinctions between levels of “strength” that dilemmas might present.
The CP-hierarchy allows us to account for stronger dilemmas in a cer-
tain system. Since we move the classical behavior of the negation up
the hierarchy, strong negation understood as —~a A o' can work as part
of a definition of a “strong obligation”, while we have room to define
other kinds of “stronger obligations”. In this sense, we would have the
conflicting obligations in Sophie’s Dilemma being assigned a designated
value in the system without trivializing the system.

Another discussion that is necessary in order to bring these systems
to their full potential is whether or not these distinctions between weak
and strong obligations in fact play a role in the actual situations we are
trying to formalize. This, however, is a discussion that the authors will
delve into in further papers.

In summary, while CP allows for some distinction between weak
and strong prohibitions in a naive sense, it does not accommodate for

11 For example, picture the following scenario: you have a class on Friday night
and a friend calls you offering a ticket for a concert that they can not attend anymore
due to personal reasons. By attending the concert, you miss class and potentially
fail your course, but it happens that is a band you really like, and might be your
last opportunity to see them live, and as a big fan of art, you have a principle to
always support the artists you like whenever possible. This could count as a minor
dilemma, since the consequences of this act would not have big consequences, such as
somebody’s death or the starting of a war.

12 We diverge from the usual talk about *weak’ and ’strong’ modalities in deontic
logics, usually referring to permissions, as presented in (Hansson, 2013), since our
notion is heavily dependent on the kind of negation inside the scope of the modal
operator, and not on the fact that the obligation is satisfied or fails to be satisfied.
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a conflict between an obligation and a strong prohibition, thus limiting
its usefulness to formalize and deal with moral dilemmas. On the other
hand, it is just the first step of a whole hierarchy, which, in turn, allows
for both cases to be formalized and dealt with, with trivialization.

9. Concluding Remarks

This paper presented a new way to give semantics to modal LFIs con-
flating possible worlds and nondeterministic endeavours via swap struc-
tures. Although our approach here is not fully deterministic, it maintains
a good balance between Nmatrices, RNmatrices and Kripke semantics,
showing that it is possible to mix them, by satisfactorily characterizing
these logics in such a setting. In particular, we described many logics
along the LDIs hierarchy, for the special case where B(a) := Ooa (recall
Section 1). Our investigations started with DmbC, the minimal LFT
equipped with the modal axioms for SDL, and walking up the hierarchy
basing our propositional semantics on Nmatrices.

By adding (cl) to DmbC, we strengthen our systems in such a way
that it becomes impossible to characterize them in terms of finite Nma-
trices alone. We then resort to a reading of RNmatrices adapted to swap
structures, namely, a restriction in the admissible swap valuations. This
move allows us to characterize DmbC'cl and also stronger logics, such as
DClila, and the whole of C'2 hierarchy.

Regarding the latter, the developments here presented are entirely
new. In the case of CP, a sketch of its semantics, by means of bivalu-
ations, was given in (da Costa and Carnielli, 1986). In this paper, we
fully develop those proofs by means of the novel notion of swap Kripke
structures, giving proofs for both DCila and CP. For CP in general, it
is the first time this family of systems is fully developed and semantically
characterized. We also discuss briefly the different systems that can be
defined given the multiple notions of negation these system are able to
express. A thorough survey of such systems would require a paper on its
own, and our objective here is to lay down the technical grounds upon
which this discussion is allowed to be attained.

We believe this combination between nondeterministic semantics and
possible worlds semantics can be fruitful in the conception of new se-
mantics for logical systems, since it allows for the introduction of new
concepts into the logic, for example, detaching modal notions from pos-
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sible world semantics, thus allowing for a higher expressivity of these
nondeterministic modal systems. The mix between them also allow for
systems in which each world is nondeterministic and, as seen in the case
for CP| the modal operator that has its truth conditions based on these
nondeterministic worlds inherits the nondeterministic behavior, as well
as being sufficiently expressive as to accommodate for two notions of
prohibition in its full capabilities. This allows a more or less fine-grained
distinctions of dilemmas, depending on how far into the hierarchy the
dilemma is modeled. We also point out that further investigation should
look deeper into the philosophical aspects of such systems, as well how
they fare when modeling other paradoxes of deontic logics.

Acknowledgments. We thank the anonymous referee for the deep and
thorough comments on an earlier version of this paper. This feedback
helped us to improve the overall quality of the manuscript. Vaz holds
a PhD scholarship from the Sao Paulo Research Foundation (FAPESP,
Brazil), grant 2022/16816-9, and was also financed by the German Aca-
demic Exchange Service (DAAD, Germany), under the Bi-nationally su-
pervised/Cotutelle Doctorate degree program. Coniglio acknowledges
support by an individual research grant from the National Council for
Scientific and Technological Development (CNPq, Brazil), grant 309830/
2023-0. All the authors were supported by the Sdo Paulo Research
Foundation (FAPESP, Brazil), thematic project Rationality, logic and
probability — RatioLog, grant 2020/16353-3.

References

Avron, A., 2007, “Non-deterministic semantics for logics with a consistency
operator”, International Journal of Approximate Reasoning 45: 271-287.
DOI: 10.1016/j.ijar.2006.06.011

Batens, D., 1980a, “A completeness-proof method for extensions of the im-
plicational fragment of the propositional calculus”, Notre Dame Journal of
Formal Logic 21(3): 509-517. DOI: 10.1305/ndjfl/1093883174

Batens, D., 1980b, “Paraconsistent extensional propositional logics”, Logique
et Analyse 23(90/91): 195-234.

Beirlaen, M. and C. Strafler, 2011, “A paraconsistent multi-agent framework
for dealing with normative conflicts”, pages 312-329 in J. Leite et al., (eds.),
Computational Logic in Multi-Agent Systems, volume 6814 of Lecture Notes
in Computer Science (LNAI). DOI: 10.1007/978-3-642-22359-4 22


http://dx.doi.org/10.1016/j.ijar.2006.06.011
http://dx.doi.org10.1305/ndjfl/1093883174
http://dx.doi.org/10.1007/978-3-642-22359-4_22

SwAP KRIPKE MODELS FOR DEONTIC LFIS 39

Bueno-Soler, J., 2011, “Two semantical approaches to paraconsistent modali-
ties”, Logica Universalis 4(1): 137-160. DOI: 10.1007/s11787-010-0015-0

Carnielli, W., and M. E. Coniglio, 2016, Paraconsistent Logic: Consistency,
Contradiction and Negation, volume 40 of Logic, Epistemology, and the Unity
of Science, Springer Nature, Cham. DOI: 10.1007/978-3-319-33205-5

Carnielli, W., M. E. Coniglio, and J. Marcos, 2007, “Logics of formal incon-
sistency”, pages 1-93 in D. M. Gabbay and F. Guenthner (eds.), Handbook
of Philosophical Logic, volume 14, Springer, Dordrecht. DOI: 10.1007/978-
1-4020-6324-4_ 1

Coniglio, M. E., 2009, “Logics of deontic inconsistency”, Revista Brasileira de
Filosofia 233:162-186 (preprint available at CLE e-Prints, 7(4), 2007.

Coniglio, M. E., L. Farinas del Cerro, and N.M. Peron, 2015, “Finite non-
deterministic semantics for some modal systems”, Journal of Applied Non-
Classical Logics 25(1): 20-45. DOI: 10.1080/11663081.2015.1011543

Coniglio, M. E., and A.C. Golzio, 2019, “Swap structures semantics for Ivlev-
like modal logics”, Soft Computing 23(7): 2243-2254. DOI: 10.1007/s00500-
018-03707-4

Coniglio, M.E., P. Pawlowski, and D. Skurt, 2025, “RNmatrices for
modal logics”, The Review for Symbolic Logic 18(3): 744-774. DOL:
10.1017/81755020325100737

Coniglio, M. E., and N.M. Peron, 2009, “A paraconsistentist approach to
Chisholm’s paradox”, Principia: An International Journal of Epistemology
13(3): 299-326. DOI: 10.5007/1808-1711.2009v13n3p299

Coniglio, M.E., and G.V. Toledo, 2022, “Two decision procedures for da
Costa’s C,, logics based on restricted Nmatrix semantics”, Studia Logica
110(3): 601-642. DOI: 10.1007/s11225-021-09972-2

da Costa, N.C. A., and W. Carnielli, 1986, “On paraconsistent deontic logic”,
Philosophia 16(3-4): 293-305. DOI: 10.1007/BF02379748

Grétz, L., 2021, “Truth tables for modal logics T and S4, by using three-valued
non-deterministic level semantics”, Journal of Logic and Computation 32(1):
129-157. DOI: 10.1093/logcom/exab068

Hansson, S.-O., 2013, “The varieties of permission”, pages 195-240 in D. Gab-
bay et al., (eds.), Handbook of Deontic Logic and Normative Systems, College
Publications, London. DOI: 10.1002/9781444367072.wbiee217.pub2

Leme, R., C. Olarte, E. Pimentel, and M. E. Coniglio, 2025, “The modal cube
revisited: Semantics without worlds” pages 181-200 in G.L. Pozzato and
T. Uustalu (eds.), Automated Reasoning with Analytic Tableaux and Re-
lated Methods, volume 15980 of Lecture Notes in Computer Science (LNAI),
Springer Nature, Cham. DOI: 10.1007/978-3-032-06085-3__10


http://dx.doi.org/10.1007/s11787-010-0015-0
https://doi.org/10.1007/978-3-319-33205-5
https://doi.org/10.1007/978-1-4020-6324-4_1
https://doi.org/10.1007/978-1-4020-6324-4_1
https://doi.org/10.1080/11663081.2015.1011543
https://doi.org/10.1007/s00500-018-03707-4
https://doi.org/10.1007/s00500-018-03707-4
https://doi.org/10.1017/S1755020325100737
http://dx.doi.org/10.5007/1808-1711.2009v13n3p299
https://doi.org/10.1007/s11225-021-09972-z
http://dx.doi.org/10.1007/BF02379748
http://dx.doi.org/10.1093/logcom/exab068
https://doi.org/10.1002/9781444367072.wbiee217.pub2
http://dx.doi.org/10.1007/978-3-032-06085-3_10

40 MAHAN VAZ AND MARCELO E. CONIGLIO

McGinnis, C., 2007, “Paraconsistency and deontic logic: Formal systems for
reasoning with normative conflicts”, PhD thesis, University of Minnesota.

Omori, H., and D. Skurt, 2016, “More modal semantics without possible
worlds”, IFCoLog Journal of Logic and its Applications 3(5): 815-846.

Pawlowski, P. and D. Skurt, 2024, “[0 and ¢ in eight-valued non-deterministic
semantics for modal logics”, Journal of Logic and Computation, 35(2):
exae010. DOI: 10.1093/logcom/exac010

Peron, N. M., and M. E. Coniglio, 2008, “Logics of deontic inconsistencies and
paradoxes”, CLE e-prints, 8(6).

Puga, L.Z., N.C. A. da Costa, and W. Carnielli, 1988, “Kantian and non-
Kantian logics”, Logique Et Analyse, 31(121/122): 3-9.

Puga, L.Z., and N.C.A. da Costa, 1987a, “Sobre a légica dedntica nao-
classica”, Critica: Revista Hispanoamericana de Filosofta, 19(55): 19-37.
DOI: 10.22201/iifs.18704905e.1987.639

Puga, L.Z., and N. C. A. da Costa, 1987b, “Logic with deontic and legal modal-
ities, preliminary account”, Bulletin of the Section of Logic, 16(2): 71-75.

Vaz, M., G. and Maruchi, 2025, “Modeling deontic inconsistencies in moral
dilemmas”, Perspectiva Filosdfica 52(2): 174-206. DOI: 10.51359/2357-
9986.2025.263881

MAHAN Vaz

Instituto de Filosofia e Ciéncias Humanas (IFCH)
Universidade Estadual de Campinas (UNICAMP), Brazil
Institut fir Philosophie I, Logik und Erkenntnistheorie
Ruhr-Universitiat, Bochum, Germany
mahanvaz@gmail.com
https://orcid.org/0000-0002-0187-731X

MARCELO E. CONIGLIO

Instituto de Filosofia e Ciéncias Humanas (IFCH)

Centro de Légica, Epistemologia e Histéria da Ciéncia (CLE)
Universidade Estadual de Campinas (UNICAMP), Brazil
coniglio@unicamp.br
https://orcid.org/0000-0002-1807-0520


https://doi.org/10.1093/logcom/exae010
http://dx.doi.org/10.22201/iifs.18704905e.1987.639
https://doi.org/10.51359/2357-9986.2025.263881
https://doi.org/10.51359/2357-9986.2025.263881
https://orcid.org/0000-0002-0187-731X
https://orcid.org/0000-0002-1807-0520

	Introduction
	The paraconsistent deontic system DmbC
	Swap Kripke models for DmbC

	Some extensions of DmbC
	The da Costa axiom: the case of DmbCcl
	Swap Kripke models for DCila
	The pioneering system CD1
	Swap Kripke models for CDn
	A small addition

	Applications of CD1 and CDn to moral dilemmas
	Concluding Remarks
	References


