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Intuitionistic Logic from a Metainferential Perspective

Abstract. This paper introduces a metainferential version of intuitionis-
tic logic. I work on the framework proposed by some logicians of Buenos
Aires, who defend that a logic should be defined in terms of inferences and
metainferences of growing complexity. Three logical systems are presented
and proved to be adequate from an intuitionistic point of view.
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1. Introduction

In a series of articles, Barrio, Pailos and Szmuc defended the idea that
a logic should not be identified with a set of logical laws, nor with a set
of inferences, but with a whole collection of metainferences of all levels
(see Barrio, Pailos and Szmuc, 2018, 2020; Barrio, Pailos and Toranzo
Calderón, 2021). Nowadays there is a blooming community discussing
this understanding of logical identity. It also plays a key role in a broader
project in philosophy of logic dubbed ‘The Buenos Aires Plan’ (BA-Plan)
in (Barrio, Pailos and Toranzo Calderón, 2021).

This metainferentialist view of logical consequence (from now on,
MVLC) stemmed from the debate on substructural solutions to semantic
paradoxes. The metainferential logic that Barrio and his colleagues en-
dorse is defined over ST , a non transitive logic that was proven adequate
in handling the paradoxes of Sorites (2012) and the Liar (2014) by Co-
breros, Egré, Ripley and van Rooji. The logic ST and its close relatives
are all based on the Strong Kleene algebra, and maybe for this reason
this philosophical approach has been largely remained model-theoretic:
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although having proof-theoretical presentations, it is fair to say that
the whole understanding of “the ST phenomenon” (Barrio, Pailos and
Szmuc, 2020) is, for the most part, strongly alethic.

This is why the logics one usually encounters in this literature are
classical logic (CL), the 3-valued Kleene logic K3 and the logic of the
paradox (LP). At the same time, one logic one never encounters in this
literature is intuitionistic logic (IL): and the reasons may be that, on the
one hand, it is not philosophically motivated by reflections on truth, and
on the other because it is a logic that is not an inhabitant of the Strong
Kleene realm.

Yet the MVLC is broader, and thus somewhat independent, from the
particular debate it stemmed from. Therefore, the purpose of this article
is to take MVLC and consider IL from its perspective. This will take us
to the presentation of various metainferential intuitionistic logics.

The paper is structured as follows. Section 2 will reconstruct the
MVLC and Section 3 will briefly expound what would mean an intu-
itionistic understanding of it. Then in Sections 4 and 5 three metainfer-
ential logics will be presented: ICω, MIL and MIL2. A final section
summarizes the conclusions.

2. Logics as metainferences

Up to the first third of the XX century, logicians used to see a logic (or a
logical system) as a set of formulas, the axioms and theorems of a certain
calculus. To compare two logics was to compare their axioms; to choose
between them was to choose which one had nicer, more intuitive or more
useful theorems, etc.

Then some limitative results and new developments tackled a change
of paradigm. The new perspective was not interested only in theorems
and axioms but also in the properties of the consequence relation (be-
tween premises and conclusion(s) of an argument, or axioms and theo-
rems of a theory). Decades forward, today we can fairly say that this is
the mainstream attitude towards the identity of a logic: where L is a lan-
guage, a logic is the relation between the premises and the conclusion(s)
of the arguments you can express with it.

In recent years, though, this picture has been challenged again. In
2012 and 2014, Cobreros, Egré, Ripley and van Rooji presented a very
nice solution to (some) semantic paradoxes. The trick is ST , a logic
defined over the Strong Kleene algebra that does not trivialize in the
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presence of a Liar sentence and allows for a straightforward result of
classical recapture. ST induces a failure of transitivity, to the effect that
you may have A ⊢ B and B ⊢ C but still A 0 C.

Then Barrio, Pailos and Szmuc addressed to them an unexpected
critique: they seemed to be at ease with dropping transitivity, but they
claimed that ST was not as conservative of CL as one would expect.
The reason is that it preserves all classical inferences, but looses a lot of
interesting classical metainferences.

What is a metainference? An inference whose relata are also infer-
ences. Take the above example of transitivity. CL is usually presented in
such a way that whenever A ⊢ B and B ⊢ C holds, it also holds A ⊢ C.
This claim has an obvious conditional structure:

If α holds, then β holds.

And therefore, it may be reconstructed in inferential terms α ⊢ β. Thus,
leading us to what is commonly known as Cut:

(A ⊢ B), (B ⊢ C) ⊢ (A ⊢ C)

If CL is nothing but this, say, ‘first-degree’, consequence relation,
then Cobreros and his colleagues are right and ST and CL are ‘the same’
logic. But Cut may be considered as a defining part of CL as well. Being
Cut a, say, ‘second-degree’ inference, all other second-degree inferences
should be taken into consideration when accounting for classical logic.

Yet again, if this is plausible, why stop there? We can definitely consider
consequence relations between [meta-inferences], and so on and so forth.
It can be easily seen how this procedure can be further reproduced,
giving us a whole hierarchy of inferences concerned with the logical
relations between objects of the lower level(s). (Barrio,
Pailos and Szmuc, 2018, p. 106) (with a slight change of terminology)

Barrio, Pailos, Szmuc and other collaborators will elaborate on this per-
spective in a series of articles, giving rise to the MVLC.

Let L be a formal language. The set of all possible arguments one
can express in this language will usually be ℘(L) × L. These arguments
will be called by the more technical name of inferences, or, even more
precise, meta0-inferences, that is, metainferences of level 0.1

1 I do not attribute any special difference to the use of ‘argument’ and ‘inference’,
but this is obviously inelegant. To the very least, ‘argument’ should be finite in length,
and maybe ‘inference’ has not this constraint. For a detail on the discussion I am
avoiding, see (Pailos and Da Ré, 2023, the beginning of Chapter 2).
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Definition 2.1. The inferences (metainferences of level 0 ) of the lan-
guage L are the elements of the set ⊢0 = ℘(L) × L.

Metainferences of all subsequent levels pile up on top of this.

Definition 2.2. The metan+1-inferences (metainferences of level n+1)
of the language L are the elements of the set ⊢n+1 = ℘(⊢n)× ⊢n.

As this definitions shows, a meta...meta-inference is a metainference
of level n, where n is the number of times you say ‘meta’. It follows that
n = 0 is the level of inferences (zero times ‘meta’) and, for completion,
we will say that n = −1 is the level of formulas.

Note that we are using the symbol ⊢ to describe all the metainferences
of a certain level. In other words, we have arguments, but not yet valid
arguments (valid metainferences). For that purpose it is necessary to
introduce the concept of standard (of validity) (see, e.g., Pailos, 2019;
Pailos and Da Ré, 2023). The definition proposed is broad and seemingly
uninformative, but the examples to follow will show its interest:

Definition 2.3. A (validity) standard εn is a property of objects of
metainferential level n, where −1 ¬ n < ω.

With a language and a standard of a certain level you can define a
metainferential logic of that level. The logic is the set of metainferences
of that level that conform to the standard.

Definition 2.4. Let ε be a standard of level n + 1. The metan+1-
inferential logic that conforms to the standard ε is the set

⊢n+1
ε = {x | ε(x)} ⊆ ⊢n+1

Piling things up we obtain a hierarchy of metainferential logics:

Definition 2.5. Let ε = 〈εn〉n, where −1 ¬ n < ω, be a series of stan-
dards. A hierarchy of metainferential logics is a series of metainferential
logics 〈⊢n

εn〉n. We call the union of all metainferences of every level in

this series the complete metainferential logic ⊢ω
ε .2

At this level of abstraction the choice of the standard for every level is
completely free. Yet few metainferential logics are defined in a full liberal
way. Most of the metainferential logics studied in the literature have

2 Here, as in other parts of this article, 〈A[n]〉n ({A[n]}n) is a shorthand notation
for the series (set) of elements A distinguished by an index n.
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standards defined recursively. In fact, the customary approach is to form
a standard εn+1 in terms of standards σn and δn in the following way:

• if all premises of a metan+1-inference conforms to the standard σn,
then the conclusion conforms to the standard δn

When this is the case, we can write εn+1 = σn/δn. In the special case
in which εn+1 = εn/εn for every −1 ¬ n < ω, we call the standard of
the complete metainferential logic ε̂.3

Summing up, we may restate the MVLC as the conjunction of the
following three propositions:

1. Logic is a theory about (at least)4 validity.
2. What can be valid are propositions, inferences (i.e., inferences be-

tween propositions), metainferences (i.e., inferences between infer-
ences) and, in general, metan+1-inferences (i.e., inferences between
metan-inferences).

3. To define a logic one has to be able to:
(a) Provide an interpreted language in which propositions, inferences

and metan-inferences (0 ¬ n < ω) can be expressed
(b) Provide some standard(s) for the validity of each of these ele-

ments.

I call this an “abstract” presentation of MVLC because it is independent
of STω  the logic of Barrio and colleagues, the nontransitive solutions
to the semantic paradoxes, the Strong Kleene matrixes and even the
algebraic understanding of semantics. Therefore, it may cover also other
ways of understanding logics and semantics, such as the constructive
(intuitionistic) way. This is what the following sections of this essay will
be devoted to.

3. Intuitionism and logic

In this section, I will sketch the setup that will be used, in the subsequent
sections, to define various kinds of metainferential intuitionistic logics.
Our main goal is to identify and characterize what an intuitionistic stan-
dard of validity may be.

3 I borrow the notation from (Ripley, 2021), although using it in a slightly dif-
ferent way.

4 As an anonymous referee pointed out, some supporters of the BA-Plan extend
this definition to include also antivalidities and contingencies (see, e.g., Barrio and
Pailos, 2022).
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Let us begin with the metainferential level −1. This level is con-
stituted by formulas, and formulas are meant to represent propositions.
Propositions, in its turn, can be true or false. Intuitionists agree with this
doctrine, but understand truth as availability of a proof and falsity as
the impossible availability of a proof. Propositions can also be combined
to produce new propositions of growing complexity. This is done with
logical connectives. Intuitionists also agree with this idea, as far as the
meaning of these connectives sticks to the Brouwer-Heyting-Kolmogorov
interpretation (BHK):

1. A proof of A ∧B consists in a proof of A and a proof of B;
2. A proof of A ∨B consists in a proof of A or a proof of B;
3. A proof of A → B consists in a procedure to obtain a proof of B

from a proof of A;
4. Nothing is a proof of ⊥.5

These definitions already justify the definition: ¬A = A → ⊥. A pro-
cedure to obtain a proof of ⊥ out of a proof of A can exist if, and only
if, there can be no proof of A. Therefore, A → ⊥ is true (has a proof)
exactly when A is false (there is a proof that a proof of A is impossible).
Incidentally, it also justifies that one can always safely claim that there
is a procedure to obtain a proof of A out of a proof of ⊥, because there
is none of the latter. This justifies the acceptance of ex falso quodlibet
among the intuitionists.6

In the classical setting, a proposition is valid when it is uncondition-
ally true. Intuitionists will also agree to this doctrine: a proposition is
valid when it has an unconditional proof.

What is a proof in this context? We do not need to delve that deep
into the philosophy of intuitionism for the present purposes. Let us just
say that it is something that justifies or backs up a certain piece of
knowledge. We claim that at least mathematical objects are the kind of
things that can be a proof. And among mathematical objects, formal
derivations. (This will have a decisive importance in the next sections.)

5 To be precise, I should say ‘canonical’ proof. But let me be a bit floppy with
the terminology here, for the sake of readability.

6 Yet this is not uncontroversial. Johansson’s minimal logic was originally mo-
tivated precisely as a resistance to accept this claim. See (van Dalen, 2004) for a
discussion. Incidentally, the notion of “impossibility” involved in these explications
of intuitionistic negation is by no means inoquous either. Yet there is no place here
to account for this problem.
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Let us now move to the level of inferences. In the classical setting,
inferential validity amounts to preservation of truth: if all premises are
true, then this ensures that the conclusion is also true. The intuitionist
can also agree with this understanding of inferential validity, as long
as the ‘preservation’ involved is understood constructively. And this
brings us back to the sense in which we already understood conditional
sentences: an inference Γ ⊢ A should be valid if there is a procedure to
obtain a proof of A out of proofs of Γ .

As metan-inferences are just inferences between inferences, then these
should be conditional propositions too, and the previous observation
generalizes. This gives us the general definition of what metan-inferential
validity (0 ¬ n < ω) should be, from an intuitionistic perspective:

• A metan-inference Γ ⊢n A (0 ¬ n < ω) is valid when it has a proof,
and a proof of a metan-inference Γ ⊢n A is a proof of A out of proofs
of Γ .

These are the general concepts that will shape, and in a certain extent
justify, the systems to be presented in the next sections.

4. Metainferential Intuitionistic Logic I

In this section, I will sketch a formal presentation of the complete metain-
ferential logic of standard ÎL; that is, the metainferential logic defined
as intuitionistic validity all the way up.

Definition 4.1. The propositional language L1 has signature: ∧, ∨, →,
⊥. Well-formed formulas are defined as usual.

We use lowercase Latin letters as variables of atomic propositions,
Latin uppercase letters as variables of formulas and uppercase Greek
letters as variables of multisets of formulas.

Convention 4.1. The following simplifications of writing are adopted:

1. ¬A is an abbreviation for A → ⊥.
2. After the dropping of the outermost pair of parenthesis in a formula,

one of the leftmost (rightmost) opening (closing) parenthesis may be
dropped and its corresponding closing (opening) parenthesis replaced
by a dot.

Example: ‘(p → q) → r’ becomes ‘p → q. → r’.
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Consider Ni, a Natural Deduction calculus for IL introduced in Troel-
stra and Schwichtenberg (2000) (Figure 1). We want to define the fol-
lowing standard of level −1 based on it:

Definition 4.2. The standard IL is the following property of formulas
A ∈ L1: A has a categorical derivation in the calculus Ni.

Definition 4.3. The meta−1inferential logic ⊢−1
MIL is the set of formulas

that conforms to the standard IL.

[A]n

...
B → I (n)

A → B

A A → B
→ E

B

A B
∧ I

A ∧B
A1 ∧A2

∧i E
Ai

Ai
∨i I

A1 ∨A2 A ∨B

[A]m

...
C

[B]n

...
C

∨ E (m, n)
C

⊥
⊥ E

A

i ∈ {1, 2}

Figure 1. Rules for Ni. A derivation is hypothetical if it has open assumptions
and categorical if not.

Here is something we already know about this logic (see Troelstra
and Schwichtenberg, 2000, th. 6.1.10, and references therein):

Fact 4.1. The Strong Normalization Theorem holds for Ni.

The Strong Normalization Theorem states that every derivation in
Ni can be brought to a single normal form through a recursive proce-
dure. And categorical derivations in normal form exhibit one important
property:

Last Rule Property: In a normal categorical derivation the last rule ap-
plied is always the introduction rule for the main connective of the
formula in the conclusion.
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This means that:

1. If A ∧ B has a normal categorical derivation (n.c.d.) then A has a
n.c.d. and B has a n.c.d.;

2. If A ∨B has a n.c.d. then A has a n.c.d. or B has a n.c.d.;
3. If A → B has a n.c.d. then a n.c.d. of A can be transformed into a

n.c.d. of B;
4. ⊥ does not have a n.c.d.

As it is easy to see, this is a proper instantiation of the BHK-interpre-
tation, with the concept of ‘n.c.d.’ as a precise explication of the notion of
‘proof’. Therefore, it is an intuitionistically acceptable interpretation of
the connectives. It also confirms the opinion of some authors (Gentzen,
1935; Martin-Löf, 1987) who claim that the introduction rules of a Nat-
ural Deduction calculus provide the meaning of the logical connectives.
Moreover, a n.c.d. of A represents an unconditional proof of A, for it has
no open assumptions; thus this is an acceptable account of validity for
the level −1, in the sense described in the previous section.

The definition of the standard IL/IL is now straightforward.

Definition 4.4. The standard IL/IL is the following property of in-
ferences 〈Γ,A〉 ∈⊢0: a categorical derivation of A can be constructed
in the calculus Ni, on the assumption that all formulas G ∈ Γ have a
categorical derivation in the calculus Ni.

Note that this is a more precise way of paraphrasing the following
conditional claim, understood intuitionistically: “if all formulas in Γ
have a n.c.d., then A has a n.c.d.”. It is also equivalent to the usual
definition of derivability, which corresponds to what this literature calls
the “absolutely global” notion of validity (see Teijeiro, 2021, for more on
this).7

Definition 4.5. The meta0-inferential logic ⊢0
IL is the set of inferences

that conforms to the standard IL/IL.

To see why this fits the definition of the standard IL/IL, consider
the following hypothetical Ni derivation:

A B
∧I

A ∧B
∨I

(A ∧B) ∨ C
7 Thanks to an anonymous referee for pointing out the need to make this con-

nection explicit.
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As this derivation is hypothetical, its conclusion is not an intuitionis-
tic validity. But assume that A and B are intuitionistic validities; then,
there are two categorical derivations, D1 and D2, of A and B respectively.
Piling up these elements together gives us the derivation:

D1

A

D2

B
∧I

A ∧B
∨I

(A ∧B) ∨ C

Which is, in itself, categorical, because all its assumptions are the
assumptions in D1 and D2 and we already know that they are all closed.
By the fact 4.1, this new derivation is normalizable, and its corresponding
n.c.d. is the expected proof of its conclusion.

This example also illustrates that, as categorical derivations in Ni
are normalizable, it is enough that we guarantee that the conclusion has
a categorical derivation if the premises have. We can abstract from the
form of the actual derivations and consider them only from the view
point of their open assumptions and their conclusion. In other words,
we can take

A B
∧I

A ∧B
∨I

(A ∧B) ∨ C

To be a particular instance of a more general relation between the
premises A,B and the conclusion (A ∧ B) ∨ C. This motivates the in-
troduction of sequents.8

Definition 4.6. A sequent is an expression {An}n ⇒ B (0 ¬ n < ω).

Note that, according to this definition, sequents can be empty on
their left-hand side (n = 0) but cannot have more nor less than one
formula on the right.

We want sequents to represent types (sets or species; see footnote 10)
of Ni derivations, in accordance with the thought that a sequent calcu-
lus can be seen as a metacalculus for natural deduction (Troelstra and

8 To be sure, there is at least room for disagreeing with the reading of the sequents
that I am proposing here. In (Paoli, 2007), for instance, this reading is explicitly
rejected in favor of one that distinguishes between the ground and assumptions of an
inference (see Section 2.3 of that article). Yet, as the technicalities of my proposal
are sound (and in fact you will have a correspondence between derivable sequents and
derivable rules of Ni), I think my reading is, at least, well-motivated (albeit a little
naïve).
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Schwichtenberg, 2000, p. 28). The rules for the sequent calculus IC0

(Intuitionistic Calculus of level 0) can be found in Figure 2.

An important fact about this calculus is the following:

Fact 4.2. Every sequent that can be derived in IC0 can be derived

without using the rule Cut.

Proof. In (Troelstra and Schwichtenberg, 2000, th. 4.1.5) it is detailed
a constructive proof of Cut-elimination for the calculus G3i. What I am
going to show is that every rule of G3i that is not a primitive rule of IC0

is nonetheless derivable in it (without using Cut). From this follows that
the proof of Troelstra and Schwichtenberg can be adapted to my calculus.
The rules of G3i can be found in (Troelstra and Schwichtenberg, 2000,
pp. 77–78) and I will not reproduce them here.

1. The rule G3i-L⊥ is derivable in IC0:

Id
Γ,⊥ ⇒ ⊥

efsq
Γ,⊥ ⇒ A

2. The rule G3i-L∧ is derivable in IC0:

Γ,A,B ⇒ C
∧ L

Γ,A ∧B,B ⇒ C
∧ L

Γ,A ∧B,A ∧B ⇒ C
C

Γ,A ∧B ⇒ C

3. For the rules G3i-R∧, G3i-L∨ and G3i-L ⊃ a successive applica-
tion of the rule C eliminates all the repetitions of formulas in the context
of the final sequent.

Given that any of these proofs uses the Cut rule, the proof for G3i
works also for my calculus.

Corollary 4.2.1. The sequent ⇒ ⊥ cannot be derived in IC0.

The natural step forward is to define the standard (IL/IL)/(IL/IL),
the calculus of first-degree metasequents IC1 (see Figure 3) and the meta-
inferential logic ⊢1

ÎL
. After all the previous explications these definitions

should be self-explanatory.

Definition 4.7. A first-degree metasequent is an expression {αn}n ⇒ β,
where 0 ¬ n < ω and {αn, β}n are either all formulas or all sequents.
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Identity Group

Id
Γ,A ⇒ A

Γ ⇒ A ∆,A ⇒ B
Cut

Γ,∆ ⇒ B

Structural Group

Γ,A,A ⇒ B
C

Γ,A ⇒ B

Operational Group

Γ,Ai ⇒ C
∧L

Γ,A1 ∧A2 ⇒ C

Γ1 ⇒ A Γ2 ⇒ B
∧R

Γ1,2 ⇒ A ∧B
Γ1, A ⇒ C Γ2, B ⇒ C

∨L
Γ1,2, A ∨B ⇒ C

Γ ⇒ Ai
∨R

Γ ⇒ A1 ∨A2

Γ1 ⇒ A Γ2, B ⇒ C
→L

Γ1,2, A → B ⇒ C

Γ,A ⇒ B
→R

Γ ⇒ A → B

Γ ⇒ ⊥ efsq
Γ ⇒ A

i ∈ {1, 2}

Figure 2. Rules for IC0

Definition 4.8. A rule

Γ1 ⇒ A1 . . . Γn ⇒ An

∆ ⇒ B

Is derivable in the calculus IC0 iff there is a valid derivation in IC0 of
the sequent ∆ ⇒ B from some of the sequents {Γn ⇒ An}n (taken
as axioms).

Definition 4.9. The standard (IL/IL)/(IL/IL) is the following prop-
erty of metainferences 〈{〈Γn, An〉}n, 〈∆,B〉〉 ∈ ⊢1: the rule

Γ1 ⇒ A1 . . . Γn ⇒ An

∆ ⇒ B

is derivable in IC0.

Definition 4.10. The meta1-inferential logic ⊢1
MIL is the set of metain-

ferences that conforms to the standard (IL/IL)/(IL/IL).
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Identity Group

Id
Γ, α ⇒ α

Γ1 ⇒ α Γ2, α ⇒ β
Cut

Γ1, Γ2 ⇒ β

Structural Group

Γ, α, α ⇒ β
C

Γ, α ⇒ β

Operational Group
[The same as IC0]

Metainferential Group

[Γ ⇒ α]n

...
∆ ⇒ β

⇒ I (n)
(Γ ⇒ α) ⇒ (∆ ⇒ β)

Γ ⇒ α (Γ ⇒ α) ⇒ (∆ ⇒ β)
⇒ E

∆ ⇒ β

Figure 3. Rules for IC1. A,B, C are formulas and α, β are formulas or sequents.

To see why this calculus formalizes the standard (IL/IL)/(IL/IL),
let’s look at the example in Figure 4.

The first-degree metasequent at the conclusion of this derivation is:

( ⇒ A ∨ ¬A) ⇒ (¬¬A ⇒ A)

We claim that this is a proof of type (IL/IL)/(IL/IL), which means
that

( ⇒ A ∨ ¬A)︸ ︷︷ ︸
(IL/IL)

⇒ (¬¬A ⇒ A)︸ ︷︷ ︸
(IL/IL)

Given our previous analysis on sequents and derivable rules of Ni, it
is clear that the intended lecture of this first-degree metasequent should
then be as follows:
• If A ∨ ¬A is taken as an axiom9 of Ni, then the rule ¬¬A

A
can be

shown to be derivable in Ni.

9 In the precise sense that this word has in Natural Deduction, that is, a formula
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.

[⇒ A ∨ ¬A]1

Id
A ⇒ A

Id
A ⇒ A

Id
⊥ ⇒ ⊥

⊃ L
¬A, A ⇒ ⊥

⊃ R
¬A ⇒ ¬A

Id
⊥ ⇒ ⊥

⊥ R
⊥ ⇒ A

⊃ L
¬A, ¬¬A ⇒ A

∨L
A ∨ ¬A, ¬¬A ⇒ A

Cut
¬¬A ⇒ A

⇒ I (1)
( ⇒ A ∨ ¬A) ⇒ (¬¬A ⇒ A)

Figure 4. A proof that the Excluded Middle (as an axiom) entails Double
Negation Elimination (as an inference).

And this is a well-known true fact about IL:

A ∨ ¬A [A]1

[¬A]2 ¬¬A
→E

⊥
⊥E

A
∨E (1,2)

A

In fact, to say that a sequent

{An}n ⊢ A

is derivable in IC0, amounts to say that the rule

A1 . . . An

A

Is derivable in Ni. See Lemma 4.2.

Another thing we can learn from the derivation in Figure 4 is that
Cut is no longer eliminable. But we have a reasonable way to manage
its use. The proof of the following theorem follows the same lines as the
proof of Fact 4.2 (see Troelstra and Schwichtenberg, 2000, Section 4.5.1):

Theorem 4.1. If a metasequent is derivable in IC1, then it has a deriva-

tion in which the Cut rule is used at most after a supposition.

It is evident that the derivation in Figure 4 is normalized in this
sense. On the other hand, the metainferential part of the calculus is
weakly normalizable, as the following theorem states:

declared to be derivable from no open assumptions; or, equivalently, as the conclusion
of a rule that has no premises. Thanks to an anonymous referee for the need to clarify
this point.
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Theorem 4.2. If a metasequent is derivable, then it has a derivation in

which there are no detours of ⇒.

Proof. Applying upwards the transformation from:

[Γ ⇒ A]n

D1

∆ ⇒ B
⇒ I (n)

(Γ ⇒ A) ⇒ (∆ ⇒ B)

D2

Γ ⇒ A
⇒ E

∆ ⇒ B

To:

D2

Γ ⇒ A
D1

∆ ⇒ B

Effectively eliminates all detours. An induction completes the proof.

The theorem states that a derivation with detours can be depurated
from them, but the normal derivation we end up with may not be unique
(therefore it is a ‘weak’, and not ‘strong’ normalization). But this is to
be expected, since sequent calculi such as IC0 are not normalizable in
general. For instance, the (meta)sequent A ∧ B ⇒ A ∨ B. Has four
possible derivations:

Id
A ⇒ A

∧ L
A ∧B ⇒ A

∨ R
A ∧B ⇒ A ∨B

Id
B ⇒ B

∧ L
A ∧B ⇒ B

∨ R
A ∧B ⇒ A ∨B

Id
A ⇒ A

∨ R
A ⇒ A ∨B

∧ L
A ∧B ⇒ A ∨B

Id
B ⇒ B

∨ R
B ⇒ A ∨B

∧ L
A ∧B ⇒ A ∨B

And none of them seems to be more ‘normal’ than the others.

We are now in a position to define the metainferential hierarchy ⊢n

ÎL
.

1. The sub-inferential logic ⊢−1

ÎL
of level −1 has standard IL: it dis-

tinguishes all and only the formulas of L1 that are intuitionistically valid
according to the Natural Deduction calculus Ni.
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2. The inferential logic ⊢0

ÎL
of level 0 has standard IL/IL: it distin-

guishes all and only the inferences that are intuitionistically valid, that
is, that correspond to derivable rules of Ni.

3. The metainferential logic ⊢1

ÎL
of level 1 has standard

(IL/IL)/(IL/IL)

It distinguishes all and only the rules that are derivable in a calculus for
the derivable rules of Ni.

...
n+1. The meta...metainferential logic ⊢n+1

ÎL
of level n+1 distinguishes

all and only the rules that are derivable in a calculus of the derivable
rules of a calculus of the derivable rules of... of a calculus of the derivable
rules of Ni.

And in the end we have the sum of all stages:10

ω. The omega-inferential logic ⊢ω

ÎL
is the sum of every metainference

distinguished in every ⊢n

ÎL
.

A calculus for ⊢ω

ÎL
contains a calculus for every logic in the hierarchy.

And this calculus is easily obtained as a generalization of the rules of
IC1. I call this calculus ICω (Figure 5).11 It obtains by liberalization
from the previous concept of first-degree metasequents to metasequents
of every degree (of nesting).

Definition 4.11. A metasequent is an expression {αn}n ⇒ β, where
0 ¬ n < ω and {αn, β}n are formulas or metasequents. The degree of a
metasequent is defined as follows:

1. Sequents have degree 0.
2. If {αn}n ⇒ β is a metasequent in which the higher degree of any

of the {αn, β}n is m, then its degree is m+ 1.

Definition 4.12. The calculus ICn (0 ¬ n < ω) corresponds to the
fragment of ICω limited to metasequents of degree n or lower.

10 If we are strict intuitionists, then ⊢ω

ÎL
is not a set but a species, a property or

incomplete collection of well-determined things. This metaphysical observation has
little significance in this context. For the difference between sets and species, see
(Posy, 2020, Section 2.2.2).

11 A note on the figure: When I say that some rules of IC0 are also rules of ICω,
it is meant to imply that the convention on the type of the variables is preserved from
one figure to the other. The same holds for the calculus MIL (Figure 7).
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Identity Group

Id
Γ, α ⇒ α

Γ1 ⇒ α Γ2, α ⇒ β
Cut

Γ1, Γ2 ⇒ β

Structural Group

Γ, α, α ⇒ β
C

Γ, α ⇒ β

Operational Group
The same as in IC0.

Metainferential Group

[Γ1 ⇒ α1, . . . , Γk ⇒ αk]n

...
∆ ⇒ β

⇒ I (n)
(Γ1 ⇒ α1), . . . , (Γk ⇒ αk) ⇒ (∆ ⇒ β)

Γ ⇒ α Π, (Γ ⇒ α) ⇒ (∆ ⇒ β)
⇒ E

Π, ∆ ⇒ β

Figure 5. Rules for ICω. A,B, C are formulas and α, β are formulas or metase-
quents.

The calculus ICω not only allows to recover all the metainferences of
a certain level, but it has also some degree of trans-inferentiality. What
I mean by this is that it admits the expression of inferences in which the
relata are not of the same inferential level.12 Take as an example the
derivation in Figure 6. This derivation expresses the following fact: if
the inference A ∨B ⊢0

IL A ∧B is valid, then the meta-inference

(A → B ⊢0
IL B) ⊢1

IL (A → B ⊢0
IL A)

12 In the literature these are called mixed metainferences (Ferguson and Ramírez-
Cámara, 2021; Pailos and Da Ré, 2023; Scambler, 2020). They were foreseen by Barrio,
Pailos and Szmuc in one of their very first works on metainferential logics:

In this vein, we will also not consider mixed metainferences, i.e., metainferences
with premises belonging to different inferential levels. Although there is nothing
conceptually wrong about such metainferences, yet again, working with them will
make the different proofs unnecessary complicated.

(Barrio, Pailos and Szmuc, 2020, note 10)
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Is valid. This true proposition about metainferences does not match
with the form of a metainference, according to Definition 2.2.13

[A → B ⇒ B]2
B ⇒ B

B ⇒ A ∨ B

A → B ⇒ A ∨ B [A ∨ B ⇒ A ∧ B]1

A → B ⇒ A ∧ B

A, B ⇒ A

A ∧ B ⇒ A

A → B ⇒ A
(2)

A → B ⇒ B. ⇒ . A → B ⇒ A
(1)

A ∨ B ⇒ A ∧ B . ⇒ .(A → B ⇒ B) ⇒ ( A → B ⇒ A)

Figure 6. A transinferential proof. (Labels were omitted for a matter of space.)

One major result about ICω is the one to be proved next (the proof
is essentially the same as before):

Lemma 4.1. The Theorems 4.1 and 4.2 hold for ICω.

Theorem 4.3. Let {αn, β}n be a set of formulas or metasequents of

degree m. The metasequent

α1, . . . , αn ⇒ β

Is derivable in ICω if and only if the rule

α1 . . . αn

β

Is derivable in ICm.

Proof. The “if” direction is immediate. The other one has some sub-
tleties. What we are going to show is that, given the Lemma 4.1 and
what it means to be a categorical derivation, it follows that the derivation
has a degree lower than m + 1, even if it is not normalized. And from
this a proof of the theorem will follow.

“If”: Immediate by an application of ⇒ I.

13 Although a case can be made to associate it with

(A ∨ B ⊢0
IL A ∧ B), (A → B ⊢0

IL B) ⊢1
IL ( A → B ⊢0

IL A)

This is only one of the various derivable metasequents that fall away from Defini-
tion 2.2, but a more incontrovertible example would have produced a bigger (and less
handy) tree.



Intuitionistic logic from a metainferential perspective 19

“Only if”: Let α1, . . . , αn ⇒ β be the metasequent described in the
header of the theorem. Assume there is a categorical derivation of it in
ICω. We are going to show that none of the sequents in this derivation
has a degree greater than m.

If a derivation contains a metasequent of degree greater than its con-
clusion, then this metasequent is eliminated in the course of the deriva-
tion. Call these metasequents residues. As there are only two rules of
elimination in ICω, we have to show that none of them may have been
used to eliminate the residues.

1. The residue is not eliminated by an application of Cut. By
Lemma 4.1 instances of Cut can be ‘lifted’ up to the point where one of
its premises is an assumption. As the derivation is categorical, all the
assumptions have to be discharged. As the residue is the middle term
(for it is being eliminated), it appears in the two premises of the Cut. But
then it appears in a discharged assumption, which means that it appears
again in a lower part of the derivation. And this is in contradiction with
it being the residue.

2. The residue is not eliminated by an application of ⇒ E. Assume
the residue is the minor premise in an application of the rule ⇒ E. For
the same reason as in the case of Cut, neither of these premises can be
a discharged assumption. This means that the residue has a derivation.

As the major premise in the application of ⇒ E cannot be a dis-
charged assumption either, it must have a derivation too. There is a
node in that derivation that is the first in which the residue appears in
the left-hand side of a metasequent. Call this node critical point. Now
we have two possibilities to consider:

(a) The critical point is an application of Id. The residue cannot
appear in the right-hand side of the critical point, because in that case
the application of ⇒ E below would not eliminate it. Therefore, it has
to be part of the context. Then the following transformation:

D1

ρ

Id
Γ, ρ ⇒ θ

D2

Γ ′, ρ ⇒ θ′

⇒ E
Γ ′ ⇒ θ′

 

Id
Γ ⇒ θ

D2

Γ ′ ⇒ θ′

Eliminates the residue from the derivation.

(b) The critical point is an application of ⇒ I. Given that the oper-
ational rules cannot be applied to metasequents, we can transform the
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derivation in one in which the application of ⇒ E that eliminates the
residue occurs just after the critical point. This produces a detour, and
by Lemma 4.1 this detour is eliminable. But this would deliver a deriva-
tion in which the residue is not eliminated, which is in contradiction with
it being the residue.

We have concluded that the residue cannot be eliminated from the
derivation. But then the residue does not exist.

Now we have shown that the metasequent α1, . . . , αn ⇒ β can be
derived using only metasequents of degree m or lower. From this and
Lemma 4.1 it follows that the rule

α1 . . . αn

β

is derivable.

This theorem is our adequacy result. The semantical content of ⊢ω

ÎL
is given by Ni and its derivable rules. The theorem proves that the
calculus ICω is sound with this interpretation, and moreover that it is
(at least) complete. And it is also able to express truths about the
metainferences of ⊢ω

ÎL
, as illustrated by the example 6. This is a feature

that would be interesting to exploit further. The next section is devoted
to this task, but first I want to comment one more aspect of ICω.

Just before the introduction of MVLC, when the discussion still grav-
itated around ST , a great deal was given to the fact that despite being
non-transitive, this logic was still very close to LP. And the reason was
that certain result of recapture was available. In particular, in (Barrio,
Rosenblatt and Tajer, 2015) it is proved that Γ ⊢ST ∆ is derivable just
in case

∧
(Γ ) →

∨
(∆) is an LP-validity. This was received by some

to mean that ST is just ‘LP in lamb’s clothes’. But later on Ripley
made the argument that, in fact, when working with metainferential
logics this is something to be expected, under certain conditions. The
fact that a metainferential logic validates (a generalized form) of this
result is related to a property that he calls downward coherence (Ripley,
2021, Definition 15).14 Now the logic ⊢ω

ÎL
we just defined comes from

a hierarchy that should be akin to those that Ripley highlights in his

14 The work of Ripley is a little subtler than what my reconstruction makes ap-
pear. In particular, he distinguishes between inference relations and counterexample
relations, and to fully agree with his framework I should be working with a model-
theoretic semantic presentation of IL (Kripke’s, for instance). Also, there are logics
that do not validate the result that I am going to show, and are nonetheless downward
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article. This is confirmed by the fact that an analogous of the collapse
mentioned in (Barrio, Rosenblatt and Tajer, 2015) obtains in this logic.

Definition 4.13. Let ⊤ = ⊥ → ⊥. The propositional avatar θ of a
metasequent is defined as follows:

1. If A ∈ L1, then θ(A) = A
2. If α is a sequent Γ ⇒ A then

θ(α) = (⊤ ∧
∧

G∈Γ

θ(G)) → θ(A)

3. If A = α ⇒ β is an metasequent, then

θ(A) = θ(α) → θ(β)

Using θ as a translation algorithm, the following propositions are
easily proved:

Lemma 4.2. The rule
{An}n

B
is derivable in Ni iff the sequent

{An}n ⇒ B

is derivable in IC0.

Proof. (Troelstra and Schwichtenberg, 2000, th. 3.3.1), up to the trans-
lation between their calculus G3i and IC0 already suggested in the proof
of Fact 4.2.

Theorem 4.4. If the metasequent α is derivable in ICω then θ(α) has

a n.c.d. in Ni.

Proof. If α is a sequent, apply Lemma 4.2. If it is a metasequent, then
let D be its derivation. As the rules for the inferential connectives of
ICω are the same as the rules for the connectives in Ni, the derivation
obtained by replacing every metasequent α′ in D for θ(α′) produces a
derivation in Ni that maybe uses derived rules corresponding to appli-
cations of rules of IC0. As these can also be transformed into complete
derivations in Ni, it follows that θ(α) is derivable in Ni, and fact 4.1
guarantees that a n.c.d. can be found.

coherent in the sense of Ripley. For the time being, I am only relating positive results
about my logic with the previous literature, so it is not that important that the
matching is precise. I just want to give the idea that we are more or less talking
about the same things.
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The function θ may be seen as an intuitionistic counterpart of the
function lower defined in (Barrio, Rosenblatt and Tajer, 2015, def. 5)
and Barrio, Pailos and Szmuc (2020, def. 3.7), which is in turn a direct
adaptation of the interpretation originally given by Gentzen of the se-
quents (Gentzen, 1935, Sec. V, §1). So there is little surprise that this
result holds.

5. Metainferential Intuitionistic Logic II

The calculus ICω is far more expressive than IC1, let alone IC0. Yet
this expressiveness can be improved. The link between BHK-proofs and
derivable rules that we exploited in the last section can be extended to
all propositional operations of intuitionistic logic. Two logics will be
obtained in this way: MIL and MIL2 (Metainferential Intuitionistic
Logic).

The first of these logics can be motivated by an article of the BA-Plan
(Fiore, Pailos and Rubin, 2023). In this article, the authors introduce
a series of inferential connectives, following the enlightening observation
that sequents are propositions of a conditional form (Fiore, Pailos and
Rubin, 2023). When considered in this way, it strikes as evident that
our common technical resources to formalize these propositions are dis-
proportionately poor when compared to the object language:

[A]t the present state of art, ‘the logic of inferences’ is studied in a
[. . . ] poor language. Let ϕ, ψ, χ and π be inferences. The current
approach only considers metainferences such as “ϕ is valid, therefore ψ
is valid”, “ϕ is valid, ψ is valid, therefore χ is valid”, if we allow multiples
conclusions also “ϕ is valid, ψ is valid, therefore χ is valid, π is valid”,
and so on. The validity or otherwise of all these metainferences is
determined solely by the meaning of logical consequence. The language
lacks the resources to compose or negate validity claims, and so the
approach restricts its analysis of metainferential validity to a ‘structural
level’, so to say. (Fiore, Pailos and Rubin, 2023, p. 2)

This observation is also true of the system ICω. Take for instance a well-
known true statement about intuitionistic logic such as the Disjunctive
Property:

Disjunctive Property If ⊢0
IL A ∨B then ⊢0

IL A or ⊢0
IL B.

This statement cannot be paraphrased using metasequents. But it
strongly suggests the form it may have if inferential disjunctions were
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available in the language. Now that we have established the corre-
spondence between derivations and proofs in the sense of the BHK-
interpretation, the enrichment of the expressive resources of our calculus
is straightforward.

Consider the rules for the calculus MIL in Figure 7, an alternative
to ICω. The expressions this logic handles are called multisequents, a
concept that subsumes the previous one (of metasequents) (Definitions
5.1 and 5.2).

Definition 5.1. A multisequent is defined recursively as follows:

1. Every expression of the form Γ ⇒ A is a multisequent, where Γ is
a multiset of formulas or multisequents and A is either a formula or
a multisequent.

2. If α and β are multisequents then
• α

V

β
• α V β
Are multisequents.

3. Nothing else is a multisequent.

Definition 5.2. The series of multisequents
T

is defined recursively as
follows:

1.

T0 = (∅ ⇒ ⊥)
2.

Tn+1 = (∅ ⇒

Tn)

We abbreviate α ⇒

Tn as
Ln α.

It is easy to see that the metainferential fragment of this calculus is
just Ni.

Theorem 5.1. If a multisequent is derivable in MILω, then it has a

derivation free of detours of ⇒, V or

V

.

Proof. The same procedure that proves the fact 4.1 works in this case,
with the proviso that the normalization is ‘weak’, because of the rules
outside the metainferential group.

In the light of this result it is now evident that:

1. A derivation that ends with an application of

V

I provides a derivation
of α

V

β out of a derivation of α and a derivation of β.
2. A derivation that ends with an application of VI provides a derivation

of α V β out of a derivation of α or a derivation of β.
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Identity Group

Id
Γ, α ⇒ α

Γ1 ⇒ α Γ2, α ⇒ β
Cut

Γ1, Γ2 ⇒ β

Structural Group

Γ, α, α ⇒ β
C

Γ, α ⇒ β

Inferential Group
The same as in IC0.

Metainferential Group
[α1, . . . , αk]n

...
β

⇒ I (n)
α1, . . . , αk ⇒ β

α Π, α ⇒ β
⇒ E

Π ⇒ β

ai
V I

a1 V a2

a V b a ⇒ c b ⇒ c
V E

c

a b V

I
a

V
b

a1

V

a2 V

E
ai

i ∈ {1, 2}

.

Figure 7. Rules for MIL. Greek lowercase letters are variables of formulas or
multisequents; gothic lowercase letters are variables of multisequents only.

3. A derivation that ends with an application of ⇒I provides a deriva-
tion of β out of α taken as an assumption.15

This confirms that, at least for the positive fragment of MIL, we
have a fairly acceptable instance of the BHK-interpretation of the logical
connectives, where derivations in MIL play the role of proofs just as they

15 An anonymous referee asks whether this is equivalent to the BHK-
interpretation of the conditional, in the form I give earlier on (Section 5). In fact, it
is true that these are not trivially equivalent. But they become equivalent after the
proof of normalization (Theorem 5.1 above). For assume that you have a derivation
of β out of α taken as an assumption, and assume further that you have a proof of
α. The composition of these two proofs together delivers a non-normal proof that
normalizes to a proof of β.
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do in Ni. This extends also to negation, but in order to establish this
fact we need a couple of further results. For the proof of the following
lemma, see (Troelstra and Schwichtenberg, 2000, Sec. 4.5.1):

Lemma 5.1. Let IC+
0 be IC0 with a series of axiom sequents of the form

Γ − {A} ⇒ A. If a sequent is derivable in IC+
0 , then it is derivable

in such a way that the rule Cut is applied only to sequents that are not

derivable in IC0.

Theorem 5.2.

T

cannot be derived, for all

T

∈ 〈

Tn〉n.

Proof. Recall that ⇒ ⊥ cannot be derived (Corollary 4.2.1). If (⇒(⇒
⊥)) is derivable, then it is the result of an application of Cut (Lemma 5.1)
or ⇒I (Theorem 5.1). But it cannot be the result of an application of
Cut, since then ⇒ A would be derivable for the cut formula A, and
⇒ A can only be derived from ⇒ ⊥. But neither can it be a instance
of ⇒I, because ⇒ ⊥ cannot be derived in IC0. What we want to prove
then follows by induction.

This completes our BHK-interpretation for the inferential connec-
tives. For all n,

Tn cannot be derived.

This new system adds a lot of expressive power when compared with
ICω. For instance, we can now formalize the Disjunctive Property, men-
tioned above (see Figure 8).

It may be argued that the conclusion of this derivation cannot be
identified with the Disjunctive Property, because it will remain valid if
IC0 is strengthened with the rules it lacks to become CL (Classical Logic)
and CL does not validates the Disjunctive Property. This is a very clever
observation, and it serves to illustrate how important is to keep in mind
the ‘semantic’ content of these calculi. Remember that Ni were adequate
as building blocks for the semantic interpretation of the formulas of ⊢−1

IL

because we have strong normalization and the Subformula Property. If

we add a rule to IC0 (for instance: Γ ⇒ ¬¬A
Γ ⇒ A

) the careful link

between derivations, meaning and intuitionistic interpretation will be
lost: sequents no longer stand as abstractions from derivable rules in Ni,
and therefore multi- and metasequents no longer mean derivable rules
between derivable rules, etc. This change of meaning has an impact on
the meaning of the derivable multisequents. In this particular case, note
that in CL

⊢ A → B ⇐⇒ ⊢ ¬A ∨B
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Let D1 be the following derivation:

[A]3
⇒ I (!)

⇒ A
⇒I (3)

A ⇒ ( ⇒ A)

[ ⇒ A]2
V1I

( ⇒ A) V ( ⇒ B)
⇒I (2)

( ⇒ A) ⇒ (( ⇒ A) V ( ⇒ B))
Cut

A ⇒ (( ⇒ A) V ( ⇒ B))

And D2 be the following derivation:

[B]4
⇒I (!)

⇒ B
⇒I (4)

B ⇒ ( ⇒ B)

[ ⇒ B]3
V2I

( ⇒ A) ⇒ ( ⇒ B)
⇒I (3)

( ⇒ A) ⇒ (( ⇒ A) V ( ⇒ B))
Cut

B ⇒ (( ⇒ A) V ( ⇒ B))

The full derivation then is:

[( ⇒ A ∨ B)]1
D1 D2

∨L
A ∨B ⇒ (( ⇒ A) V ( ⇒ B))

Cut
⇒ (( ⇒ A) V ( ⇒ B))

⇒E
( ⇒ A) V ( ⇒ B)

⇒I (1)
( ⇒ A ∨B) ⇒ (( ⇒ A) V ( ⇒ B))

Figure 8. Derivation of an multisequent expressing the Disjunctive Property.

And this fact conflates the meaning of the multisequent in question: if
A ∨B is implied by ⊤, then either A or B is implied by ⊤. And this is
an instance of the following principle:

A → (B ∨ C) ⊢ A → B. ∨ .A → C

Which is classically valid but not intuitionistically valid. As a matter
of fact, intuitionistic logic validates this scheme in just a few cases (in
particular, and crucial to this example, when A = ⊤, taking ⊤ as an
abbreviation of ⊥ → ⊥). So when the calculus changes, the meaning of
its components changes too.

To insist on the point, the critic may observe that she does not need
to add new rules to the calculus. IC0 becomes a calculus for CL by just
allowing more than one formula on the right-hand side of the sequents.
This means that the same derivation of Figure 8 holds in some calculus
for CL. Then, it cannot be said that this derivation is the Disjunctive
Property. But the same reply applies in this case: not every conservative
extension of the calculus wil be conservative of their interpretations. In
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this case, we cannot allow irrestrictive multiple conclusions16 and still
hold that derivable sequents correspond to derivable rules of Ni. In
particular:

Id
p ⇒ p,⊥

⊃R⇒ p,¬p

Is an incorrect derivation from the point of view of that interpreta-
tion: there is no n.c.d. of p, and there is no n.c.d. of ¬p. But it is correct,
as we all know and is expectable, if we interpret sequents as claims about
Boolean valuations.

My defense on this point may have an holistic taste, since the mean-
ing I am attributing to the derivation in Figure 8 and its conclusion
appears to be determined by more than the explicit rules and multi-
sequents appearing in it. In principle, I am not in disagreement with
such an holistic claim. But notice that in the single-conclusion and the
multiple-conclusion frameworks the rules are not strictly the same. In
the first case, the conclusion is a formula; in the latter, it is a set (or a
multiset, or a series). So just as A is not equivalent with {A}, a sequent-
like expression with single conclusions is not equivalent to a sequent-like
expression with set-like conclusions, even when these conclusions are
singletons. So it seems to me that it cannot be said that the rules are
exactly the same. In an alternative calculus where the conditional mul-
tisequents allow for multiple conclusions, but the rules are exactly the
same of MIL, you will never have the chance to derive a multisequent
with more than one formula on the right.

Another notable aspect of this calculus is the fact that it allows
for a metainferential negation. As would be expectable, this negation
does not provide a full partition of the logical space, and therefore the
multisequent

L
αVα is not derivable. Given Cut elimination, the normal

derivation of a
L0 multisequent is:

⇒ An

⇒ A1 [A1, . . . , An ⇒ B]1
Cut

A2, . . . , An ⇒ B

...
An ⇒ B

Cut
⇒ B B ⇒ ⊥

Cut
⇒ ⊥ ⇒ I (1)L0(A1, . . . , An ⇒ B)

16 I say ‘irrestrictive’ because there are multiple-conclusion sequent calculi for
IL, but they usually limit the use of the rules for negation and conditional.
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The formulas for which ⇒ A holds are logical validities,whereas
formulas for which B ⇒ holds are logical anti-validities. Therefore,
the meta-negated multisequents corresponds to what is called global in-
validities in the literature (Barrio and Pailos, 2022; Coberos, La Rosa
and Tranchini, 2021).

MIL is for sure more expressive than ICω, but it is still not as ex-
pressive as it could be. To see why, consider the derivation in Figure 9.
The conclusion of this derivation pretends to establish that accepting the
validity of the inference ¬¬A ⇒ A entails that the excluded middle,
A ∨ ¬A, can be eliminated as a premise. In very light terms this may
be paraphrased as saying that accepting Full Double Negation makes
the logic to collapse into CL. This is a true statement about intuition-
istic inferences; therefore, it is desirable that an intended account of
intuitionistic metainferences includes this fact. Yet this derivation has a
forbidden step (labeled ∗ in the derivation):

¬¬A ⇒ A ∗
¬¬(A ∨ ¬A) ⇒ (A ∨ ¬A)

D1

⇒ ¬¬(A ∨ ¬A)

[(A ⇒ ¬¬A)

V

(¬¬A ⇒ A)]1 V

2E
¬¬A ⇒ A

∗

¬¬(A ∨ ¬A) ⇒ (A ∨ ¬A)

⇒ (A ∨ ¬A) [Γ, A ∨ ¬A ⇒ B]2

Γ ⇒ B
(2)

(Γ, A ∨ ¬A ⇒ B) ⇒ 1 (Γ ⇒ B)
(1)

((A ⇒ ¬¬A)

V

(¬¬A ⇒ A)) ⇒ ((Γ, A ∨ ¬A ⇒ B) ⇒ (Γ ⇒ B))

Figure 9. An intended proof that Full Double Negation entails Classical Logic.
Some labels were omitted for a matter of space.

This operation of “substitution” is not derivable in MIL. Moreover,
the fact that, in intuitionistic logic,

¬¬A → A 0
0
IL A ∨ ¬A

Makes doubtful that this fact can be expressed in an eloquent way. So
the system MIL is not as good as a logic for the metainferences of IL as
it could be. As a matter of fact, Barrio, Rosenblatt and Tajer indicate
the following about metainferences:
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It could be useful to clarify what a (schematic) metainference is not. For
instance, the claim ‘if p � q, then p � p ∨ q’, is not a metainference but
an instance of a metainference, because p and q are formulas belonging
to the object language. A metainference is a general claim to the effect
that if certain kinds of inferences hold, then another kind of inference
holds as well. This explains why we use schematic formulas.

(Barrio, Rosenblatt and Tajer, 2015, p. 557)

So, in their terminology, MIL is a calculus only of the instances of the
metainferences of IC0.

There is a way to overcome this difficulty though, and transform MIL
in a true calculus for the metainferences of IL. The trick is to consider
a more powerful system than Ni as the founding base, one that can
handle with quantification over propositions. This is the motivation for
the definition of the last system to be introduced in this article: MIL2.

The calculus MIL2 is obtained by adding a propositional universal
quantifier to MIL, thus obtaining a second-order intuitionistic proposi-
tional logic (see Troelstra and Schwichtenberg, 2000, Chapter 11).

Definition 5.3. A multisequent of second-order (2-multisequent) is re-
cursively defined as follows:

1. Every Γ ⇒ A is a 2-multisequent, with Γ a multiset of formulas and
A a formula. The free variables in Γ ⇒ A are all the propositional
variables in Γ or A.

2. Every Γ ⇒ A is a 2-multisequent, with Γ a multiset of formulas or 2-
multisequents and A a formula or 2-multisequent. The free variables
in Γ ⇒ A is the union of all the free variables in Γ and A.

3. If α 2-multisequent and p is a propositional variable then

A

p. α is a
2-multisequent. The free variables in

A

p. α are all the free variables
in α except for p.

4. Nothing else is a 2-multisequent.

Convention 5.1. We assume identity of formulas up to renaming of
bounded variables. We also assume that the bounded variables are al-
ways chosen so that they never occur bounded and free in the same
derivation.

The rules for the logic MIL2 are depicted in Figure 10. Now we
are in position to introduce real metainferences in the sense expected by
Barrio, Rosenblatt and Tajer (2015) (see Figure 11).
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Base Group The same as in IC0.
Second Order Metainferential Group
[α1, . . . , αk]n

...
β

⇒ I (n)
α1, . . . , αk ⇒ β

α Π, α ⇒ β
⇒ E

Π ⇒ β

a[q/p] A

IA

p. a

A

p. a A

E
a[α/p]

Figure 10. Rules for MIL2. Greek lowercase letters are variables of formulas or
2-multisequents; gothic lowercase letters are variables of 2-multisequents only.
p is any propositional variable; q has to be an eigenvariable, meaning that it

does not appear in the derivation before the application of the rule.

D1

⇒ ¬¬(A ∨ ¬A)

[

A

p.(p ⇒ ¬¬p)

V

(¬¬p ⇒ p)]1

A

E
((A ∨ ¬A) ⇒ ¬¬(A ∨ ¬A))

V

(¬¬(A ∨ ¬A) ⇒ (A ∨ ¬A)) V

2E
¬¬(A ∨ ¬A) ⇒ (A ∨ ¬A)

Cut
⇒ (A ∨ ¬A) [Γ, A ∨ ¬A ⇒ B]2

Cut
Γ ⇒ B

(2)
(Γ, A ∨ ¬A ⇒ B) ⇒ 1 (Γ ⇒ B)

(1)
(

A

p.(p ⇒ ¬¬p)

V

(¬¬p ⇒ p)) ⇒ ((Γ, A ∨ ¬A ⇒ B) ⇒ (Γ ⇒ B))

Figure 11. A correct proof that Full Double Negation entails Classical Logic.

The rest of the metaiferential connectives of MIL can be obtained
from the universal quantifier and the conditional, in the same way as
they can be obtained in intuitionistic second-order propositional logic
(see Troelstra and Schwichtenberg, 2000, Chapter 11, Zdanowski, 2009,
and Kashima, 2017, for more on this logic).

6. Conclusions

Intuitionistic logic is one of the firsts, better-known, most developed and
widely applied non-classical logics. And yet the logicians working on the
BA-Plan have been, for the most part, indifferent about it. The purpose
of this article was to provide a first attempt to fill this gap.

In this essay I defined and worked around a metainferential logic
called ⊢

ÎL
ω . I defined three sound calculi for this logic: ICω, MIL

and MIL2. These calculi were proven to be conservative extensions of
each other: MIL subsumes ICω, MIL2 subsumes MIL. And the three
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of them are at least sound about ⊢
ÎL

ω , in the sense that what can be
derived in them can be interpreted as true facts about the logic.

This first presentation was purely proof-theoretical. It remains to be
explored whether the results of the BA-Plan may be approached using
Kripke models in the place of Strong Kleene matrixes and so to obtain
a model-theoretic version of ⊢

ÎL
ω .
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