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Abstract. It is possible to understand the expressive power of a logic as
issuing from its capacity to express properties of its models. There are
some ways to formally capture whether a property of models is expressible,
among them is one based on the notion of definability, and one based on the
notion of discrimination. If the logics to be compared are defined within the
same class of models, one can employ the notions of definability and dis-
crimination directly to obtain formal conditions for relative expressiveness.
This paper studies generalizations of these formal conditions to cases where
the compared logics are defined within different classes of models. There
have been proposed in the literature formal conditions of two main kinds:
with forward and with backward model-mappings. It is shown that none of
them is adequate, despite their initial reasonableness. Moreover, we argue
that general and reasonable formal conditions for relative expressiveness
involving forward mappings are not likely to be found, given that they turn
out to be highly dependent on specific features of the compared logics. On
the other hand, it will be argued that there is a reasonable formal condition
involving backward model-mappings.
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1. Introduction

In (Fernandes, 2023), comparisons of expressiveness of logics defined
within the same classes of models are studied. The purpose of this
paper is to expand these investigations for comparisons of expressiveness
between logics defined within different classes of models.
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Here, the term ‘logic’ is to mean ‘model-theoretic logic’, that is

Definition 1.1 (Model-theoretic Logic). A model-theoretic logic Li,
for i ∈ N, is a sequence (Mi,Si,i), where Mi and Si are classes and
i ⊆ Mi × Si.

Here, Mi is intended to be the class of models for Li, Si the class
of well formed sentences of Li in every vocabulary, and i the corre-
sponding satisfaction relation. All logics Li considered in this paper are
supposed to satisfy the usual basic properties for model-theoretic logics,
as listed in (Ebbinghaus, 1985, p. 28), e.g.:

Isomorphism property: Isomorphic models cannot be distinguished by Li

Let us fix the remaining notation that will be used in the paper:

P(X) – the power-set of X ,
Ai,Bi – arbitrary models,
ModL(φ) – the class of models satisfying φ in L,
≡i – equivalence of models under Li,
4Y – expressiveness relation on logics with respect to condition Y .

Definition 1.2 (Property of models). Let M be a class of models.
A property P of models will be taken to be a subclass of M.

Following Fernandes (2023), the relation ‘L2 is at least as expressive as
L1’ will be refined as

E∗: Every property of models expressible in L1 is also expressible in L2.

As it was argued in (Fernandes, 2023), there are some ways to understand
when a property of models is expressible in a logic L, among them are
definability and discrimination. From each one we can obtain precise
renderings of E∗:

Proposition 1.1 (Definability – 4DC). P is expressible in Li when it
is definable in Li, that is, whenever P = ModLi

(φ), for φ ∈ Si. Then a
formal rendering of E∗ is obtained:

(L1 4DC L2) Every definable property in L1 is also definable in L2.

Proposition 1.2 (Discrimination – 4EQ). P is expressible in Li when
it can be discriminated from its complement in Li, that is, whenever

If A ∈ P and B /∈ P , then A 6≡i B.

Another formal rendering of E∗ is thus obtained:
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(L1 4EQ L2) Every property that can be discriminated from its comple-
ment in L1, can also be discriminated from its complement
in L2.

Notice that these conditions of expressiveness belong to a framework
for comparing expressive power where the logics involved are defined
within the same class of models, the so-called “uni-class” framework.
Now when one is dealing with logics defined withing different classes of
models, it is not possible to directly compare them with respect to their
capacity of expressing properties of their models. The establishment of
some sort of congruence between properties of models in each logic is
needed beforehand. One way to do this is by defining model mappings
f or g such that:

Desiderata 1.1 (Model mappings and expressibility of properties).

(a) f : M1 −→ M2 is such that for every P ⊆ M1, it holds that P is to
L1 as f [P ] is to L2, or

(b) g : M2 −→ M1 is such that for every P ⊆ M1 of the form g[Q], it
holds that g[Q] is to L1 as Q is to L2.1

In the case (b), it is reasonable to require that g be surjective or at
least satisfy a weaker variant (see Definition 2.2), in order to make sure
that for every property in M1, there corresponds a property in M2.

Such a framework of expressiveness comparisons involving model
translations will be called here ‘multi-class expressiveness’. In the se-
quence some formal conditions in this framework which generalize 4EQ

and 4DC will be explored.

2. Multi-class expressiveness

2.1. Generalizations of Discrimination

Let the logics L1 = (M1,S1,1) and L2 = (M2,S2,2) be defined
within different classes of models M1 and M2. There are at least two
ways to generalize 4EQ to the multi-class framework, based on forward or

1 One may also consider cases where the class of models of L2 must be restricted,
so that it makes sense to compare it with the other logic. Such a situation is considered
in Section 2.10 below.
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backward mappings (Desiderata 1.1). In what follows, a generalization
based on forward mappings is analysed.

Let f : M1 −→ M2 be a mapping.

Definition 2.1 (Discrimination preservation). The mapping f is a dis-
crimination preservation from L1 to L2 whenever

• For each A1,A2 ∈ M1, if A1 6≡1 A2, then f(A1) 6≡2 f(A2).

Kocurek (2018, p. 151) gives a generalization for 4EQ, called ‘model-
coarsening’, which is based on backward mappings:

Definition 2.2. Let L1 and L2 be logics and g : M2 −→ M1. Then g
is a model-coarsening from L2 to L1 if:

• For each A ∈ M1, there is a B ∈ M2 such that A ≡1 g(B);
• For each B1,B2 ∈ M2, if g(B1) 6≡1 g(B2), then B1 6≡2 B2.

Fact 2.1. If g is a model coarsening of L2 to L1, then there is a dis-
crimination preservation f from L1 to L2.

Proof. Define f : M1 −→ M2 as follows:

• For A ∈ M1, f(A) = B, for some B such that g(B) ≡1 A.

Take A1,A2 ∈ M1 such that A1 6≡1 A2. Take B1,B2 ∈ M2 such that
f(Ai) = Bi, i ∈ {1, 2}. As g(B1) ≡1 A1 and g(B2) ≡1 A2, we have that
g(B1) 6≡1 g(B2), which implies by the second item of Definition 2.2 that
B1 6≡2 B2, and thus, f(A1) 6≡2 f(A2). ⊣

Fact 2.2. If f is a discrimination preservation from L1 to L2, then there
is a model coarsening g from L2 to L1.

Proof. Take f and select a partial function g∗ from f−1. Expand g∗

to a total function g obeying the rule that if B1 ≡2 B2, then g(B1) ≡1

g(B2). That g satisfies both items of Definition 2.2 is clear. ⊣

Fact 2.3. If f : M1 −→ M2 is a surjective discrimination preservation
and P is expressible by discrimination in L1, then f [P ] is expressible by
discrimination in L2.

Let

[M1]∼L1
= {X ∈ P(M1) | for all A1,A2 ∈ X , A1 ≡1 A2 holds}.

Fact 2.4. If |[M1]∼L1
| ≤ |[M2]∼L2

|, then there is a discrimination preser-
vation f : M1 −→ M2.
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Fact 2.5. Let L be any logic. Then there is a surjective discrimination
preservation from L to a propositional logic defined in a language having
no operators and only m propositional variables, for some number m.

The adequacy of discrimination preservation and model coarsening
as formal measures of relative expressiveness depends entirely on the
prior reasonability of the congruence relation established by the model
mappings between the logics. However, to obtain a reasonable notion
of congruence of models in different logics only by imposing restrictions
on model-mappings  besides very general properties of functions  is
a tricky enterprise. As it will be seen below, when expressibility of
properties is understood on the basis of definability, the situation is
improved, since one can control much more the formula translations and
thus regulate better how the satisfability of the target logic must behave.

2.2. Generalizations of Definability

As with the case of 4EQ, there are also at least two ways to generalize
4DC to the multi-class framework. The first, based on forward mappings,
is as follows:

Definition 2.3. (L1 4DCG1
L2) There is a map f : M1 −→ M2 and a

map T : S1 −→ S2 such that for every A ∈ M1 and φ ∈ S1:

• A 1 φ iff f(A) 2 T (φ).

Definition 2.4. (L1 4DCG2
L2) There is a map g : M2 −→ M1 and a

map T : S1 −→ S2 such that for every B ∈ M2 and φ ∈ S1:

• g(B) 1 φ iff B 2 T (φ).

A couple of immediate facts on 4DCG1
and 4DCG2

:

Fact 2.6. If L1 4DCG1
L2, f is surjective and φ is L1-valid, then T (φ)

is L2-valid.

Fact 2.7. If L1 4DCG2
L2 and φ is L1-valid, then T (φ) is L2-valid.

2.2.1. On the conditions of the form 4DCG1

The condition 4DCG1
is not intuitively sufficient to qualify as capturing

relative expressiveness, as one can easily come up with a counterexample:

A trivial translation. Let L1 = (M1,S1,1) be any logic with a count-
able language and let L2 = (M2,S2,2) be a propositional logic where
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S2 is a countable set of propositional variables but with no connectives
and where M2 is set of valuations on S2. Define T to map every φ ∈ S1 to
a propositional variable pφ ∈ S2, and define ft to map a model A ∈ M1

to a valuation v ∈ M2 such that v 2 pφ iff A 1 φ. Then clearly it
holds that L1 4DCG1

L2.

Defining 4k. Call ‘truth-preserving’ all the involved translation pairs in
expressive comparisons which are either of the form of Definition 2.3 or
2.4. In his doctorate thesis, Kuijer (2014) studied the expressiveness of
various logics of knowledge and action, and selected some results in the
literature involving truth-preserving translations as prototypical com-
parisons in the multi-class framework (cf., e.g., Broersen et al., 2006a;
Broersen et al., 2006b; Gasquet and Herzig, 1996; Goranko and Jamroga,
2005; Thomason, 1974). With the aim of investigating further common
features, the author went through a number of conditions, among which
the following is considered necessary:

Definition 2.5 (Model based). A translation (T , f) is model based if
there are two functions f1, f2 such that for all (M, w) ∈ M1, we have
that f(M, w) = (f1(M), f2(M, w)).

A model based translation would force f to preserve some structure of
M and prevent that the pointed models (M, w) and (M, w′) be translated
to completely unrelated models.

As for the formula-translation, an intuitive condition that came up
to the front was that a reasonable translation should be given by a finite
number of clauses, and be defined inductively through the formation of
formulas. A standard precise way to capture this intuitive desideratum
is to require that the translation be schematic:

Definition 2.6 (Schematic translation). For each n-ary operator ∗ in
L1 and L1-formulas φ1, . . . , φn, there is a formula θ∗(p1, ..., pn) of L2

such that T (∗(φ1, . . . , φn)) = θ∗(T (φ1)/p1, . . . , T (φn)/pn).

However, in such translations each operator must be translated one
at a time, and some of the prototypical translations selected by Kuijer
require a contextual translation of operators, for example, in the pre-
sented formula translation of the public announcement logic to basic
modal logic (Kuijer, 2014, p. 109) there are clauses such as

T ([φ1]�aφ2) = T (φ1) → �aT ([φ1]φ2),

T ([φ1][φ2]φ3) = T ([φ1 ∧ [φ1]φ2]φ3).
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To capture the general form of this sort of mappings, a rather complex
notion of a finitely generated translation is given. Instead of reproducing
it here, a more perspicuous and intuitive reading of it will be presented.

What seems to be the underlying idea of the finitely generated trans-
lations  which is not explicit in Kuijer’s proposal  is that in order to
allow some mapping T do be defined with respect to a block of operators,
one needs auxiliary mappings T1, T2, . . . of arbitrary arities. They are
responsible for parsing the relevant parts of the translated sentence into
the appropriate schema with respect to which either another auxiliary
or the main translation will be called. For example, the clauses above
can be formulated more precisely in these terms as:

T ([φ1]�aφ2) = T[·](φ1,�aφ2)
= T (φ1) → �aT ([φ1]φ2),

T ([φ1][φ2]φ3) = T[·](φ1, [φ2]φ3)
= T ([φ1 ∧ [φ1]φ2]φ3).

For formulas ∗(φ1, . . . , φn) in which the main operator ∗ do not need
special treatment, the translation clause for it will be schematic.

In order to define the general form of finitely generated translations
T : L1 −→ L2, consider the following definition.

Definition 2.7. (Translation metalanguage LT ) For L1 operators #i,
1 ≤ i ≤ n, of arity l(i) and their respective auxiliary mappings T1, . . . , Tn,
define the translation metalanguage LT as containing the source and
target languages L1,L2, formulas of the sort T (φ) and Ti(φ1, . . . , φl(i)),
where φ, φ1, . . . , φl(i) ∈ LT , and is closed under of operators #i from L1

and the operators ∗j , 1 ¬ j ¬ m, from L2.

In this way, the general form of the of the compound translation
T : L1 −→ L2 of an n-ary operator # is:

T (#(φ1, . . . , φn)) = T#(φ1, . . . , φn),

where T# : LT

n
︷ ︸︸ ︷

× · · · × LT −→ LT .
By being inductively defined and thus respecting the structure of the

formulas, the finitely generated translations would be essentially differ-
ent from the ones appearing in the trivial cases analysed. Thus, Kuijer
concludes that the truth-preserving translations that are finitely gener-
ated and model-based could capture relative expressiveness, so the final
criterion given for multi-class expressiveness is (Kuijer, 2014, p. 111):
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Definition 2.8 (4k). L1 4k L2 iff there is a translation (T , f) from L1

to L2 that is model based, finitely generated and truth preserving.

A problem with 4k. Kuijer had no pretensions that his multi-class def-
inition were to be the generalization of expressiveness as given by the
uni-class framework. The aim was to find only a “reasonable generaliza-
tion” (Kuijer, 2014, p. 83). While keeping this in mind, we would like
to argue that his proposal is still not good enough as a formal condition
for multi-class expressiveness. This is because it is not hard to find
‘natural’ logics L arguably more expressive than classical propositional
logic (CPL), although L 4k CPL.

One of them is modal logic KT. Let L be the classical propositional
language over the vocabulary τ = P ∪ {¬,∧}, where P = {p1, p2, . . .};
and let LKT be the closure of L with respect to the unary operator �. Let
∆ be a vocabulary {δ�φ | �φ ∈ LKT} of propositional variables disjoint
from P, and LCPL be the closure of L with respect to variables in ∆.
Let M be the class of reflexive Kripke models over the modal signature
σ = {�} and propositional signature P, and let M∗ be the class of
Kripke models over the empty modal signature and the propositional
signature P ∪ ∆.

Define T : LKT −→ LCPL:

• T (�φ) = T (φ) ∧ T1(�φ), where T1(�φ) = δ�φ.
• Literal for ¬,∧ and atomic formulas.

As the translation is defined inductively through the formation of for-
mulas by a finite number of clauses, it is finitely generated.

Define f : M −→ M∗ as follows.

Definition 2.9. For (W,R, V, w) ∈ M, define f(W,R, V, w) to be equal
to (f1(W,R, V ), f2(W,R, V, w)) ∈ M∗, where

• f1(W,R, V ) = (W,V ∗), with
V ∗ = V ∪ {(δ�φ, {w | (W,R, V, w) KT �φ})}, and

• f2(W,R, V, w) = w.

Fact 2.8. By the definition above it holds that:

• f(W,R, V, w) CPL pi if and only if (W,R, V, w) KT pi;
• f(W,R, V, w) CPL δ�φ if and only if (W,R, V, w) KT �φ. ⊣

Clearly f is model-based. It holds also that (T , f) is truth-preserving:
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Fact 2.9. For all (W,R, V, w) ∈ M and φ ∈ LKT, (W,R, V, w) KT φ if
and only if f(W,R, V, w) CPL T (φ).

Proof. By induction on the degree of formulas. Only the case where
φ = �ψ is shown, as the base and cases for ¬,∧ are immediate.

Suppose that (W,R, V, w) KT �ψ, then, by reflexivity of R we
have that (W,R, V, w) KT ψ. Thus, one can infer from the inductive
hypothesis that f(W,R, V, w) CPL T (ψ). Also by definition of the
satisfaction of δ�ψ, it follows that f(W,R, V, w) CPL δ�ψ. Therefore
f(W,R, V, w) CPL T (�ψ)

Now suppose that f(W,R, V, w) CPL T (�ψ), then it follows that
f(W,R, V, w) CPL δ�ψ and, by definition, (W,R, V, w) KT �ψ. ⊣

Corollary 2.1. KT 4k CPL.

It is not difficult to construct an analogous translation from Ep-
stein’s relatedness logic R to CPL, so that R 4k CPL (2013, p. 300).
The main question now is: does these translations show that CPL is
at least as expressive as KT and R? It is not reasonable to say so
since the extra expressiveness brought about the necessity operator in
the one case, and by the relevant implication in the other, is only poorly
mimicked in CPL by variables whose interpretation must be sustained
by the model-translation. Therefore Kuijer’s formal condition does not
give an intuitively adequate account of expressiveness.

The use of forward mappings seems to be essential to the counterex-
amples above. If we were considering a expressiveness comparison of the
form 4DCG2

, where backward mappings are used, there would be no way
to construct the accessibility relation in models of KT out of a valuation,
and the same holds for the relatedness predicate R in the mentioned case
of Epstein’s relevance logic. Kuijer did not consider backward mappings
since they imply that any truth-preserving translation is also validity
preserving (Fact 2.7), and some of his paradigmatic examples of multi-
class expressiveness are not validity preserving.

On the formula mapping. Notice that in the counterexample presented,
in the translation clause for �, an auxiliary mapping T1 is called, having
the translated formula as an argument. It then outputs a corresponding
propositional variable. This introduction of parameters is perfectly le-
gitimate, indeed, the well known standard translation from modal logic
to first-order logic is finitely generated and also uses parameters, to rep-
resent the accessibility relation (e.g., consider the usual clause for �:
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STx(�φ) = ∀y(Rxy → STy(φ))). Thus, ruling out parameters in general
is not a reasonable option to capture multi-class expressivity.

Therefore, we are here in a quite dire situation: to avoid counterex-
amples such as the one above, one would have to impose a condition for
formula mappings which is stricter than being finitely generated, disal-
lowing the introduction of parameters by auxiliary mappings. However,
this restriction is ad hoc and would leave out very natural translations
across logics defined within different classes of models.

On the model mapping. One perhaps would consider requiring surjec-
tivity, based on the following fact.

Fact 2.10. Suppose that L1 4DCG1
L2 and that f : M1 −→ M2 is sur-

jective. If P is expressible in L1 by definability, then f [P ] is expressible
in L2 by definability.

Proof. Let P = ModL1
(φ). Suppose that B ∈ f [P ]. Then B = f(A),

with A ∈ P and thus A 1 φ. As L1 4DCG1
L2, we can infer that

B 2 T (φ). Now suppose that B 2 T (φ). As f is surjective, there’s an
A ∈ M1 with f(A) = B. As L1 4DCG1

L2, it follows that A 1 φ. Then
A ∈ P , which implies that B ∈ f [P ]. Thus f [P ] = ModL2

(T (φ)). ⊣

However, notice that the function f : M −→ M∗ in Definition 2.9
is already surjective. Together with the above fact, this implies that
surjectiveness is not sufficient to establish an intuitively adequate con-
gruence relation between the classes of models M and M∗. Moreover,
surjectivity is neither necessary, since Thomason’s model mapping in the
translation from temporal logic to modal logic is not surjective.2

There is little hope of finding other reasonable restrictions to im-
pose on model mappings. Naturally, one cannot require for there to be
the usual relations between the mapped structures such as a homomor-
phism, since they may not share the same signature. Moreover, such
requirement cannot be made even when the signature is the same. In
the mentioned example above of the translation of temporal logic into

2 In Thomason’s tranlation from temporal logic to modal logic, the model map-
ping f : MT L −→ MML with (W, R, V ) 7→ (W ′, R′, V ′) is defined as follows:

• W ′ = W ⊎ W ⊎ {w0},
• R′ = {(w+, w−), (w−, w+), (w+, w0) | w ∈ W} ∪ {(w+

1
, w+

2
), (w−

2
, w−

1
) | w1 < w2},

• V ′(p) = {w+, w− | w ∈ V (p)}.
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modal logic, the members of the original and translated model are not
related in a functional way.

Given this, it seems that the establishment of a plausible congruence
relation using a condition of de form 4DCG1

is tightly linked with the
specificities of the logics involved, and it may arguably be inferred that
no general and reasonable condition of this form is there to be found.
In the next section it will be seen that the situation with respect to
conditions of the form 4DCG2

is much better.

2.2.2. On the conditions of the form 4DCG2

García-Matos and Väänänen (2007, p. 21) propose a wider version of
4DCG2

to capture the concept of relative expressiveness. In this version,
it is allowed that the class of models M2 of the target logic L2 be re-
stricted by an L2-sentence. The idea behind it is that only models that
are significant from the viewpoint of L1 should be translated. This is a
common approach in the area on comparisons of formal systems, indeed,
it is often allowed that the M2 be restricted by a set of L2-sentences.3

Defining 4gv+ . Consider the wider condition for multi-class expressive-
ness, which is identical with Garcia-Matos and Väänänen’s except that
it allows M2 to be restricted by a recursive set of L2-sentences:

Definition 2.10. Let L1 = (M1,S1 1) and L2 = (M2,S2,2) be
logics. Then L1 4gv+ L2 if there is a recursive set of sentences Θ ⊆ S2

and functions g : ModL2
(Θ) −→ M and T : S1 −→ S2 such that:

(a) For every A ∈ M1 exists a B ∈ M2 such that f(B) = A and
B 2 Θ;

(b) For every φ ∈ S1 and for every B ∈ M2, if B 2 Θ, then (B 2 T (φ)
if and only if g(B) 1 φ).

As mentioned before, the above condition is not susceptible to coun-
terexamples as those of Section 2.2.1, due to the direction of the model
mapping. However, we argue that 4gv+ is still materially inadequate.

A problem with 4gv+ . The following fact is a generalization of a result
due to Mossakowski et al. (2009, p. 107).

Fact 2.11. Let L be any many-valued logic whose semantics can be
stated in classical propositional language. Then L 4gv+ CPL.

3 E.g. (Manzano, 1996, p. 270).
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Sketch of proof. Define T : SL −→ SCPL:

• For every φ ∈ SL, let T (φ) = pφ, where pφ is a new propositional
variable.

By Suszko’s thesis, L can be obtained by a collection C of bivalued seman-
tic clauses. Each such clause will be rendered as a material conditional,
where every occurrence of “the valuation attributes ‘true’ (or ‘false’) to
a formula φ”, is written as “φ” (or “¬φ”), and the logical expressions are
written in the propositional language, as expected.

Let Θ ⊆ SCPL be obtained by the addition, for every n-ary operator
> of L and every φ1 . . . φn ∈ SL, of at least one of the following items,
which express the semantic clauses for >:

• T (>(φ1 . . . φn)) → A1,
• A2 → T (>(φ1 . . . φn)),

where A1 and A2, are boolean combinations of T (φ1) . . . T (φn).4

Now, for φ ∈ L and v ∈ ModCPL(Θ), define g : ModCPL(Θ) −→ M1

as follows:

• g(v) L φ iff v CPL T (φ)

That (T , g) satisfies items (a) and (b) of Definition 2.10 is clear. Thus,
we have that L 4gv+ CPL. ⊣

The main point of the above result is that, by encoding semantics of
L into Θ and then restricting the CPL-models to those that satisfy Θ,
one is able to fetch back L-models via the model-translation. Fact 2.9
appears to show more of a “cheating” allowed by 4gv+ , than that CPL
is maximally expressive among such propositional logics. Intuitively, it
appears that more things are expressible, e.g., in intuitionistic logic or
relevance logics than in classical propositional logic.

An improved version of 4gv+ . The modification of García-Mattos and
Väänänen’s condition, allowing Θ to be a recursive set of sentences in-
stead of a sentence, looks at least as “natural” as the original one. Allow-
ing Θ to be only a single sentence will probably not prevent counterex-
amples among more expressive logics. However, it is essential for the

4 For example, if L contains truth-functional conjunction ∧, Θ will contain all
items below:

• T (φ1 ∧ φ2) → (T (φ1) ∧ T (φ2)),
• (T (φ1) ∧ T (φ2)) → T (φ1 ∧ φ2).
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counterexample to hold that T does not preserve any eventual structure
of L-sentences, and that they be translated into propositional variables.

Now, one can fix the above issue and obtain an improved condition
by imposing the requirement that the formula-mapping T : L1 −→ L2

be finitely generated. This will block the trick of artificially smuggling
the semantics of L1 into Θ.

3. Conclusion

As it was mentioned before, in the uni-class framework it is very simple
to define relative expressiveness, since there is a common ground  the
class of models  in order to compare the expressibility of properties in
them.

In the multi-class framework, where L1 = (M1,S2,1) and L2 =
(M2,S2,2) are defined on possibly different classes of structures, the
comparison of expressible properties of models requires a certain congru-
ence between properties in M1 and in M2, establishing which properties
in the one logic correspond to properties in the other.

Such a congruence will be established by either forward model map-
pings f : M1 −→ M2, or backward model mappings M2 −→ M1.
Fact 2.5 shows that if no restrictions on the model-mappings are made,
the generalizations of discrimination to the multi-class framework are
trivial. Now, to place restrictions on the model mappings in order to
achieve a reasonable congruence seems to be a virtually hopeless enter-
prise, given the variety of model classes. Even for the restricted case of
possible world semantics, we are no better off. Plausible requirements
such as being model based are still too general to limit undesirable cases,
and thus fails to provide the appropriate congruence.

The counterexample to Kuijer’s condition in Section 2.2.1 would not
work for backward model mappings. However, requiring only that these
mappings be backward, would not provide the proper congruence be-
tween models either, as the counterexample in Section 2.2.2 has shown.

For conditions of the form 4DCG1
, placing stricter restrictions on

formula translations is efficient to avoid such counterexamples, but it
can also block some intuitively reasonable expressiveness comparisons,
as it was mentioned on Section 2.2.1. On the other hand, for conditions
of the form 4DCG2

, considered in Section 2.2.2, imposing that formula
translations be finitely generated is efficient to block counterexamples
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like the ones presented. Given the general character and naturalness
of such translations, the resulting condition arguably will not under-
generate. Nevertheless, it is not completely clear whether the resulting
expressiveness condition would still overgenerate, as this might hinge on
the difficulty of establishing general conditions for there being a con-
gruence between models in different classes of structures, which can be
highly dependent of the characteristics of the compared logics.
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