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with Non-Standard Modalities∗

Abstract. This paper introduces nested sequent calculi for modal logics
that include non-standard modalities as primitive operators in their lan-
guages. By non-standard modalities, we mean non-contingency, contin-
gency, essence, accident, impossibility, and unnecessity. We consider basic
normal modal logic K and its serial, reflexive, transitive, and symmetric
extensions. Our research begins by using Poggiolesi’s nested sequent calculi
as a foundation. These calculi are specifically designed for logics that are
formulated in a language that includes the necessity operator. Next, we
proceed to modify their rules to accommodate non-standard modalities.
We then establish the soundness and completeness of the resulting calculi.
As a consequence, we get that the nested sequent calculus for K is cut-
free. Subsequently, we provide a constructive cut admissibility proof for K.
Finally, we discuss the issues pertaining to the cut admissibility for the
extensions of K and their relationships with the so-called special structural
rules as well as the potential for considering other forms of non-standard
modalities.

Keywords: nested sequent calculus; cut elimination; modal logic; contin-
gency logic; essence logic; accident logic; paraconsistent logic; paracomplete
logic

1. Introduction

Alethic modal logic is commonly interpreted as a logic that deals with
concepts of necessity and possibility. These operators, either alone or
together, are typically included in the language of a modal logic. Modal
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logic, specifically proof theory for modal logic, is a highly advanced and
extensively studied field of research. However, it is worth considering
alternative forms of alethic modalities. The most evident and philo-
sophically significant choices are negative modalities (unnecessity and
impossibility) along with contingency and non-contingency. Negative
modalities can be considered as a specific form of negation. Unnecessity
can be seen as a paraconsistent negation, influenced by Jaśkowski’s find-
ings [16] and further developed by Béziau [2]. Impossibility, on the other
hand, can be viewed as a paracomplete negation, inspired by Béziau [2]
and expanded upon by Marcos [22]. Contingency and non-contingency
are understood as follows: a proposition A is contingent, if it is possible
and its negation ¬A is also possible (�A := ♦A ∧♦¬A); conversely, A is
non-contingent, if it is either necessary or its negation ¬A is necessary
(�A := �A ∨ �¬A).2

Alternatively, there is a slightly distinct approach that employs the
concepts of essence and accident. A proposition A is essentially true, if its
truth implies that it is necessarily true (◦A := A → �A). On the other
hand, a proposition A is accidentally true, if it is true, but its negation
¬A is possibly true (•A := A ∧ ♦¬A). These two modalities were
proposed by Marcos [23] (see also Gilbert and Venturi [14] for further
analysis). As Marcos notes in a further paper, ‘one could read •A as
saying that ‘A is the case, but could have been otherwise’: It works as
a kind of (local) connective for ‘accidental truth’. Similarly, ◦ could be
read as expressing a (local) notion of ‘essential truth” [22, pp. 202–203,
notation adjusted]. The falsehood counterparts for these modalities are
as follows. A statement A is considered to be essentially false, if its
falsity implies that it is necessarily false (◦̃A := ¬A → �¬A). On the
other hand, A is accidentally false, if it is false, but there is a possibility
that it could be true (•̃A := ¬A ∧ ♦A). These two modalities are also
due to Marcos [22], who interpreted •̃ ‘as a kind of (local) connective
for counterfactual truth’, a statement A ‘is not the case, but it could
have been’ [22, p. 191]. Their interpretation as ‘essentially false’ and
‘accidentally false’ modalities is presented in [32].

Other forms of essence and accident are also conceivable. Pan and
Yang [31] introduced the modalities of weak essence and strong accident:

2 The operator � can also be understood as representing concepts such as ‘igno-
rance’ [42], ‘knowing whether’ [9], ’no belief’ or ‘undecided’ [20], ‘(moral) indifference’
[44], ‘topological border’ [39], or ‘undecidability in Peano Arithmetic’ [45].
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A is weakly essentially true, if the fact that A is true implies that A is
possibly true (◦♭A := A → ♦A); A is strongly accidentally true, if A
is true, but ¬A is necessarily true (•♯A := A ∧ �¬A). In [32], their
falsity counterparts are given: A is weakly essentially false, if the fact
that A is false implies that A is possibly false (◦̃♭A := ¬A → ♦¬A);
A is strongly accidentally false, if A is false, but A is necessarily true
(•̃♯A := ¬A ∧ �A).

Let P be the set {p0, p1, . . .} of propositional variables and o be one
of the following modal operators: � (necessity), ♦ (possibility), � (non-
contingency), � (contingency), ◦ (true essence), ◦̃ (false essence), •
(true accident), •̃ (false accident), ◦♭ (weak true essence), •♯ (strong
true accident), ◦̃♭ (weak false essence), •̃♯ (strong false accident), ∼
(unnecessity/paraconsistent negation; ∼A := ♦¬A), and ∼̇ (impossibil-
ity/paracomplete negation; ∼̇A := �¬A). Let Foro be the set of formulas
built in the standard inductive way from the alphabet 〈P, o, ¬, ∧, ∨, →
, ↔, (, )〉. We write L

o to emphasize that a logic L is built in Foro. We
also consider extensions of Foro that include multiple modalities simul-
taneously.

Subsequently, we will refer to these alternatives to the conventional
selection of necessity and possibility as non-standard modalities. They
capture different aspects of concepts of being (non)contingent, essential,
or accidental. They might be helpful for philosophical reasoning and
clarification of various nuances of modal notions.

Although non-standard modalities are expressed via standard ones,
their proof-theoretic investigation is not always straightforward. For ex-
ample, Zolin [45] developed an uniform method of constructing Hilbert-
style axiomatic calculi for reflexive non-contingent logics, due to the
equation �A = A ∧�A. However, this method is not applicable to non-
reflexive non-contingent logics.3 Zolin developed also sequent calculi for
reflexive [45] and non-reflexive [46, 47] non-contingent logics. However, it
is important to note that none of these calculi are cut-free. Furthermore,
all of their modal rules diverge from the conventional classification of the
sequent rules as right and left rules.

Hilbert-style calculi for the essence and accident logics were devel-
oped by Marcos [23], Steinsvold [38], and Fan [10]. Fan also developed

3 The first works about Hilbert-style calculi for (non)contingent logics were con-
ducted in [26, 27, 28] (T�, T�, S4�, S4�, S5�, S5�). Additionally, it is worth noting
the contributions of Humberstone [15] (K�), Kuhn [18] (K4�), Fan, Wang, and Dit-
marsch [8] (KB�), and Zolin [46, 47] (K�, K4�, K5�, K45�).
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a combination of accident and contingent logics [11, 12]. Venturi and
Yago developed labelled analytic tableaux for these logics [43].

The Hilbert-style calculus for the ¬-free fragment of S5∼ (also known
as Béziau’s [2] logic Z) was introduced by Béziau [2] (and simplified
by Omori and Waragai [30]). The Hilbert-style calculus for S4∼ (also
referred to as Coniglio and Prieto-Sanabria’s [6] paraconsistent logic with
a topological semantics LTop) was presented by Coniglio and Prieto-
Sanabria’s [6]. Hilbert-style calculi for other normal modal logics with
∼ or ∼̇ in their languages were built by Marcos [22] as well as Mruczek-
Nasieniewska and Nasieniewski [25]. Sequent calculi for the logics with
unnecessity and impossibility operators were developed by Dodó and
Marcos [7] as well as Lahav, Marcos, and Zohar [19]. Both negative
modalities must be present in a language for their method, and some of
their calculi are cut-free.

Let o ∈ {�,�,◦,•, ◦̃, •̃,◦♭,•♯, ◦̃♭, •̃♯, ∼, ∼̇}, There are cut-free,
sound, and complete hypersequent calculi for S5o [32] and Béziau’s [2]
logic Z [1] based on Restall’s cut-free hypersequent calculus for S5� [36].
In this paper, we present a cut-free, sound, and complete nested sequent
calculus for Ko (with admissible structural rules, except contraction)
and sound and complete nested sequent calculi for KXo (with primitive
structural rules), where X ⊆ {T, D, 4, B}, based on Poggiolesi’s [34] cut-
free nested sequent calculi for K� and KX�.4

Hypersequent and nested sequent calculi extend the scope of an ordi-
nary sequent calculus framework. Sequent calculi are less convenient and
useful for researching non-standard modalities. If one wishes to achieve
the cut admissibility result, it is more preferable to use their generali-
sations. In the case of standard modalities, also there are examples of
logics which fail to have an ordinary cut-free sequent calculus (KB, DB,
TB, KB4 (these four logics, nevertheless, have the subformula property);
K5 and D5 [41]). However, in many cases, an ordinary sequent calculus is
sufficient to prove the cut elimination theorem for logics that include � or
♦ in their languages. Therefore, the analysis of non-standard modalities
appears to be more intricate when considering proof theory. Regarding
the logics examined in this study, it appears that hypersequent calculi

4 However, in certain specific instances, some logics may fall out of this list: as
follows from Zolin’s research [48], serial and non-serial non-contingency (and, hence,
contingency) logics have the same sets of tautologies; as follows from Fan’s studies
[10], reflexive and non-reflexive essence and accidence logics have the same sets of
tautologies.
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are insufficient for achieving cut elimination, notwithstanding their ef-
fectiveness for S5-based logics [32]. Therefore, we must employ a more
comprehensive framework: nested sequent calculi.

The structure of the paper is as follows. In Section 2, we describe
semantics of the logics in question. In Section 3, we provide an expla-
nation of nested calculi and introduce these calculi for the logics being
discussed. In Section 4, we prove soundness and completeness for the
considered calculi. In Section 5, we give a constructive cut elimination
proof for Ko. In Section 6, we address potential areas for further research,
issues related to cut admissibility, and examine additional non-standard
modalities inspired by provability logic.

2. Semantics

Let o ∈ {�,♦,�,�,◦,•, ◦̃, •̃,◦♭,•♯, ◦̃♭, •̃♯, ∼, ∼̇}. A triple M = 〈W,
R, ϑ〉 is said to be an Ko-model iff W is a non-empty set, R ⊆ W × W ,
and ϑ is a mapping from W ×Foro to {1, 0} such that it preserves classical
conditions for truth-value connectives and for all A ∈ Foro and x ∈ W we
have the following clauses for a given o, where R[x] := {y ∈ W : xRy}:

• ϑ(�A, x) = 1 iff ∀y∈R[x] ϑ(A, y) = 1,
• ϑ(♦A, x) = 1 iff ∃y∈R[x] ϑ(A, y) = 1,
• ϑ(�A, x) = 1 iff ∀y∈R[x] ϑ(A, y) = 1 or ∀y∈R[x] ϑ(A, y) = 0,
• ϑ(�A, x) = 1 iff ∃y∈R[x] ϑ(A, y) = 1 and ∃yR[x] ϑ(A, y) = 0,
• ϑ(◦A, x) = 1 iff ϑ(A, x) = 0 or ∀y∈R[x] ϑ(A, y) = 1,
• ϑ(•A, x) = 1 iff ϑ(A, x) = 1 and ∃y∈R[x] ϑ(A, y) = 0,
• ϑ(◦̃A, x) = 1 iff ϑ(A, x) = 1 or ∀y∈R[x] ϑ(A, y) = 0,
• ϑ(•̃A, x) = 1 iff ϑ(A, x) = 0 and ∃y∈R[x] ϑ(A, y) = 1,
• ϑ(◦♭A, x) = 1 iff ϑ(A, x) = 1 implies ∃y∈R[x] ϑ(A, y) = 1,
• ϑ(•♯A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈R[x] ϑ(A, y) = 0,
• ϑ(◦̃♭A, x) = 1 iff ϑ(A, x) = 0 implies ∃y∈R[x] ϑ(A, y) = 0,
• ϑ(•̃♯A, x) = 1 iff ϑ(A, x) = 0 and ∀∈R[x] ϑ(A, y) = 1,
• ϑ(∼A, x) = 1 iff ∃y∈R[x] ϑ(A, y) = 0,
• ϑ(∼̇A, x) = 1 iff ∀y∈R[x] ϑ(A, y) = 0.

A formula A is true at a world x ∈ W in a model M = 〈W, R, ϑ〉
(in symbols, M |=x A) iff ϑ(A, x) = 1. We say that A is true in M (in
symbols, M |= A) iff M |=x A for each x ∈ W .

We say that a model M = 〈W, R, ϑ〉 is based in the frame M =
〈W, R〉. A formula A is valid in a frame F (in symbols, F |= A) iff
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M |= A for each model M based on F . For any class F of frames, we
say that A is valid in F (in symbols, F |= A) iff F |= A for each F ∈ F .

A formula A follows from a set Γ of formulas (in symbols, Γ |=Ko A)
iff for every Ko-model M = 〈W, R, ϑ〉 and every x ∈ W , if each M |=x B
for each B ∈ Γ , then M |=x A. A formula A is Ko-valid iff ∅ |=Ko A,
i.e., M |= A for each Ko-model M.

We consider the following restrictions on R (by adding them on an
Ko-model one gets an KXo-model, where X ⊆ {T, D, B, 4, 5}):
• reflexivity: ∀x∈W xRx (T-logics);
• seriality: ∀x∈W ∃y∈W xRy (D-logics);
• symmetry: ∀x,y∈W (xRy implies yRx) (B-logics);
• transitivity: ∀x,y,z∈W

(
(xRy and yRz) implies xRz

)
(4-logics),

• the Euclideanness: ∀x,y,z∈W

(
(xRy and xRz) implies yRz

)
(5-logics).

3. Nested sequents

Definition 3.1 (Sequent). By a sequent we mean an ordered pair writ-
ten as Γ ⇒ ∆, where Γ and ∆ are finite multisets of formulas.

A nested sequent calculus is a generalisation of a hypersequent calcu-
lus proposed independently by numerous authors under different names:
nested sequents (Kashima [17]), deep sequents (Brünnler [4]), and tree-
hypersequents (Poggiolesi [34, 35]). Fitting [13] showed that “modal
nested sequents and prefixed modal tableaus are notational variants of
each other, roughly in the same way that Gentzen sequent calculi and
tableaus are notational variants” [13, p. 291]. We will follow Poggiolesi’s
explication of this method, but using Kashima’s name for it. Initially, we
will provide an informal explanation of the concept of a nested sequent.
Let us examine the Kripke tree depicted on the left:

x

y1 y2 y3

Γ0 ⇒ ∆0

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2 Γ3 ⇒ ∆3

To present this structure proof-theoretically we replace worlds with
sequents and get the tree presented on the right. We use a more compact
notation to shorten the formulation of the rules:

Γ0 ⇒ ∆0/Γ1 ⇒ ∆1; Γ2 ⇒ ∆2; Γ3 ⇒ ∆3
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x0

x1 x2

x4

x5 x6 x7

x8

x3

Figure 1. An example of a Kripke tree later transformed into a nested sequent

A forward slash plays here the role of the accessibility relation, the
semicolon represent the fact that sequents have the same height in the
tree. This nested sequent can be translated into the following modal
formula, where τ(Γi ⇒ ∆i) =

∧
Γi →

∨
∆i, 0 ¬ i ¬ 3:

τ(Γ0 ⇒ ∆0) ∨ �τ(Γ1 ⇒ ∆1) ∨ �τ(Γ2 ⇒ ∆2) ∨ �τ(Γ3 ⇒ ∆3)

Let us consider a more complicated example presented on Figure 1.
We put Si = Γi ⇒ ∆i (where 0 ¬ i ¬ 8) and replace xi with Si:

S0/S1; (S2/(S4/S5;S6;S7);S8);S3

It can be translated into the following modal formula, where τ is
defined as in the previous example:

τ(S0)∨�τ(S1)∨�
(
τ(S2)∨�(τ(S4)∨�τ(S5)∨�τ(S6)∨�τ(S7))∨�τ(S8)

)
∨�τ(S3)

A nested sequent encodes Kripke trees through the use of sequents.
We will now provide its formal definition, in accordance with [34, 35].

Definition 3.2 (Nested sequent; [34, Definition 6.1]).

• every sequent is a nested sequent;
• if S is a sequent as well as N1, . . . , Nl are nested sequents, then

S/N1; . . . ;Nl is a nested sequent.

Let N be a nested sequent, and let S represent a sequent that is a
component of N. We write N[S] when we intend to make a statement
regarding S. A formal analysis of the expression N[S] is presented in
[34], which introduces the concept of a zoom tree-hypersequent.

Definition 3.3. [34, Definition 6.3; slightly modified] The notion of a
zoom nested sequent is inductively defined as follows:
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• [∗] is a zoom nested sequent,
• if N1, . . . ,Nl are nested sequents, then [∗]/N1; . . . ;Nl is a zoom nested

sequent,
• if Ni[∗] is a zoom nested sequent and N1, . . . ,Ni−1,Ni+1, . . . ,Nl are

nested sequents, then [∗]/N1, . . . ,Ni−1,Ni[∗],Ni+1, . . . ,Nl is a zoom
nested sequent,

• if S is a sequent, Ni[∗] is a zoom nested sequent, and N1, . . . ,Ni−1,
Ni+1, . . . ,Nl are nested sequents, then S/N1, . . . ,Ni−1,Ni[∗],Ni+1,
. . . ,Nl is a zoom nested sequent,

• if S is a sequent, Ni[∗][∗] is a zoom nested sequent, and N1, . . . ,Ni−1,
Ni+1, . . . ,Nl are nested sequents, then S/N1, . . . , Ni−1, Ni[∗][∗],
Ni+1, . . . ,Nl is a zoom nested sequent.

Definition 3.4. [34, Definition 6.4; slightly modified] For all zoom
nested sequents N[∗], or N[∗][∗], and nested sequents K and L, we define
N[K] and N[K][L], the result of substituting K into N[∗], and the result
of substituting K and L in N[∗][∗], respectively, as follows, where S is a
sequent:

• if N[∗] = [∗], then N[K] = K,
• if N[∗] = [∗]/N1; . . . ;Nl and K = S/M1; . . . ;Mn, then

N[K] = S/N1; . . . ;Nl;M1; . . . ;Mn,
• if N[∗][∗] = [∗]/N1, . . . ,Ni−1,Ni[∗],Ni+1, . . . ,Nl and K = S/M1; . . . ;

Mn, then N[K][L] = S/N1; ...;Ni−1;Ni[L];Ni+1; ...;Nl;M1; ...;Mn,
• if N[∗] = S/N1, . . . ,Ni−1,Ni[∗],Ni+1, . . . ,Nl, then N[K] = S/N1,

. . . ,Ni−1,Ni[L],Ni+1, . . . ,Nl,
• if N[∗][∗] = S/N1, . . . ,Ni−1,Ni[∗][∗],Ni+1, . . . ,Nl, then N[K][L] =

S/N1, . . . ,Ni−1,Ni[K][L],Ni+1, . . . ,Nl.

Let us describe Poggiolesi’s nested sequent (tree-hypersequent) cal-
culi for modal logics [34, pp. 126–127]. The axiom (which is applied for
each propositional variable p and can be generalized for each formula A)
and propositional logical rules are as follows:

N[p, Γ ⇒ ∆, p]

[¬ ⇒]
N[Γ ⇒ ∆, A]

N[¬A, Γ ⇒ ∆]
[⇒ ¬]

N[A, Γ ⇒ ∆]

N[Γ ⇒ ∆, ¬A]

[∧ ⇒]
N[A, B, Γ ⇒ ∆]

N[A ∧ B, Γ ⇒ ∆]
[⇒ ∧]

N[Γ ⇒ ∆, A] N[Γ ⇒ ∆, B]

N[Γ ⇒ ∆, A ∧ B]
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[∨ ⇒]
N[A, Γ ⇒ ∆] N[B, Γ ⇒ ∆]

N[A ∨ B, Γ ⇒ ∆]
[⇒ ∨]

N[Γ ⇒ ∆, A, B]

N[Γ ⇒ ∆, A ∨ B]

[→⇒]
N[Γ ⇒ ∆, A] N[B, Γ ⇒ ∆]

N[A → B, Γ ⇒ ∆]
[⇒→]

N[A, Γ ⇒ ∆, B]

N[Γ ⇒ ∆, A → B]

[↔⇒]
N[B, Γ ⇒ ∆, A] N[A, Γ ⇒ ∆, B]

N[Γ ⇒ ∆, A ↔ B]

[⇒↔]
N[A, B, Γ ⇒ ∆] N[Γ ⇒ ∆, A, B]

N[A ↔ B, Γ ⇒ ∆]

Modal rules for the logic K�, where X is a multiset of nested se-
quents, are given below:

[�⇒]
N[�A, Γ ⇒ ∆/(A, Θ ⇒ Λ/X)]

N[�A, Γ ⇒ ∆/(Θ ⇒ Λ/X)]
[⇒�]

N[Γ ⇒ ∆/ ⇒ A]

N[Γ ⇒ ∆,�A]

Informally, the relationship between these rules and the semantics
can be expressed as follows: the right rules, if read top-down, express
the right-to-left truth clause and the left rules, if read bottom-up, express
the left-to-right truth clause (see [29] for more details).

Poggiolesi [34] does not give the rules for ♦, but it is quite easy to
formulate them, employing the equality ♦A = ¬�¬A:

[♦⇒]
N[Γ ⇒ ∆/A ⇒]

N[♦A, Γ ⇒ ∆]
[⇒♦]

N[Γ ⇒ ∆,♦A/(Θ ⇒ Λ, A/X)]

N[Γ ⇒ ∆,♦A/(Θ ⇒ Λ/X)]

Definition 3.5 (Proof). By a proof in a nested sequent calculus we
mean a tree which nodes are nested sequents such that leaves are axioms
and other nodes are obtained from the upper ones by applications of the
rules of the calculus.

Poggiolesi presents specific logical rules for extensions of K� (in two
versions, pp. 125 and 127 in [34]; we describe the second version) together
with specific structural rules [34, p. 125]. Every pair of these rules cor-
responds to the axioms/properties of the accessibility relation R. Both
special logical and structural rules are sound with respect to frames that
possess the corresponding properties of their accessibility relations. T-,
D-, B-, 4-, and 5-axioms5 can be proved employing the corresponding
special logical rules as well as special structural rules. Both types of
the rules are helpful for the cut elimination: in order to eliminate cuts

5 The formulas we refer to are as follows, respectively: �A → A, �A → ♦A,
A → �♦A, �A → ��A, and ♦A → �♦A.
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generated by special logical rules, one requires special structural rules.
Poggiolesi proved that special structural rules are height-preserving ad-
missible in the calculi with special logical rules [34, Lemmas 6.13–6.17].
She observes that the rules associated with the 5-axiom “do not reflect
the strength and power“ of this axiom [34, p. 126], because to issues
with cut elimination, the calculus for K5 obtained in this manner is not
cut-free and also lacks completeness. Consequently, in our examination
of non-standard modalities, we exclude Euclidean logics to circumvent
such issues.

Let us present the aforementioned special logical and structural rules:

[D]
N[�A, Γ ⇒ ∆/A ⇒]

N[�A, Γ ⇒ ∆]
[D̃]

N[Γ ⇒ ∆/ ⇒]

N[Γ ⇒ ∆]

[T]
N[�A, A, Γ ⇒ ∆]

N[�A, Γ ⇒ ∆]
[T̃]

N[Γ ⇒ ∆/(Θ ⇒ Λ/X)]

N[Γ, Θ ⇒ ∆, Λ/X ]

[4]
N[�A, Γ ⇒ ∆/(�A, Θ ⇒ Λ/X)]

N[�A, Γ ⇒ ∆/(Θ ⇒ Λ/X)]
[4̃]

N[Γ ⇒ ∆/(Θ ⇒ Λ/X)]

N[Γ ⇒ ∆/(⇒ /Θ ⇒ Λ/X)]

[B]
N[A, Γ ⇒ ∆/(�A, Θ ⇒ Λ/X)]

N[Γ ⇒ ∆/(Θ ⇒ Λ/X)]
[B̃]

N[Γ ⇒ ∆/(Θ ⇒ Λ/(Ξ ⇒ Π/X); Y )]

N[Γ, Ξ ⇒ ∆, Π/(Θ ⇒ Λ/X; Y )]

[5]
N[�A, Γ ⇒ ∆/(�A, Θ ⇒ Λ/X)]

N[Γ ⇒ ∆/(�A, Θ ⇒ Λ/X)]

[5̃]
N[Γ ⇒ ∆/(Θ ⇒ Λ/(Ξ ⇒ Π/X); Y )]

N[Γ ⇒ ∆/(Ξ ⇒ Π/X); (Θ ⇒ Λ/Y )]

As follows from [34, Lemma 6.18], all the propositional rules, the
modal rules and the special logical rules are height-preserving invert-
ible. Poggiolesi showed that the following structural rules are height-
preserving admissible [34, Lemmas 6.10–6.12, 6.19]:

[EW]
N[Γ ⇒ ∆]

N[Γ ⇒ ∆/ Π ⇒ Σ]
[IW⇒]

N[Γ ⇒ ∆]

N[A, Γ ⇒ ∆]

[⇒IW]
N[Γ ⇒ ∆]

N[Γ ⇒ ∆, A]

[Merge]
N[Γ ⇒ ∆/(Π ⇒ Σ/X); (Θ ⇒ Λ/Y )]

N[Γ ⇒ ∆/(Π, Θ ⇒ Σ, Λ/X ; Y )]

[rn]
N

⇒ /N
[C⇒]

N[A, A, Γ ⇒ ∆]

N[A, Γ ⇒ ∆]
[⇒C]

N[Γ ⇒ ∆, A, A]

N[Γ ⇒ ∆, A]
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To formulate the rule of cut in the nested sequent framework, the
following auxiliary definitions are required.

Definition 3.6. [34, Definition 6.5] Given two nested sequents, N[Γ ⇒
∆] and M[Θ ⇒ Λ] together with an occurrence of a sequent in each, the
relation of an equivalent position between two of their sequents, in this
case Γ ⇒ ∆ and Θ ⇒ Λ, N[Γ ⇒ ∆] ≈ M[Θ ⇒ Λ], is defined inductively
in the following way:

• Γ ⇒ ∆ ≈ Θ ⇒ Λ,
• Γ ⇒ ∆/X ≈ Θ ⇒ Λ/Y ,
• if K[Γ ⇒ ∆] ≈ L[Θ ⇒ Λ], then

Φ ⇒ Π/K[Γ ⇒ ∆]; X ≈ Σ ⇒ Υ/L[Θ ⇒ Λ]; Y .

Intuitively, given two nested sequents, N[Γ ⇒ ∆] and M[Θ ⇒ Λ] to-
gether with an occurrence of a sequent in each, the relation of equiva-
lent position between two of their sequents holds when, by considering
N[Γ ⇒ ∆] and M[Θ ⇒ Λ] as trees, and Γ ⇒ ∆ and Θ ⇒ Λ as nodes
of the trees, the two nodes have the same height in their respective
trees. [35, p. 36, the notation and terminology adjusted]

Definition 3.7. [34, Definition 6.6] Given two nested sequents N[Γ ⇒
∆] and M[Θ ⇒ Λ] together with an occurrence of a sequent in each,
such that N[Γ ⇒ ∆] ≈ M[Θ ⇒ Λ], the operation of product, N[Γ ⇒
∆] ⊗ M[Θ ⇒ Λ], is defined inductively in the following way:

• Γ ⇒ ∆ ⊗ Θ ⇒ Λ = Γ, Θ ⇒ ∆, Λ
• (Γ ⇒ ∆/X) ⊗ (Θ ⇒ Λ/Y ) = Γ, Θ ⇒ ∆, Λ/X ; Y
• (Φ ⇒ Π/K[Γ ⇒ ∆]; X) ⊗ (Ψ ⇒ Υ/L[Θ ⇒ Λ]; Y ) =

Φ, Ψ ⇒ Π, Υ/(K[Γ ⇒ ∆] ⊗ L[Θ ⇒ Λ]); X ; Y .

Given two tree-hypersequents N[Γ ⇒ ∆, A] and M[A, Θ ⇒ Λ] to-
gether with an occurrence of a sequent in each, such that N[Γ ⇒ ∆, A] ≈
M[A, Θ ⇒ Λ], the cut rule is as follows:

[Cut]
N[Γ ⇒ ∆, A] M[A, Θ ⇒ Λ]

N ⊗ M[Γ, Θ ⇒ ∆, Λ]

Let o ∈ {�,�,◦,•, ◦̃, •̃,◦♭,•♯, ◦̃♭, •̃♯, ∼, ∼̇}. Let us formulate a
nested sequent calculus NSKo for the logic Ko. It has the above men-
tioned axiom and propositional rules, the contraction rules [C⇒] and
[⇒C] as well as the following modal rules:

[� ⇒]
N[�A, Γ ⇒ ∆/(A, Θ ⇒ Λ/X)] N[�A, Γ ⇒ ∆/(Ξ ⇒ Π, A/Y )]

N[�A, Γ ⇒ ∆/(Θ ⇒ Λ/X); (Ξ ⇒ Π/Y )]
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[⇒ �L]
N[Γ ⇒ ∆/A ⇒]

N[Γ ⇒ ∆,�A]
[⇒ �R]

N[Γ ⇒ ∆/ ⇒ A]

N[Γ ⇒ ∆,�A]

[� ⇒L]
N[Γ ⇒ ∆/A ⇒]

N[�A, Γ ⇒ ∆]
[� ⇒R]

N[Γ ⇒ ∆/ ⇒ A]

N[�A, Γ ⇒ ∆]

[⇒ �]
N[Γ ⇒ ∆,�A/(A, Θ ⇒ Λ/X)] N[Γ ⇒ ∆,�A/(Ξ ⇒ Π, A/Y )]

N[Γ ⇒ ∆,�A/(Θ ⇒ Λ/X); (Ξ ⇒ Π/Y )]

[◦ ⇒]
N[◦A, Γ ⇒ ∆/(A, Θ ⇒ Λ/X)] N[◦A, Γ ⇒ ∆, A/Y ]

N[◦A, Γ ⇒ ∆/Y ; (Θ ⇒ Λ/X)]

[⇒ ◦L]
N[A, Γ ⇒ ∆]

N[Γ ⇒ ∆,◦A]
[⇒ ◦R]

N[Γ ⇒ ∆/ ⇒ A]

N[Γ ⇒ ∆,◦A]

[• ⇒L]
N[A, Γ ⇒ ∆]

N[•A, Γ ⇒ ∆]
[• ⇒R]

N[Γ ⇒ ∆/ ⇒ A]

N[•A, Γ ⇒ ∆]

[⇒ •]
N[Γ ⇒ ∆,•A/(A, Θ ⇒ Λ/X)] N[Γ ⇒ ∆, A,•A/Y ]

N[Γ ⇒ ∆,•A/Y ; (Θ ⇒ Λ/X)]

[◦̃ ⇒]
N[◦̃A, A, Γ ⇒ ∆/X ] N[◦̃A, Γ ⇒ ∆/(Θ ⇒ Λ, A/Y )]

N[◦̃A, Γ ⇒ ∆/X ; (Θ ⇒ Λ/Y )]

[⇒ ◦̃L]
N[Γ ⇒ ∆/A ⇒]

N[Γ ⇒ ∆, ◦̃A]
[⇒ ◦̃R]

N[Γ ⇒ ∆, A]

N[Γ ⇒ ∆, ◦̃A]

[•̃ ⇒L]
N[Γ ⇒ ∆/A ⇒]

N[•̃A, Γ ⇒ ∆]
[•̃ ⇒R]

N[Γ ⇒ ∆, A]

N[•̃A, Γ ⇒ ∆]

[⇒ •̃]
N[A, Γ ⇒ ∆, •̃A/X ] N[Γ ⇒ ∆/(Θ ⇒ Λ, A, •̃A/Y )]

N[Γ ⇒ ∆, •̃A/X ; (Θ ⇒ Λ/Y )]

[◦♭ ⇒]
N[Γ ⇒ ∆, A] N[Γ ⇒ ∆/A ⇒]

N[◦♭A, Γ ⇒ ∆]

[⇒ ◦♭L]
N[A, Γ ⇒ ∆]

N[Γ ⇒ ∆,◦♭A]
[⇒ ◦♭R]

N[Γ ⇒ ∆,◦♭A/Θ ⇒ Λ, A/X ]

N[Γ ⇒ ∆,◦♭A/Θ ⇒ Λ/X ]

[•♯L
⇒]

N[A, Γ ⇒ ∆]

N[•♯A, Γ ⇒ ∆]
[•♯R

⇒]
N[•♯A, Γ ⇒ ∆/Θ ⇒ Λ, A/X ]

N[•♯A, Γ ⇒ ∆/Θ ⇒ Λ/X ]

[⇒ •♯]
N[Γ ⇒ ∆, A] N[Γ ⇒ ∆/A ⇒]

N[Γ ⇒ ∆,•♯A]

[◦̃♭ ⇒]
N[A, Γ ⇒ ∆] N[Γ ⇒ ∆/ ⇒ A]

N[◦̃♭A, Γ ⇒ ∆]



Nested sequent calculi . . . 299

X/A ⇒ A X/B ⇒ B

X/A, A → B ⇒ B X/A ⇒ A
[·]

X/A → B ⇒ B; A ⇒

X/A, A, B ⇒ B

X/A, B ⇒ A → B X/A ⇒ A
[·]

X/B ⇒ A → B; A ⇒
[·]

�(A → B),�A ⇒ /A ⇒; A ⇒; ⇒ B; B ⇒
[T̃]

A,�(A → B),�A ⇒ /A ⇒; ⇒ B; B ⇒
[T̃]

A, A,�(A → B),�A ⇒ / ⇒ B; B ⇒
[C ⇒]

A,�(A → B),�A ⇒ / ⇒ B; B ⇒
[⇒ �R]

A,�(A → B),�A ⇒ �B/B ⇒
[⇒ �L]

A,�(A → B),�A ⇒ �B,�B
[⇒ C]

A,�(A → B),�A ⇒ �B
[⇒→], 3x

⇒ A →
(
�(A → B) → (�A → �B)

)

Figure 2. An example of a proof in NSKT�, where X is �A,�(A → B) ⇒ and
[·] stands for [� ⇒]

[⇒ ◦̃♭L]
N[Γ ⇒ ∆, A]

N[Γ ⇒ ∆, ◦̃♭A]
[⇒ ◦̃♭R]

N[Γ ⇒ ∆, ◦̃♭A/A, Θ ⇒ Λ/X ]

N[Γ ⇒ ∆, ◦̃♭A/Θ ⇒ Λ/X ]

[•̃♯L ⇒]
N[Γ ⇒ ∆, A]

N[•̃♯A, Γ ⇒ ∆]
[•̃♯R ⇒]

N[•̃♯A, Γ ⇒ ∆/A, Θ ⇒ Λ/X ]

N[•̃♯A, Γ ⇒ ∆/Θ ⇒ Λ/X ]

[⇒ •̃♯]
N[A, Γ ⇒ ∆] N[Γ ⇒ ∆/ ⇒ A]

N[Γ ⇒ ∆, •̃♯A]

[∼ ⇒]
N[Γ ⇒ ∆/ ⇒ A]

N[∼A, Γ ⇒ ∆]
[⇒ ∼]

N[Γ ⇒ ∆, ∼A/(A, Θ ⇒ Λ/X)]

N[Γ ⇒ ∆, ∼A/(Θ ⇒ Λ/X)]

[∼̇ ⇒]
N[∼̇A, Γ ⇒ ∆/(Θ ⇒ Λ, A/X)]

N[∼̇A, Γ ⇒ ∆/(Θ ⇒ Λ/X)]
[⇒ ∼̇]

N[Γ ⇒ ∆/A ⇒]

N[Γ ⇒ ∆, ∼̇A]

Let X1, . . . , Xn ∈ {T, D, 4, B}. A nested sequent calculus NSKX1 . . . Xo

n

for KX1 . . . Xo

n is an extension of NSKo by the above mentioned special
structural rules [X̃1], . . . , [X̃n] as well as the rules [EW], [IW⇒], [⇒IW],
[Merge], and [rn].

On Figures 2–5, we give some examples of proofs in nested sequent
calculi for several non-contingency logics. In these examples, we use
formulas that are axioms in Hilbert-style calculi presented in [45, 46] for
the logics in question. Similarly to [34, Lemma 6.18], we get:

Proposition 3.1. All the propositional rules and the modal rules of

nested sequent calculi NSKo and NSKX1 . . . Xo

n are height-preserving

invertible.
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�A ⇒ /A ⇒ A �A ⇒ /A ⇒ A
[� ⇒]

�A ⇒ / ⇒ A; A ⇒
[⇒ ¬]

�A ⇒ / ⇒ A; ⇒ ¬A
[¬ ⇒]

�A ⇒ /¬A ⇒; ⇒ ¬A
[⇒ �L]

�A ⇒ �¬A/ ⇒ ¬A
[⇒ �R]

�A ⇒ �¬A,�¬A
[⇒ C]

�A ⇒ �¬A [⇒→]
⇒ �A → �¬A

Figure 3. An example of a proof in NSK�.

⇒ /�A ⇒ /A ⇒ A ⇒ /�A ⇒ /A ⇒ A
[� ⇒]

⇒ /�A ⇒ / ⇒ A; A ⇒
[B̃]

A ⇒ /�A ⇒ / ⇒ A
[T̃]

A ⇒ /�A ⇒ A
[⇒→]

A ⇒ / ⇒ �A → A
[⇒ �R]

A ⇒ �(�A → A)
[⇒→]

⇒ A → �(�A → A)

Figure 4. An example of a proof in NSKTB�

�A ⇒ /A ⇒ A �A ⇒ /A ⇒ A
[� ⇒]

�A ⇒ / ⇒ A; A ⇒
[4̃]

�A ⇒ / ⇒ / ⇒ A; A ⇒
[⇒ �R]

�A ⇒ / ⇒ �A/A ⇒
[⇒ �L]

�A ⇒ / ⇒ �A,�A
[⇒ C]

�A ⇒ / ⇒ �A
[⇒ �R]

�A ⇒ ��A [⇒→]
⇒ �A → ��A

Figure 5. An example of a proof in NSK4�

Moreover, similarly to Lemmas 6.10–6.12 from [34], we get:

Proposition 3.2. The rules [EW], [IW⇒], [⇒IW], [Merge], and [rn],
are height-preserving admissible in NSKo.

The admissibility of [EW], [IW⇒], [⇒IW], [Merge], [C⇒], [⇒C], and
[rn] in NSKXo remains an open issue and requires further investigation.
Unlike Lemmas 6.10–6.12 and 6.19 in [34], our approach requires treating
special structural rules as primitive, leading to certain complications. In
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particular, we have not succeeded in proving the admissibility of the
contraction rules in NSKXo. A similar problem has been discussed in
[24]: as an anonymous reviewer pointed out, “for standard modalities
we can have a cut-free nested calculus using the special structural rules
instead of the special logical ones only if we have a primitive rule of
contraction, otherwise there is a flaw in the proof of the admissibility of
cut”. In our case, the problem looks as follows. For example, it is not
clear how the admissibility of contraction rules can be shown in the case
of [T̃] (a similar problem occurs with the rule [B̃]; double line signifies
multiple applications of the rules):

N[Γ ⇒ ∆/(Γ ⇒ ∆/X)]
[T̃]

N[Γ, Γ ⇒ ∆, ∆/X ]
[C⇒], [⇒C]

N[Γ ⇒ ∆/X ]

In the case of the logic K�, the proof of the admissibility of contrac-
tion in certain instances resembles the argument given in [34, Lemma
6.19]. For example, by induction on the derivation of the premises of the
contraction rules, we obtain the following transformation of the deduc-
tion (cf. the case of �K (in our notation, [⇒ �]) in [34, p. 137]):

N[Γ ⇒ ∆,�A/ ⇒ A]
[⇒ �R]

N[Γ ⇒ ∆,�A,�A]
[⇒C]

N[Γ ⇒ ∆,�A]

99K

N[Γ ⇒ ∆/ ⇒ A; ⇒ A]
[Merge]

N[Γ ⇒ ∆/ ⇒ A, A]
[ind.h.]

N[Γ ⇒ ∆/ ⇒ A]
[⇒ �R]

N[Γ ⇒ ∆,�A]

However, since there are two right rules for �, unlike in the proof
of [34, Lemma 6.19], the following case is also possible. The induction
hypothesis cannot be applied to the premise N[Γ ⇒ ∆/A ⇒; ⇒ A].
See also Figure 3 for an example of a deduction in which contraction is
required.

N[Γ ⇒ ∆/A ⇒; ⇒ A]
[⇒ �L]

N[Γ ⇒ ∆,�A; ⇒ A]
[⇒ �R]

N[Γ ⇒ ∆,�A,�A]
[⇒C]

N[Γ ⇒ ∆,�A]

4. Soundness and completeness

Let M = 〈W, R, ϑ〉 be a model and x ∈ W . For any multiset Γ of
formulas, M |=x Γ iff ∃A∈Γ M |=x A. Moreover, for any sequent
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Γ ⇒ ∆, M |=x Γ ⇒ ∆ iff ∃B∈Γ M 6|=x B or M |=x ∆. Finally, for any
nested sequent N, M |=x N is inductively defined as follows:

• if N is a sequent S, then M |=x N iff M |=x S,
• if N = S/X , where X is a multiset of nested sequents, then

M |=x N iff M |=x S or ∃M∈X∀y∈R[x] M |=y M.

Let X be a formula, or a multiset of formulas, or a multiset of se-
quents, or a nested sequent, or a multiset of a nested sequent. We write
M |=∗

x X iff ∀y∈R[x] M |=y X. Hence, we can write M |=x S/X iff
M |=x S or ∃M∈X M |=∗

x M.
Let F be a frames and N be a nested sequent. We say that N is

valid in F (we write F |= N) iff M |= N for each model M based on a
frame of F . Let F be a class of frames. We say that N is valid in F

(we write F |= N) iff F |= N for each F ∈ F . If F is the class of all
Ko-frames, then we write Ko |= N.

Lemma 4.1. [34, Lemma 8.2] Let F be a class of frames, Γ ⇒ ∆ and

Θ ⇒ Λ be sequents, and K, L and N be nested sequents. If Then:

1. if F |= Γ ⇒ ∆ implies F |= Θ ⇒ Λ, then F |= N[Γ ⇒ ∆] implies

F |= N[Θ ⇒ Λ].
2. If F |= K implies F |= L, then F |= N[K] implies F |= N[L].

Let o ∈ {�,�,◦,•, ◦̃, •̃,◦♭,•♯, ◦̃♭, •̃♯, ∼, ∼̇}. As Theorem 8.3 from
[34], we obtain:

Lemma 4.2. All the rules of NSKo are sound w.r.t. F .

Proof. As an example, we consider the rule [⇒�L]. Suppose that
F |= Γ ⇒ ∆/A ⇒ and M = 〈W, R, ϑ〉 be any model based on a frame
of F , and x ∈ W . Then M |=x Γ ⇒ ∆/A ⇒, i.e., M |=x Γ ⇒ ∆ or
M 6|=∗

x A, i.e., M |=x Γ ⇒ ∆ or M |=x �A. Hence M |=x Γ ⇒ ∆,�A.
So, F |= Γ ⇒ ∆,�A. Thus, by Lemma 4.1(2): F |= N[Γ ⇒ ∆/A ⇒
implies F |= N[Γ ⇒ ∆,�A]. ⊣

By induction on the height of the derivation, by Lemma 4.2, we get:

Theorem 4.1. For each nested sequent N, if NSKo ⊢ N, then Ko |= N.

From Theorem 4.1 and soundness of the special structural rules es-
tablished in [34], we obtain:

Theorem 4.2. For X ⊆ {T, D, 4, B} and each nested sequent N, if

NSKXo ⊢ N, then KXo |= N.
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We provide a semantic completeness proof for a nested sequent cal-
culus for Ko in accordance with Poggiolesi [34], who in turn follows
Brünnler [4]. The completeness for the extensions of Ko follows from the
established in [34] correspondence of the structural rules [D̃], [T̃], [4̃], [B̃]
for the properties of the accessibility relation. The calculus in question
requires minor reformulation, which will be designated as NSKo+. For
each rule ℜ, we define a rule ℜ+ that incorporates the principal for-
mula from the conclusion within its premises. At that point, we have
ℜ = ℜ+ for the following rules: [� ⇒], [⇒ �], [◦ ⇒], [⇒ •], [◦̃ ⇒],
[⇒ •̃], [◦♭ ⇒], [⇒ •♯], [◦̃♭ ⇒], [⇒ •̃♯], [⇒ ∼], [∼̇ ⇒]. Regarding the
remaining rules, ℜ+ is as follows:

[¬ ⇒]+
N[¬A, Γ ⇒ ∆, A]

N[¬A, Γ ⇒ ∆]
[⇒ ¬]+

N[A, Γ ⇒ ∆, ¬A]

N[Γ ⇒ ∆, ¬A]

[∧ ⇒]+
N[A, B, A ∧ B, Γ ⇒ ∆]

N[A ∧ B, Γ ⇒ ∆]

[⇒ ∧]+
N[Γ ⇒ ∆, A, A ∧ B] N[Γ ⇒ ∆, B, A ∧ B]

N[Γ ⇒ ∆, A ∧ B]

[∨ ⇒]+
N[A ∨ B, A, Γ ⇒ ∆] N[A ∨ B, B, Γ ⇒ ∆]

N[A ∨ B, Γ ⇒ ∆]

[⇒ ∨]+
N[Γ ⇒ ∆, A, B, A ∨ B]

N[Γ ⇒ ∆, A ∨ B]

[→⇒]+
N[A → B, Γ ⇒ ∆, A] N[A → B, B, Γ ⇒ ∆]

N[A → B, Γ ⇒ ∆]

[⇒→]+
N[A, Γ ⇒ ∆, B, A → B]

N[Γ ⇒ ∆, A → B]

[↔⇒]+
N[B, Γ ⇒ ∆, A, A ↔ B] N[A, Γ ⇒ ∆, B, A ↔ B]

N[Γ ⇒ ∆, A ↔ B]

[⇒↔]+
N[A ↔ B, A, B, Γ ⇒ ∆] N[A ↔ B, Γ ⇒ ∆, A, B]

N[A ↔ B, Γ ⇒ ∆]

[⇒ �L]+
N[Γ ⇒ ∆,�A/A ⇒]

N[Γ ⇒ ∆,�A]

†

[⇒ �R]+
N[Γ ⇒ ∆,�A/ ⇒ A]

N[Γ ⇒ ∆,�A]

‡

† Γ ⇒ ∆,�A does not have any immediate successive sequent (or more suc-
cinctly, childsequent) that contains A on the right side.
‡ Γ ⇒ ∆,�A does not have any immediate successive sequent (or more suc-
cinctly, childsequent) that contains A on the left side.
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[� ⇒L]+
N[�A, Γ ⇒ ∆/A ⇒]

N[�A, Γ ⇒ ∆]

†

[� ⇒R]+
N[�A, Γ ⇒ ∆/ ⇒ A]

N[�A, Γ ⇒ ∆]

‡

† �A, Γ ⇒ ∆ does not have any immediate successive sequent that contains
A on the right side. ‡ �A, Γ ⇒ ∆ does not have any immediate successive
sequent that contains A on the left side.

[∼ ⇒]+
N[∼A, Γ ⇒ ∆/ ⇒ A]

N[∼A, Γ ⇒ ∆]

†

[⇒ ∼̇]+
N[Γ ⇒ ∆, ∼̇A/A ⇒]

N[Γ ⇒ ∆, ∼̇A]

‡

† ∼A, Γ ⇒ ∆ does not have any immediate successive sequent that contains A
on the left side. ‡ Γ ⇒ ∆, ∼̇A does not have any immediate successive sequent
that contains A on the right side.

The rules [⇒◦L]+, [⇒◦R]+, [•⇒L]+, [•⇒R]+, [⇒◦̃L]+, [⇒◦̃R]+,
[•̃⇒L]+, [•̃⇒R]+, [⇒◦♭L]+, [⇒◦♭R]+, [•♯L⇒]+, [•♯R⇒]+, [⇒◦̃♭L]+,
[⇒◦̃♭R]+, [•̃♯L⇒]+, [•̃♯R⇒]+ are formulated in a similar way.

Definition 4.1. [34, Definition 8.4] A set nested sequent of a nested
sequent Γ ⇒ ∆/M1; . . . ;Mm is an underlying set of Θ ⇒ Λ/N1; . . . ;Nn,
where N1; . . . ;Nn are sets nested sequents of M1; . . . ;Mm. Clearly, a
set nested sequent of a nested sequent is still a nested sequent since a
set is a multiset.

For each rule ℜ+ it is stipulated that for all of its premises, the set
nested sequent is different from the set nested sequent of the conclusion.

By induction on the height of derivations in NSKo+, employing con-
traction and weakening, we obtain:

Lemma 4.3. For any nested sequent N, if NSKo+ ⊢ N, then NSKo ⊢ N.

Definition 4.2. [34, Definitions 8.10–8.13] 1. A leaf of a nested sequent
is cyclic iff in its branch there exists a sequent that contains the same
set of formulas.

2. A sequent of a nested sequent is finished for a nested sequent
calculus NSKo+ if no rule of that calculus applies to one of its formulas.
A nested sequent is finished for a nested sequent calculus NSKo+ iff all
sequents that compose it are finished or cyclic.

3. A procedure prove(N,NSKo+) is defined as follows. It takes a
nested sequent N and a calculus NSKo+, and builds a tree for N by
applying rules from that calculus to non-initial and unfinished derivation
leaves in the bottom-up fashion, as follows:

(i) keep applying all the rules of NSKo+ which are not the rules with
the provisos above indicated as † and ‡ long as possible;
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(ii) wherever possible, apply these rules with the † and ‡ provisos once.

Repeat this operation until each non-initial derivation leaf of the nested
sequent N is finished. If prove(N,NSKo+) terminates and all derivation
leaves are initial, then it succeeds; otherwise, i.e., if it terminates and
there is a non-initial derivation leaf, it fails.

4. The size of a nested sequent N, s(N), is the number of sequents
that compose it. The set of subformulas of a nested sequent N, a nested
sequent sf(N), is the set of all subformulas of all formulas that compose
all sequents that belong to the nested sequent.

Definition 4.3. [34, Definition 8.15, slightly modified] A nested sequent
Ni (1 ¬ i ¬ l) is an immediate subtree of a nested sequent M, if M =
Γ ⇒ ∆/N1; ...;Nl. It is a proper subtree if it is an immediate subtree
either of M or of a proper subtree of M, and it is a subtree if it is either a
proper subtree of M or M = Ni. The set of all subtrees of M is denoted
by st(M).

Similarly to [34, Lemma 8.14], we get:

Lemma 4.4. The procedure prove(N,NSKo+) terminates after at most

2|sf(N)| iterations, for each nested sequent N.

Similarly to Theorem 8.16 from [34], we obtain:

Theorem 4.3. For each nested sequent N:

1. If Ko |= N, then NSKo ⊢ N.

2. If prove(N,NSKo+) fails, then Ko+ 6|= N.

Proof. The contraposition of 1 follows from 2. Suppose that NSKo 6⊢
N. By Lemma 4.3, NSKo+

0 N. By Lemma 4.4, prove(N,NSKo+) has
to fail. Let us define a countermodel for N.

Let N∗ be the set nested sequent obtained from a non-axiomatic
nested sequent. Let Y be the set of all cyclic leaves in N∗. Let W0 :=
st(N∗) \ Y and let f0 : Y → W be a function which maps a cyclic leaf to
a nested sequent in W0 whose root carries the same set of formulas, and
extend f0 to st(N∗) by the identity on W . We define the binary relation
R0 on W such that KRL iff either (i) L is an immediate subtree of K,
or (ii) K has an immediate subtree M ∈ Y and f(M) = L. Let ϑ0(N, p)
be such that ϑ0(N, p) = 1, if p is positioned on the left side of a sequent
Γ ⇒ ∆ ∈ N, and ϑ0(N, p) = 0 otherwise. We put M0 := 〈W0, R0, ϑ0〉.
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Claim 1. For all K,L ∈ W0 such that KR0L, for each A occurring
on the left side of a sequent that belongs to the nested sequent N, we
have the following: if �A ∈ K, then A ∈ L or ¬A ∈ L. By the definition
of R0 and the rules [�⇒] and [¬⇒], we get A in (the root sequent of)
all immediate subtrees of K. The cases with the other modalities are
considered similarly.

Claim 2. For each K ∈ W0, we have:

1. for each A ∈ K such that they are on the left side of the sequent,
M0 |=K A,

2. for each A ∈ K such that they are on the right side of the sequent,
M0 6|=K A.

By induction on the complexity of A. The basic case follows from the
definition of the valuation. The propositional cases are quite evident. Let
A = �B. Suppose that it occurs on the right side of the sequent, then
by the rules [⇒ �L]+ and [⇒ �R]+ as well as the rules for negations,
we have at least one M ∈ K with B ∈ M and at least one M

′ ∈ K with
¬B ∈ M′. By the inductive hypothesis, M0 6|=M B and M0 6|=M′ ¬B
(that is M0 |=M′ B). Thus, M0 6|=K �B. Suppose that �B occurs on
the left side of the sequent. By Claim 1, B ∈ M, for all M such that
KR0M, or ¬B ∈ M′, for all M′ such that KR0M

′. Using the inductive
hypothesis, M0 |=K �B.

The cases with the other modalities are considered similarly.
Claim 3. For each K ∈ st(N∗), M0 6|=f0(K) K.
By induction on the complexity of the nested sequent K, by Claim 2

[see 34, Theorem 8.16].
Since all rules seen top-down preserve countermodels, Claim 3 implies

that M0 6|= N. ⊣

From Theorem 4.3 and the fact that in its proof, the rule of cut has
not been used, we get:

Theorem 4.4 (Cut admissibility). For any nested sequent N, NSKo ⊢ N

implies that there is a cut-free proof of N in NSKo.

Moreover, from Theorem 4.3 and the fact (which follows from the
results of [34]) that special structural rules correspond to the properties
of the accessibility relation, we obtain:

Theorem 4.5 (Completeness). For X ⊆ {T, D, 4, B} and each nested

sequent N, if KXo |= N, then NSKXo ⊢ N.
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5. Constructive cut admissibility

Let o ∈ {�,�,◦,•, ◦̃, •̃,◦♭,•♯, ◦̃♭, •̃♯, ∼, ∼̇}. In this section, we con-
sider a modification of Definition 3.1: multisets of formulas are replaced
with sets of formulas. This change allows us to avoid treating cases
related to contraction rules. Throughout this section, we assume that
NSKo is defined accordingly. We proceed to demonstrate a constructive
proof of cut admissibility for NSKo, employing the techniques outlined in
[34], where such a proof is provided for logics formulated in the language
For�. It is worth noting that in [34], the definition of a sequent remains
unchanged, as the admissibility of contraction rules is established there.

Lemma 5.1. Given three zoom nested sequents K[∗], L[∗], and M[∗] such

that K[∗] ∼ L[∗] ∼ M[∗], if there is a rule ℜ of NSL and a sequent Γ
such that

ℜ
L[Γ ]

K[Γ ]

then, for each ∆, we have that

ℜ
L ⊗ M[∆]

K ⊗ M[∆]

Proof. We follow the method from [34, p. 143, Lemma 7.1]. By in-
duction on the form of nested sequents K[∗], L[∗], and M[∗]. The proof
consists of the following parts:

(a) K[∗], L[∗], and M[∗] ≡ ∗.
(b) K[∗] ≡ ∗/X , L[∗] ≡ ∗/Y , and M[∗] ≡ ∗/Z.
(c) K[∗] ≡ Γ1 ⇒ ∆1/K′[∗]; X , L[∗] ≡ Γ2 ⇒ ∆2/L′[∗]; Y , and

M[∗] ≡ Γ3 ⇒ ∆3/M′[∗]; Z.
Let

ℜ
Γ1 ⇒ ∆1/K′[Θ1 ⇒ Λ1]; X

Γ2 ⇒ ∆2/L′[Θ2 ⇒ Λ2]; Y

For each Π ⇒ Σ, we have that

ℜ
Γ1, Γ3 ⇒ ∆1, ∆3/K′[Θ1 ⇒ Λ1] ⊗ M

′[Π ⇒ Σ]; X ; Z

Γ2, Γ3 ⇒ ∆2, ∆3/L′[Θ2 ⇒ Λ2] ⊗ M′[Π ⇒ Σ]; Y ; Z

We following subcases are distinguished:
(c1) The rule ℜ operates on Γ1 ⇒ ∆1:

(c1.1) The rule ℜ operates on Γ1 ⇒ ∆1 only,
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(c1.2) The rule ℜ operates between Γ1 ⇒ ∆1 and
K′[Θ1 ⇒ Λ1]; X .

(c2) The rule ℜ operates on X .
(c3) The rule ℜ operates on K′.

Cases (a), (b), (c1.1), (c2), and (c3) are proven in [34]. Case (c1.2) deals
with modal rules. Let us consider it on the example of the rules for �.

Let ℜ be the rule [⇒ �L]. There are two subcases: (i) K′[Θ1 ⇒
Λ1]; X is of the form B ⇒ ;K′[Θ1 ⇒ Λ1]; X ′, (ii) K′[Θ1 ⇒ Λ1]; X is of
the form B ⇒ ;K′′[Θ1 ⇒ Λ1]; X . As an example, consider the case (i):

Γ1 ⇒ ∆1/B ⇒ ;K′[Θ1 ⇒ Λ1]; X ′

Γ1 ⇒ ∆1,�B ⇒ ;K′[Θ1 ⇒ Λ1]; X ′

For each Π ⇒ Σ, we have that

Γ1, Γ3 ⇒ ∆1, ∆3/B ⇒ ;K′[Θ1 ⇒ Λ1] ⊗ M′[Π ⇒ Σ]; X ′; Z

Γ1, Γ3 ⇒ ∆1, ∆3,�B/L′[Θ2 ⇒ Λ2] ⊗ M′[Π ⇒ Σ]; X ′; Z

The cases of the rules [⇒ �R] and [� ⇒] are treated similarly. ⊣

Theorem 5.1. Let N[Γ ⇒ ∆, A] and M[A, Π ⇒ Σ] be such that

N[Γ ⇒ ∆, A] ∼ M[A, Π ⇒ Σ]. If

[Cut]

D1 D2

N[Γ ⇒ ∆, A] M[A, Π ⇒ Σ]

N ⊗ M[Γ, Π ⇒ ∆, Σ]

and D1 and D2 do not contain any other application of the cut-rule,

then we can construct a derivation of N ⊗ M[Γ, Π ⇒ ∆, Σ] with no

application of the cut-rule.

Proof. Similarly to the proof of Lemma 7.2 from [34]. By a double
induction on the complexity of the cut-formula c(A)6 and on the sum of
the heights of the derivations of the premises of the cut-rule. The cases
are separated according to the last rule applied to the left premise.

Case 1. N[Γ ⇒ ∆, A] is an axiom. This case is considered in the
proof of Lemma 7.2 from [34]: either the conclusion is also an axiom or it
can be inferred from M[A, Π ⇒ Σ] by internal and external weakening
rules.

6 The definition is standard: c(p) = 1, c(∗A) = c(A) + 1, where ∗ is an unary
connective, c(A ⋆ B) = max(c(A), c(B)) + 1, where ⋆ is a binary connective.
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Case 2. N[Γ ⇒ ∆, A] is derived by a rule ℜ such that A is not
principal. The case is resolved by induction on the sum of the heights of
the derivations of the premises of the cut-rule, employing Lemma 5.1.

Subcase 2.1. N[Γ ⇒ ∆, A] was obtained by the rule [⇒ �L]. The
following application of cut

D′
1

N[Γ ⇒ ∆, A/B ⇒]
[⇒ �L]

N[Γ ⇒ ∆, A,�B]

D2

M[A, Π ⇒ Σ]
[Cut]

N ⊗ M[Γ, Π ⇒ ∆, Σ,�B]

is reduced to the subsequent deduction, where we have a lesser sum of
the heights of the derivations:

D′
1

N[Γ ⇒ ∆, A/B ⇒]

D2

M[A, Π ⇒ Σ]
[Cut]

N ⊗ M[Γ, Π ⇒ ∆, Σ/B ⇒]
[⇒ �L]

N ⊗ M[Γ, Π ⇒ ∆, Σ,�B]

Subcase 2.2. N[Γ ⇒ ∆, A] was obtained by the rule [⇒ �R]. Simi-
larly to the previous subcase.

Subcase 2.3. N[Γ ⇒ ∆, A] was obtained by the rule [� ⇒]. Let
S1 = Γ ⇒ ∆, S2 = Θ ⇒ Λ, S3 = Ξ ⇒ Υ, and S4 = Π ⇒ Σ. The
following application of cut

D′
1

N[�B, S1, A/(B, S2/X)]

D′′
1

N[�B, S1, A/(S3, B/Y )]
[� ⇒]

N[�B, S1, A/(S2/X); (S3/Y )]

D2

M[A, S4]

N ⊗ M[�B, Γ, Π ⇒ ∆, Σ/(Θ ⇒ Λ/X); (Ξ ⇒ Υ/Y )]

is reduced to the subsequent deduction, where we have a lesser sum of
the heights of the derivations:

D′

1

N[�B, S1, A/(B, S2/X)]

D2

M[A, S4]

N ⊗ M[�B, Γ, Π ⇒ ∆, Σ/(B, S2/X)]

D′′

1

N[�B, S1, A/(S3, B/Y )]

D2

M[A, S4]

N ⊗ M[�B, Γ, Π ⇒ ∆, Σ/(S3, B/Y )]

N ⊗ M[�B, Γ, Π ⇒ ∆, Σ/(Θ ⇒ Λ/X); (Ξ ⇒ Υ/Y )]

The subcases produced by other connectives are treated similarly.

Case 3. N[Γ ⇒ ∆, A] is derived by a rule ℜ such that A is principal.
The cases where ℜ is a propositional rule (or a rule for �) are covered
in [34]. As an example, we consider the case when ℜ is [⇒ �L].
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D′
1

N[Γ ⇒ ∆/B ⇒]
[⇒ �L]

N[Γ ⇒ ∆,�B]

D2

M[�B, Π ⇒ Σ]
[Cut]

N ⊗ M[Γ, Π ⇒ ∆, Σ]

We need to consider the ways M[�B, Π ⇒ Σ] could be derived. If
it is an axiom, then we go to the case 1. If �B is not the principal
formula in D2, then we go to the case 2. The last option is as follows:
M[�B, Π ⇒ Σ] was obtained by [� ⇒]. Then the following deduction
holds, where S1 = Γ ⇒ ∆, S2 = Θ ⇒ Λ, S3 = Ξ ⇒ Υ and S4 = Π ⇒ Σ:

D
′

1

N[S1/B ⇒]
[⇒ �L]

N[S1,�B]

D
′

2

M[�B, S4/(B, S2/X)]

D
′′

2

M[�B, S4/(S3, B/Y )]

M[�B, S4/(S2/X); (S3/Y )]

N ⊗ M[Γ, Π ⇒ ∆, Σ/(Θ ⇒ Λ/X); (Ξ ⇒ Υ/Y )]

We perform the transformation as follows.

D′
1

N[S1/B ⇒]
[⇒ �L]

N[S1,�B]

D′′
2

N[�B, S4/(S3, B/Y )]
[Cut]

N ⊗ M[Γ, Π, ⇒ ∆, Σ/(Ξ ⇒ Υ, B/Y )]

D
′
1

N[S1/B ⇒]
[Cut]

N ⊗ N ⊗ M[Γ, Γ, Π, ⇒ ∆, ∆, Σ/(Ξ ⇒ Υ/Y )]

N ⊗ M[Γ, Π, ⇒ ∆, Σ/(Ξ ⇒ Υ/Y )]
[EW]

N ⊗ M[Γ, Π, ⇒ ∆, Σ/(Θ ⇒ Λ/X); (Ξ ⇒ Υ/Y )]

Double lines indicate multiple applications of the merge rule. (One might
refer to contraction as well, but since we have modified the notion of a
sequent to use sets of formulas instead of multisets, contraction is no
longer required.) The initial application of [Cut] is eliminable by the
induction hypothesis on the sum of the heights of the derivations of
the premises. The subsequent application of [Cut] is eliminable by the
induction hypothesis on the complexity of the cut formula. ⊣

By induction on the number of cuts, using Theorem 5.1, we get:

Theorem 5.2 (Constructive cut admissibility). All derivations D in

NSKo can be effectively transformed into derivations, where there is

no application of the rule of cut.
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As for the extensions of NSKo, it seems to be rather problematic to
prove the cut admissibility theorem constructively for them. For exam-
ple, in NSKTo, Case 3 has an additional option: M[�B, Π ⇒ Σ] was
obtained by [T̃].

D′
1

N[Γ ⇒ ∆/B ⇒]
[⇒ �L]

N[Γ ⇒ ∆,�B]

D
′
2

M[Π ′ ⇒ Σ′/�B, Π ′′ ⇒ Σ′′]
[T̃]

M[�B, Π ⇒ Σ]
[Cut]

N ⊗ M[Γ, Π ⇒ ∆, Σ]

The transformation of the deduction could be as follows, where the
cut could be eliminated based on the induction hypothesis concerning
the sum of the heights of the derivation of the premises of the cut rules:

D
′
1

N[Γ ⇒ ∆/B ⇒]
[⇒ �L]

N[Γ ⇒ ∆,�B]

D′
2

M[Π ′ ⇒ Σ′/�B, Π ′′ ⇒ Σ′′]
[Cut]

N ⊗ M[Π ′ ⇒ Σ′/Γ, Π ′′ ⇒ Σ′′, ∆]
[T̃]

N ⊗ M[Γ, Π ⇒ ∆, Σ]

The problem here is that the application of the rule of cut here is not
correct. As Poggiolesi notes [34, p. 125], as follows from the definition of
the rule of cut, “given two tree-hypersequents, we can cut on any two se-
quents belonging to them provided that they are in equivalent position.”
How to eliminate this cut application remains unclear. Similar problems
arise with the other special structural rules. A potential solution could
be to develop special logical rules for the modalities in question; then
the cut could be eliminated, as in the cases covered by Poggiolesi. With
the number of modalities we deal with, this solution seems impractical;
too many rules are needed.

6. Conclusion

This paper introduces nested sequent calculi inspired by Poggiolesi [34]
for modal logics K, D, T, K4, KB, D4, S4, KB4, DB, and B formulated
not through necessity or possibility operators, but utilizing various non-
standard modalities: non-contingency, contingency, essence, accident,
impossibility, and unnecessity. Unfortunately, we have managed to prove
the cut admissibility theorem for K-based logics only, utilizing two ap-
proaches: semantically, as a consequence of Hintikka-style completeness
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proof, and syntactically, in a constructive manner. It is not clear if the
cut admissibility theorem applies to the rest of logics. Moreover, the sit-
uation remains ambiguous even with standard modalities, if we consider
nested sequent calculi with special structural rules, but without special
logical rules. Poggiolesi references the work [5] and states that “tree-
hypersequent calculi composed by generalised initial tree-hypersequents,
propositional rules, modal rules, special structural rules and contraction
rules are sound and complete with respect to their corresponding Hilbert
systems. Moreover they are cut-free and modular” [34, p. 140]. How-
ever, as follows from [24, p. 6], there is a mistake in the cut elimination
proof of [5]. The paper [24] further examines nested sequent calculi with
both special logical and structural rules, demonstrating that they are
cut-free. Poggiolesi [34] provides semantic and syntactic proofs of cut
admissibility for nested sequent calculi with both special logical rules
and height-preserving admissible special structural rules. Consequently,
it is uncertain, if a nested sequent calculus with special structural rules
only possesses cut admissibility. This subject necessitates additional
investigation.

Euclidean logics are absent in our current investigation. In our prior
publication [32], we developed cut-free hypersequent calculi for S5 for-
mulated in the language incorporating those modalities. We assign the
creation of cut-free Gentzen calculi for the remaining Euclidean logics
from the modal cube, namely K5, D5, K45, D45, as a target for fu-
ture research. One may also contemplate the exploration of alternative
modal logics beyond the modal cube. Zolin presented non-cut-free se-
quent calculi for GL� [46] and Grz� [45]: one might attempt to develop a
cut-free calculus for these systems and their variants incorporating other
non-standard modalities.

Another subject for further investigation is Craig interpolation prop-
erty. Some results are already known from the literature: e.g., Zolin
showed [45] that T�, S4�, D�, and S5� have Craig interpolation prop-
erty. Nevertheless, it seems that we still lack the full picture for all the
logics in question. One more topic for future research is the consideration
of quantifiers for the calculi in question (for the case of nested sequent
calculi for the logic K� and its extensions, this issue has recently been
addressed by Lyon and Orlandelli [21]).

Finally, one may search for other non-standard modalities. For ex-
ample, let us consider Boolos’ [3] ‘boxdot’ modality introduced in the
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context of provability logic: ⊡A = �A ∧ A (‘provable and true’7; for
its application in context of essence and accident logics see [40]). The
semantic condition for ⊡A is as follows:

• ϑ(⊡A, x) = 1 iff ϑ(A, x) = 1 and ∀y∈R[x] ϑ(A, y) = 1.

The appropriate nested sequent rules for ⊡ are given below:

[⊡ ⇒1]
N[A, Γ ⇒ ∆]

N[⊡A, Γ ⇒ ∆]
[⊡ ⇒2]

N[⊡A, Γ ⇒ ∆/(A, Θ ⇒ Λ/X)]

N[⊡A, Γ ⇒ ∆/(Θ ⇒ Λ/X)]

[⇒ ⊡]
N[Γ ⇒ ∆, A] N[Γ ⇒ ∆/ ⇒ A]

N[Γ ⇒ ∆,⊡A]

One may investigate other modal operators of a similar nature. For
example, one might define a ‘diamonddot’ operator as follows: ♦· A =
¬⊡¬A = ♦A ∨ A. It might be interpreted as ‘non-contradictory or true’.
The semantic condition for it is as follows:

• ϑ(♦· A, x) = 1 iff ϑ(A, x) = 1 or ∃y∈R[x] ϑ(A, y) = 1.

The appropriate rules are as follows:

[♦· ⇒]
N[A, Γ ⇒ ∆] N[Γ ⇒ ∆/A ⇒]

N[♦· A, Γ ⇒ ∆]

[⇒ ♦· 1]
N[Γ ⇒ ∆, A]

N[Γ ⇒ ∆,♦· A]
[⇒ ♦· 2]

N[Γ ⇒ ∆,♦· A/(Θ ⇒ Λ, A/X)]

N[Γ ⇒ ∆,♦· A/(Θ ⇒ Λ/X)]

One might continue this analogy and introduce the negated counter-
parts of ‘boxdot’ and ‘diamonddot’ operators: ⊡̃A = ¬�A ∧ ¬A (‘non-
provable and false’) and ♦̃· A = ¬♦A ∨ ¬A (‘contradictory or false’). The
semantic conditions are as follows:

• ϑ(⊡̃A, x) = 1 iff ϑ(A, x) = 0 and ∃y∈R[x] ϑ(A, y) = 0,

• ϑ(♦̃· A, x) = 1 iff ϑ(A, x) = 0 or ∀y∈R[x] ϑ(A, y) = 0.

7 This interpretation might remind the reader Grzegorczyk’s modal logic Grz,
“which can be characterized by reflexive partially ordered Kripke frames without infi-
nite ascending chains. This logic is complete w.r.t. the arithmetical semantics, where
the modal connective � corresponds to the strong provability operator “. . . is true and

provable in Peano arithmetic”. There is a translation from Grz into the Gödel-Löb
provability logic GL such that Grz ⊢ A ⇐⇒ GL ⊢ A∗, where A∗ is obtained from A
by replacing all subformulas of the form �B by B ∧�B” [37, p. 23, boldface is ours].
Since we are studying the ⊡-modality not in the context of GL (in contrast to Boolos
[3]), it means that, in our case, it is not a Grz-modality and its interpretation as “is
true and provable” should not be straightforwardly associated with Peano arithmetics.
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The appropriate rules are given below:

[⊡̃ ⇒1]
N[Γ ⇒ ∆, A]

N[⊡̃A, Γ ⇒ ∆]
[⊡̃ ⇒2]

N[Γ ⇒ ∆/ ⇒ A]

N[⊡̃A, Γ ⇒ ∆]

[⇒ ⊡̃]
N[A, Γ ⇒ ∆] N[Γ ⇒ ∆, ⊡̃A/(A, Θ ⇒ Λ/X)]

N[Γ ⇒ ∆, ⊡̃A/(Θ ⇒ Λ/X)]

[♦̃· ⇒]
N[Γ ⇒ ∆, A] N[♦̃· A, Γ ⇒ ∆/(Θ ⇒ Λ, A/X)]

N[♦̃· A, Γ ⇒ ∆/(Θ ⇒ Λ/X)]

[⇒ ♦̃· 1]
N[A, Γ ⇒ ∆]

N[Γ ⇒ ∆, ♦̃· A]
[⇒ ♦̃· 2]

N[Γ ⇒ ∆/A ⇒]

N[Γ ⇒ ∆, ♦̃· A]

Theorem 6.1. Let o ∈ {⊡, ⊡̃,♦· , ♦̃· } and X ⊆ {T, D, 4, B}. Then for any

nested sequent N:

1. Ko |= N iff NSKo ⊢ N.

2. If NSKo ⊢ N, then there is a cut-free proof of N in NSKo.

3. KXo |= N iff NSKXo ⊢ N.

Proof. 1. Similarly to Theorems 4.1 and 4.3. 2. Similarly to Theorems
4.4 and 5.2. 3. Similarly to Theorems 4.2 and 4.5. ⊣

We suppose that other similar non-standard modalities can be pro-
posed, motivated, and explored in the future investigations.
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