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Proof Theory for Intuitionistic Stable Theories

Abstract. In this paper we show how to extend the standard cut-elimination
procedure from first-order intuitionistic stable logic to a class of intuitionis-
tic stable theories. Building on previous works by Negri and von Plato, we
aptly modify the underlying calculus for first-order intuitionistic logic so as
to preserve the admissibility of all the structural rules, including cut, in the
presence of a restricted version of the rule of classical reductio ad absurdum

and of a special case of universal rules.
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1. Introduction

In constructive mathematics a relation is stable when it satisfies the law
of double-negation elimination, whereas it is decidable when it satisfies
the law of excluded middle. Interestingly, on the background of intuition-
istic logic, a relation may be stable without being decidable, although
any decidable relation is also stable. Examples include the intuitionis-
tic theory of equality as defined within Brouwer’s theory of apartness:
given the axioms governing the apartness relation, if an equality a = b
is defined as the intuitionistic negation of apartness ¬a 6= b, the stabil-
ity of equality ¬¬a = b ⊃ a = b follows; the decidability of equality
a = b ∨ ¬a = b, however, does not.1 While the proof theory of apartness
has been extensively investigated in [5], stable equality and, more gen-
erally, stable intuitionistic theories have hardly been considered at all in
proof theory.

1 The axioms for the apartness relation, firstly introduced in [4], are irreflexivity
and the principle of split: a 6= b ⊃ a 6= c ∨ b 6= c.
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A preliminary step towards filling this gap has been taken by Negri
and von Plato, who in [6] introduced a sequent calculus for stable logic.
Such a calculus extends the single-succedent sequent calculus for proposi-
tional intuitionistic logic G3ip of [8] with an inference rule corresponding
to the classical law of reductio ad absurdum restricted to atomic formulas.

¬P, Γ ⇒ ⊥

Γ ⇒ P
raa

Since in G3ip+raa the sequent ⇒ ¬¬P ⊃ P is derivable, whereas ⇒

P ∨ ¬P is not, G3ip+raa qualifies as an intermediate calculus between
the intuitionistic and the classical one. Importantly, Negri and von Plato
showed that G3ip+raa admits an entirely standard cut-elimination pro-
cedure. Since in this work we are primarily interested in first-order
theories we shall extend Negri and von Plato’s result in the presence of
quantifiers, namely to stable logic as based on a calculus for first-order
intuitionistic calculus logic such as G3i. Indeed, Theorem 1 below es-
tablishes that G3i+raa, too, admits an entirely standard cut-elimination
procedure.

In order to characterize stable intuitionistic theories there remains
to extend G3i+raa beyond stable logic. As we have seen, intuitionistic
equality is not just any relation satisfying the law of double-negation
elimination, but one which also satisfies the axioms of equivalence re-
lations. And since these axioms are clearly not derivable in G3i+raa
alone, the question naturally arises as to whether can we extend G3i+raa
without jeopardizing the admissibility results, especially cut elimination.
To be sure, in a series of works starting from [7] Negri and von Plato
has shown how to extend G3i with certain rules in such a way that the
admissibility of the structural rules still holds.2 In particular, they show
how to recover cut elimination for G3i+R, where R is a set of rules
following the so-called universal rule scheme.

The next step towards a satisfactory proof-theoretic analysis of stable
intuitionistic theories is to see whether universal rules preserve cut elim-
ination when the underlying logical calculus is not just G3i but rather its
extension G3i+raa. To put it more precisely, building on previous work
by Negri and von Plato (as well as on Theorem 1 below) we know that
in both G3i+raa and G3i+R all the structural rules are admissible. Are
they admissible, too, in the combined calculus G3i+raa+R?

2 In fact, the underlying calculus for intuitionistic logic considered in [7] and
other works is the multi-succedent calculus G3im. This issue will be addressed later.
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In this paper I firstly show that the answer to this question is neg-
ative: not any set of rules following the universal rule scheme yields an
extension of the basic calculus for stable logic to which the standard
cut-elimination procedure can be applied. Secondly, I suggest a simple
modification on the underlying calculus for intuitionistic logic and on
the syntactic form of a universal rule in order to recover the standard
procedure of cut elimination. This permits to generalize Negri and von
Plato’s original approach from intuitionistic stable logic to intuitionistic
stable theories. Finally, I discuss the prospect of extending the present
approach to multi-succedent calculi.

2. Preliminaries

Let L be a first-order language (without identity) containing infinitely
many constants, variables, n-ary functions and predicates (n ­ 0), the
nullary connective ⊥ (falsity), the binary connectives ∧ (conjunction), ∨

(disjunction), and ⊃ (implication) as well as the quantifiers ∀ (universal)
and ∃ (existential). A term t is either a constant or a variable or else
an application of n-ary function to n terms, whereas an atom P is an
application of a n-ary predicate to n terms. Finally, a formula A is built
up from atoms and ⊥ in the usual way. Notice that ⊥ is not an atom,
though it is a formula. We agree that ¬A is an abbreviation for A ⊃ ⊥.
The set of the free variables of a term and of a formula are defined as
usual and so is the operation of substitution of a variable in a term
and in a formula (bearing in mind that we shall assume throughout the
principle of α-conversion). Also the notion of a term being free for a
variable in a formula is the standard one. A sequent is Γ ⇒ A, where Γ
is finite, possibly empty, multi-set of formulas and A is a formula. We
shall refer to Γ and A as the antecedent and the succedent of the sequent
Γ ⇒ A, respectively. Let G3i be the single-succedent sequent calculus
for intuitionistic logic from [8] (see Table 1).

As usual, the variable y does not occur free in the conclusion of R∀

and L∃. A derivation in G3i is a tree of sequents which grows according
to its rules and whose leaves are initial sequents or conclusions of L⊥.
A derivation of a sequent is a derivation concluding that sequent and
a sequent is derivable when there is a derivation of it. The height h
of a derivation is defined inductively as follows: the height of an initial
sequent or of a conclusion of L⊥ is 0, the height of a derivation of a con-



4 Paolo Maffezioli

P, Γ ⇒ P ⊥, Γ ⇒ C
L⊥

A, B, Γ ⇒ C

A ∧ B, Γ ⇒ C
L∧

Γ ⇒ A Γ ⇒ B
Γ ⇒ A ∧ B

R∧

A, Γ ⇒ C B, Γ ⇒ C

A ∨ B, Γ ⇒ C
L∨

Γ ⇒ A
Γ ⇒ A ∨ B

R∨

Γ ⇒ B
Γ ⇒ A ∨ B

R∨

A ⊃ B, Γ ⇒ A B, Γ ⇒ C

A ⊃ B, Γ ⇒ C
L⊃

A, Γ ⇒ B

Γ ⇒ A ⊃ B
R⊃

A(t/x), ∀xA, Γ ⇒ C

∀xA, Γ ⇒ C
L∀

Γ ⇒ A(y/x)

Γ ⇒ ∀xA
R∀

A(y/x), Γ ⇒ C

∃xA, Γ ⇒ C
L∃

Γ ⇒ A(t/x)

Γ ⇒ ∃xA
R∃

Table 1.

clusion of a rule with one premise is the derivation height of its premise
plus 1, and the derivation height of a derivation of a conclusion of a rule
with two is the maximum of the derivation heights of its premises plus
1. A sequent is h-derivable if it is derivable with a derivation of height
at most h. A rule is admissible if the conclusion is derivable whenever
the premises are derivable; a rule is height-preserving admissible if the
conclusion is h-derivable whenever the premises are h-derivable. As is
well known, in G3i all the structural rules

Γ ⇒ C
A, Γ ⇒ C

wk
A, A, Γ ⇒ C

A, Γ ⇒ C
ctr

Γ ⇒ A A, ∆ ⇒ C

Γ, ∆ ⇒ C
cut

are admissible. In fact, weakening and contraction are also height-
preserving admissible, whereas cut is just admissible.

3. A calculus for first-order stable logic

We shall now consider two ways of extending G3i. The first one consists of
adding on top of G3i the rule of classical reductio ad absurdum restricted
to atoms.

¬P, Γ ⇒ ⊥

Γ ⇒ P
raa
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The proof theory for the quantifier-free part of G3i+raa, namely the
calculus referred to as G3ip+raa, has been extensively investigated by
Negri and von Plato in [6]. In particular they showed that in G3ip+raa
all the admissibility results of G3ip are preserved (cf. Theorem 7.2.2 in
[6]). It is easy to see that this holds even in the presence of quantifiers,
namely in G3i+raa.

Theorem 1. In G3i+raa weakening and contraction are height-preserv-

ing admissible and cut is admissible.

Moreover, Negri and von Plato showed that the set of derivable se-
quents in G3ip+raa properly includes the set of derivable sequents in
G3ip and is properly included in the set of derivable sequents of G3cp,
where G3cp is the sequent calculus for classical propositional logic from
[8]. In other words, G3ip+raa is a calculus for an intermediate logic,
called “stable logic” (cf. Theorem 7.2.1 in [6]). This result essentially
hinges upon the fact that the rule raa is restricted to atomic formulas.
Indeed, had an arbitrary propositional formula A been allowed to be
principal of raa, the calculus would be equivalent to G3cp. Nevertheless,
the rule raa with a ∨-free A instead of P is admissible in G3ip+raa (cf.
Theorem 7.2.3 in [6]). This too can be generalized to quantifiers.

Theorem 2. If A is ∨∃-free, then in G3i+raa the rule raa with A as

principal is admissible.

Proof. By induction on A. If A is ⊥, then we need to find a derivation
of Γ ⇒ ⊥ from ¬⊥, Γ ⇒ ⊥. Consider the following derivation:3

⊥ ⇒ ⊥
L⊥

⇒ ¬⊥
R¬

¬⊥, Γ ⇒ ⊥

Γ ⇒ ⊥
cut

If A is an atom P , then the rule to be proved admissible is just raa itself.
If A is A ∧ B, then consider the following derivation of Γ ⇒ A ∧ B from
¬(A∧B), Γ ⇒ ⊥, where the double inference line denotes an application
of the inductive hypothesis IH and the sequents ¬A ⇒ ¬(A ∧ B) and
¬B ⇒ ¬(A ∧ B) are derivable:

3 We shall freely use the rules for negation to shorten some derivations.
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¬A ⇒ ¬(A ∧ B) ¬(A ∧ B), Γ ⇒ ⊥

¬A, Γ ⇒ ⊥
cut

Γ ⇒ A
IH

¬B ⇒ ¬(A ∧ B) ¬(A ∧ B), Γ ⇒ ⊥

¬B, Γ ⇒ ⊥
cut

Γ ⇒ B
IH

Γ ⇒ A ∧ B
R∧

If A is A ⊃ B, then we need to show how to derive Γ ⇒ A ⊃ B
from ¬(A ⊃ B), Γ ⇒ ⊥. Consider the following derivation, where the
sequents ¬B, A ⇒ ¬(A ⊃ B) and ¬B, ¬¬B ⇒ ⊥ are easily derivable:

¬B, A ⇒ ¬(A ⊃ B) ¬(A ⊃ B), Γ ⇒ ⊥

¬B, A, Γ ⇒ ⊥
cut

A, Γ ⇒ ¬¬B
R¬

¬B, ¬¬B ⇒ ⊥

¬¬B ⇒ B
IH

A, Γ ⇒ B
cut

Γ ⇒ A ⊃ B
R⊃

Finally, if A is ∀xA, then we need to derive Γ ⇒ ∀xA from ¬∀xA, Γ ⇒ ⊥

and this can be done by the following derivation, where y does not occur
free in conclusion of R∀. Notice that the sequent ¬A(y/x) ⇒ ¬∀xA is
derivable.

¬A(y/x) ⇒ ¬∀xA ¬∀xA, Γ ⇒ ⊥

¬A(y/x), Γ ⇒ ⊥
cut

Γ ⇒ A(y/x)
IH

Γ ⇒ ∀xA
R∀

All applications of the cut rule are legitimate by Theorem 1.

4. A calculus for first-order stable theories

The second way to extend G3i is by adding rules corresponding to axioms
of a mathematical theory. Building on previous works starting from [7]
such an extension consists of G3i plus R, where R is a finite and non-
empty set of rules, called universal rules, of the form:

Q1, P1, . . . , Pn, Γ ⇒ C · · · Qm, P1, . . . , Pn, Γ ⇒ C

P1, . . . , Pn, Γ ⇒ C
r

Intuitively, a rule in R is a way to express in sequent calculus an axiom
of the form ∀x̄(P1 ∧· · ·∧Pn ⊃ Q1 ∨· · ·∨Qm), called a universal formula.
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Notice that if n = 0, the universal formula is just ∀x̄(Q1 ∨ · · · ∨ Qm) and
the corresponding universal rule is:

Q1, Γ ⇒ C · · · Qm, Γ ⇒ C

Γ ⇒ C
r

On the other hand, if m = 0 the universal formula is ∀x̄¬(P1 ∧ · · · ∧ Pn)
and the corresponding universal rule is:

P1, . . . , Pn, Γ ⇒ C
r

Clearly many axioms of mathematical theories are universal formulas.

In [5] Negri showed that for a specific R, the one that includes the
rules corresponding to the axioms of apartness, it is possible to preserve
the admissibility results, whereas the generalization to an arbitrary R in
the full language of first-order logic has been given recently in [3]. Thus,
G3i+R, too, satisfies the admissibility results of weakening, contraction,
and cut (cf. Theorem 8 in [3]).

Alas, the extension of G3i by both raa and R is problematic as it does
not appear to admit a standard cut-elimination procedure. Consider, for
example, the case of an application of cut in which the left premise has
been derived by raa and the right premise by a universal rule r with one
premise.

¬P, Γ ⇒ ⊥

Γ ⇒ P
raa

Q, P, ∆ ⇒ C

P, ∆ ⇒ C
r

Γ, ∆ ⇒ C
cut

If the derivation height of the left (right) premise of cut is n > 0 (m > 0,
respectively), then the cut-height (namely the sum of the derivation
height of the two premises of cut) is n+m. According to the standard
cut-elimination procedure, in order to eliminate such an instance of cut
we should find a derivation of Γ, ∆ ⇒ C by “pushing cut upwards”, in
the sense that in the derivation of Γ, ∆ ⇒ C all cuts, if any, need to be
on a formula with lower weight than P or need to be of a less cut-height.
A close inspection reveals, however, this cannot be done using only the
premises of raa and r. Perhaps the closest we can get is to use sequent
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P ⇒ Q, which is derivable by r, and to conclude Γ, ∆ ⇒ C with two
cuts and contraction as follows:

Γ ⇒ P

Q, P ⇒ Q

P ⇒ Q
r

Q, P, ∆ ⇒ C

P, P, ∆ ⇒ C
cut

P, ∆ ⇒ C
ctr

Γ, ∆ ⇒ C
cut

Assuming that contraction is height-preserving admissible, since the
derivation-height of the sequent P ⇒ Q is 1, the upper-most cut has
a cut-height of m, hence it is admissible by the inductive hypothesis.
However, since m > 0 by hypothesis, the height of the derivation of
P, ∆ ⇒ C is m and the lowest cut has cut-height n + m as the original
one; and this is problematic since the cut formula P has the same weight
in the two cases. This example, of course, does not count as counter-
example to cut elimination for G3i+raa+R. For this would require to find
a sequent which is derivable with cut but not derivable without. What
the example does show, however, is that the standard cut-elimination
procedure fails for G3i+raa+R. The calculus may very well be cut-
free but there is no known cut-elimination procedure. In general, the
main obstacle towards finding a standard cut-elimination procedure for
G3ip+raa+R is that the same atom can be the conclusion of raa and the
conclusion of a rule in R. One way to overcome this obstacle is to change
the shape of universal rules in such a way that all active and principal
atoms may only occur in the succedent.

An entirely standard procedure of cut elimination for stable intuition-
istic theories can be found by considering an alternative, albeit equiva-
lent, calculus for intuitionistic logic. Firstly, we shall consider a variant
L′ of L where ⊥ is an atom. Thus, in L′ an atom P is either ⊥ or
an application of a n-predicate to n terms. Let G3i

′ be G3i where the
rule L⊥ is removed and the following rule of ex falso quodlibet is added
instead:

Γ ⇒ ⊥
Γ ⇒ C

efq

Notice that in G3i′ the sequent ⊥, Γ ⇒ ⊥ is initial since it is a special
case of P, Γ ⇒ P . Since the calculus G3i

′ is not entirely standard in the
literature, we need to show that it is indeed a calculus for intuitionistic
logic. To this end we show that G3i

′ and G3i are equivalent.
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Theorem 3. A sequent is derivable in G3i
′ if and only if it is derivable

in G3i.

Proof. It suffices to show that L⊥ is derivable in G3i′ and efq as well as
the initial sequent ⊥, Γ ⇒ ⊥ are derivable in G3i. As for the first claim,
consider the following derivation.

⊥, Γ ⇒ ⊥

⊥, Γ ⇒ C
efq

As for the second claim, since ⊥, Γ ⇒ ⊥ is an instance of L⊥, we only
need to show that efq is derivable in G3i. Consider the following deriva-
tion.

Γ ⇒ ⊥ ⊥ ⇒ C
L⊥

Γ ⇒ C
cut

Notice that the application of cut is legitimate since G3i is cut-free.

We now focus on universal rules. Since we are only considering single-
succedent calculi we need to give up on some generality and restrict the
notion of universal formula as to only allow those with at most one atom
in the consequent of the implication. More precisely, let a quasi-universal
formula be universal formula where m ¬ 1. Thus, a quasi-universal
formula is of the form ∀x̄(P1 ∧· · ·∧Pn ⊃ Qm). A quasi-universal formula
corresponds to a quasi-universal rule of the form:

Γ ⇒ P1 · · · Γ ⇒ Pn

Γ ⇒ Qm

r

As above when n = 0, then a quasi-universal formula is just ∀x̄Qm and
the corresponding quasi-universal rule is a rule with no premise:

Γ ⇒ Qm

r

Moreover, when m = 0, a quasi-universal formula is ¬(P1 ∧· · ·∧Pn) and
the corresponding quasi-universal rule is:

Γ ⇒ P1 · · · Γ ⇒ Pn

Γ ⇒ ⊥
r

It is clear that an application of a quasi-universal rule may introduce ⊥

in the succedent. This is precisely why we have considered the calculus
G3i

′ instead of the admittedly much more standard G3i. For G3i+Rq,
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where Rq is a set of quasi-universal rules, is not cut-free. To see this,
consider a cut in which the left premise introduces ⊥ in the succedent
by an instance of r and the right premise introduces ⊥ by an instance of
L⊥. Such a cut can hardly be eliminated.

Γ ⇒ P1 · · · Γ ⇒ Pn

Γ ⇒ ⊥
r

⊥, ∆ ⇒ C
L⊥

Γ, ∆ ⇒ C
cut

However, if we consider the calculus G3i
′ instead of G3i, then the sequent

Γ, ∆ ⇒ C can be concluded via efq and several applications of weakening
directly from the left premise of cut:

Γ ⇒ ⊥
Γ ⇒ C

efq

Γ, ∆ ⇒ C
wk

As a concrete example of such a quasi-universal rule one may consider
the irreflexivity of the strict partial order <, i.e. the formula ∀x ¬x < x.
The corresponding quasi-universal rule is:

Γ ⇒ t < t
Γ ⇒ ⊥

r1

Clearly, G3i+r1 is not cut-free. For the sequent t < t ⇒ C can certainly
be derived with cut as follows:

t < t ⇒ t < t
t < t ⇒ ⊥

r1

⊥ ⇒ C
L⊥

t < t ⇒ C
cut

However, it is clear that there is no cut-free derivation of it. On the other
hand, in G3i

′+r1 such a sequent has the following cut-free derivation:

t < t ⇒ t < t
t < t ⇒ ⊥

r1

t < t ⇒ C
efq

We won’t provide a proof of the admissibility of the structural rules
for the extensions of G3i

′ with quasi-universal rules, since this result
immediately follows from the admissibility of the structural rules for the
extensions of G3i

′ with quasi-universal rules and the rule raa.
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5. Cut elimination

We shall now show that G3i′ extended with both the rule raa and quasi-
universal rules admits an entirely standard cut-elimination procedure.
We first need some preparatory results. Let Rq be a set of quasi-universal
rules.

Theorem 4. In G3i
′+raa+Rq the sequent A, Γ ⇒ A is derivable.

Proof. By induction on A. If A is an atom P , the claim holds since
P, Γ ⇒ P is initial. If A is B ∧ C, we know that by the inductive
hypothesis B, C, Γ ⇒ B and B, C, Γ ⇒ C are derivable. By applying
the rules of conjunction we obtain B∧C, Γ ⇒ B∧C. If A is a disjunction
or an implication or a quantified formula, the proof is entirely similar.

Next, we shall prove the height-preserving admissibility of the rule
of substitution. Let t be free for x in Γ, C. The rule of substitution is:

Γ ⇒ C
Γ (t/x) ⇒ C(t/x)

Theorem 5. In G3i
′+raa+Rq the rule of substitution is height-preserv-

ing admissible.

Proof. By induction on the height n of the derivation of the premise.
If n = 0, then Γ ⇒ C is either an initial sequent or the conclusion of
a quasi-universal rule with no premise and so is the conclusion of the
substitution rule. If n > 0, then we only consider the case in which the
premise of the substitution rule is concluded by efq or by raa. In the first
case we apply the inductive hypothesis on the premise of efq Γ ⇒ ⊥ so
as to obtain Γ (t/x) ⇒ ⊥(t/x). Since ⊥(t/x) is just ⊥, from Γ (t/x) ⇒ ⊥

we can conclude Γ (t/x) ⇒ C(t/x) by efq. Analogously, if Γ ⇒ C is
concluded by raa, then C is P and we apply the inductive hypothesis
on the premise of raa so as to obtain ¬P (t/x), Γ (t/x) ⇒ ⊥(t/x). Once
again, since ⊥(t/x) is ⊥, from ¬P (t/x), Γ (t/x) ⇒ ⊥ we can conclude
Γ (t/x) ⇒ P (t/x) by raa.

Theorem 6. In G3i
′+raa+Rq weakening is height-preserving admissi-

ble.

Proof. By induction on the height n of the derivation of the premise. If
n = 0, then the premise of weakening Γ ⇒ C is initial or the conclusion
of a rule r ∈ Rq with no premise. In the first case, P ∈ Γ and C is P ,
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for some atom P . Thus, the conclusion of weakening A, Γ ⇒ C is initial.
In the second case, C in the premise of weakening is an atom P and the
conclusion of weakening is a conclusion of r. If n > 0, then we reason by
cases on the last rule R applied in the derivation of the premise of weak-
ening. In each case we apply the inductive hypothesis on the premise of
R and then R, unless R is a quantifier rule with variable restriction; in
this case we also need to apply the rule of substitution in order to make
R applicable (such an application is legitimate by Theorem 5).

With height-preserving admissibility of weakening we can show that
some of the rules are height-preserving invertible, a result commonly
known as “inversion lemma”.

Theorem 7. In G3i
′+raa+Rq the rules L∧, L∨, and L∃ are height-

preserving invertible, whereas the rule L⊃ is height-preserving invertible

with respect to the right premise.

Proof. We only consider the case of L⊃. We need to show that:

A ⊃ B, Γ ⇒ C

B, Γ ⇒ C
iL⊃

is height-preserving admissible and we proceed by induction on the
derivation-height n of the premise of iL⊃. If n = 0, then A ⊃ B, Γ ⇒ C
is a initial or the conclusion of a rule r ∈ Rq with no premise. In the
first case, P ∈ Γ and C is Q, for some atom P , and the conclusion of iL⊃

is also initial. In the second case, C is an atom Q and the conclusion
of iL⊃ is a conclusion of r. If n > 0, then we distinguish two cases
according to whether A ⊃ B is principal of the last rule R applied in the
derivation of the premise of iL⊃ or it is not. If A ⊃ B is the principal
formula of the last rule R applied in the derivation, then R is L⊃ and its
right premise is the conclusion of iL⊃ and B, Γ ⇒ C is derivable by the
inductive hypothesis. If A ⊃ B is not the principal formula of R, then
we reason by cases according to R. In each case we apply the inductive
hypothesis on the premise of R and then R. The proof of the height-
preserving admissibility of L∧ and L∨ is entirely similar and hence left
to the reader, whereas for L∃ the proof does not substantially differ from
the standard one (cf. Lemma 4.2.3 in [6]).

We now consider the height-preserving admissibility of contraction.

Theorem 8. In G3i′+raa+Rq contraction is height-preserving admissi-

ble.
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Proof. By induction on n. If n = 0, then the premise of contraction
A, A, Γ ⇒ C is a initial or the conclusion of rule r ∈ Rq with no premise.
In the first case, either P ∈ Γ and C is P or A and C are both P , for some
atom P . In each case, the conclusion of contraction A, Γ ⇒ C is initial.
In the second case, C is an atom P and the conclusion of contraction is
a conclusion of r. If n > 0, then either none of the occurrences of A is
principal of the last rule R applied in the derivation or exactly one is.
(The case of both occurrences of A being principal of R does not arise).
In the first case, we proceed by cases on R. In each case, we apply the
inductive hypothesis on the premise of R and then R. We only show
the case of R being either efq or raa or else a rule r ∈ Rq with at least
one premise. If R is efq, then the premise of efq is A, A, Γ ⇒ ⊥ and the
conclusion of contraction A, Γ ⇒ C follows by the inductive hypothesis
and efq. If R is raa, then C in the premise of contraction is an atom
P and the premise of raa is ¬P, A, A, Γ ⇒ ⊥. On such a premise we
apply the inductive hypothesis and raa again to conclude A, Γ ⇒ P as
desired. Finally, if R is a rule r ∈ Rq with at least one premise, then
C in the premise of contraction is an atom Q and the premises of r are
A, A, Γ ⇒ P1 and . . . and A, A, Γ ⇒ Pn, for n ­ 1. On each premise
of r we apply the inductive hypothesis and then r again to conclude
A, Γ ⇒ Q. In the second case, i.e. if exactly one occurrence of A is
principal of R, we proceed by cases on R. If R is L∧ or L∨ or L⊃ or else
L∃, we apply the inversion lemma (Theorem 7) on the premise of R, the
inductive hypothesis and, finally R again. If R is L⊃ we apply directly
the inductive hypothesis of its premise and then L⊃ again.

Finally, to prove the admissibility of cut we proceed by induction on
the weight of the cut formula A with sub-induction on the cut-height.
The proof follows the pattern of the proof of Theorem 2.4.3 from [6].

Theorem 9. In G3i
′+raa+Rq cut is admissible.

Proof. We consider the following cases: (i) the left premise of cut is
initial or the conclusion of a rule r ∈ Rq; (ii) the right premise of cut is
initial or the conclusion of a rule r ∈ Rq; (iii) the cut formula A is not
principal in the left premise of cut; (iv) A is principal only in the left
premise; (v) A is principal in both premises.

We start from (i). If Γ ⇒ A is initial or the conclusion of a rule
r ∈ Rq, then we consider the following cases.
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(i.1) P ∈ Γ and A is P , for some atom P . Then, the conclusion of cut
is concluded from the right premise by weakening.

(i.2) A is an atom Q. Thus, the original cut is

Γ ⇒ Q
r

Q, ∆ ⇒ C

Γ, ∆ ⇒ C
cut

We need to consider the right premise of cut. If it is initial or the
conclusion of a rule r′ ∈ Rq, then we have the following cases:

(i.2.a) P ∈ ∆ and C is P , for some atom P . Then, the conclusion of
cut is initial.

(i.2.b) C is Q. Then, the conclusion of cut is concluded from the left
premise by weakening.

(i.2.c) C is an atom Q′. Then the conclusion of cut is the conclusion
of r′.

If the right premise of cut is not initial nor the conclusion of a rule
r′ ∈ Rq, then we proceed by cases according to the last rule R applied
in its derivation. Notice that the cut formula Q can never be principal
in R. If R is a propositional rule or quantifier rule without variable
restriction, apply the inductive hypothesis on the left premise of cut and
the premise of R, and then R again. For example, if R is raa, then C is
an atom P and the original cut is:

Γ ⇒ Q
r

¬P, Q, ∆ ⇒ ⊥

Q, ∆ ⇒ P
raa

Γ, ∆ ⇒ P
cut

The conclusion of cut is concluded as follows:

Γ ⇒ Q
r

¬P, Q, ∆ ⇒ ⊥

¬P, Γ, ∆ ⇒ ⊥
IH

Γ, ∆ ⇒ P
raa

If R is a quantifier rule with variable restriction, we proceed similarly but
we additionally need to apply the rule of substitution, which is admissible
by Theorem 5, in order to make R applicable. This completes the proof
of case (i).

Concerning case (ii), if A, ∆ ⇒ C is initial or the conclusion of a rule
r ∈ Rq, then we have the following cases.
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(ii.1) P ∈ ∆ and C is P , for some atom P . Then, the conclusion of cut
is an axiom.

(ii.2) A and C are P . Then, the conclusion of cut is concluded from
the left premise by weakening.

(ii.4) C is an atom Q. Then, the conclusion of cut is conclude by r.

We now consider the case (iii). If the cut formula A is not principal in the
left premise of cut, then the last rule R applied in its derivation is either
L∧ or L∨ or L⊃ or L∀ or L∃. The conclusion of cut is found by applying
the inductive hypothesis on the premise(s) of R and the right premise of
cut, and then R again (unless R is L∃ because in this case we also need
an application of the substitution rule admissible by Theorem 5).

As for case (iv), if the cut formula A is principal only in the left
premise of cut, then the right premise is concluded by a rule R where A
is not principal. We proceed by cases on R. In each case the conclusion
of cut is found by applying the inductive hypothesis on the left premise
of cut and the premise(s) of R, and then by R again. We consider only
the cases of R being either efq or raa or else a rule r ∈ Rq with at least
one premise. If R is efq, then the original cut is:

Γ ⇒ A

A, ∆ ⇒ ⊥

A, ∆ ⇒ C
efq

Γ, ∆ ⇒ C
cut

The conclusion of cut is found as follows:

Γ ⇒ A A, ∆ ⇒ ⊥

Γ, ∆ ⇒ ⊥
IH

Γ, ∆ ⇒ C
efq

If R is raa, then C is an atom P and the original cut is:

Γ ⇒ A

¬P, A, ∆ ⇒ ⊥

A, ∆ ⇒ P
raa

Γ, ∆ ⇒ P
cut

The conclusion of cut is found as follows:

Γ ⇒ A ¬P, A, ∆ ⇒ ⊥

¬P, Γ, ∆ ⇒ ⊥
IH

Γ, ∆ ⇒ P
raa
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If R is rule r ∈ Rq with at least one premise, then C is an atom Q and
the original cut is (n ­ 1):

Γ ⇒ A

A, ∆ ⇒ P1 · · · A, ∆ ⇒ Pn

A, ∆ ⇒ Q
r

Γ, ∆ ⇒ P
cut

The conclusion of cut is found as follows:

Γ ⇒ A A, ∆ ⇒ P1

Γ, ∆ ⇒ P1
IH

· · ·

Γ ⇒ A A, ∆ ⇒ Pn

Γ, ∆ ⇒ Pn

IH

Γ, ∆ ⇒ Q
r

Finally, as for case (v), we proceed by induction on the weight w(A)
of the cut formula. Notice that the case in which w(A) = 0 does not
arise because A can neither be ⊥ or P since these formulas cannot be
principal of any rule deriving the right premise of cut. If w(A) > 0,
then A is a compound formula and we distinguish two cases according
to whether the last rule R applied in the derivation of the left premise
of cut is efq or it is not. If R is efq, then the original cut is:

Γ ⇒ ⊥
Γ ⇒ A

efq
A, ∆ ⇒ C

Γ, ∆ ⇒ C
cut

The conclusion of cut is concluded by efq and weakening as follows:

Γ ⇒ ⊥
Γ ⇒ C

efq

Γ, ∆ ⇒ C
wk

If R is not efq, then the proof is the same as in Theorem 2.4.3 of [6].

6. Towards a multi-succedent calculus

The most obvious generalization of the present approach is to consider
multi-succedent calculi. After all, a multi-succedent calculus for intu-
itionistic logic G3im has been introduced already in [1] and its extension
with universal rules has been extensively investigated ever since [7].
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A multi-succedent version G3im
′ of the single-succedent calculus G3i

′

can be obtained from G3im by replacing the rule L⊥ with the following
multi-succedent rule of ex falso quodlibet from [2]:

Γ ⇒ ∆, ⊥

Γ ⇒ ∆
efq

In the multi-succedent calculus it is not possible to formulate the rule
of classical reductio for atoms with an arbitrary succedent. Indeed, if we
extend G3im

′ with the following, fully multi-succedent, rule:

¬P, Γ ⇒ ∆, ⊥

Γ ⇒ ∆, P
∗

it is clear that we would end up with a calculus for classical logic. Instead
of giving a proof of the equivalence with standard calculi for classic logic
such as G3c we simply notice that in the presence of the rule of classical
reductio for atoms the sequent ⇒ P ∨ ¬P would be derivable as the
following derivation shows:

¬P ⇒ ¬P, ⊥

⇒ P, ¬P
∗

⇒ P ∨ ¬P
R∨

Thus, it is necessary to impose a single-succedent restriction of the
premise of the rule and consider the following rule of classical reductio

for atoms with no ∆ in the premise:

¬P, Γ ⇒ ⊥

Γ ⇒ ∆, P
raa

On the other hand, the extensions of G3im′ with multi-succedent non-
logical rules is more problematic. Firstly, notice that a multi-succedent
sequent calculus is a priori open to the possibility of considering fully
universal rules of the form:

Γ ⇒ ∆, Q1, . . . Qm, Pn · · · Γ ⇒ ∆, Q1, . . . Qm, Pn

Γ ⇒ ∆, Q1, . . . Qm

r

This would be a significant generalization of the single-succedent ap-
proach developed so far which only work for quasi-universal rules. How-
ever, it appears in the multi-succedent calculus with universal rules we
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cannot apply the standard cut-elimination procedure. To see this recall
that the cut rule in the multi-succedent calculus is:

Γ ⇒ ∆, A A, Π ⇒ Σ

Γ, Π ⇒ ∆, Σ
cut

Now, consider a cut where the left premise is concluded by a univer-
sal rule r with no premise in which the cut formula A is principal
and the right premise is concluded by raa. So, ∆ contains the atoms
Q1, . . . , Qm−1 and the cut formula A is Qm, whereas Σ contains P .

Γ ⇒ ∆′, Q1, . . .Qm−1, Qm

r
¬P, Qm, Π ⇒ ⊥

Qm, Π ⇒ Σ′, P
raa

Γ, Π ⇒ ∆′, Q1, . . .Qm−1, Σ′, P
cut

In this case it is not clear how to eliminate such a cut. For if a cut
is applied in the left premise and the premise of raa, so as to obtain
the sequent Γ, ¬P, Π ⇒ ∆′, Q1, . . . Qm−1, Σ′, ⊥ then the presence of
the context ∆, Q1, . . . Qm−1 in the succedent would make raa inappli-
cable. This strongly suggests that even in the multi-succedent calculus
we should consider only single-succedent quasi-universal rules. This is a
serious obstacle towards a multi-succedent calculus for stable theories.

7. Conclusions

In this paper we have shown how to extend the standard cut-elimination
procedure from intuitionistic stable logic to a class of intuitionistic stable
theories. Building on previous works by Negri and von Plato, we aptly
modified the underlying single-succedent calculus for intuitionistic logic
so as to preserve the admissibility of all the structural rules, including
cut, in the presence of a restricted version of the rule of classical reductio

ad absurdum and of a special case of universal rules.
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