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Abstract. Recently, Da Ré, Szmuc, Chemla and Égré (2024) showed that
all logics based on Boolean Normal monotonic three-valued schemes coincide
with classical logic when defined using a strict-tolerant standard (st). Con-
versely, they proved that under a tolerant-strict standard (ts), the resulting
logics are all empty. Building on these results, we show that classical logic
can be obtained by closing under transitivity the union of two logics de-
fined over (potentially different) Boolean normal monotonic schemes, using
a strict-strict standard (ss) for one and a tolerant-tolerant standard (tt) for
the other, with the first of these logics being paracomplete and the other
being paraconsistent. We then identify a notion dual to transitivity that
allows us to characterize the logic TS as the dual transitive closure of the
intersection of any two logics defined over (potentially different) Boolean
normal monotonic schemes, using an ss standard for one and a tt standard
for the other. Finally, we expand on the abstract relations between the
transitive closure and dual transitive closure operations, showing that they
give rise to lattice operations that precisely capture how the logics discussed
relate to one another.

Keywords: three-valued logics; transitive closure; non-classical logics; strict-
tolerant logic; logic of paradox; Strong Kleene logic; Weak Kleene logic

1. Introduction

Are there three-valued presentations of classical logic? Cobreros et al.
(2012) answer this question affirmatively by showing that certain three-
valued logics based on the Strong Kleene scheme validate precisely the
same inferences as classical logic. These results were later on extended
to the Weak Kleene counterparts of these logics by Szmuc and Ferguson
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(2021) and Ferguson (2023). Ultimately, Da Ré et al. (2024) identified all
the three-valued truth-functional logics corresponding to classical logic.
In particular, they identified a subclass of these logics, characterized
by a strict-tolerant (st) standard of argument evaluation, defined over a
Boolean normal monotonic scheme for the connectives (BNM). One such
logic is the strict-tolerant logic ST (Cobreros et al., 2012, 2013; Ripley,
2012), based on the aforementioned Strong Kleene scheme. They further
proved that logics defined with a standard among ss, tt, ts and ss ∩ tt

over a BNM scheme are necessarily weaker than classical logic. The
Strong Kleene logic K3 (Kleene, 1952), the logic of paradox LP (Asenjo,
1966; Priest, 1979), the tolerant-strict logic TS (Cobreros et al., 2012),
and the logic of order KO (Makinson, 1973; also known as S3 by Field,
2008, and RMfde by Dunn, 1976) are notable examples of such logics,
all based on the Strong Kleene scheme. Other such logics include those
based on the Middle Kleene scheme (Beaver and Krahmer, 2001; George,
2014; Peters, 1979), and the logics based on the Weak Kleene scheme,
such as Kw

3 (Bochvar, 1981) and Paraconsistent Weak Kleene logic PWK

(Halldén, 1949).
Nonetheless, the authors do not investigate the properties of logics

defined by the union of the ss and tt standards. It is known, for instance,
that the union of K3 and LP does not align with classical logic (see, e.g.,
Wintein, 2016, p. 511) or equivalently ST. The relationship between K3

and LP to classical logic has been studied by Blomet and Égré (2024),
where it is shown that the set of valid inferences of ST is the relational
composition of the sets of K3- and LP-valid inferences. However, the
authors do not examine the relationship between classical logic and other
logics based on the ss and tt standards.

This paper first extends the aforementioned inequality result, show-
ing that no logic defined by the union of the ss and tt standards and
a BNM scheme coincides with classical logic. This naturally raises the
question: what is absent from this union to recover classical logic? We
will address this by showing that what is missing is transitivity. Once
closed under transitivity, the union of an ss- and a tt-logic is classical
logic.

Just as the union of an ss- and a tt-logic based on a BNM scheme
fails to be classical logic, the intersection of an ss- and a tt-logic does
not coincide with the aforementioned non-reflexive logic TS. Da Ré et
al. (2024) show in particular that any logic with a ts standard defined
over a BNM scheme collapses into TS. In contrast, the intersection of
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an ss- and a tt-logic is reflexive, as exemplified by the logic KO. We
are thus justified in asking a similar question to the one posed for the
union: what is missing from the intersection to yield the logic TS? Once
again, we will answer this by showing that what is missing is a relational
property  specifically the property of dual transitivity.

We will then explore the relationship between the transitive closure
operator and its dual, as well as their effects when applied to sets of
validities. This analysis will ultimately enable us to present a cohesive
overview of the interrelations among all the logics discussed, showing
that their sets of valid inferences form a sublattice of the lattice of logics
satisfying the Tarskian properties of Reflexivity, Monotonicity, Transitiv-
ity, and Structurality. We further show that their sets of antitheorems
and theorems  defined here as inferences with unsatisfiable premises
and inferences with an unfalsifiable conclusion  form a lattice induced
by the dual transitive closure operator.

The paper is structured as follows. In Section 2, we provide all the
preliminary technicalities required for the paper. In Section 3, we intro-
duce the operations of transitive closure and dual transitive closure, and
present their main properties. In Section 4 we prove that the transitive
closure of the union of two ss- and tt-logics coincides with an st-logic
(that is, with classical logic), based on possibly different BNM schemes.
We then dualize this result and prove that applying the dual transitive
closure to the intersection of an ss- and a tt-logic yields a ts-logic (i.e.,
the empty logic), possibly based on different BNM schemes. In Section
5, we elaborate on some remarks regarding the dual transitive closure
operator. In Section 6, we provide an overview of the interrelations
among all the logics discussed. Finally, in Section 7, we conclude with
our final observations and remarks.

2. Preliminary definitions

Definition 2.1 (Language). The propositional language L is built from
a denumerably infinite set Var = {p, p′, . . .} of propositional variables,
using the logical constants ¬, ∨, ∧ (negation, disjunction, conjunction).

Elements of L will be denoted by lower-case Greek letters or upper-case
Latin letters, depending on the context. Subsets of L will be denoted by
upper-case Greek letters. Given a function f : Var −→ L, f extends to
a substitution σ on L by letting σ(⋆(φ1, . . . , φn)) = ⋆(σ(φ1), . . . , σ(φn))
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for all logical constants ⋆. Given a formula φ, At(φ) denotes the set of
propositional variables of φ. By extension, given a set of formulas Γ ,
At(Γ ) :=

⋃
{At(γ) : γ ∈ Γ}.

Definition 2.2. An inference is an ordered pair 〈Γ, φ〉, denoted by Γ ⇒
φ, where φ ∈ L and Γ ⊆ L is finite.

Before proceeding, a few remarks on the previous definition are in
order. First, note that inferences are defined with a finite set of premises.
However, this does not compromise the generality of the results in this
paper. All the logics discussed here are finitely-valued, and therefore
finitary (see Wójcicki, 1988, 4.1.7). Consequently, they are entirely de-
termined by their set of inferences with finitely many premises. Second,
we choose to work with single conclusions, as this framework allows for
simpler and more elegant definitions of the operations introduced in the
next section.1

Blackboard letters L are used to denote sets of inferences. Logics L

are occasionally identified with sets of inferences L.2 Such an identifi-
cation is more liberal than the common definition of a logic as a set of
inferences satisfying the Tarskian properties of Reflexivity, Monotonic-
ity, Transitivity, and Structurality (see, e.g., Font, 2016). Recognizing
non-transitive systems like ST or non-reflexive ones like TS as logics
requires adopting a broader definition. We therefore distinguish a logic
simpliciter from a Tarskian logic.

Definition 2.3 (Tarskian logic). A logic L is said to be Tarskian if it
satisfies the following properties, for all Γ,Σ, {φ} ⊆ L.

(R) φ ⇒ φ ∈ L. (Reflexivity)
(M) If Γ ⇒ φ ∈ L and Γ ⊆ Σ, then Σ ⇒ φ ∈ L. (Monotonicity)
(T) If (∃∆ 6= ∅) ∆ ⇒ φ ∈ L and (∀δ ∈ ∆) Γ ⇒ δ ∈ L, then Γ ⇒ φ ∈ L.

(Transitivity)
(S) If Γ ⇒ φ ∈ L, then σ[Γ ] ⇒ σ[φ] ∈ L for all substitutions σ.

(Structurality)
1 Note that Da Ré et al. (2024) adopt a multiple-conclusion setting. However,

none of their results fundamentally depend on this choice, as everything in that paper
could be adapted to a single-conclusion framework. We intend to address the multiple-
conclusion case in future work.

2 Although extensionally identical, we distinguish between these two objects.
This distinction is necessary since we sometimes refer to logical properties (such as
the validity of an inference), while at other times, we consider set-theoretic properties
(such as the union of two sets of inferences).
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Notice the unconventional formulation of Transitivity (T), which re-
quires that ∆ be non-empty. This choice is motivated by two main con-
siderations. First, the standard form of Transitivity  without this re-
striction  implicitly collapses into a weaker form of Monotonicity when
∆ = ∅: if ∅ ⇒ φ ∈ L, then Γ ⇒ φ ∈ L. By contrast, our formulation
keeps Transitivity and Monotonicity distinct. Second, this restricted
version of Transitivity will later be dualized, and the constraint on ∆
will play a notable role in that development (see fn. 3).

A Tarskian logic can be obtained from any set of inferences by closing
it under (R), (M), (T), and (S).

Definition 2.4 (Tarskian closure). For any set of inferences L, the
Tarskian closure of L, noted Tar(L), is the least set L′ ⊇ L satisfying
(R), (M), (T) and (S).

Given a logic, we provide a semantic characterization of its set of valid
inferences. A valuation is a function v from L to V, where V is a set of
truth values. It is important to note that, as for now, valuations are not
subject to any constraints of truth-functionality. In this paper, we will
consider two possible sets of values V2 = {0, 1} and V3 = {0, 1/2, 1}.

Definition 2.5. A formula-standard z is defined as z ⊆ V. A standard
is defined as xy, where x, y are formula-standards.

Definition 2.6. A valuation v satisfies a formula φ according to a
formula-standard x (v �x φ), if v(φ) ∈ x. A valuation v satisfies an
inference Γ ⇒ φ according to a standard xy, denoted as v �xy Γ ⇒ φ, if
the following holds:

if v �x γ for all γ ∈ Γ, then v �y φ.

An inference is valid according to a standard xy, denoted as �xy Γ ⇒ φ,
if v �xy Γ ⇒ φ for all v.

Two well-studied formula-standards on V3 are the strict and the
tolerant standards, defined respectively as s = {1} and t = {1, 1/2}.
With these two standards, it is possible to define four possible stan-
dards: ss, tt, st and ts (strict-strict, tolerant-tolerant, strict-tolerant and
tolerant strict, respectively). Given a standard xy we can define a set
of inferences XY containing exactly the inferences valid according to xy

by every valuation. In particular, from the aforementioned standards,
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ST

SS ∪ TT

SS TT

SS ∩ TT

TS

Figure 1. Six sets of inferences extracted from the standards s, t

we can extract six sets of inferences, which are ordered by inclusion in
Figure 1 (see Chemla et al., 2017).3

Up to this point, we have imposed no constraints on the trivaluations.
In this article, we will consider valuations respecting some three-valued
scheme X, where X is a triple (f¬, f∧, f∨) of operations. In particular,
following Da Ré et al. (2024), we will consider Boolean normal monotonic
schemes (hereinafter referred to as BNM schemes).

Definition 2.7 (Da Ré et al., 2024). An n-ary operation ⋆ is Boolean
normal4 iff for all a1, . . . , an ∈ {0, 1}, ⋆(a1, . . . , an) = ⋆CL(a1, . . . , an),
where ⋆CL is the corresponding operation over the usual two-elements
Boolean algebra. A scheme is Boolean normal if and only if each of its
operations is.

When considering the Boolean normal bivaluations on V2, all the
standards define what we refer to as the set of classical inferences, de-
noted CL.

For monotonicity, we first assume that the truth values are ordered
according to the order according to which 1/2 <I 0, 1/2 <I 1, and 1 and 0
are incomparable. The componentwise ordering induced by this relation
is then defined as follows: 〈a1, . . . , an〉 ≤comp

I 〈b1, . . . , bn〉 if and only if
aj ≤I bj for each 1 ¬ j ¬ n. We take the following definition from (Da
Ré et al., 2024).

3 Notice that in Figure 1, the inclusion between the sets of inferences is not
necessarily proper, and is independent of any particular choice of logical vocabulary.
See (Chemla et al., 2017) for more details.

4 There are alternative nomenclatures for Boolean normality. For instance, as an
anonymous reviewer has pointed out, Carnielli et al. (2000, p. 129) call this property
hyper-classicality.



Reaching classicality through transitive closure 7

Definition 2.8. An n-ary operation ⋆ is monotonic if and only if when-
ever 〈a1, . . . , an〉 ≤comp

I 〈b1, . . . , bn〉 then ⋆(a1, . . . , an) ≤I ⋆(b1, . . . , bn).
A scheme is monotonic if and only if each of its operations is.

Let us review some examples. It’s straightforward to check that the
usual unary operation representing negation of Strong Kleene or Weak
Kleene logics, i.e. ⋆1(x) = 1 − x, is a monotonic operation. However, we
can define a nonmonotonic unary operation as follows: ⋆2(1/2) = ⋆2(0) =
1 and ⋆2(1) = 0. Notice that 1/2 <I 1 but 1 = ⋆2(1/2) �I ⋆2(1) = 0. For
more examples of monotonic and nonmonotonic operations, see (Da Ré
et al., 2024).

A valuation v is said to respect a scheme X if for every operation f⋆

of X and corresponding symbol ⋆ in the language, it satisfies

v(⋆(φ1 . . . φn)) = f⋆(v(φ1) . . . v(φn)).

We now observe that a set of valuations, together with a standard, fully
determines the semantics of a logic.

Occasionally, when working with a logic defined by some standard xy

and a scheme X, we denote the fact that an inference Γ ⇒ φ is satisfied
by writing v �

X
xy Γ ⇒ φ. We say that Γ ⇒ φ is valid in L if it is satisfied

by every valuation (symbolically, �X
xy Γ ⇒ φ). When the context makes

the scheme clear, we omit the superscript X.

3. Transitive closure and dual transitive closure

In this section, we introduce two operators: the transitive closure op-
erator and the dual transitive closure operator. The transitive closure
operator will enable us to define the set of valid inferences of an st logic
based on a BNM scheme. This will be achieved by closing under tran-
sitivity the union of the sets of valid inferences of two ss and tt logics,
based on a BNM scheme. In contrast, the dual transitive operator will
allow us to define the set of valid inferences of a ts logic. Specifically,
applying such operation to the intersection of the sets of valid inferences
of two ss and tt logics will yield the sets of valid inferences of a ts logic.

Definition 3.1 (Transitive closure). For any set of inferences L, the
transitive closure of L, noted T (L), is the least set L′ ⊇ L such that

if (∃∆ 6= ∅) ∆ ⇒ φ ∈ L′ and (∀δ ∈ ∆) Γ ⇒ δ ∈ L′, then Γ ⇒ φ ∈ L′.
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We need to ensure that the operator is a closure operator.5 This is
guaranteed by the following fact.

Fact 3.1. T is a closure operator.

Proof. The inclusion L ⊆ T (L) for all L follows directly from the
definition of transitive closure.

Turning to the monotonicity of T , assume that L ⊆ L′. Then L ⊆
L′ ⊆ T (L′). So, T (L′) is an extension of L such that for all ∆ 6= ∅, if ∆ ⇒
φ ∈ T (L′) and Γ ⇒ δ ∈ T (L′) for all δ ∈ ∆, then Γ ⇒ φ ∈ T (L′). By
definition, T (L) is the least extension of L satisfying such a property, so
T (L) ⊆ T (L′).

To show that T (T (L)) = T (L), it suffices to establish the left-to-right
inclusion, as the reverse direction follows directly from the previously
proven fact that L ⊆ T (L) for all L. Trivially, T (L) is an extension
of itself and is such that for all ∆ 6= ∅, if ∆ ⇒ φ ∈ T (L) and Γ ⇒
δ ∈ T (L) for all δ ∈ ∆, then Γ ⇒ φ ∈ T (L). Now, by the definition,
T (T (L)) is the least extension of T (L) with such a property. Hence,
T (T (L)) ⊆ T (L). ⊣

We proceed to define the notion of dual transitive closure.

Definition 3.2 (Dual transitive closure). For any set of inferences L,
the dual transitive closure of L, noted T d(L), is the greatest set L′ ⊆ L
such that

if (∃∆ 6= ∅) ∆ ⇒ φ /∈ L′ and (∀δ ∈ ∆) Γ ⇒ δ /∈ L′, then Γ ⇒ φ /∈ L′.

Equivalently, the dual transitive closure of a set L is the greatest
L′ ⊆ L such that

if Γ ⇒ φ ∈ L′, then (∀∆ 6= ∅) ∆ ⇒ φ ∈ L′ or (∃δ ∈ ∆) Γ ⇒ δ ∈ L′.6

Next, we show in what sense this notion of dual transitive closure
is dual to the notion of transitive closure. The proposition hereinafter

5 A function C : P(A) → P(A) is said to be a closure operator on A if for all
X,Y ⊆ A: X ⊆ C(X); CC(X) = C(X); if X ⊆ Y , then C(X) ⊆ C(Y ).

6 Removing the constraint that ∆ be empty, as envisioned above, causes the dual
transitive of a set to reduce to a collection of inferences Γ ⇒ φ for which ∅ ⇒ φ ∈ L,
as the second disjunct of the consequent is vacuously false in the case where ∆ = ∅.
Hence our decision to impose this restriction: it is otherwise too limiting, and the
partial collapse under Monotonicity already discussed provides an additional reason
motivating the constraint.
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eventually expresses the duality of the transitive closure operator and the
dual transitive closure operator. The two operators are interdefinable
through the set-theoretical notion of absolute complement.

Proposition 3.1. T d(L) = T (L) and T (L) = T d(L).

Proof. For any set of inferences L, let P (L) express that if (∃∆ 6=
∅) ∆ ⇒ φ ∈ L and (∀δ ∈ ∆) Γ ⇒ δ ∈ L, it follows that Γ ⇒ φ ∈ L.

Starting with the first identity, by definition, T (L) is the least element
of the set {L′ | L ⊆ L′, P (L′)}. Equivalently, T (L) is the greatest
element of {L′ | L ⊆ L′, P (L′)}, which coincides with {L′′ | L′′ ⊆

L, P (L′′)}. That is, T (L) is the largest subset L′′ of L such that if
(∃∆ 6= ∅) ∆ ⇒ φ /∈ L′′ and (∀δ ∈ ∆) Γ ⇒ δ /∈ L′′, then Γ ⇒ φ /∈ L′′.
Therefore, we conclude that T d(L) = T (L). The other identity can be
proved similarly. ⊣

It can now be checked that T d is an interior operator.7

Fact 3.2. T d is an interior operator.

Proof. 1. Since T is a closure operator, L ⊆ T (L), and thus T d(L) =
T (L) ⊆ L = L, by Proposition 3.1.

Assume L ⊆ L′. Then L′ ⊆ L, so T (L′) ⊆ T (L) since T is a closure
operator, and hence T d(L) = T (L) ⊆ T (L′) = T d(L′) by Proposition 3.1.

Since T is a closure operator, T (L) ⊆ T (T (L)), so T (T (L)) ⊆ T (L).

But, by Proposition 3.1, T d(T d(L)) = T (T d(L)) = T (T (L)). Therefore,
T d(T d(L)) ⊆ T (L) = T d(L). ⊣

With these definitions and facts at our disposal, we are equipped to
offer an exact characterization of ST as the transitive closure of SS∪TT,
and TS as the dual transitive closure of SS ∩ TT.

4. Characterization of ST and TS

Our aim in this section is to characterize st- and ts-logics by combining
ss- and tt-logics. We first establish that the union of SS and TT does
not yield ST. We then prove that the transitive closure of their union
actually coincides with ST (and hence with CL). A dual version of this
result is then proved for the characterization of ts-logics: their set of

7 A function I : P(A) → P(A) is an interior operator if it satisfies for all X,Y ⊆
A: I(X) ⊆ X; II(X) = I(X); if X ⊆ Y , then I(X) ⊆ I(Y ).
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valid inferences is obtained by applying the dual transitive closure to
the intersection of the sets of tt- and ss-valid inferences. Importantly, all
the results in this section assume that the sets of inferences are defined
using BNM schemes, possibly different from one logic to another. We
start by restating the following results proven in (Da Ré et al., 2024):

Theorem 4.1 (Da Ré et al., 2024). For every BNM scheme, ST = CL.

Theorem 4.2 (Da Ré et al., 2024). For every BNM scheme, TS = ∅.

The first theorem shows that any st-logic based on a BNM scheme
collapses with classical logic. The second one that any ts-logic based on
a BNM scheme is empty (i.e. invalidate every inference).

We now show that the union of the sets SS and TT, obtained from
the ss and tt standards, differs from ST. To establish this, we provide a
counterexample: an inference that is ST-valid but neither SS- nor TT-
valid. First, we state the following relation between these sets.

Fact 4.1. Let SS,TT and ST be defined by (possibly different) BNM
schemes. Then

• SS,TT ⊆ ST;
• SS and TT are incomparable.

Proof. For the first bullet, take any BNM-valuation such that v(p) =
1/2 and v(r) = 0. It’s easy to notice that v 2tt p ∧ ¬p ⇒ r and v 2ss

r ⇒ p ∨ ¬p.8 However, both inferences are classically valid, and thus by
Theorem 4.1 they are in ST.

As for the incomparability of SS and TT, just note that, for any BNM
scheme X, 6|=X

tt p∧ ¬p ⇒ r, but |=X
ss p∧ ¬p ⇒ r, and 6|=X

ss ∅ ⇒ p∨ ¬p, but
|=X

tt ∅ ⇒ p ∨ ¬p. ⊣

Theorem 4.3. SS ∪ TT ( ST = CL.

Proof. By Theorem 4.1, we know that ST = CL. The fact that SS ∪
TT ⊆ ST is trivial given the previous fact. So, let us show that SS∪TT 6=
ST. In order to do so, let us consider p ∨ (q ∧ ¬q) ⇒ p ∧ (r ∨ ¬r). This
inference serves as a witness to the claim.9

8 Note that for every BNM scheme, if v(p) = 1/2 then v(¬p) = 1/2, and thus
v(p ∧ ¬p) = v(p ∨ ¬p) = 1/2. For v(r) = 0, we get a tt-counterexample to the first
inference, and for v(r) = 1, an ss-counterexample to the second.

9 Note the similarity of this inference with the axiom Safety q∧¬q ⇒ r∨¬r, which
is characteristic of the intersection SS ∩ TT, and thus cannot be used to substantiate
the claim. We thank an anonymous reviewer for pointing this out to us.
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Note first that given any BNM scheme, there is a valuation v such
that v 2ss p∨ (q ∧ ¬q) ⇒ p∧ (r ∨ ¬r) (e.g. v(p) = 1, v(q) = 0, v(r) = 1/2)
and there is another valuation v′ such that v′ 2tt p∨(q∧¬q) ⇒ p∧(r∨¬r)
(e.g. v′(p) = 0, v′(r) = 0, v′(q) = 1/2). However, �st p ∨ (q ∧ ¬q) ⇒
p ∧ (r ∨ ¬r) since the inference is classically valid. ⊣

One may then ask whether the gap between the union of SS and
TT logics and ST can be bridged. The following result shows that the
transitive closure is the key to obtaining ST from the union of SS and TT.

Theorem 4.4. T (SS ∪ TT) = ST.

Proof. (⊆) From Fact 4.1, it holds that SS∪TT ⊆ ST, so T (SS∪TT) ⊆
T (ST) since T is a closure operator. Now, T (ST) = ST, and therefore
T (SS ∪ TT) ⊆ ST.

(⊇) Assume Γ ⇒ φ ∈ ST, that is |=X
st Γ ⇒ φ. We show in particular

that there is ∆ 6= ∅ such that |=X′

tt Γ ⇒ δ for all δ ∈ ∆ and |=X′′

ss ∆ ⇒ φ
with X′ and X′′ two BNM schemes possibly different from X. Let ∆ be
as follows:

∆ := Γ ∪ {p ∨ ¬p : p ∈ At(φ)}

For all γ ∈ Γ , |=X′

tt Γ ⇒ γ, since TT is reflexive. Moreover, |=X′

tt Γ ⇒
p ∨ ¬p for all p ∈ At(φ), since for any BNM valuation, v(p ∨ ¬p) 6= 0.
Turning to |=X′′

ss ∆ ⇒ φ, assume v(δ) = 1 for all δ ∈ ∆. By definition of
∆, it follows that v(p ∨ ¬p) = 1 for all p ∈ At(φ), and given that X′′ is
a BNM scheme, v(p) 6= 1/2 for all p ∈ At(φ). In addition, v(γ) = 1 for
all γ ∈ Γ and |=X

st Γ ⇒ φ by assumption. By Theorem 4.1, |=X′′

st Γ ⇒ φ,
so v(φ) 6= 0. But v(p) 6= 1/2 for all p ∈ At(φ), thus v(φ) = 1, since v is
a BNM valuation. Now, Γ ⇒ δ ∈ TT for all δ ∈ ∆ and ∆ ⇒ φ ∈ SS,
meaning that Γ ⇒ δ ∈ SS ∪ TT for all δ ∈ ∆ and ∆ ⇒ φ ∈ SS ∪ TT.
Therefore, Γ ⇒ φ ∈ T (SS ∪ TT). ⊣

Note that the previous results rely heavily on the absence of truth
constants for the intermediate value in the language. If we introduce a
constant for this value, say λ, the closure under transitivity of the union
of the valid inferences from any tt-and ss-logic would result in a trivial
set of inferences. To see this, just note that for all Γ, φ, it holds that
Γ ⇒ λ ∈ TT and λ ⇒ φ ∈ SS. As a result, Γ ⇒ φ ∈ T (SS∪TT) for any
inference Γ ⇒ φ, collapsing ST with the trivial logic, that is, the logic
corresponding to the universal relation on L.10

10 For characterizations of ST in languages containing λ, see (Blomet and Égré,
2024).
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¬
1 0

1/2 1/2
0 1

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 1/2
0 0 1/2 0

∨ 1 1/2 0
1 1 1/2 1

1/2 1/2 1/2 1/2
0 1 1/2 0

Figure 2. Weak Kleene truth tables

¬
1 0

1/2 1/2
0 1

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

Figure 3. Strong Kleene truth tables

Let us now turn our attention to the case of ts-logics. It is straight-
forward to notice that TS ( TT ∩ SS, since TS = ∅ while TT ∩ SS 6= ∅
(for instance φ ⇒ φ ∈ TT ∩ SS, for any φ). Thus to collapse TT ∩ SS
with TS we need to erase all the inferences belonging to this set. The
next result shows that the dual transitive closure operator does this job.

Theorem 4.5. T d(TT ∩ SS) = TS.

Proof. (⊆) Let Γ ⇒ φ ∈ T d(TT ∩ SS). Then for all ∆ 6= ∅, Γ ⇒ δ ∈
TT ∩ SS for some δ ∈ ∆ or ∆ ⇒ φ ∈ TT ∩ SS. Meaning that for all
∆ 6= ∅, |=tt Γ ⇒ δ for some δ ∈ ∆ or |=ss ∆ ⇒ φ, and in particular that
for some p /∈ At(Γ ) ∪ At(φ), |=tt Γ ⇒ p or |=ss p ⇒ φ. Since Γ is finite,
such a p must exist. Now, |=tt Γ ⇒ p is impossible, as for any BNM
scheme, there exists a valuation v such that v(p) = 0 and v(q) = 1/2 for
all q ∈ Var with q 6= p, ensuring that v 6|=tt Γ ⇒ p. Likewise, |=ss p ⇒ φ
is also impossible, since for any BNM scheme, there exists a valuation v′

such that v′(p) = 1 and v′(q) = 1/2 for all q ∈ Var with q 6= p, ensuring
that v 6|=ss p ⇒ φ. Therefore, T d(TT ∩ SS) = ∅ = TS.

(⊇) Trivial, since TS = ∅. ⊣

Having established how to obtain ST from SS ∪ TT, and TS from
SS ∩ TT, we will now focus on the logics corresponding to these sets.
First, note that all the results from the previous sections were stated for
any BNM scheme. However, it is not necessary for the scheme used to
define SS and TT to be the same. For example, we can consider the two
well-known schemes from Figures 2 and 3.

SS and TT defined over the Strong Kleene scheme induce the logics
K3 and LP, respectively. Their intersection is known as S3, KO or RMfde.
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In the case of the logics defined over the Weak Kleene scheme, SS cor-
responds to WK and TT to PWK.11 Given these logics, Theorem 4.4
implies the following:

T (K3 ∪ PWK) = ST = CL,

T d(K3 ∩ PWK) = ∅.

The choice here of K3 and PWK was arbitrary. As mentioned earlier,
provided that one logic is based on an ss standard and the other on a tt

standard, the choice of a BNM scheme for each is inconsequential.
A distinctive feature of K3 and WK, and of all the ss-logics is their

paracompleteness: the law of excluded middle ∅ ⇒ φ ∨ ¬φ fails in each
(the valuation that assigns the intermediate value to φ serves as a coun-
terexample). On the other hand, LP and PWK and all the tt-logics are
paraconsistent: the rule of Explosion φ ∧ ¬φ ⇒ ψ has a counterexample
in each (the valuation that assigns the intermediate value to φ and false
to ψ serves as a counterexample). Given our results, classical logic is
therefore obtained by operating over the union of a paracomplete and a
paraconsistent logic.

5. Additional remarks on the dual transitive closure operator

As proven in Section 3, the transitive closure operator and the dual
transitive operator are interdefinable via the set-theoretical notion of
absolute complement. However, one may ask how this duality manifests
when applied to sets of inferences. To address this, we first need to
better understand the effects of the dual transitive closure operator.
From Section 3, we know that it is an interior operator, a notion dual
to the notion of closure operator, which  unlike its dual  contracts a
set rather than extends it. Could there, then, be a property analogous
to transitivity that is either imposed or removed by the dual transitive
closure operator?

The dual transitive closure of a set of inferences L is defined as the
greatest subset of L whose complement is closed under transitivity. In
light of this definition, it is easy to see that the dual transitive closure
operator will not add new inferences to the set. In particular, provided

11 To the best of our knowledge, the intersection of the two has not yet been
studied.
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that L is non-trivial, the dual transitive closure operator will remove
some instances of reflexivity, turning L into a non-reflexive relation.12

Fact 5.1. Let L be structural. If L is non-trivial, then T d(L) is non-
reflexive.

Proof. Assume that T d(L) is reflexive. Then for all φ ∈ L, φ ⇒ φ ∈
T d(L). So, p ⇒ p ∈ T d(L) for some arbitrary p, and thus, for all ∆ 6= ∅,
p ⇒ δ ∈ T d(L) ⊆ L for some δ ∈ ∆ or ∆ ⇒ p ∈ T d(L) ⊆ L. This
means in particular that p ⇒ q ∈ L or q ⇒ p ∈ L for some arbitrary q.
In both cases r ⇒ s ∈ L for two different variables r and s, which, by
structurality, shows that L is trivial. ⊣

We subsequently have two dual operators  the transitive closure op-
erator and the dual transitive operator  turning any non-trivial set of
inferences into a transitive one for the first, and into a non-reflexive one
for the second.

Although a relation can only be reflexive in one way, it can fail to be
reflexive in numerous ways, depending on which instances of reflexivity
are absent. The dual transitive closure only preserves the elements of
L that cannot be obtained by closing its complement under transitivity.
As we will see, this set corresponds precisely to the set of theorems and
antitheorems of L.

Definition 5.1 (Theorem and antitheorem). Given a logic L, a formula
φ ∈ L is said to be a theorem of L if v |=L φ for all valuations v, and an
antitheorem of L if v 6|=L φ for all valuations v.

By extension, a set of formulas Γ is said to be a theorem if for all v
and all γ ∈ Γ , it holds that v |=L γ. It is said to be an antitheorem if
for all v there is γ ∈ Γ such that v 6|=L γ.

The notions of theorem and antitheorem can be formally defined in
several ways. Some of these definitions are provided in the next fact.
We will find these equivalent formulations useful later.

Fact 5.2. Let L be a logic. The following are equivalent:

1. Γ is an antitheorem of L;
2. |=L Γ ⇒ φ for all φ ∈ L;
3. |=L Γ ⇒ p for some p /∈ At(Γ ).

12 In this context we take a logic L to be trivial if φ ⇒ ψ ∈ L for every φ,ψ.
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Proof. The only non-trivial step is the one from 3 to 1. So, assume that
Γ is not an antitheorem. It follows that there is a v such that v |=L γ
for all γ ∈ Γ . Let p /∈ At(Γ ) and assume that v′ is exactly like v except
that if v |=L p, v′ 6|=L p. Then v |=L γ for all γ ∈ Γ since p /∈ At(Γ ) and
hence 6|=L Γ ⇒ p for all p /∈ At(Γ ). ⊣

By the similar proof, we obtain:

Fact 5.3. Let L be a logic. The following are equivalent:

1. φ is a theorem of L;
2. |=L Γ ⇒ φ for all Γ ⊆ L;
3. |=L p ⇒ φ for some p /∈ At(φ).

Given these two facts, we will identify the set of theorems of a logic
with the set of all valid inferences of the form Γ ⇒ φ, where φ is a
theorem. Similarly, the set of antitheorems of a logic will be identified
with the set of inferences of the form Γ ⇒ φ, where Γ is an antitheorem.
For any logic L, we denote the set of its antitheorems and theorems,
understood in this broader sense, by L⋆. Specifically, we define

L⋆ := {Γ ⇒ φ : Γ ⇒ ψ ∈ L for all ψ or ∆ ⇒ φ ∈ L for all ∆}.

The next proposition thus expresses that for a given logic L, the
operator T d will select only the theorems and antitheorems of L.

Proposition 5.1. For any logic L, T d(L) = L⋆.

Proof. (⊆) Assume Γ ⇒ φ /∈ L⋆. Then 6|=L Γ ⇒ p and 6|=L p ⇒ φ for
all p /∈ At(Γ ∪ {φ}) by facts 5.2 and 5.3. Hence, there is p /∈ At(Γ ∪ {φ})
such that Γ ⇒ p ∈ L and p ⇒ φ ∈ L since At(Γ ∪ {φ}) finite, and thus
Γ ⇒ φ ∈ T (L). So, Γ ⇒ φ /∈ T (L) = T d(L), by Proposition 3.1.

(⊇) Assume Γ ⇒ φ ∈ L⋆. Then Γ is an antitheorem or φ is a
theorem. Assume the former. Then Γ ⇒ ψ ∈ L for all ψ ∈ L. Assume
further that Γ ⇒ χ ∈ T (L) for some χ for the sake of contradiction.
Consider the set X = T (L) − {Γ ⇒ ψ : ψ ∈ L}. Clearly L ⊆ X ⊂ T (L)
since Γ ⇒ ψ /∈ L for all ψ. Now, assume that for all Σ ⊆ L and
all ψ ∈ L, there is ∆ 6= ∅ such that Σ ⇒ δ ∈ X for all δ ∈ ∆ and
∆ ⇒ ψ ∈ X. The case is impossible for Σ = Γ or ∆ = Γ , and otherwise
Σ ⇒ δ ∈ T (L) for all δ ∈ ∆ and ∆ ⇒ ψ ∈ T (L). In such a case,
Σ ⇒ ψ ∈ T (L), and Σ ⇒ ψ ∈ X by definition of X, so X is closed
under transitivity. But T (L) is the least transitive superset of L, so this
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is impossible. Therefore, Γ ⇒ χ /∈ T (L) for all χ and in particular
Γ ⇒ φ /∈ T (L). So, Γ ⇒ φ ∈ T (L) = T d(L). The latter case can be
proved similarly. ⊣

Accordingly, the dual transitive closure will transform any non-trivial
set of valid inferences of L into a non-reflexive one by preserving only
the theorems and antitheorems of L.

The results from the previous section can now be reinterpreted in
light of this new fact. We showed that the dual transitive closure of the
intersection of SS and TT coincides with the set of TS-valid inferences.
Therefore, the set of TS-valid inference corresponds to the set of theorems
and antitheorems of SS ∩ TT, which is known to have none.

6. Lattice operations

We now further examine the interrelation between the sets of inferences
studied throughout this paper, specifically those closed under the tran-
sitive closure operator and its dual.

The relationships among the set of valid inferences of the logics ST,
SS, TT, and SS∩TT, defined over the Strong Kleene scheme, are typically
illustrated using a diamond-shaped Hasse diagram (Figure 4). In this
diagram, ST (or CL) is positioned at the top, SS ∩ TT at the bottom,
with SS and TT in between. While this diagram effectively illustrates the
inclusion relation holding between these logics, there is more to consider:
the inclusion order actually forms a lattice.13 In the case of the logics
defined over the Strong Kleene scheme, this fact is well-known. The lat-
tice of extensions of the Belnap-Dunn four-valued logic FDE  including
the logics CL, K3, LP, and KO  was studied by Rivieccio (2012) and
Přenosil (2023), and shown to form a complete lattice. In this structure,
CL is the least Tarskian logic extending both K3 and LP, K3 ∩ LP is the
greatest Tarskian logic extended by both K3 and LP, while K3 and LP

are incomparable. Together, these four logics constitute a sublattice of
the lattice of extensions of FDE. As we shall prove, this result holds
not only for logics based on the Strong Kleene scheme but generalizes to
all logics defined by the ss, tt, st, and ss ∩ tt standards over any BNM
scheme. For any two of these logics, the least Tarskian logic extended by

13 A lattice is a partially ordered structure A = 〈A,≤〉 such that for any pair of
elements x, y ∈ A, x, y have both an infimum (join) and a supremum (meet) in A.
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ST(= CL)

TTSS

SS ∩ TT

Figure 4. Inclusion order over ST, SS, TT and SS ∩ TT

both correspond to their intersection, while the greatest Tarskian logic
extending both is obtained by closing their union under transitivity. Per-
haps even more unexpectedly, this generalization still holds when each
of the ss, tt, st logics are defined over a different scheme.

We begin with the following observation, which establishes that for
any two Tarskian logics, the least Tarskian logic extending them corre-
sponds to their transitive closure.

Proposition 6.1. For L1 = Tar(L1) and L2 = Tar(L2),

T (L1 ∪ L2) = Tar(L1 ∪ L2).

Proof. If L1 and L2 satisfy Reflexivity, then L1 ∪L2 too. By definition,
T (L1∪L2) is a superset of L1∪L2, so it also satisfies Reflexivity. Turning
to Monotonicity, assume that Γ ⇒ φ ∈ L1 ∪ L2. Whether Γ ⇒ φ ∈ L1

or Γ ⇒ φ ∈ L2, in both cases Γ,Σ ⇒ φ ∈ L1 ∪ L2 ⊆ T (L1 ∪ L2).
For Structurality, the case is similar. If Γ ⇒ φ ∈ L1 ∪ L2, whether
Γ ⇒ φ ∈ L1 or Γ ⇒ φ ∈ L2, in both cases σ[Γ ] ⇒ σ[φ] ∈ L1 ∪ L2 ⊆
T (L1 ∪L2), for every substitution σ. Finally, T (L1 ∪L2) is the smallest
transitive superset of L1 ∪ L2 by definition and it satisfies Reflexivity,
Monotonicity and Structurality, so it is the smallest superset of L1 ∪ L2

satisfying Reflexivity, Monotonicity, Transitivity and Structurality. ⊣

Next, we establish that all the logics discussed thus far, except for
TS, are Tarskian.

Lemma 6.1. For all L ∈ {ST, SS,TT, SS ∩ TT}, Tar(L) = L.

Proof. The proofs for Reflexivity, Monotonicity and Structurality are
straightforward. We thus focus solely on Transitivity. We prove that
if there is ∆ 6= ∅, Γ ⇒ δ ∈ L for all δ ∈ ∆ and ∆ ⇒ φ ∈ L, then
Γ ⇒ φ ∈ L. We demonstrate first the case where L = SS, noting that the
case for TT is similar, while the case for ST is straightforward. Assume
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Γ ⇒ φ /∈ SS. Then there is v such that v(γ) = 1 for all γ ∈ Γ and
v(φ) 6= 1. Let ∆ 6= ∅. If for all δ ∈ ∆, v(δ) = 1, then v 6|=X

ss ∆ ⇒ φ. If for
some δ ∈ ∆, v(δ) 6= 1, then v 6|=X

ss Γ ⇒ δ for some δ ∈ ∆. In both cases
there is no ∆ 6= ∅ such that Γ ⇒ δ ∈ SS for all δ ∈ ∆ and ∆ ⇒ φ ∈ SS.
Turning to SS ∩ TT, if there is ∆ such that Γ ⇒ δ ∈ SS ∩ TT for all
δ ∈ ∆ and ∆ ⇒ φ ∈ SS ∩ TT, then Γ ⇒ δ is both in SS and TT for all
δ ∈ ∆, and similarly for ∆ ⇒ φ. But we just proved that SS = Tar(SS)
and TT = Tar(TT), so Γ ⇒ φ ∈ SS ∩ TT. ⊣

The join of two elements of the lattice will be defined as the Tarskian
closure of their union, while their meet will be defined as their intersec-
tion. Given the identity SS ∩ TT = Tar(SS ∩ TT), which we have just
proved, we could equally use the Tarskian closure of the intersection as
meet, emphasizing the duality of the operations.

We now show that these operations are well-suited to define the in-
clusion order, as expected in a lattice. The suitability of the intersection
for defining the inclusion order is straightforward, so we will focus on
the transitive closure of the union.

Lemma 6.2. For all X,Y ∈ {ST, SS,TT, SS ∩ TT}, X ⊆ Y if and only if
T (X ∪ Y) = Y.

Proof. (Left-to-right) Assume X ⊆ Y. By Lemma 6.1, T (Y) = Y, so
T (X ∪ Y) = Y.

(Right-to-left) Assume T (X ∪ Y) = Y and let Γ ⇒ φ ∈ X. Then
Γ ⇒ φ ∈ X ∪ Y ⊆ T (X ∪ Y) = Y. ⊣

We are now ready to prove that the sets of valid inferences of the
aforementioned logics form a lattice. First, we show that, together with
intersection and the binary operation of transitive closure of the union,
it constitutes an algebra. Then, we show that it is a lattice.

Fact 6.1. Let L := 〈{ST, SS,TT, SS ∩ TT},⊓,⊔〉, with ⊔ defined for all
X,Y ∈ L, by X ⊔ Y := T (X ∪ Y) and ⊓ by X ⊓ Y := X ∩ Y. Then L is a
lattice algebra.

Proof. To show that L is an algebra, it is enough to show that it is
closed under ⊓ and ⊔. The closure under ⊓ is straightforward to prove
since ⊓ = ∩. The closure under ⊔ follows from Theorem 4.4, and Lemmas
6.1 and 6.2.

In order to prove that L is in addition a lattice algebra, we must show
that ⊓ and ⊔ are commutative, idempotent, associative and satisfy the
absorbtion laws. The first three properties obviously hold for ⊓, since
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⊓ = ∩. As for ⊔, the first two properties are trivial to establish given
the commutativity and the idempotence of union. We focus on proving
associativity.

Since X ∪ Y ⊆ X ∪ Y ∪ Z and T is a closure operator, T (X ∪ Y) ⊆
T (X ∪ Y ∪ Z). But Z ⊆ T (X ∪ Y ∪ Z), so T (X ∪ Y) ∪ Z ⊆ T (X ∪ Y ∪ Z)
and hence T (T (X ∪ Y) ∪ Z)) ⊆ T (T (X ∪ Y ∪ Z)) = T (X ∪ Y ∪ Z). On
the other hand, Y ∪ Z ⊆ T (Y ∪ Z), so X ∪ Y ∪ Z ⊆ X ∪ T (Y ∪ Z) and
therefore T (X ∪ Y ∪ Z) ⊆ T (X ∪ T (Y ∪ Z)). Whence (X ⊔ Y) ⊔ Z =
T (T (X ∪ Y) ∪ Z) ⊆ T (X ∪ T (Y ∪ Z)) = X ⊔ (Y ⊔ Z). The right-to-left
inclusion is similar.

Turning to the absorption laws, since X = T (X) by Lemma 6.1, it
holds that X = T (X ∪ (X ∩ Y)), and thus X = X ⊔ (X ⊓ Y). Now,
X ⊆ T (X∪Y), so X = X∩ T (X∪Y), meaning that X = X⊓ (X⊔Y). ⊣

It is now easy to see that L := 〈{ST, SS,TT, SS∩TT},⊆〉 is a lattice
ordered by inclusion.

Corollary 6.1. L := 〈{ST, SS,TT, SS ∩ TT},⊆〉 is a lattice with infi-
mum inf{X,Y} = X ∩ Y and supremum sup{X,Y} = T (X ∪ Y).

Proof. The proof is straightforward, given the interdefinability of a
lattice order and a lattice algebra. ⊣

Importantly, L forms a sublattice of the closure system T = {L :
L = Tar(L)} ordered by ⊆. As a closure system, 〈T,⊆〉 is a complete
lattice of sets of inferences closed under the Tarskian properties.14 For
any two elements of T, their join is the least set of inferences satisfying
the Tarskian properties extending both, and their meet is the greatest
such set extended by both. Consequently, the fact that L is a sublattice
of T implies that ST (or CL) is the least set closed under the Tarskian
properties extending both SS and TT, while SS∩TT is the greatest such
set contained in both. Given our definition of a logic as the family of sets
of its valid inferences, it follows directly that ST is the least Tarskian logic
that extends both SS and TT, while SS∩TT is the greatest Tarskian logic
contained in both. More interestingly, this result holds independently of

14 A closure system C on a set A is a collection of subsets of P(A) such that
A ∈ C, and if B ⊆ C for B 6= ∅, then

⋂
B ∈ C. Every closure operator C naturally

generates a closure system C = {X ⊆ A : C(X) = X} and a partially ordered
set 〈C,⊆〉. This partially ordered set can be proved to be a complete lattice with
operations

∧
Fi =

⋂
Fi and

∨
Fi = C(

⋃
Fi) for any {Fi : i ∈ I} ⊆ C (see Font, 2016,

p. 37, Proposition 1.28).



20 Quentin Blomet and Bruno Da Ré

CL

PWKK3

K3 ∩ PWK

Figure 5. Lattice order over CL, K3, PWK and K3 ∩ PWK

a choice of BNM scheme for SS, TT and ST, as illustrated by Figure 5
for the valid inferences of the logics CL, K3, PWK, and K3 ∩ PWK.

Given the duality between the operations of transitive closure and
dual transitive closure, what should we expect from the structure that
arises from the dual transitive closure of the logics discussed here? It
turns out that the resulting structure forms a lattice isomorphic to the
one generated by the logics SS, TT, SS∩TT, and ST. Specifically, in view
of Proposition 5.1, the elements of this lattice are the sets of theorems
and antitheorems of these logics. Similar to the lattice of valid inferences,
the overall structure holds independently of a specific choice of scheme
for SS and TT and TS.

To prove our claim, we first establish how the different sets are or-
dered by inclusion.

Fact 6.2. Let SS,TT,TS be logics defined respectively by an ss, tt and
ts standard over a (possibly different) BNM scheme. Then

• TS⋆ ⊆ SS⋆,TT⋆;
• SS⋆ and TT⋆ are incomparable.

Proof. For the first inclusion, note that TS = ∅ ⊆ SS,TT. It then
follows that T d(TS) ⊆ T d(SS), T d(TT) since T d is an interior operator.
But T d(TS) = TS⋆, T d(SS) = SS⋆, and T d(TT) = TT⋆ by Proposition
5.1. Hence, TS⋆ ⊆ SS⋆,TT⋆.

As for the incomparability of SS⋆ and TT⋆, note on the one hand
that p ∧ ¬p ⇒ q is in SS for every BNM scheme, so p ∧ ¬p ⇒ ψ ∈ SS
for any ψ by Fact 5.2. Thus, p ∧ ¬p ⇒ ψ ∈ SS⋆. On the other hand,
note that p ∧ ¬p ⇒ q /∈ TT for any BNM scheme (see fn. 8), and hence
p ∧ ¬p ⇒ q /∈ TT⋆. Dually, it can be proved that p ⇒ q ∨ ¬q is in TT⋆,
but not in SS⋆. ⊣

We know from Proposition 5.1 that each of SS⋆, TT⋆ and TS⋆ are
open under dual transitivity. We show here that this is also the case of
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SS⋆ ∪ TT⋆, which corresponds to the set of antitheorems and theorems
of classical logic.15

Fact 6.3. T d(SS⋆ ∪ TT⋆) = SS⋆ ∪ TT⋆ = ST⋆ = CL⋆.

Proof. The left-to-right inclusion of the first identity is straightfor-
ward since T d is an interior operator. For the right-to-left direction,
note that T d(SS⋆) = T d(T d(SS)) = T d(SS) = SS⋆ ⊆ T d(SS⋆ ∪ TT⋆) and
T d(TT⋆) = T d(T d(TT)) = T d(TT) = TT⋆ ⊆ T d(SS⋆∪TT⋆) given Propo-
sition 5.1 and the fact that T d is an interior operator. So SS⋆ ∪ TT⋆ ⊆
T d(SS⋆ ∪TT⋆). Turning to the second identity, for the left-to-right inclu-
sion, we know from Theorem 4.3 that SS,TT ⊆ SS∪TT ⊂ ST. Therefore
T d(SS), T d(TT) ⊆ T d(ST) and hence SS⋆ ∪TT⋆ ⊆ ST⋆. For the right-to-
left direction, assume that Γ ⇒ φ ∈ ST⋆. If Γ is an antitheorem, then
for all X-valuations v, v(γ) 6= 1 for some γ ∈ Γ , so Γ ⇒ φ ∈ SS⋆. If φ is
a theorem, then for all X-valuations v, v(φ) ∈ {1, 1/2}, so Γ ⇒ φ ∈ TT⋆.
Thus, in both cases, Γ ⇒ φ ∈ SS⋆ ∪ TT⋆. The last identity is a direct
consequence of Theorem 4.1. ⊣

We then prove a lemma demonstrating the interdefinability of the
inclusion order and the dual transitive closure of intersection, following
a similar approach to the proof of Lemma 6.2. The interdefinability of
the inclusion order and union is straightforward to prove and is omitted.

Lemma 6.3. For any X⋆,Y⋆ ∈ {SS⋆,TT⋆,TS⋆, SS⋆ ∪ TT⋆}, X⋆ ⊆ Y⋆ if
and only if T d(X⋆ ∩ Y⋆) = X⋆.

Proof. (Left-to-right) Assume X⋆ ⊆ Y⋆. By Proposition 5.1 and Fact
6.3, X⋆ = T d(X) = T d(T d(X)) = T d(X⋆), so T d(X⋆ ∩ Y⋆) = X⋆.

(Right-to-left) Assume T d(X⋆ ∩ Y⋆) = X⋆ and let Γ ⇒ φ ∈ X⋆.
Then Γ ⇒ φ ∈ T d(X⋆ ∩ Y⋆) ⊆ X⋆ ∩ Y⋆ ⊆ Y⋆ since T d is an interior
operator. ⊣

With this lemma at hand, we can demonstrate the following:

Fact 6.4. Let L⋆ := 〈{SS⋆,TT⋆,TS⋆, SS⋆ ∪ TT⋆},⊓,⊔〉, with ⊓ defined
for all X⋆,Y⋆ ∈ L⋆ by X⋆⊓Y⋆ := T d(X⋆∩Y⋆) and ⊔ by X⋆⊔Y⋆ := X⋆∪Y⋆.
Then L⋆ is a lattice algebra.

15 For SS = K3 and TT = LP, this result was previously established by Blomet
and Égré (2024).
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SS⋆ ∪ TT⋆

TT⋆SS⋆

TS⋆

Figure 6. Inclusion order over SS⋆ ∪ TT⋆, SS⋆,TT⋆ and TS⋆

Proof. It follows from Proposition 5.1 that all the elements of L⋆ are
closed under T d. By Theorem 4.5, T d(SS ∩ TT) = TS, so T d(T d(SS ∩
TT)) = T d(TS). But T d(T d(SS ∩ TT)) = T d(SS ∩ TT) since T d is an
interior operator and T d(TS) = TS⋆ by Proposition 5.1. Thus, T d(SS⋆ ∩
TT⋆) = TS⋆. Any other pair is comparable by Fact 6.2, so the dual
transitive closure of their intersection corresponds to the least of the
two. Hence, the carrier set of L⋆ is closed under ⊓. Evidently, the
carrier set of L⋆ is also closed under ⊔ since ⊔ = ∪. L

⋆ is therefore an
algebra. The remainder of the proof is dual to Fact 6.1. ⊣

Corollary 6.2. L⋆ := 〈{TS⋆, SS⋆,TT⋆, SS⋆ ∪TT⋆},⊆〉 is a lattice with
inf{X⋆,Y⋆} = T d(X⋆ ∩ Y⋆) and sup{X⋆,Y⋆} = X⋆ ∪ Y⋆.

Dually to L, the structure L
⋆ is a sublattice of the interior system

Td = {L : L = T d(L)} ordered by ⊆. 〈Td,⊆〉 is a complete lattice of
sets of inferences open under dual transitivity.16 By Proposition 5.1, Td

can alternatively be viewed as a complete lattice of sets of theorems and
antitheorems. For any two elements of T, their join is the least set of
theorems and antitheorems extending both, and their meet is the greatest
set of theorems and antitheorems extended by both. In consequence,
the fact that L

⋆ is a sublattice of Td implies that CL⋆ is the least set of
theorems and antitheorems extending both SS⋆ and TT⋆, and SS ∩ TT
the greatest set of theorems and antitheorems extended by both.

Figure 6 represents the lattice of theorems and antitheorems of the
SS,TT, ST and TS logics. It is easy to see that it is isomorphic to the
lattice represented in Figure 4. By Fact 6.3, the top of the lattice, SS⋆ ∪

16 An interior system I on a set A is a collection of subsets of P(A) such that
∅ ∈ I, and if B ⊆ C for B 6= ∅, then

⋃
B ∈ I. Every interior operator I naturally

generates an interior system I = {X ⊆ A : I(X) = X} and a partially ordered
set 〈I,⊆〉. This partially ordered set can be proved to be a complete lattice with
operations

∨
Fi =

⋃
Fi and

∧
Fi = I(

⋂
Fi) for any {Fi : i ∈ I} ⊆ I (see Font, 2016,

p. 42).
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TT⋆, corresponds to the set of antitheorems and theorems of classical
logic. Conversely, the bottom of the lattice, TS⋆, aligns with the set of
antitheorems and theorems of SS ∩ TT. The duality of the transitive
closure operator and the dual transitive closure operator reverberates
on the meet and join of the respective lattices. In the lattice of valid
inferences, as we have seen, SS ∪ TT does not coincide with ST, the set
of classically valid inferences. Dually, in the lattice of antitheorems and
theorems, SS⋆ ∩ TT⋆ does not coincide with TS, the set of antitheorems
and theorems of SS ∩ TT, for (p ∧ ¬p) ⇒ (q ∨ ¬q) ∈ SS⋆ ∩ TT⋆. In both
cases, specific operations must be applied to obtain the desired set: for
the union, the transitive closure operator is used; for the intersection,
the dual transitive closure operator is applied.

7. Conclusion

In this paper, we presented several results concerning the relation be-
tween tt- and ss- logics and their corresponding st- and ts-logics over
three-valued BNM schemes.

On the one hand, we showed that SS ∪ TT ( ST = CL, for any
BNM scheme. We also introduced the transitive closure operator T
and we proved that T (SS ∪ TT) = ST (see Theorems 4.3 and 4.4). On
the other hand, we proved that SS ∩ TT ! TS, for any BNM scheme.
We introduced the dual transitive closure operator T d, and proved that
T d(SS ∩ TT) = TS (see Theorem 4.5).

We generalized and extended results from (Da Ré et al., 2024), high-
lighting notable relationships between ss- and tt-logics, concerning prop-
erties such as paraconsistency and paracompleteness.

We concluded with observations on the abstract relationships be-
tween the transitive closure and its dual. It was noted that, just as
the operator T closes a set of inferences under transitivity, its dual T d

eliminates reflexivity in all non-trivial cases, preserving only theorems
and antitheorems. Building on this, we demonstrated how the sets SS,
TT, CL, and SS ∩ TT form a lattice, with CL at the top, extending
both SS and TT, and SS ∩ TT at the bottom, extended by both. We
concluded the previous section by observing that the respective sets of
theorems and antitheorems of each of these logics notably followed the
same lattice structure.
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These operations can also be used to emphasize and illustrate some
relations between very well-known logics, such as the ones belonging to
the Strong Kleene scheme. For instance, the first lattice has K3 ∩LP (i.e.
the logic corresponding to S3, KO or RMfde) at the bottom and CL at
the top. This is so because RMfde is the greatest Tarskian logic extended
both by LP and by K3. In a symmetric fashion, the isomorphic lattice
obtained through the transitive dual operation shows that LP and K3

share neither theorems nor antitheorems, while together they contain all
the classical ones.

However, several open questions remain. All the results in this paper
are specific to BNM three-valued schemes. As shown by Da Ré et al.
(2024), other types of schemes  such as the Boolean Normal Truth Col-
lapsible and Falsity Collapsible ones  are also capable of yielding clas-
sical logic under an st standard. Yet, logics defined over these schemes
exhibit very different properties from those studied here. For example,
logics over Boolean Normal Collapsible schemes with a tt or ss standard
are coextensive with classical logic, and hence they are neither para-
consistent nor paracomplete. Furthermore, ts-logics over these schemes
are not necessarily empty. Additionally, the generalization of the results
in this article to multiple conclusions and metainferential logics (see,
e.g., Pailos and Da Ré, 2023, for details) remains to be addressed. We
are working on these questions and will address them in a subsequent
article. Lastly, as an anonymous reviewer suggested, the results of the
present article could be generalized by using nondeterministic semantics
(as defined by Avron and Lev, 2005). In a recent article, Kadlečiková
and Ferguson (2024) have introduced some non-deterministic expansions
of three-valued matrices preserving counterexamples. To our knowledge,
the techniques applied to build the so-called em-nmatrices can be applied
to any BNM scheme by preserving counterexample, and thus extending
the present results. However, a proof and a further exploration of this
must be left to future research.
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