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Embodied Sensorimotor (Hyper)intensionality

Abstract. This article aims to stimulate interdisciplinary exchange be-
tween logicians and cognitive scientists. In particular, I claim that con-
ceptual analogues of hyperintensionality and intensionality can be found
when we apply statistical tools to analyse sensorimotor processes in em-
bodied cognition. When considering the functional correlation between the
internal state X of an agent, and the external state Y of its environment,
I propose that the precise functional form of the correlation has a hyperin-
tensional flavour, while the abstract information carried by the correlation
has a purely intensional flavour.

Recent work by Kolchinsky and Wolpert attempts to bring ‘semantics’
to physical correlations by analysing the effects of those correlations on task
performance. I argue that this ‘semantic information’ framework currently
provides a model for intensional, but not hyperintensional, aspects of belief
in a hypothetical mental arithmetic scenario.

In general, I suggest that cognitive scientists should be more familiar
with the intensional/hyperintensional distinction (for instance, I argue that
the ‘Bayesian brain’ approach cannot account for hyperintensional aspects
of cognition), and that logicians should be aware of analogues of hyperinten-
sion in embodied cognition (for instance, I claim that hyperintensional-like
phenomena occur as much in bacteria as in humans).
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1. Introduction

The primary focus of this article is the concepts of intension and hyper-

intension from formal semantics, and how they relate to issues in the
study of embodied cognition qua physical dynamics. Effectively, I pro-
pose to understand something closely resembling (hyper)intensionality
using the tools of information dynamics, rather than the tools of formal
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semantics. Note that I do not propose any formal theory of embodied
hyperintension in this article, instead offering only a conceptual account.

To this end, I apply the information agent formalism from (Ay and
Polani, 2008) to a task involving mental arithmetic. The mental arith-
metic scenario suggests informal concepts that form embodied sensori-
motor (ESM) analogues of intension and hyperintension: I propose that
• different statistical physical ensembles P (X, Y ) and P ′(X, Y ) over

the internal state X of some agent and the external state Y of that
agent’s environment are ‘intensionally equivalent’ in the sensorimotor
context iff X carries the same functionally meaningful information
about Y under P as it does under P ′;

• two ensembles P and P ′ are ‘hyperintensionally equivalent’ in the
sensorimotor context iff the correlation between X and Y plays (in
some intuitive sense) the same functional role under P as it does
under P ′.
To put it another way (still using very informal language), intension-

ality (or its analogue in the sensorimotor context) relates to the abstract
functional informational relationship between X and Y , while hyperin-
tensionality (or its analogue) relates to the specific functional form of
the relationship.

We will see that the semantic information framework introduced by
Kolchinsky and Wolpert (2018) allows us to make a rigorously formal
distinction between functionally meaningful correlation and brute statis-
tical correlation; in doing so, it helps to provide a statistical semantics
for embodied cognition.

However, I will argue that this semantics has a ‘purely intensional’
flavour, failing to capture important hyperintension-like aspects of em-
bodied semantics. In particular, it does not distinguish between func-
tionally different forms of meaningful correlation. My argument here
is conceptual, and I do not pretend to offer a formal solution to this
problem.

While ostensibly the article is about relations between physical en-
sembles, and how these relations resemble concepts from formal seman-
tics, it is also meant to offer an opportunity for fruitful dialogue between
two intellectual communities: scientists formally modelling the physi-
cal dynamics of embodied cognition, and philosophers studying formal
semantics.

The consideration of this intersection may prove valuable to members
of both communities. Scientists are generally unfamiliar with the formal
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semanticists’ distinction between intension and hyperintension; contrar-
ily, semanticists are generally unfamiliar with statistical tools intended
to describe informational processes in embodied cognition.

Human linguistic and explicit reasoning behaviour is presumed by
many scientists to form a special case of the more general category of
embodied cognition, which is why general properties of information flow
in embodied cognition might be relevant to semanticists. Indeed, I argue
later that the embodied analogues of intension and hyperintension are
as applicable to bacteria as they are to humans.

2. Extension, intension and hyperintension

The contents of this section will be familiar to philosophers, but since
the article is meant to be accessible to a scientific audience as well, I will
recap some basics regarding the notions of intensionality and hyperin-
tensionality.

Formal semanticists distinguish between several different aspects of
the concept of meaning. Consider the phrase ‘the tallest dog in the
world’. There is some specific dog that this phrase picks out right now
(according to the Guinness Book of Records, in 2024 it is a Great Dane
called Kevin). This is the extension of the phrase, which is one aspect
of its meaning. But this dog (Kevin) cannot be the totality of what the
phrase ‘the tallest dog in the world’ means, because, e.g., ‘the tallest dog
in the world in 2013’ picks out a different dog (according to the Guinness
Book of Records, another Great Dane called Zeus). If ‘the tallest dog
in the world’ just meant Kevin, ‘the tallest dog in the world in 2013’
would mean ‘Kevin in 2013’. According to the dominant formal model
in semantics (the possible worlds model), the intension of the phrase
is a function from things called ‘possible worlds’ (contexts in which the
phrase picks out different things) to extensions, determining which dog
(if any) the phrase picks out in every possible world.

While, for many purposes, we can think of the meaning of a phrase as
being synonymous with its intension, there are some contexts in which
we cannot do this. For instance, consider the phrases A “there are seven
biscuits in the jar” and B “the number of biscuits in the jar squared, plus
five, is fifty-four”. These phrases have the same intension, because they
map to the same extension (true or false) in every possible world. But
it might be true that ‘Alice believes there are seven biscuits in the jar’
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without it being true that ‘Alice believes the number of biscuits in the jar
squared, plus five, is fifty-four’. Formally speaking, ‘Alice believes that’
is a hyperintensional operator H, which means that H(A) and H(B) can
differ even when A and B are intensionally equivalent.

The standard model of intensionality is the possible-worlds model
that underpins modal logic (see, e.g., Nolan, 2013). There is no stan-
dard model of hyperintensionality, and there is much debate surrounding
hyperintensionality in general (for instance, about whether hyperinten-
sionality is a purely ‘representational’ phenomenon or a ‘metaphysical’
one). I will not attempt to engage with these issues; the interested reader
may wish to consult Berto and Nolan (2023) for a broad introduction to
the concept.

In the next section we will provide an example of why this distinction
might be of interest to cognitive scientists, namely in identifying concep-
tual limitations of so-called ‘Bayesian brain’ approaches to cognition.

3. Bayesian brains and hyperintension

In ‘Bayesian brain’ approaches, cognition is taken to involve the manip-
ulation of subjective probability distributions encoded in physical vari-
ables (Doya, 2006). This assumption has proved very useful in many
areas of neuroscience. I will argue that this approach faces considerable
challenges in accounting for intrinsically hyperintensional phenomena
such as human logical reasoning1.

Suppose I judge that the distance AB from Athens A to Berlin B is
probably less than 1900km, and the distance BC from Berlin to Copen-
hagen C is probably less than 500km, and I also believe the triangle
inequality, i.e. AC ≤ AB + BC. I might still be momentarily uncertain
as to whether the distance AC from Athens to Copenhagen is less than
2500km.

This is difficult to represent using a subjective probability distribu-
tion over states of the world. In a world that obeys the triangle inequal-
ity, P (AC < 2500) can never be lower than P (AB < 1900 ∧ BC < 500).
Say I assign 90% credence to AB < 1900 and 80% credence to BC < 500.
Then it turns out that the highest credence I can consistently assign to

1 When I use the term ‘logical reasoning’ here, I mean the psychological process
of correctly reasoning according to logical norms in ordinary humans; I’m not invoking
an idealised ‘logically omniscient’ reasoner.
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AC ≥ 2500 is 15%. So I shouldn’t be very uncertain about whether
AC < 2500.

The key word here is consistently. Probability values that are as-
signed directly to states of the world have to be consistent, because the
world itself has to be consistent. But my beliefs are not (in the parlance
of logicians) closed under logical implication. They do not have to be
consistent.

One could, of course, consider probability distributions over descrip-

tions of states of the world, rather than over states of the world directly.
For instance, one could ascribe probabilities to collections of sentences
rather than states of the world, and permit P (“AC < 2500”) to be lower
than P (“AB < 1900 ∧ BC < 500”), representing a logically inconsistent
set of beliefs.

But a significant part of the appeal of Bayesian brain theories is
that they account for an organism’s behaviour, and they do so only
because we can readily model how appropriate behaviour relates to states
of the world. If you only have enough fuel for a 2500km flight from
Athens, then Copenhagen is within range, while Dubai is not. There are
consequences for actions that follow straightforwardly from these facts

about the world. Conventional decision theory derives prescriptions for
action from (intensional) facts about what the consequences of different
actions are in different circumstances. Much more elaborate machinery
is required to go from (potentially incomplete or inconsistent) sets of
sentences about the world to prescriptions for motor actuations.

Moreover, sentence-based models may not be appropriate for describ-
ing practical non-linguistic reasoning. For instance, when I assess the
distance between Athens and Copenhagen, I might rely on visualisa-
tion rather than inner speech, with my visualisation implicitly involving
the triangle inequality (as I cannot simultaneously visualise three points
where AC > AB + BC).

So Bayesian brain models are caught in a dilemma:
• they can operate at the intensional level, where the consequences

for action are clearly defined, but hyperintensional phenomena like
logical reasoning cannot be modelled; or

• they can operate at a hyperintensional level, allowing distinctions
between different representations of the same thing, but obfuscating
the relationship between mental state and behaviour.
The broader relevance of hyperintensionality to scientific models of

cognition is an interesting topic (it is plausibly relevant to much-vexed
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discussions about the term ‘representation’), but it is not the primary
focus of this article. I am interested in what scientific tools have to
offer philosophy as well. In section 6 I will introduce the information

agent formalism of Ay and Polani (2008), which I hope will have a prof-
itable application to semantics. The next couple of sections will lay
some groundwork by introducing 4E cognitive science and sensorimotor
cognition in particular.

4. 4E cognitive science and ‘reasoning’

Cognitive science is an interdisciplinary field which concerns itself with
the study of cognition in the broadest sense, including intelligence in
animals and other biological organisms, and adaptive behaviour in arti-
ficial systems such as robots or AIs, as well as questions about what the
two have in common. Contributions to this endeavour have been made
by philosophers, psychologists, linguists, computer scientists, roboticists,
and animal behaviourists, among others.

I belong broadly to a school of thought known as 4E (embodied,
embedded, enactive and extended) cognitive science (see, e.g., Clark,
1996; Newen et al., 2018). This perspective emphasises the conceptual
importance of purposeful everyday interactions with the external world,
such as navigating the environment, rather than taking ‘higher cognition’
to be the primary phenomenon of interest.

4E approaches to cognitive science reject any conception of cognition
as a purely intellectual phenomenon. Instead they hold that cognition
is a process of real-time, physically embodied, purposeful interaction be-
tween an agent and its environment. Under this view, bacterial chemo-
taxis (following a chemical gradient towards a nutrient) is a cognitive
phenomenon; supposedly ‘higher’ forms of cognition (such as human
logical reasoning) are simply more complex versions.

This means there will be important differences in how philosophers
usually conceptualise reasoning, and how I will talk about it in this
article. In particular, as a 4E cognitive scientist, when I consider math-
ematical or logical reasoning, I have in mind the complex and messy
processes that take place in humans: biased and scaffolded by our own
embodiment, potentially subject to everyday distractions from the out-
side (a doorbell ringing) or from the inside (a stomach growling), and
potentially involving the external world (pen and paper, or discussion
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with a colleague). Moreover, the starting point of my analysis is a task

that involves physical interaction with the world: the bodily process of
naming a number out loud in a particular language.

This informal conception of logical reasoning does not invoke any
abstract, disembodied, ideal mind (such notions are regarded with sus-
picion by 4E cognitive scientists) but rather seeks to better understand
those processes we call ‘reasoning’ by situating them on a broader spec-
trum of processes that occur in real humans, other organisms, and ar-
tificial agents such as robots. In this way, reasoning is construed as a
real-world process occurring over time, necessarily involving a succession
of meaningfully different internal states.

Since this perspective treats reasoning as inherently diachronic, it
may also have productive applications to discussions about diachronic

rationality in philosophy (see, e.g., Staffel, 2019). However, I will not
explore that topic in this article.

The main thesis of this article is that we can gain some useful insights
by applying a particular set of formal tools (involving sensorimotor in-
formation flow) to a mental arithmetic task. This does not require the
reader to endorse any of the tenets of 4E cognitive science (although
it is certainly inspired by my own practice as a 4E cognitive scientist).
In fact, in some sense I am defying a standard doctrine in 4E cognitive
science, which holds that in order to understand ‘higher’ cognitive capac-
ities such as abstract reasoning, we need to first understand simpler sorts
of everyday bodily competence; instead, I am applying a sensorimotor
information flow analysis directly to ‘higher’ cognition in the form of
(embodied) mental arithmetic.

5. Sensorimotor cognition

One particular strand of 4E cognitive science focuses on sensorimotor

cognition: this relates to the coupled dynamics of an agent and its envi-
ronment through sensors, actuators, and the agent’s bodily morphology
as well as its brain2. In particular, this process is understood as a com-
plex ‘sensorimotor loop’ in which effective problem-solving looks very
different than ‘offline’, less-interactive scenarios.

For instance, an influential model of how outfielders in baseball catch
fly balls is the optical acceleration strategy (Chapman, 1968), in which

2 If it has a brain.
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the outfielder moves to keep the ball’s image moving at a constant rate in
their visual field. This strategy is robustly successful, without requiring
any detailed internal ‘model’ of how balls move, or any complicated
planning process.

Sensorimotor dynamics is also the focus of O’Regan and Noë’s (2001)
sensorimotor contingency theory, which emphasizes that perception is
not a passive reception of visual data, but an active process involving
the exploration of the environment. In vision, for example, perceiving
the 3D shape of an object involves understanding how sensory input
changes with movement — a dynamic sensorimotor interaction.

There is much to be said about how supposedly ‘higher’ forms of
cognition (such as human mathematical reasoning) relate to more basic
sensorimotor processing (see, e.g., Lakoff and Johnson, 2008; Lakoff and
Núñez, 2000): according to 4E cognitive scientists, conscious human
reasoning is not separate from everyday pragmatic bodily competences,
but builds on (and is biased by) those bodily competences in complex
ways. However, we will not consider those issues in this article; instead,
we will see how a sensorimotor approach can be applied directly to a
mental arithmetic task.

6. Information agents

One approach to sensorimotor cognition is the information agent formal-
ism (Ay and Polani, 2008), which models sensorimotor processes using
the tools of statistical information theory, by considering the dynam-
ics of a probability distribution over the state variables of the agent-
environment system. This distribution can be interpreted as a statistical
ensemble in the sense of statistical mechanics. Let’s call the agent’s inter-
nal state Xt and the environment’s state Yt; these are random variables
in some statistical ensemble P (Xt, Yt). The agent is assumed to interact
with its environment through ‘sensor’ and ‘actuator’ channels St and At.
Figure 1 shows the Bayesian graph for the resulting stochastic process.
(A Bayesian graph, also known as a Bayesian network, encapsulates con-
ditional independences between random variables in a probability space.
Each variable is conditionally independent of its non-descendants, given
its parents.)

Intuitively, we can think of adaptive behaviour in terms of informa-
tion entering via the sensors and being emitted via the actuators; this
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Figure 1. Partial Bayesian graph showing the conditional independence rela-
tions between successive time steps for internal and external variables X and
Y and ‘sensorimotor’ variables S and A. In this paper, we assume that S is a

deterministic function of Y and that A is a deterministic function of X.

intuition finds formal expression in the observation that (in such cases)
there is non-zero mutual information between the agent’s actions At and
its previous sensory history S<t; in other words I(At; S<t) > 0.

This quantity I(At; S<t) comes from Shannon information theory
(see, e.g., Cover, 1999), and the information agent framework considers
information-theoretic relationships between the variables in figure 1. Al-
though Shannon originally framed his equations in terms of a ‘theory
of communication’, his approach can be used more broadly, to measure
degrees of abstract variation and covariation in random variables.

A key concept in Shannon information theory is the (Shannon) en-

tropy H(X) of a random variable X , defined for a discrete3 probability
measure p as

H(X) = −
∑

x∈X p(x) ln p(x)

Entropy is usually described as a measure of uncertainty, but we can
also think of it as simply an abstract measure of the variability of a dis-
tribution. Notice that discrete entropy depends only on the probability
of outcomes x, and not on the value that x takes; this means that it is
invariant to relabellings of the random variable X , unlike measures such
as standard deviation which can change significantly if the measurement
scale changes in a non-linear manner. Discrete entropy is strictly non-
negative; it is minimised (equal to zero) when the probability distribution

3 Shannon information theory can readily be extended from discrete distributions
to continuous ones. In the continuous case, entropy is a bit slippery (due to how
integration works, it is scale-dependent, and can be negative), but continuous mutual
information has most of the same properties that discrete mutual information has.
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is a delta function (i.e., all the probability mass is concentrated in a single
value), and maximised by a uniform probability distribution.

Given a joint distribution over two variables P (X, Y ) the mutual in-

formation IP (X ; Y ) between X and Y can be defined as H(X)+H(Y )−
H(X, Y ), where H(X) and H(Y ) are the individual entropies of X and
Y , and H(X, Y ) can be seen as the joint entropy of the random vari-
able (X, Y ) whose values are (x, y) pairs. Like discrete entropy, mutual
information is non-negative and labelling-insensitive. When X and Y

are independent, i.e. P (X, Y ) = P (X)P (Y ), giving IP (X ; Y ) = 0; when
X and Y are related by some deterministic bijective function, we have
IP (X ; Y ) = H(X) = H(Y ).

Usually, for reasons I will omit here, this quantity IP (X ; Y ) is inter-
preted as the amount that one’s uncertainty about X would decrease, on
average, if one learned Y ; it is symmetric, hence the term ‘mutual’ in-
formation. Alternatively, we can see it simply as a very general measure
of how much X and Y are systematically related.

Since statistical (Shannon) information theory offers general mea-
sures of how non-uniform a probability distribution is, and how system-
atically related two variables are, it has extremely broad application.
It has close relationships with algorithmic (Kolmogorov-Chaitin) infor-
mation theory in computer science, and with thermodynamic quantities
in physics. It is widely used in communications engineering, machine
learning, theoretical neuroscience and bioinformatics, amongst other dis-
ciplines.

One might reasonably ask: what does any of this have to do with
semantics? In brief, the answer is: the information agent framework ap-
plies as readily to (embodied applications of) conscious human reasoning
as it does to bacterial cognition. We will see how this can be related to
intension and hyperintension in the next section.

7. Information agents and (hyper)intension

Suppose Alice is performing a mental arithmetic task: she must compute
the value 317 × N , for some positive integer N that she is given shortly
after the task begins. Intuitively, we can think of Alice’s beliefs changing
as follows:
1. Alice begins at time t1 not knowing either N or 317 × N . This is

when she is told aloud in English that N has some specific value (say,
“two hundred and forty five”).
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2. By time t2, Alice has processed the auditory information specify-
ing N , and now has a definite belief about the value of N (in this
case, “N=245”), but has not performed the computation, so she is
uncertain as to the value of 317 × N .

3. By time t3, Alice has performed the computation and acquired the
belief that 317 × N has a particular value (in this case, “317 × N =
77665”).

The mental transition from t2 to t3 is a classic example of hyperinten-
sional change: “N = 245” has the same intension as “317 × N = 77665”,
because there is no possible world in which one of these holds and not the
other. But since Alice’s beliefs are not closed under logical entailment
(in the formal semanticists’ parlance), she can believe “N = 245” without
being sure whether “317×N = 77665”. This is why “Alice believes that”
is a hyperintensional operator.

This is a standard philosophical account of the semantics involved
in a mental arithmetic task. But if we shift our attention from Alice’s
beliefs to Alice’s internal (physical) state, and apply statistical tools in
the spirit of the information agent framework, we will see something
rather interesting.

The fact that the function f(n) = 317n is a bijection is what makes
the belief “N = 〈n〉” possess the same intension as the belief “317×N =
〈317n〉”. A basic result in information theory establishes that mutual
information is invariant under relabelling of variables4, i.e. I(X ; A) =
I(X ; B) when there is a bijection between A and B. In our scenario:
suppose some arbitrary random variable X is correlated with the random
variable N ; then X must be correlated to an identical degree with the
random variable 317 × N .

Let’s model the arithmetic task, across a range of values of N , using
the Bayesian graph in Figure 2. At time 0, Alice’s state X0 is not corre-
lated with the value of N . Sensory information about N enters through
S1 and is appropriately emitted some time later in Alice’s answer A3.

In this model, I have assumed that Alice does the calculation entirely
“in her head”, without storing any relevant information externally (e.g.,
by using pen and paper). This guarantees that correlation between A3

and N is mediated entirely through Alice’s intermediate state X2, i.e.

4 In the discrete case, invariant under any relabelling; in the continuous case,
invariant under continuous relabelling transformations.
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N

X1

S1

X2 X3

A3

Figure 2. Bayesian graph for a mental arithmetic task. Irrelevant sensorimotor
variables are not shown. N is a random number; Xt is Alice’s internal state at
time t; S1 is a sensory variable at time t = 1; A3 is an actuator value at time

t = 3.

that the conditional mutual information I(X3; N | X2) between N and
X3 given X2 is equal to zero.

I’ll also assume that Alice doesn’t forget any information about N

between time t2 and t3, which implies that the conditional mutual in-
formation I(X2; N | X3) is also zero; putting I(X3; N | X2) = 0 and
I(X2; N | X3) = 0 together, we obtain that I(X2; N) = I(X3; N). In
other words, X2 correlates with N to the same degree that X3 does.

Informally, we can think of Alice’s dynamics as pumping statistical
information about N that is contained in the physical sensory stimuli S1

into her physical actuators A3. Remember, the statistical information
about N is identically information about 317 × N , because of the bijec-
tion. This same information (about N / 317 × N) is present in Alice’s
state at time t = 1, but it has not yet made it out into her actuators.

The statistical model here is a purely physicalist one (the variables
are meant to be understood as physical variables), so in the absence of a
theory specifying how to map physical states to mental states, we need
to be careful about relating it to belief-talk and knowledge-talk. But it
seems reasonable to suppose that knowing “317×N = 〈317n〉” poises an
English speaker to name 317 × N in English more quickly than knowing
“N = 〈n〉”. This allows us to relate the semantics to the physics: in state
X3, the Alice-ensemble is poised to perform, without meaningful delay,
the sequence of muscle actions that correspond to naming 317 × N out
loud in English; state X2 also produces this sequence of muscle actions,
but only after a delay (since they don’t occur until time t3).

In this sense, despite the fact that X2 and X3 correlate to the same
extent with N , the correlations are not functionally equivalent. It mat-
ters whether the Alice-environment-ensemble is distributed according to
P (X2, N) or P (X3, N): in the second ensemble, the information has
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been ‘processed’ into a form that can be fed directly5 into her actuators;
in the first ensemble, that has yet to happen.

At a conceptual (rather than formal) level, there is a tantalising
analogy between the semantics and the statistical dynamics:
• Alice’s beliefs “N = 〈n〉” at t2 and “317 × N = 〈317n〉” at t3 are

intensionally equivalent, but hyperintensionally different. They can
be said to represent the same (intensional) information about N , in
the sense that they pick out the same set of possible values for N ,
but in a different form (in that their internal structure is different).

• The states X2 and X3 of the Alice-ensemble at times t2 and t3 carry
the same (statistical) information about N , in that I(X3; N | X2) =
I(X3; N | X3) = 0, but in a different form, since the distribution
P (X3, N) differs from the distribution P (X2, N).
Moreover, it’s reasonable to suppose that differences in the internal

structure of Alice’s beliefs correspond to differences in her internal state
and sensorimotor dynamics. Apart from anything else, if she can respond
more quickly to questions of the form “What is 317 × N” when she
believes that “317 × N = 〈317n〉” than when she lacks such a belief,
then this must correspond to some relevant functional difference in her
internal state.

These parallels may naively suggest a straightforward model of sen-
sorimotor intension: consider some joint distribution P (X, X ′, Y ). Then
we might imagine saying that X and X ′ are ‘intensionally equivalent’
iff X and X ′ carry the same information about Y , relative to Y , i.e.
I(X ; Y | X ′) = I(X ′; Y | X) = 0; and we might find some similar story
to tell about ‘hyperintensional equivalence’.

Unfortunately, even as a model of merely intensional equivalence, this
naive formulation would overlook a well-known problem with statistical
information theory: correlations are not always meaningful. I discuss
this issue further in the next section.

8. ‘Syntactic’ and ‘semantic’ statistical information

Shannon information deals only with brute statistical correlation, some-
times called ‘syntactic information’ (Kolchinsky and Wolpert, 2018; Lom-
bardi, 2004; Zhong, 2017). This complicates the study of information dy-

5 Well, relatively directly. In reality, vocally articulating words is a complex
real-time process involving muscular and auditory feedback.
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namics in embodied cognition, where some correlations are meaningful
and some are not.

For instance, C3 plants such as rice and wheat have less 13C in their
tissues than C4 plants such as maize and sorghum; these carbon isotopes
find their way into the tissues of animals which eat the plants (and
animals that prey on those animals). Consequently, there is a correlation
between the 12C / 13C isotope ratio in an animal’s tissues, and the
prevalence of C3 and C4 plants in its environment. This correlation
seems of a different sort than the correlation between, e.g., activity in
the optic nerve and visual stimuli presented to the eye; the latter clearly
carries functionally relevant biological information, while (as far as we
know) the information carried by isotopes in an animal’s tissues about
the plants in its environment plays no meaningful role.

Another way to think about this distinction is to observe that in
the information-agent framework, a mutual information quantity such
as I(X ; Y ) represents the amount of information that X provides to an

external theorist about Y , which need not correspond to any meaningful
information for the agent itself (Beaton and Aleksander, 2012).

We can make this clear in the mental arithmetic scenario as follows.
Suppose that, prior to t1, Alice has swallowed a hardy capsule with N

written inside it on a piece of paper. Although this is not cognitively
relevant, it seems fair to describe the capsule as part of her internal
physical state, since it is literally inside her.

This version of the task has a different Bayesian graph (see Figure
3). In the information agent framework, the environment can only affect
the internal state of the organism via “sensory” variables, so we need to
introduce a new variable S0 which includes the state of the pill as it is
swallowed. This variable feeds into X1, correlating Alice’s internal state
with N even before she hears the value of N via S1.

Remember that the statistics of this scenario represent information
for the theorist. If an external daemon-like theorist, understanding the
setup, wanted to know what N was, they could infer the same informa-
tion about N ’s value from knowing the state of Alice’s stomach (con-
taining the pill) as they could from knowing the state of Alice’s brain
(having processed the name of N in English).

In the pill-swallowing scenario, both X1 and X2 carry the same in-
formation about N , albeit in different ways. According to the naive
brute-statistical notion of embodied semantics suggested in the last sec-
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X1

S1

X2 X3

A3N

S0

Figure 3. Bayesian graph for a mental arithmetic task with a functionally ir-
relevant variable introduced via a pill. N is a random number; Xt is Alice’s
internal state at time t; S0 is a functionally irrelevant causal variable that
correlates X1 with n; S1 is a ‘true’ sensory variable at time t = 1; A3 is an

actuator value at time t = 3.

tion, Alice’s state X1, before she has been told N in English, must thus
be intensionally equivalent (relative to N) to her state X2.

But this is nonsense. The reason that Alice gives the correct answer
A3 at time t3 is because she heard N named via S1; it is certainly not
that she swallowed a pill with N written on it, since there is no functional
pathway that allows this information to flow appropriately into Alice’s
vocal muscles.

In our model, this fact is a causal one, not a statistical one, since I
have supposed that S1 and S0 are equally correlated with A3. In order to
see that S1 is relevant while S0 is not, we will need to consider counter-
factual interventions à la Pearl (2000). Kolchinsky and Wolpert (2018)
introduce a useful trick here (there is a similar approach in (McGregor
and Mediano, 2018)), which we will encounter in the next section.

9. Intervening to decorrelate

In the pill-swallowing scenario, Alice’s states X1, X2 and X3 are all
equally correlated with N . But we are interested in picking out those
correlations that serve a purpose. We will pursue an approach similar
in spirit to Pearlian intervention (Pearl, 2000) but which modifies en-
tire distributions instead of individual variables, typically changing the
Bayesian graph (unlike Pearl’s framework). Suppose that we magically
‘intervened’ at time t to decorrelate Xt from N . In the original distri-
bution P , we can factor the joint distribution P (A3, Xt, N) as follows:

P (A3, Xt, N) = P (A3 | Xt, N)P (Xt, N) (1)
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Let’s define a ‘scrambled’ distribution P̂t, defined as

P̂t(A3, Xt, N) = P (A3 | Xt, N)P (Xt)P (N) (2)

We have decorrelated Xt and N in P̂t, but retained the conditional
dependence P (A3 | Xt, N).

In the scrambled ensemble P̂1(A3, X1, N) = P (A3 | X1, N)P (X1)
P (N), there is still a pill in Alice’s stomach at time t = 1 with a number
written on it, but this writing is no longer correlated with N . Now we
can ask the question: how would the scrambled Alice-ensemble perform
on the mental arithmetic task? It seems overwhelmingly likely that her
performance would be unchanged by this scrambling. The important
correlation, which is between her relevant brain state and the value of
N , is preserved under P̂1 because the term P (A3 | X1, N) involves the
crucial pathway through S1 and X2.

Now let’s consider the implications for Alice’s performance if we
scrambled at time t = 2. We have defined P̂2(A3, X2, N) = P (A3 |
X2, N)P (X2)P (N). This corresponds to the behaviour of an ensemble in
which Alice performs the mental arithmetic task, but for a number that
is uncorrelated with N . Clearly, her performance will drop significantly
in P̂2 compared to P .

Similarly, we can perform the scrambling at time t = 3, giving
P̂3(A3, X3, N) = P (A3 | X3, N)P (X3)P (N). In this ensemble, Alice has
completed the mental arithmetic task, but for a number uncorrelated
with N , and gives her answer A3. Again, Alice’s performance will drop
significantly.

Kolchinsky and Wolpert present a formal version of this idea. They
begin with an ensemble P (X, Y ) and a ‘viability function’6 V : Prob(X ×
Y) → R. They then define what they call a ‘viability-optimal interven-
tion’ distribution P̂ opt(X, Y ) (I will call it a ‘semantic ensemble’), which
is a ‘scrambled’ version of P (X, Y ) in which, intuitively speaking, X

and Y have been decorrelated as much as possible without impacting
performance on the viability function V .

The details of this optimal scrambling involve a ‘coarse-graining’
function φ of the sample space Y, which allows to perform partial decor-
relations as well as complete decorrelations (Kolchinsky and Wolpert,

6 Kolchinsky and Wolpert specifically define V as the entropy of X after a fixed
time t (under normal dynamics); this is a special case of the version I give here.
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2018). Partial decorrelations turn out not to arise in my mental arith-
metic scenario, so I will present a highly abbreviated version of the
coarse-graining idea. Given a coarse-graining φ : Y → Z, where Z is an
arbitrary set of labels, they define the φ-scrambled distribution P̂ φ as

P̂ φ(X = x, Y = y) = P (X = x | φ(Y ) = φ(y))P (Y = y) (3)

In the case where φ assigns the same label to every y ∈ Y, this cor-
responds to a complete decorrelation P̂ φ(X, Y ) = P (X)P (Y ); in the
case where φ is the identity function, we do not decorrelate at all:
P̂ φ(X, Y ) = P (X, Y ). Other functions can correspond to partial decor-
relation.

Kolchinsky and Wolpert define a semantic ensemble (viability-optimal

intervention) P̂ opt as a scrambled distribution P̂ φ∗

such that

φ∗ = arg min
φ:V (P̂ φ)=V (P )

Îφ(X ; Y ) (4)

where Îφ(X ; Y ) is the mutual information between X and Y under the
intervened distribution P̂ φ. Intuitively speaking, φ∗ coarse-grains Y as
much as possible without changing the performance V .

To incorporate coarse-graining into our scenario, we’ll consider differ-
ent coarse-grainings φt : t ∈ {1, 2, 3} that we will use to induce scrambled
distributions as follows:

P̂t

φt

(A3, Xt, N) = P (A3 | Xt, N)P (Xt | φt(N))P (N)

The above equation is a version of equation (2) that introduces partial
dependence of Xt on N via a coarse-graining function φt, as per equa-
tion (3). The optimal scramblings (for Alice’s mental arithmetic task)
are straightforward; in the interests of brevity, I present only informal
derivations here.

Where X1 is concerned (Alice’s state after ingesting the pill, but
before hearing the value of N), a viability-optimal φ1 assigns the same
label to every n in the support of P (N), e.g., φ1(n) = ∅. This means
that

P̂1
φ1

(A3, X1, N) = P (A3 | X1, N)P (X1)P (N) (5)

which is the same fully-decorrelated distribution P̂1 we saw in equation
(2), with t = 1. As we discussed earlier, Alice’s performance is the same

under such a P̂1
φ1

, and the scrambled mutual information Îφ1(X1; N) is
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zero, which must be minimal (since mutual information is non-negative).
Hence this φ1 is viability-optimal.

By contrast, where X2 and X3 are concerned, a viability-optimal φ2

or φ3 assigns a distinct label to every n in the support of P (N), e.g.,
φ2(n) = n. This means that

P̂
φ2

2 (A3, X2, N) = P (A3 | X2, N)P (X2, N) (6)

P̂
φ3

3 (A3, X3, N) = P (A3 | X3, N)P (X3, N) (7)

which are the fully-correlated distributions from equation (1) for t = 2
and t = 3. For both t = 2 and t = 3, any less-informative coarse-
graining than this φt will impact Alice’s performance, because it must
lump together two distinct values n, n′ which are meant to have different
answers, but for which Alice’s answer distribution will be the same.
Hence these φt are viability-optimal.

Kolchinsky and Wolpert (2018) use their notion of an ‘optimal in-
tervention’ (what I am calling a semantic ensemble) to define something
called a ‘semantic content’ distribution: a conditional scrambled distri-
bution P̂ φ(Y | X = x) where φ is a viability-optimal coarse-graining of
P under V .

I have some reservations about how to interpret this semantic content
distribution. For instance, while Kolchinsky and Wolpert talks about
‘the’ semantic content distribution P̂ φ(Y | x), in general there can be
more than one distinct viability-optimal scrambling P̂ φ, since the arg min
operator in (4) may not have a unique value. There are clearly nuances
to be teased apart here, and work still to be done.

Nevertheless, whatever the correct interpretation of a semantic con-
tent distribution P̂ φ(Y | x) may be, the distribution expresses something
akin to a task-oriented concept of representational content. I will argue
in the next section that this distribution is ‘purely intensional’ in its
semantic flavour, failing to capture hyperintensional-like features, thus
illustrating an embodied analogue of the distinction between intension
and hyperintension.

10. ‘Semantic content’ distributions in the mental
arithmetic task

As explained in the previous section, Kolchinsky and Wolpert use their
notion of an ‘optimal intervention’ P̂ opt(X, Y ) (what I am calling a se-
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mantic ensemble) to define something called a ‘semantic content’ distri-
bution P̂ opt(Y | x) for a particular state x. By analogy, let’s call the
conditional distribution P (Y | x) under the syntactic ensemble P the
‘syntactic content’.

Consider again the graph in figure 3. I’ll suppose that N is a de-
terministic function N = λ1(X1) of X1 (Alice’s state after swallowing
the inscribed capsule), another deterministic function N = λ2(X2) of
X2 (Alice’s state after hearing the value of N in English, but before
performing the computation), and yet another deterministic function
N = λ3(X3) of X3 (Alice’s state after performing the computation), so
that in general

N = λt(Xt) (8)

Let us compare the syntactic content P (N | Xt = xt) and the seman-

tic content P̂t

opt
(N | Xt = xt) of states xt at different times. Because

we assumed that N = λt(Xt), the syntactic content for every t is a
Kronecker delta distribution

P (N = n | Xt = xt) = δn λ(xt) (9)

with all the probability mass concentrated on the particular value n =
λt(xt). For semantic content the story is a little different:

P̂t

opt
(N = n | Xt = xt) =

{

P (N = n) if t = 1

δn λt(xt) otherwise

This is because P̂1
opt

(N, Xt) = P (N)P (Xt) from equation (5), while for

t ∈ {2, 3} we have P̂t

opt
(N, Xt) = P (N, Xt) from equations (6) and (7),

and hence P̂t

opt
(n | xt) = P (n | xt), which is δn λ(xt) as in equation (9).

How does this correspond to an informal account of the correlations
between Alice’s state Xt and N? The syntactic content distribution
P (N | xt) of an internal state xt at time t is essentially the epistemic
state of an external daemon-like theorist who learns that Xt = xt; in this
case, this is the certain knowledge that n = λt(xt). This makes sense for
all t ∈ {1, 2, 3}.

The correlation between N and Alice’s state X1 (after swallowing
the pill, but before hearing the English name of N) is not functionally

meaningful, so the semantic distribution P̂1
opt

(N | x1) for every x1 is the
uninformed prior distribution P (N). Although the information about N



20 Simon McGregor

is present in Alice’s state “for the theorist”, it is not present in a way
that can appropriately influence Alice’s actions.

After hearing the value of N , Alice’s state is (perfectly) functionally

correlated with N , and the semantic content distribution P̂t

opt
(N | xt) is

the Kronecker delta function δn λt(xt). This is the same as the syntactic
content, because all the information available to the theorist about N in
Alice’s state actually finds its way out into appropriate action.

Imagine that we sample values (x2, x3, n) from P (X2, X3, N). Then,
under the assumptions we have made, it will hold with probability 1 that
λ2(x2) = λ3(x3) = n. Let’s suppose that λ2(x2) has the particular value
143. We might reasonably describe the state x2 as encoding the fact
that N = 143. But it’s important to note that (intensionally speaking)
this is equivalent to the fact that (317 × N) = 45331.

So we cannot make the claim that Alice’s state X3 carries (mean-
ingful) statistical information about the correct answer to the question
‘What is 317 × N?’ which was not present in X2. But something impor-
tant does change between X2, before Alice has performed the computa-
tion, and X3, after she has performed it. The thing that changes is how

information about N is (meaningfully) encoded in Alice’s state.

In this article, I do not offer a formal theory of how information is
functionally encoded in internal state, but the next section discusses the
concept further at an informal level.

11. The changing form of functional information

In this section I will consider why it might make intuitive sense to dis-
tinguish between the form and the content of (statistical) information
carried by functionally meaningful correlations between Alice’s state and
her environment.

Alice’s physical dynamics are such that, in order for the information
about N in S1 to feed into her vocal muscles so that she names the value
of (317 × N) in English, a series of internal changes must occur. These
changes do not involve the acquisition of new (Shannon) information
about (317×N): the changes do not make the overall state of the Alice-
ensemble any more correlated with N . Instead, as it were, they are part
of the process by which Alice pumps relevant information, over time,
from her sensory stimuli into her actuators.
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During this process of (meaningful) information working its way from
sensors to actuators, the manner in which Alice’s internal state encodes
the relevant information changes. For instance, when (317×N) = 45331,
this will be encoded at t = 2 by some x2 such that λ2(x2) = 143 according
to equation (8). But in this state, Alice is not yet ready to give the
answer. Her state has to change into some x3, where λ3(x3) = 143,
before her muscles will twitch in the right way.

Philosophers often abstract away the sensorimotor processes involved
in human cognition, talking directly about mental states such as belief,
but the physics is worth paying attention to here. Very few physical
systems can convert a series of pressure waves in air, carrying sounds
that correspond to the name of an integer N in English, into a series
of pressure waves that name the integer (317 × N) in human-audible
English, over a wide range of different values of N . Rocks certainly do
not perform this conversion. While humans like Alice are not the only
system that can convert one to the other (e.g., Amazon’s digital assistant
Alexa can also do so), the capability requires some complicated physical
mechanisms however it is implemented.

We saw that Alice’s state X2 at t = 2 encodes the value of N in a
different form than her state X3 at t = 3. This is not at all surprising,
if we see these states as intermediate steps in the state of a machine
that is implementing an intricately complex map from pressure waves to
pressure waves.

In many real-world cases, there is complex intermediate work to
be done when channelling sensory information into appropriate actu-
ator behaviour (i.e. producing actuator responses that are appropriately
matched to sensory stimuli). A succession of different internal states
is required to convert sensory stimuli into actuator signals, and these
successive states are functionally different from one another precisely
because they constitute different steps in the process.

If I am right, then (an embodied analogue) of hyperintensionality can,
in part, be accounted for by the sheer physical complexity of the stimuli-
to-actuator conversion processes that underpin sensorimotor cognition.
In particular, the ‘pipeline’ between the stream of sensory stimuli and
the stream of actuator behaviour requires changes in the functional form
of organism-environment correlation, even when no new relevant sensory
information is being received. This is a fundamentally 4E explanation,
to do with how bodies physically relate to, and interact with, their en-
vironment; it does not involve abstract properties of ideal thought.
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12. Hyperintensionality in bacteria

I’ve drawn attention to the processes in Alice, during the mental arith-
metic task, that involved transformations in how her internal state was
correlated with her sensory stimuli, in a way that allowed her actuator
behaviour to match the sensory stimuli appropriately. I have argued
that we can relate these processes to the formal semanticists’ distinction
between intension and hyperintension.

Roughly speaking, I have contrasted what we might call the ‘form’
of a (functional) correlation with its ‘content’; the ‘form’ is determined
by the details of the joint distribution of the variables, while the ‘con-
tent’ is determined by more abstract information-theoretic properties.
‘Form’, I claim, is an analogue of hyperintension, while ‘content’, which
is labelling-invariant, is an analogue of intension.

This narrative is very general: we can apply it to processes in bac-
teria just as readily as we can apply it to mental arithmetic in humans.
It does not presuppose that the internal states of the system should
be interpreted in terms of sentence-like ‘beliefs’ or even as ‘representa-
tional’ (except inasmuch as they functionally correlate with the external
environment).

For instance, consider a bacterium trying to move towards food. We
start at time t1 with an ensemble of bacteria whose internal states X1 are
determined by the distribution P (X1). At time t2 the bacterium detects
a burst of chemicals S1 which might be a toxin or a nutrient, resulting
in a new state X2. After a short processing delay, the bacterium enters
state X3 and emits an action A3 which corresponds to the rotation of its
flagella: if S1 was toxic, the flagella rotate clockwise, thereby rotating
the bacterium on the spot; if S1 was nutritious, the flagella rotate anti-
clockwise, thereby moving the bacterium forward.

The Bayesian graph for this process is shown in figure 4. Note that
this is identical to the graph for the mental arithmetic task in figure 2.
In both cases,
• information enters the system’s state X2 through sensory stimuli S1

at t1 (sounds naming N in Alice’s case; chemicals indicating N in
the bacterium’s case)

• and is emitted after a delay via state X3 which is a proximate cause
of the appropriate ‘action’ A3 (sounds naming 317 × N in Alice’s
case; direction of flagellar rotation in the bacterium’s case).
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N

X1

S1

X2 X3

A3

Figure 4. Bayesian graph for a bacterial locomotion task. Irrelevant sensori-
motor variables are not shown. Xt is the bacterium’s internal state at time t;
S1 is a sensory variable at time t = 1 corresponding to a chemical pulse; N is
the source of the chemical pulse; A3 is an actuator value at time t = 3 which

is sensitive to S1.

In Alice’s case it was natural to attribute sentence-like ‘beliefs’ to
her (“N = 〈n〉” at time t2, and “317 × N = 〈317n〉” at time t3). These
sentence-like beliefs are not too far from sentences in the formal logics
that historically underpin formal semantics.

But a sensorimotor information flow analysis is concerned with cor-
relations between sensory stimuli history and appropriate actuator be-
haviour; these are physical variables, not sentence-like beliefs.

I told a dynamical narrative about Alice’s performance on the men-
tal arithmetic task: the correlations between her actuator behaviour
and her sensory history are mediated by changes in internal state that
themselves must be correlated with relevant features of the environment,
and must somehow implement a complex transformation with a variety
of intermediate ‘forms’ in which the same information can be manifested
differently.

None of this dynamical narrative presupposes sentence-like beliefs. It
is equally applicable to biological information-processing in single-celled
organisms - a topic that is not usually the focus of formal semanticists.

13. Summary

I have claimed in this article that there are parallels between two different
domains of research: the world of formal semantics, and the study of in-
formation dynamics in sensorimotor cognition. In logic, the notion of hy-
perintensionality arose because the possible-worlds model underpinning
standard modal logics was inadequate for expressing certain operators.
This concept is almost unknown amongst scientists, but I think it has
relevance to the study of sensorimotor information dynamics.
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For instance, Kolchinsky and Wolpert (2018)’s “semantic informa-
tion” framework helps to bridge the gap between statistical ‘syntax’ and
statistical ‘semantics’. Unfortunately, this approach overlooks aspects of
statistical ‘semantics’ which relate to functional changes that occur in
the absence of new sensory information.

These functional changes are, so to speak, more to do with the partic-
ular internal physical form in which information is manifested, than the
content of that information (in the sense of what it would tell an ideal
external observer about the world); this informal distinction between
content and form has conceptual parallels to the semanticists’ distinction
between intension and hyperintension.

Likewise, attention to the real-world dynamics of human cognition,
and particularly to the functional pathway between sensors and actu-
ators, may be of conceptual interest to formal semanticists. By ab-
stracting such details away, they may be missing important parts of the
picture. For instance, I’ve argued that ‘sensorimotor hyperintensionality’
occurs in bacteria as well as humans, and for the same reasons. Perhaps
logicians could spare a few moments to contemplate the semantics of
bacterial cognition.

I hope that the reader will forgive me for not making any very definite
claims about exactly how we should formalise ‘embodied sensorimotor
hyperintensionality’, how close these conceptual parallels are, or what
insights they could offer to formal semanticists. The purpose of the
article is to stimulate discussion, rather than to provide any answers.
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