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Abstract. In this paper, we present two ways of modelling every epistemic
formal conditional commitment that involves (at most) three key epistemic
attitudes: acceptance, rejection and neither acceptance nor rejection. The
first one consists of adopting the plurality of every mixed Strong Kleene
logic (along with an epistemic reading of the truth-values), and the second
one involves the use of a unified system of six-sided inferences, named 6SK,
that recovers the validities of each mixed Strong Kleene logic. We also
introduce a sequent calculus that is sound and complete with respect to
both approaches. We compare both accounts, and finally, we suggest that
the plurality of Strong Kleene logic as well as the general framework 6SK
are linked to formal epistemic norms via bridge principles.
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1. Formal conditional commitment (for three
key epistemic attitudes)

It is common  and reasonable  to think that, in a valid inference, or
at least in sound ones, premises provide support for the conclusions (one
of them, at a minimum). Or, to put it more clearly, that accepting the
premises provides reasons to accept the conclusions. Nevertheless, this
way of understanding validity does not represent all the different kinds of
epistemic support that certain propositions can receive in various norma-
tive situations faced in everyday life (and also in philosophical contexts).
For example, sometimes the rejection of certain sentences provides good
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reasons to accept others. Or the fact that one does not accept nor reject

a set of sentences warrants accepting or rejecting some conclusion.1

Rationally accepting and rejecting propositions are two kinds of atti-
tudes that can be deemed as epistemic, at least in the minimal sense that
we regard them to be somewhat justified, and even based on reasons.2

There are certain norms that we seem to follow in these normative sit-
uations. Some of those norms are purely formal, in the sense that they
are not about any particular set of propositions, sentences or judge-
ments. For this reason, we shall call them formal epistemic norms. In
the following, we provide two ways in which to account for all possible
formal epistemic norms that refer exclusively to the epistemic attitudes
of accepting, rejecting and neither accepting nor rejecting. The first way
to account for these kinds of formal commitments involves the use of the
plurality of all mixed Strong Kleene logics (accompanied by an appro-
priate epistemic interpretation of the three truth-values). Thus, it relies
on a certain kind of logical pluralism. The second account uses a single
logic to accommodate each of these formal epistemic norms. One of the
most peculiar things about it is the non-standard way of understanding
the notion of inference. Inferences will not be ordered pairs of sets of
sentences, but ordered pairs of triples of sets of sentences.

The rest of this paper is organized as follows. In Section 2, we in-
troduce the family of all mixed Strong Kleene logics. In Section 3, we
present an epistemic reading available for each of these three-valued sys-
tems. In Section 4, we propose a unified framework in which one can
represent the logics previously introduced, and we present a proof system
for it, SC6SK. This is a generalization of the result given in [15] to every
Strong Kleene mixed logic. In Section 5, we suggest two bridge principle
schemas that explain how these logics give rise to norms. In Section 6,

1 We should better stop now to explain what we mean by neither accepting nor

rejecting. This is less a name for an specific attitude than a label for a variety of
attitudes. Different ways of “neither accepting nor rejecting” include being uncertain
(that a certain event in fact holds), suspending belief, or having as much reasons to
accept than to reject a certain proposition. One can also take it as tolerantly accepting
(that is, neither strictly accepting nor strictly rejecting), using the strict/tolerant ter-
minology found in [7]. They are all species of the same genus, as they are all epistemic
attitudes that cannot be interpreted neither as forms of accepting nor as ways of re-
jecting sentences, propositions, etc. This justifies using the same label group them as
a third kind of epistemic position towards sentences, besides accepting and rejecting.

2 When we talk about accepting or rejecting sentences and propositions in this
article, we will understand the terms as rationally accepting or rationally rejecting.
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we lay out a comparison of both accounts, and give arguments in favour
of the second approach. And finally, in Section 7, we conclude with some
final remarks.

Now we are ready to introduce the first way to account for formal
epistemic norms that relate the epistemic attitudes of acceptance, rejec-
tion and (the different types of epistemic attitudes of) neither acceptance
nor rejection: adopting the plurality of every mixed Strong Kleene logic.

2. First account: the plurality of mixed Strong Kleene logics

The first way to model formal epistemic commitments is through mixed
three-valued Strong Kleene logics. Before saying how this can be done,
we will start by defining what a (mixed) Strong Kleene logic is, and
which are they.

2.1. Mixed Strong Kleene logics

In this paper we will focus on propositional mixed three-valued logics
based on the Strong Kleene valuations, but there are other three-valued
schemas one can choose to work with: sub- and super-valuations, Weak
Kleene valuations, or the Łukasiewicz three-valued schema, are just a
few cases worth mentioning.

A logic is usually defined as an algebra plus a consequence relation,
also understood as a set of inferences or as a standard that determines
a set of (valid) inferences. For the sake of simplicity, we will focus on
propositional logics. Let L be a propositional language with the con-
nectives ∧, ∨ and ¬, of arities 2, 2, and 1 respectively, and intended as
conjunction, disjunction and negation. Let Var be a countably infinite
set of propositional variables, we denote by FORL the absolutely free
algebra of formulas of L, with Var as its generating set.

So far, we have given an informal characterization of consequence
relations. Though formally they can be defined in different ways, we
focus on what Chemla, Egré and Spector [5] call mixed consequence
relations.3

3 Though mixed consequence relations were available long before, most notably,
in [13, 9]. Further developments on mixed consequence can be found in Chemla and
Egré’s [4, 3].
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Definition 2.1. A consequence relation for L is a subset of ℘(FORL) ×
℘(FORL). A consequence relation for L is mixed if and only if for every
inference 〈Γ,∆〉, where Γ and ∆ are sets of sentences, ∆ follows from Γ
if and only if for every valuation v, if v(γ) ∈ D+ for every γ ∈ Γ , then
v(δ) ∈ D− for some δ ∈ ∆, for some pair of standards D+ and D−.

A standard is a set of truth values. And for any standard D+/−,
valuation v and formula α, we say that v(α) meets or satisfies the stan-
dard D+/− if and only if v(α) ∈ D+/−. Standards for premises and
conclusions can also be understood as specifying which are the values
each formula might have in a sound argument or inference.

If D+ 6= D−, then the mixed consequence relation is impure; oth-
erwise, it is pure. We will introduce the different kinds of three-valued
logics that can be characterized through the Strong Kleene schema, i.e.,
where sentential connectives behave like this:

¬

1 0

½ ½

0 1

∧ 1 ½ 0

1 1 ½ 0

½ ½ ½ 0

0 0 0 0

∨ 1 ½ 0

1 1 1 1

½ 1 ½ ½

0 1 ½ 0

Moreover, → and ↔ can be defined in the usual way.

Mixed Strong Kleene logics belong to one and only one of the fol-
lowing five categories: (1) pure logics, (2) disjoint logics, (3) p-logics,
(4) q-logics and (5) overlapping logics. (1) and (2) have been already
introduced by Chemla, Egré and Spector in [5] and by Pailos in [15],
respectively. (3) and (4) are well-known kinds of substructural logics,
though we understand them in a slightly unorthodox way regarding the
original presentation given, correspondingly, by Frankowski [9] and Ma-
linowski [13, 14]. Finally, (5) refers to logics whose consequence relation
consists in a pair of standards such that neither of them is included in
the other, though their intersection is not empty. These logics, as far as
we know, have never been studied in the literature.

If the empty set is taken as a bona fide standard, there are 64 mixed
three-valued logics based on the Strong Kleene schema  i.e., 64 different
mixed Strong Kleene logics. If not, there are “just” 49 different mixed
Strong Kleene logics. In the sequel, we will present all of them, not only
to be exhaustive, but also for philosophical reasons: even though de facto

some inferences involving certain epistemic attitudes are more prevalent
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than others in practice, we think all of these possible combinations are,
in principle, equally legitimate. Hence why all are presented on equal
footing. Finally, it is worth noticing that, since we are working with sets,
we have Contraction and Exchange for free in all of these logics.

In order to improve readability and keep track of which logic is being
discussed, we will rename the standards we will be talking about  and
therefore the logics they help characterize. We will keep the substruc-
tural terminology, and use s and t for {1} and {1,½}, respectively.4 We
borrow the remaining terminology from [15]. We will use n for {½}
and the ∅ sign for the empty set. Finally, we will use an operation x,
that provides the complement of x. Here is a list of the new vocabulary
introduced:

s = {1} s = {½, 0} t = {1,½} t = {0}

n = {½} n = {1, 0} ∅ = ∅ ∅ = {1,½, 0}

Using these new abbreviations, we will introduce in the following sub-
sections a way to characterize every mixed Strong Kleene logic that can
be represented with a pair of these eight labels. While the first sign of
the pair stands for the set D+ (i.e., the “premise standard”), the second
sign represents the set D− (i.e., the “conclusion standard”).

2.2. Pure logics

There are eight different mixed pure logics based on the Strong Kleene
schema  at least if we take the empty set and its complement as legiti-
mate standards. (If we do not, then there are six of them.) The following
two are the most well known three-valued pure logics:
• ss, also known as K3.
• tt, usually referred to as LP.
The logics K3 and LP were originally introduced in [11, 1, 17] and have
been widely studied in the literature. Instead, we shall focus on the other
six lesser-known logics of this group. (For a more thorough presentation
of all mixed pure Strong Kleene logics, we defer to [16].) Further, let
p, q ∈ Var and p 6= q.

4 The s and the t correspond, respectively, to the notions of being strictly and
tolerantly satisfied. A valuation v tolerantly satisfies a formula ϕ if and only if v(ϕ) ∈
{1, ½}, and it strictly satisfies ϕ if and only if v(ϕ) ∈ {1}. These notions have been
widely used in the literature about (non-transitive and non-reflexive) substructural
logics, but were originally introduced by Cobreros et al. in [6].
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The logic nn does not have tautologies (as every formula can receive
a classical truth-value), and it does not validate every inference with
a non-empty set of premises, either. For example, it does not validate
p � q. nn is a paraconsistent and a paracomplete logic, because neither
Explosion (in the more standard form p,¬p � q) nor Excluded Middle
(i.e., � p ∨ ¬p) are nn-valid. A valuation v such that v(p) = ½ and
v(q) ∈ {1, 0} is a counterexample to Explosion and a valuation v′ such
that v′(p) ∈ {1, 0} is a counterexample to Excluded Middle. nn is not
a sublogic of Classical Logic. For example, p � ¬p and ¬p � p are two
valid inferences in nn that are not valid in Classical Logic. (This also
makes it incomparable with LP and K3.)

The logic nn lacks valid inferences with an empty set of conclusions.
Nevertheless, nn is not trivial. nn validates no formula  as the valuation
that gives every formula the value ½ can witness. Since it has no tau-
tologies, it invalidates Excluded Middle, making it a paracomplete logic.
It is also not explosive  as p and ¬p may receive classical values, but
q might receive the non-classical value. Thus, nn is also paraconsistent.
p � ¬p is an example of an inference valid in nn but invalid in Classical
Logic, which also makes nn contra-classical.

The logic tt is such that every inference with a classical tautology
as a premise turns out valid. This logic, though, has no tautologies  as
the valuation v that gives the non-classical value to every propositional
letter, and thus to every formula, invalidates every formula. It is not
included neither in nn nor in nn, since p ∨ ¬p � q is valid in this logic
but invalid in the other two. And it does not have these as sublogics
neither, as p � ¬p is invalid in tt, but valid in those logics, while p � ¬p is
invalid in tt but is valid in nn and nn. tt is also paracomplete, as it inval-
idates Excluded Middle (because it has no tautologies). tt is also contra-
classical. For instance, p � p∧¬p is valid in it, but not in Classical Logic.

2.3. Disjoint logics

Disjoint logics are impure logics in which D+ ∩ D− = ∅, i.e., the stan-
dard for premises does not share any truth-value with the standard for
conclusions. There are twenty six different three-valued disjoint logics
based on the Strong Kleene schema  i.e., twenty six different Strong

Kleene disjoint logics.
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We will mention some facts about three of these logics to illustrate
how they behave. For a more comprehensive picture of Strong Kleene
disjoint logics, see [15].5

The logic sn is such that any inference with a classical contradiction
as a premise is valid, e.g., p ∧ ¬p � q. In fact, the same happens with
any disjoint three-valued logic with s as the standard for premises.

The logic tn is not empty either, as any inference with a classically
valid formula as a premise is valid  e.g., p ∨ ¬p � q. In fact, the same
happens with any disjoint three-valued logic with t as the standard for
premises.

The logic nt is not empty if, for example, ⊤ or ⊥ are part of the
language. In particular, any inference with ⊥ or ⊤ as a premise or a
conclusion is valid. But if no such constants are available, then, as in
previous cases, the valuation that gives value ½ to every propositional
letter invalidates every inference (and sentence).

2.4. P-logics

Though the most usual way to define p-logics is through sets of in-
ferential validities that obey closure properties such as reflexivity and
monotonicity, we will refer to p-logics as a mixed and impure logics for
which D+ 6= ∅ and D+ ⊂ D−. The first clause intends to exclude
every disjoint logic with the empty set as the standard for premises.
This, though, does not give us the ordinary extension of (mixed Strong
Kleene) p-logics. For example, according to our new definition, neither
CL nor LP count as p-logics. But as we intend to fit every three-value
Strong Kleene logic into one and only one category, this terminological
adjustment is more suitable for our purposes.

It is pretty straightforward to show that in every p-logic Identity and
Weakening hold. It is also not hard to show that Cut (i.e., if Γ � A,∆
and Γ,A � ∆, then Γ � ∆) is invalid in all of them, just by taking a

5 Notice that in [15] ∅∅ is defined as a disjoint logic, whilst here we have catego-
rized it as a pure logic. What defines a logic as pure is the fact that the standard for
premises and the one for conclusions are the same. Meanwhile, disjoint logics ask for
the corresponding standards not to have any values in common. Since ∅∅ fits both
categories, we choose to follow the intuition that dictates that disjoint logics should
be impure. This puts ∅∅ in a more intuitive place, among the pure logics.
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valuation that assigns to the cut-formula, for every p-logic in the list,
the only value in D+ that does not belong to D−.6

Some of these logics are supraclassical, e.g., s∅, a trivial logic re-
garding non-empty premises and conclusions, st matches exactly classi-
cal logic (at least at the inferential level), and even others are contra-
classical  e.g., ns, a logic that invalidates p � p ∨ q, but validates any
inference with a classical contradiction as its only conclusion (or even
with a set of classically unsatisfiable formulas as the set of its conclu-
sions). Nevertheless, no p-logic is strictly sub-classical.7

2.5. Q-logics

Though the most usual way to define q-consequence relations  that ex-
tensionally characterize q-logics  is as sets of inferential validities that
obey closure properties such as monotonicity and quasi-closure, we will
also employ the term q-logics in a slightly modified way. Q-logics, in our
sense, are mixed and impure logics for which D− 6= ∅ and D− ⊂ D+. In
a similar fashion as before, the first clause excludes disjoint logics with
the empty set as the standard for conclusions. And again, this way of
understanding them does not collapse with what is ordinary referred to
as q-logics. For example, according to our new definition, neither CL
nor K3 count as q-logics.

There are twelve different Strong Kleene q-logics  which can be ob-
tained from the twelve Strong Kleene p-logics by switching the premises
and the conclusion’s standards. It is not hard to show that Cut and
Weakening hold in every q-logic. Identity is invalid in every q-logic, a
fact witness by a valuation that assigns to the formula that appears in

6 All these facts have been originally proved in [9], for p-logics defined in the orig-
inal sense. But each of our p-logics is also a p-logic according to the way Frankowski
uses the term. The same can be said regarding q-logics in our sense and Malinowski’s.

7 The following is a quick proof of this fact. The ones that have two values
in D+ must have all the three values in D−, making every formula a tautology of
these logics. The ones such that D+ = {0} are not included in classical logic because
every inference with a subset of premises classical satisfiable in every valuation  for
example, with a classical tautology as a premise  turn out valid in these logics, but
not in CL. The ones such that D+ = {½} are not included in classical logic because
they validate the inferential schema A � ¬A. Finally, the ones such that D+ = {1}
are not included in classical logic neither. The only logic of this type we have not
already talked about is sn, and this logic also validates A � ¬A.
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both the premise and conclusion side the truth-value that belongs to D+

but doesn’t belong to D−. (This has been originally proved in [13, 14].)

Some of these logics are strictly sub-classical (e.g., st, an empty logic),
others are contra-classical (e.g., ∅s, a logic that invalidates Identity; like
every q-logic), but validates any inference with a classical contradiction
as one of its conclusions. (In fact, it validates any inference with a set
of classically unsatisfiable formulas as a subset of its conclusions.) But,
of course, there is no strictly supra-classical q-logic (i.e., q-logics that
strictly include CL) because each of these logics invalidates at least one
case of Identity.

2.6. Overlapping logics

Not every three-valued Strong Kleene inferential logic falls into one of
the four previous categories. Overlapping logics are such that the inter-
section between D− and D+ is not empty  so they cannot be disjoint
logics  , but also none of these sets is included in the other member of
the pair of standards  and thus cannot be neither p-logics nor q-logics
nor pure logics. For matters of simplicity, we label them as overlapping

logics. To the best of our knowledge, this particular family of logics has
not been previously investigated in the literature.

Each of these logics is non-reflexive. To check this, consider any
instance of Identity with a letter p ∈ Var for which there is a valuation v
such that v(p) ∈ D+ but v(p) /∈ D−. Moreover, and for similar reasons,
none of these logics validate Cut. Once again, consider a case with the
empty-sequent as the end-sequent, and a cut-formula A such that there
is a valuation v, v(A) ∈ D− but v(A) /∈ D+.

Nevertheless, these logics are monotonic, contractive and validate
Exchange, as they are inferential logics, and inferences, in this frame-
work, are pairs of sets of formulas. Given their novelty, we will stress
some features of three of these logics:

The logic tn is strictly subclassical. And in fact, it is an empty logic
(if no truth-value constants are added to the language).

The logic ts is not comparable with classical logic, as it, e.g., in-
validates Identity but validates A � ¬A. (In fact, there are no strictly
supraclassical logic  i.e., logics that strictly include CL  because each
of these logics invalidates Identity.)

The logic st is not comparable with classical logic, as it invalidates
Identity, like every overlapping-logic, but validates, for example, ¬A � A.
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We summarize the membership of every mixed Strong Kleene logic
in their corresponding category with the next diagram:

∅∅ ∅t ∅n ∅s ∅s ∅n ∅t ∅∅

t∅ tt tn ts ts tn tt t∅

n∅ nt nn ns ns nn nt n∅

s∅ st sn ss ss sn st s∅

s∅ st sn ss ss sn st s∅

n∅ nt nn ns ns nn nt n∅

t∅ tt tn ts ts tn tt t∅

∅∅ ∅t ∅n ∅s ∅s ∅n ∅t ∅∅

xy

xy

xy

xy

xy

pure logics

q-logics

overlapping logics

p-logics

disjoint logics

Every row represents every mixed logic with the same standard for
premises, and each column represents every mixed logic with the same
standard for conclusions.

3. An epistemic reading of Strong Kleene logics

As we mentioned in the beginning, it is common to think that, in a valid
inference, or at least in sound ones, premises provide reasons to accept
the conclusions. Another, and even more clarifying, way of putting it
is that accepting the premises provides reasons for accepting the conclu-
sions. However, this assumption leaves aside other ways in which cer-
tain epistemic attitudes towards propositions are able to give epistemic
support to others. In that sense, it leaves aside other possible formal
commitments that we encounter in everyday, and in philosophical, life.

For example, sometimes the acceptance of certain sentences warrants
the rejection of others. Or the fact that one does not accept nor reject

some collection of sentences provides good reasons to either accept or
reject some conclusion. These situations cannot be straightforwardly
represented by valid or sound inferences of logics that aim at capturing
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acceptance-preserving or truth-preserving facts, in one way or another.
Nevertheless, they can be represented by valid inferences of other logics.
We claim that all of them  i.e., every formal epistemic norm related
only to the attitudes (or the type of attitudes) of accepting, rejecting,
or neither accepting nor rejecting  can be linked to the valid inferences
of some mixed Strong Kleene logic (via some bridge principle). In this
section, we will present a kind of epistemic interpretation available for
all of these logics.8

It is by now standard to think that each value of a three-valued logic
can be suitable related to a specific epistemic attitude, informational
condition or metaphysical state. Specifically, value 1 can be related to
the metaphysical state of being true, but also to being certain  i.e.,
to the epistemic state of certainty that a specific agent might be in
with respect to a specific proposition  , to the epistemic attitude of
accepting that proposition, or to the informational condition of ‘being
told true’. The value ½, in its turn, can be related to the metaphysical
state of being neither true nor false (namely, of some event or object
being undetermined in some regard, e.g. neither having nor not having
some property), the dialetheic situation of being both true and false
(that is, of being overdetermined in some aspect, e.g. being both P and
not P , for some property P ; for more about it, see, e.g., [18]), but it can
also be understood as a state of uncertainty, of suspension of belief, or
one in which the agent has as much reasons to accept the proposition as
the ones she has to reject it  which are all forms of neither accepting
nor rejecting a proposition  , and even to the informational stated of
‘being told neither true nor false’ (or being told both of them). Finally,
the value 0 is usually related to the metaphysical state of being false,

8 This type of justification has been previously elaborated by [15, 16] for two
different sub-families of mixed Strong Kleene logics. We should stress that, even
though we have chosen to deepen in the epistemic way to understand these logics,
this does not mean that we are claiming that ours is the only kind of interpretation
available for these logics. In fact, it is possible to give either alethic interpretations 
i.e., in terms of the metaphysical states of being true, being false and being neither
true nor false (or both)  or informational readings  i.e., in which certain pieces of
information (sentences or propositions) can be marked as being told true, being told
false and neither being told true nor being told false  or being told both. The latter
is the interpretation that Belnap develops for FDE in [2], that can be easily extended
to every mixed Strong Kleene logic. We will consider this informational interpretation
later on, though our main focus is on what we have called the epistemic interpretation,
given our interests.



626 A. Borzi, F. Pailos, J. S. Toranzo Calderón

but also to the epistemic attitude of rejection  or the probably different
one of being certain of the falsity of the proposition,9 but also to the
informational condition of ‘being told false’.

With these different ways to understand the three truth-values, it is
possible to develop philosophical interpretations for all of these logics. In
particular, if we attach these values to the (kinds of) epistemic attitudes
usually associated with them (i.e., as accepting, neither accepting nor
rejecting, or as rejecting certain sentence), we will more or less automat-
ically develop epistemic interpretations for all of these logics.

Before giving a precise definition and some examples, let us make
explicit the epistemic attitudes we want to attach to the sets of values
under consideration:

s : accepting s : not accepting

n : neither accepting nor rejecting n : accepting or rejecting

t : not rejecting t : rejecting

∅ : having no attitude ∅ : having any attitude

In principle, every set of values encodes an epistemic attitude, be it basic
as in s or t, be it more complex as in n or ∅. Some combinations can
be discarded as being problematic, but they should be treated case by
case. Now we can define what is an epistemic interpretation for a mixed
Strong Kleene logic:

Definition 3.1 (Epistemic interpretation). An inference is valid in a
Strong Kleene logic xy if and only if, if an agent has an attitude related
to some values in x with respect to every premise, then the agent should
have an attitude related to one of the values in y towards at least one
conclusion.

We provide some examples that aim to give the reader a general idea
of how these interpretations look. The first example we will consider is
given by tt. This logic can be seen as qualifying as valid inferences of
rejected sentences from rejected sentences  i.e., inferences such that if
every premise is rejected, then at least one conclusion is rejected. Both
p ∧ ¬q � p and p ∧ ¬p � ¬p are invalid in tt, as they should: if someone
rejects p∧¬p, its because she rejects one (and only one) of its conjuncts.

9 These attitudes may or may not be identical to the one of accepting the negation
of the proposition rejected. As this discussion is not central to the point we want to
state here, we will leave it aside for the moment.
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But it could be either one. Thus, it would not be reasonable to demand
her to reject, say ¬p, because if she rejects p, then she should in fact do
the opposite: accept its negation. Yet p � p∧¬p is valid in it, despite not
being valid in Classical Logic. Once again, this seems right: if someone
rejects a sentence p, then she should reject the conjunction of p with any
other formula.

Another example is given by logic sn. This is a disjoint logic that
can be interpreted as qualifying as valid inferences of non accepted nor

rejected sentences from accepted sentences  i.e., inferences such that if
every premise is accepted, then at least one conclusion is neither accepted
nor rejected. And this is why A 2 ¬A: if A is accepted, then ¬A is
rejected, i.e., it is not neither accepted nor rejected.

We will provide one final example. The logic st is an overlapping-
logic such that ¬A 2 A, but it invalidates Identity. We can justify the
first fact by pointing out that if ¬A is either rejected, or neither accepted
or rejected, A should be either accepted or neither accepted or rejected.
The second fact can be justified by saying that if a sentence is rejected,
it cannot be accepted in the same moment.

These logics, interpreted in this way, can be applied to a specific
case, i.e., to the epistemic situation of some particular person. Take, for
example, nt. This logic validates the inferences such that if every premise
is neither accepted nor rejected, then the set of conclusions contains at
least one rejected sentence. Thus, in order to obtain what sentences must
be rejected by a particular agent in some specific situation, given the set
of sentences she neither accepts nor rejects, the valuations must be re-
stricted to the ones that give the value ½ to the sentences (that represent
the ones) that are in fact neither accepted nor rejected by the agent. The
set of conclusions of valid inferences (restricted to the set of valuations
that give the value ½ to every premise), will be the ones that contain at
least one sentence that must be rejected (i.e., whose rejection the subject
is committed to, given the set of sentences she neither accept nor reject).

Thus, philosophical interpretations for all of these logics are available,
or at least for most of them. In particular, we are unsure whether this
kind of interpretation can be extended to mixed logics involving ∅ or
∅ as standards for premises or conclusions. In the case where ∅ acts
as the standard for premises, we get a trivial logic with respect to non-
empty premise inferences. Moreover, it is not clear what the empty set
might represent as an attitude, or as a mix of attitudes. There seems
to be an analogous problem with logics that have ∅ as the standard
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for conclusions. In each of these cases we get a trivial logic regarding
non-empty conclusion inferences.10 Besides, what kind of commitments
would a logic that is trivial for inferences with non-empty premises (resp.
conclusions) represent?

Having said that, in the case of logics that have ∅ as the standard
for premises, there seems to be a clear philosophical reading, of the
kind we have already proposed. These logics validate just the inferences
that have at least one conclusion that can be accepted/rejected/neither
accepted nor rejected, or a combination of them, depending on the case.
If our focus is on sentences rather than on inferences, these logics seem
to be useful. Nevertheless, if we reject some subset of every possible
mixed Strong Kleene logic, it will not be the case that, according to this
approach, everything goes regarding mixed Strong Kleene logics.

The epistemic interpretation of these logics  in terms of acceptance,
rejection and a third kind of attitude different from them  is not new.
However, it has been restricted to logics defined through standards that
are upsets.11 We have generalize this kind of interpretation for every
mixed Strong Kleene logic, regardless of whether it is defined through
standards that are upsets or not. And what we gained from this is the
possibility to represent, with the valid inferences of the logics that are
usually left aside (or not even considered as logics), every possible formal
commitment that relates these three types of epistemic attitudes.

Nevertheless, we are not committed to the claim that this is the only
way to capture these kinds of epistemic commitments  but just that it
is a fairly reasonable way to do it. Specifically, it is in principle possible
to capture all formal epistemic norms (for the three epistemic attitudes
previously listed) in a single unified theory, or logic, that does not require
one to commit to any kind of logical pluralism. Thus, this is one way to
go if a monist approach is preferred. The next section is devoted to it.

4. Second account: a unified logic for every three-valued
formal epistemic commitment

To achieve a unified framework that encapsulates all formal commit-
ments possible, given this three epistemic attitudes, we first need to

10 For more about how bad logics that are trivial with respect to a particular set
of sentences are, see [21].

11 Following [5], a standard is an upset iff if x ≤ y and x ∈ D, then y ∈ D.
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modify the way in which we understand inferences, or better yet, to give
up the traditional way in which we conceive them: instead of seeing them
as pairs of sets (or multisets, or sequences) of formulas, we embrace a six-

sided understanding of inferences  or a two-sided type of inference such
that both the premises and conclusions are neither sets nor multisets,
but sequences of three sets of sentences. These type of inferences are
a version of the sequents that have been introduced by Francez in [8]
under the name of poly-sequents.12 We will introduce the logic 6SK that
deals with this form of inferences, but first, we need to introduce some
technical machinery.

Let L be a sentential language with the connectives ∧, ∨, and ¬, of
arities 2, 2, and 1, and intended as conjunction, disjunction and nega-
tion, respectively. Let Var be a countable set of sentential variables
{p, q, r, ...}. By FORL we denote the set of well formed formulas of L,
defined as usual. We define an expression of the form φ → ψ as ¬φ ∨ ψ.

Definition 4.1. A six-sided inference on L is any element of ℘(FORL)
× ℘(FORL) × ℘(FORL) × ℘(FORL) × ℘(FORL) × ℘(FORL).

So, a six-sided inference is any tuple Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0

such that Γ1, Γ½, Γ0, ∆1, ∆½, ∆0 ⊆ FORL. We let INF(L) denote the
set of all six-sided inferences.

Definition 4.2. A six-sided logic L for L is a pair 〈L,�L〉, where �L⊆
℘(FORL) × ℘(FORL) × ℘(FORL) × ℘(FORL) × ℘(FORL) × ℘(FORL)

With this definition of a six-sided logic, we can specify now how our
target logic, 6SK, works.

Definition 4.3. For any six-sided inference Γ1 | Γ½ | Γ0 � ∆1 | ∆½ |
∆0, it is valid in the six-sided logic for Strong Kleene matrices 6SK if
and only if, for every valuation v, if for every γ1 ∈ Γ1, v(γ1) = 1, for
every γ½ ∈ Γ½, v(γ½) = ½ and for every γ0 ∈ Γ0, v(γ0) = 0, then either

12 Francez introduces them with the aim of obtaining a proof-system such that
acceptance and rejection can play a role both in the premises and the conclusions, and
not as in Restall’s [19] understanding a traditional two-sided inferences and sequents,
where premises are related to the things an agent accepts, while the conclusions are
linked with what that agent rejects. Moreover, the way Francez reads poly-sequents
does not depend on a specific semantics for them, thus  according to him  being
better suited for a proof-theoretic semantics explanation of the meaning of logical
constants.
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for some δ1 ∈ ∆1, v(δ1) = 1, or for some δ½ ∈ ∆½, v(δ½) = ½ or for
some δ0 ∈ ∆0, v(δ0) = 0.

This logic is designed to validate six-sided inferences that correspond
to valid inferences in some mixed Strong Kleene logic, for any mixed
Strong Kleene logic.

Fact 4.1. Let V = {1,½, 0}. For every mixed Strong Kleene logic xy,
Γ �xy ∆ if and only if for all Γ1, Γ½ and Γ0 such that Γ =

⋃
i∈x Γi and

∅ =
⋃

i∈V−x Γi there are some ∆1, ∆½ and ∆0 such that ∆ =
⋃

i∈y ∆i

and ∅ =
⋃

i∈V−y ∆i for which Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 is valid in
6SK.

This fact claims that the validity of an inference in a Strong Kleene
logic xy can be established by checking the validity of a set of infer-
ences in 6SK, given some constraints. These constraints demand for
a distribution of the premises and conclusions of the original inference
in subsets of propositions, used for building inferences to be checked in
6SK. Before proving Fact 4.1, it is worth presenting some examples (i.e.,
some instances of this fact), with the hope that it makes it easier to
understand how  and in what sense  6SK captures the different mixed
Strong Kleene logic’s validities.

• Γ �st ∆ is valid if and only if Γ | ∅ | ∅ �6SK ∅ | ∅ | ∆ is valid.
• Γ �st ∆ is valid if and only if Γ | ∅ | ∅ �6SK ∆1 | ∆½ | ∅ is valid, for

some ∆1 and ∆½ such that ∆ = ∆1 ∪∆½.
• Γ �nn ∆ is valid if and only if ∅ | Γ | ∅ �6SK ∆1 | ∅ | ∆0 is valid, for

some ∆1 and ∆0 such that ∆ = ∆1 ∪∆0.
• Γ �ts ∆ is valid if and only if Γ1 | Γ½ | ∅ �6SK ∆ | ∅ | ∅ is valid, for

every Γ1 and Γ½ such that Γ = Γ1 ∪ Γ½.
• Γ �ts ∆ is valid if and only if Γ1 | Γ½ | ∅ �6SK ∅ | ∆½ | ∆0 is valid,

for every Γ1 and Γ½ and some ∆½ and ∆0 such that Γ = Γ1 ∪ Γ½

and ∆ = ∆½ ∪∆0.

Proof. (From left to right): Suppose Γ �xy ∆ is valid. Then, for
every valuation v, if for every γ ∈ Γ , v(γ) ∈ x, then, for some δ ∈ ∆,
v(δ) ∈ y. We need to check whether for every i, j, k ∈ {0,½, 1}, such
that Γ = Γi ∪ Γj ∪ Γk, the corresponding six-sided inference is valid.
But then, either for some i such that i ∈ x, it is not the case that for
every γi ∈ Γi, v(γi) = i, or for every i such that i ∈ x and for every
γi ∈ Γi, v(γi) = i. If the former is the case, then the valuation v satisfies
the six-sided inference. If the latter is the case, then we need to check
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whether, for some j ∈ y, it is the case that some δj ∈ ∆j v(δj) = j. But,
as Γ �xy ∆, it is true that for some δ ∈ ∆, v(δ) ∈ y. Thus, it is also true
that for some δj ∈ ∆j v(δj) = j.

(From right to left): Suppose that for all Γ1, Γ½ and Γ0 such that
Γ =

⋃
i∈x Γi, and, for every i in {1,½, 0}, if i 6∈ x, then Γi = ∅, there

are ∆1, ∆½ and ∆0 such that ∆ =
⋃

i∈y ∆i and for every i in {1,½, 0},
if i /∈ y, then ∆i = ∅, for which Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 is valid in
6SK. Thus, in each of these six-sided inferences, if all premises satisfy
their positions, then at least one conclusion satisfies its position. This
can happen only if not every premise in Γ receives a value in x or some
conclusion in ∆ a value in y. Therefore, Γ � ∆ is valid in xy.

As we stressed before, Fact 4.1 demands for a set of inferences some
constraints, so that each inference corresponds to a different distribu-
tion of premises and conclusions in the six-sided inferences. But these
constraints make us check some combinations that are redundant.

Take, for example, a logic xy such that x = {1, 0}. Then the set of
premises Γ should be distributed along the sets Γ1 and Γ0. This means
that inferences for which, for instance, Γ1 and Γ0 share some formula
will be checked in 6SK, but inferences with this feature will be trivially
valid: every valuation v fails in giving value 1 to every formula in Γ1 and
giving value 0 to every formula in Γ0, since there is at least one formula
in both Γ1 and Γ0 that receives one value but not both. As a result,
checking inferences with subsets of Γ that do not overlap is enough.

On the other hand, consider a logic xy such that y = {1, 0}. Then
the set of conclusions ∆ should be distributed along the sets ∆1 and ∆0.
For the possible distributions of ∆, we need that, at least one of them
satisfies Definition 4.3 by having, for every valuation, a formula that
is satisfied in its corresponding place. We could check every possible
distribution of ∆ in ∆1 and ∆0, but if we take ∆1 and ∆0 to be the
same as ∆ it would be enough. This is the case where every conclusion
is checked for every value in y, so if there is a valuation with no formula
assigned to the corresponding value, every other distribution of conclu-
sions would also result in an invalid six-sided inference; and if one of
the these other distributions result in a valid inference, the highlighted
distribution would also result in a valid inference. Therefore, it is enough
to checked inferences where every subset of conclusions coincides with ∆.

Fact 4.2. Let V = {1,½, 0} and let x, y ⊆ V. Let Γ and ∆ be any
two sets of formulas. For all Γ1, Γ½ and Γ0 such that Γ =

⋃
i∈x Γi and
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∅ =
⋃

i∈V−x Γi, there are ∆1, ∆½ and ∆0 such that ∆ =
⋃

i∈y ∆i and
∅ =

⋃
i∈V−y ∆i, for which Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 is valid in 6SK if

and only if for all Γ1, Γ½ and Γ0 such that Γ =
⋃

i∈x Γi, ∅ =
⋃

i∈V−x Γi,
and for all i, j ∈ x, if i 6= j then ∅ = Γi ∩Γj , Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0

is valid in 6SK, with ∆i = ∆ if i ∈ y and ∆i = ∅ otherwise.

Proof. In the first place, we have to prove that checking any inference
Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 such that there are i, j ∈ x, with i 6= j and
∅ 6= Γi ∩ Γj is redundant, by showing that it is trivially valid, so these
are not the instances of Fact 4.1 that matter. If there are Γi and Γj
(with i 6= j) such that they share a formula, say σ, for every valuation v,
v(σ) cannot be equal to both i and j, since i 6= j. Therefore, for every
valuation v is not the case that for every γi ∈ Γi, v(γi) = i and that for
every γj ∈ Γj , v(γj) = j. So, such six-sided sequent is trivially valid by
Definition 4.3.

In the second place, we have to prove that checking any inference
besides the ones where ∆i = ∆ if i ∈ y and ∆i = ∅ if i /∈ y is redundant.
If an inference with this distribution of conclusions (i.e., where every
conclusion-side is either ∆ or ∅, depending on y) is valid, then for every
valuation v, there is a δi ∈ ∆i such that v(δi) = i, for some i. If that is
the case, we need not check any other conclusions distribution for a given
premises distribution, by Definition 4.3. If that initial distribution is not
valid, there is a valuation v such that every δi ∈ ∆i is such that v(δi) 6= i,
for every i. Removing any formula from any of those sets wouldn’t make
any difference, since any other distribution of conclusions would also
form invalid inferences.

There is an obvious relation between six-sided inferences and three-
sided disjunctive sequents. In [20] we find the ways in which valid infer-
ences in some mixed Strong Kleene logics correspond to valid three-sided
sequents. Before making this explicit, and see how it (positively) affects
us, we will introduce the kind of disjoint three-sided sequents we will be
talking about.

Definition 4.4. A disjunctive sequent Γ | Σ | ∆ is satisfied by a val-
uation v iff v(γ) = 0 for some γ ∈ Γ , or v(σ) = ½ for some σ ∈ Σ, or
v(δ) = 1 for some δ ∈ ∆. A sequent is valid if and only if it is satisfied
by every valuation. A valuation is a counterexample to a sequent if the
valuation does not satisfy the sequent.
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There is a close relation between validity in a given mixed Strong
Kleene logic and validity of a certain kind of disjunctive three-sided
sequents. The following are some examples:

• Γ �nn ∆ is valid if and only if Γ,∆ | ∅ | Γ,∆ is valid.
• Γ �st ∆ is valid if and only if Γ,∆ | Γ | ∅ is valid.
• Γ �st ∆ is valid if and only if Γ | Γ,∆ | ∆ is valid.
• Γ �ts ∆ is valid if and only if Γ | ∅ | ∆ is valid.
The following fact follows straightforward from both the definitions of
mixed Strong Kleene logic and three-sided disjunctive sequent.

Fact 4.3. For every mixed Strong Kleene logic xy, Γ �xy ∆ if and only
if Γ0, ∆0 | Γ½, ∆½ | Γ1, ∆1 is valid, where for every i, j ∈ {0,½, 1}, if
i ∈ x, Γi = ∅, if i /∈ x, Γi = Γ , if j ∈ y, ∆j = ∆ and if j /∈ y, ∆j = ∅.

The fact below follows immediately from the definition of validity
of a six-sided inference and the definition of validity of a disjunctive
three-sided sequent:

Fact 4.4. A six-sided inference Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 is valid in
6SK if and only if Γ1, Γ½, ∆0 | Γ1, Γ0, ∆½ | Γ0, Γ½, ∆1 is a valid three-
sided disjunctive sequent.

One important thing that remains to be settled is whether it is pos-
sible to design proof systems for this logic. In the sequel, we will present
a calculus that is both sound and complete with respect to 6SK. As
the previous result shows the correspondence of every six-sided inference
with a disjunctive three-sided sequent, it will be enough to give a proof-
system for the latter. Our target proof theory, then, is the three-sided
disjunctive sequent system SC6SK (for “Sequent Calculus for 6SK”).13

As we said, SC6SK can be used as a proof system for 6SK. SC6SK

includes, as usual, some axioms and rules. A sequent is provable if and
only if it follows from the axioms by some finite number (possibly zero)
of applications of the rules. As we are working with sets, the effects of
the structural rules of Exchange and Contraction are built in. Moreover,
Weakening is built into the Identity axiom. Still, to make things easier,
we will include the structural rule of Weakening as an explicit rule. We

13 This system strongly resembles  and is obviously based on  the one David
Ripley present in [20] for the truth theories based on ST, TS, LP and K3. It was first
introduce in [15] for different purposes. The only difference between these two systems
is that it was originally called DL because it was designed to capture validities for
what the author called “disjoint logics”.
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will have three versions of a three-sided Cut rule. Identity (Id) is the
only axiom-schema of SC6SK. Weak, Cut1, Cut2 and Cut3 are structural
rules. The remaining are SC6SK’s operational rules.

Id
A, Γ | A,Σ | A,∆

Γ | Σ | ∆
Weak

Γ, Γ ′ | Σ,Σ′ | ∆,∆′

Γ,A | Σ | ∆ Γ | Σ,A | ∆
Cut1

Γ | Σ | ∆
Γ | Σ | ∆,A Γ | Σ,A | ∆

Cut2
Γ | Σ | ∆

Γ,A | Σ | ∆ Γ | Σ | ∆,A
Cut3

Γ | Σ | ∆
Γ | Σ | ∆,A

L¬
Γ,¬A | Σ | ∆

Γ | Σ,A | ∆
M¬

Γ | Σ,¬A | ∆

Γ,A | Σ | ∆
R¬

Γ | Σ | ∆,¬A

Γ,A,B | Σ | ∆
L∧

Γ,A ∧B | Σ | ∆

Γ | Σ | ∆,A Γ | Σ | ∆,B
R∧

Γ | Σ | ∆,A ∧ B

Γ | Σ,A | ∆,A Γ | Σ,B | ∆,B Γ | Σ,A,B | ∆
M∧

Γ | Σ,A ∧B | ∆

As ∨ and → can be defined in terms of the former, we will not specify
rules for them. To prove Completeness, we make use of the Derived Cut

rule (that can be inferred from the three basic rules of Cut in pretty
much the way Ripley did it for his system in [20]):

Γ,A | Σ,A | ∆ Γ | Σ,A | ∆,A Γ,A | Σ | ∆,A
Derived Cut

Γ | Σ | ∆

We now present the main results regarding SC6SK:

Theorem 4.1 (Soundness). If a sequent Γ | Σ | ∆ is provable in SC6SK,
then it is a valid three-sided disjunctive sequent.

Proof. The axioms are valid, and validity is preserved by the rules, as
can be checked without too much trouble.

The system SC6SK is also complete. The following theorem is proven
in [15], though the three-sided disjunctive sequents in [15] are related
only to disjoint logics, and here we can relate them to any mixed logic,
as done in Fact 4.3:
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Theorem 4.2 (Completeness). If a sequent Γ | Σ | ∆ is valid, then it is
provable in SC6SK.

Due to the fact that every valid six-sided inference corresponds to
a valid disjunctive three-sided sequent, as Fact 4.4 shows, then the fact
that SC6SK is sound and complete with respect to three-sided sequents
validity implies that, it can be used for proving every six-sided inference
in 6SK, though not every provable sequent corresponds to a six-sided
inference in 6SK.

Finally, we would like to make some comments about some of the
different forms of metainferences that might be reasonably labelled as
“Cut” in SC6SK. First, notice that not only Derived Cut is derivable
from the three basic forms of Cut, but it is possible (and not hard) to
prove that each of those basic forms of Cut can be derived using Derived
Cut and none of the three basic forms of Cut of SC6SK  in fact, each
proof only used the premises of each Derived Cut (one of them should
be used twice), Weakening, and Derived Cut at the final step (we leave
the details of this proof to the reader). Moreover, the translation of
both traditional forms of Cut, one context-free and the other context-
sharing, as they should be interpreted in ST, are both not derivable in
SC6SK, but the translation of these two metainferential schemas/rules
according to either K3, LP and TS are both derivable. We show this
for the context-sharing versions in both ST and LP, and leave the other
proofs as exercises to the reader.

Γ,A | Γ,∆,A | ∆ Γ | Γ,∆,A | ∆,A
ST-Cut

Γ | Γ,∆ | ∆

Γ,A | ∆ | ∆ Γ | ∆,A | ∆,A
LP-Cut

Γ | ∆ | ∆

The following is a proof of LP-Cut’s derivability:

Γ,A | ∆ | ∆
Weak

Γ,A | ∆ | ∆,A Γ | ∆,A | ∆,A
Cut1

Γ | ∆ | ∆,A Γ,A | ∆ | ∆
Cut3

Γ | ∆ | ∆

And the next is a failed proof attempt for ST-Cut’s derivability:

Γ,A | Γ,∆,A | ∆ Γ | Γ,∆,A | ∆,A
Cut3

Γ | Γ,∆,A | ∆ Γ,A | Γ,∆,A | ∆
???

Γ | Γ,∆ | ∆
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The failure of the last route to prove that the translation of Cut in
the system according to how to translate ST-inferences in three-sided dis-
junctive sequents, does not prove that that metainferential schema/rule
is not derivable. But any other strategy will fail, because it is not possible
to obtain, from the two premises, plus all the axioms and rules of SC6SK

a sequent like the conclusion of Cut3 in the failed proof, but with the
cut-formula obtaining just in the left side, or just in the right side 
which is what we need to get the conclusion of the translation of Cut in
ST (i.e., that special sequent without occurrences of the cut-formula),
together with the actual conclusion of Cut3 in the proof.

These results seems like an asset of SC6SK, as they reproduce the
relationship of each of these four Strong Kleene mixed logics with the
two forms of Cut (i.e., context-sharing and context-free), i.e., that Cut
is a metainferential schema that is locally valid in all of them except
for ST.

But probably the most important result is the admissibility (i.e.,
eliminability) of the three basic forms of Cut SC6SK, i.e., Cut1, Cut2

and Cut3, thus proving the theory is consistent. In the appendix, the
proof of the following theorem is given:

Theorem 4.3 (Cut-elimination for SC6SK). If a three-sided sequent Γ |
Σ | ∆ has a proof in SC6SK, then there is cut-free proof of Γ | Σ | ∆ in
SC6SK (i.e., a proof without occurrences of either Cut1, Cut2 or Cut3).

5. Bridge principles for both accounts

In and of itself, claims about logical validity don’t seem to be explicitly
normative. Following [12], we say it is by way of some bridge principles

that they give rise to norms. As the name indicates, these principles
bridge facts about logical consequence with norms that govern epistemic
attitudes towards propositions.14

A bridge principle takes the form of a material conditional: the an-
tecedent states a fact about logical validity (i.e., that an inference is valid
or a formula is a logical truth, or maybe that a given agent believes this
is so), while its consequent contains a normative claim concerning the

14 An anonymous referee points out that [7] presents a related view about the
interpretation of the consequence relation. Though it is not explicitly stressed out as
bridge principles, we thank her for establishing the connection of their work with [12].
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agent’s epistemic attitudes towards the relevant propositions. These are
the formal commitments we have called formal epistemic norms.

Here, we propose two new schemas for generating bridge principles,
one for each account presented. In the first one, the antecedent is a
validity of a Strong Kleene logic xy, and the consequence is a formal
epistemic norm connecting the propositional epistemic attitudes related
to both x and y:

Definition 5.1 ((First) Bridge Principle Schema). If Γ �xy ∆, then if
you have (any combination of) the epistemic attitude(s) related to (the
members of) x with respect to every γ in Γ , you must have15 (one of)
the epistemic attitude(s) related to y with respect to some δ ∈ ∆.

That is: either you have (any of the) epistemic attitude(s) related to
x towards some γ ∈ Γ , or you have (some of the) epistemic attitude(s)
related to y towards some δ in ∆. Or stated negatively: if Γ �xy ∆,
then do not have (any combination of) the epistemic attitude(s) related
to x with respect to every γ ∈ Γ , while having (any of) the epistemic
attitude(s) related to y towards every δ ∈ ∆.

What these bridge principles tell us is that the valid inferences of a
Strong Kleene logic are a way of expressing the coherence of an agent’s
epistemic attitudes towards certain propositions in a given normative
situation. For that reason, violating a bridge principle equates to an
agent holding incoherent epistemic attitudes in that situation.

For example, in the case of nt, a logic in which neither accepting nor
rejecting all of the premises entails rejecting some conclusion, we can
construct the following equivalent bridge principles:

Bridge principles for nt. If Γ �nt ∆, then if you neither accept
nor reject every γ in Γ , you must reject some δ in ∆. Equivalently: if
Γ �nt ∆, then either you accept or reject some γ in Γ , or you reject
some δ in ∆. Or in negative form: if Γ �nt ∆, then don’t withhold
your judgment over every γ in Γ while accepting or neither accepting
nor rejecting every δ in ∆ (since this principle states it is incoherent for
an agent to neither accept nor reject every premise whilst accepting or
neither accepting nor rejecting every conclusion).

15 In the literature on the normativity of logic, we can find different variations
w.r.t. the type of deontic operator (permission, obligation, etc.) and its scope (over
the whole conditional, just the consequent, etc.). Here we decided to use the obligation
operator with a narrow scope with respect to the consequent, but nothing hangs on
this particular choice.
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Now, let us go on to review the second bridge principle schema. In
this case, the antecedent states a validity of 6SK, and the consequence is
a formal epistemic norm connecting the propositional epistemic attitudes
related to Γi and ∆j :

Definition 5.2 ((Second) Bridge Principle Schema). If Γ1 | Γ½ | Γ0 �

∆1 | ∆½ | ∆0, is valid in 6SK, then if you accept every member of Γ1,
neither accept nor reject every member of Γ½, and reject every member
of Γ0, then you must either accept some member of ∆1, or neither accept
nor reject some member of ∆½, or reject some member of ∆0.

Notice that the second bridge principle schema is more general, since
it implies every standard determination of the first one. In other words,
each choice of x and y for the first schema is already present in the second
one.

Now that we presented both ways of accounting for all possible formal
epistemic norms referred to acceptance, rejection, and neither acceptance
nor rejection, let us compare both approaches.

6. Comparison between the two accounts

One feature of 6SK that we deem as an advantage over the first approach
is its expressive power. In particular, the general framework provided
by 6SK can be considered more expressive than the plurality of mixed
Strong Kleene logics, as it allows to represent in a clear and direct way
some material commitments an agent might have, i.e., some commit-
ments an agent assumed despite not being formally valid in 6SK (nor in
any mixed Strong Kleene logic).

For instance, suppose that Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 is not valid
in 6SK, but each Γi is different than the others Γj (for i 6= j) and is also
different than each ∆k. Assume something similar happens with each
∆k. In that case, an agent embracing Γ1 | Γ½ | Γ0 � ∆1 | ∆½ | ∆0 means
that if she accepts each formula in Γ1, neither accepts nor reject each
formula in Γ½ and rejects each formula in Γ0, then she is committed
to either accepting some formula in ∆1, or to neither accepting nor
rejecting some formula in ∆½ or to rejecting some formula in ∆0. From
our viewpoint, this is an asset of the logic: even though six-sided sequents
can have an equivalent formulation in some mixed Strong Kleene logic,
they also might not, and it is not obvious how these kinds of material
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commitments could be expressed nor which mixed Strong Kleene logic
is better suited for expressing them.

This is closely connected to the fact that 6SK is stronger than the
sum of each mixed Strong Kleene logic, i.e., it includes every inference
valid in some mixed Strong Kleene logic, but also has validities that do
not correspond to any valid inference in any mixed Strong Kleene logic.
For instance, the six-sided inference ∅ � q, s | q | q, r is 6SK-valid, as
every valuation v satisfies it. Nevertheless, it cannot be represented by
any valid inference, in any of the mixed Strong Kleene logics.16

7. Conclusions and future work

In this article, we have presented two different ways of modelling every
epistemic formal conditional commitment that involves (at most) three
key epistemic attitudes towards propositions: acceptance, rejection and
neither acceptance nor rejection. The first one is a pluralistic proposal,
and uses the collection of every mixed Strong Kleene logic  including

some new logics that have so far been unexplored in the literature  , ac-
companied by an epistemic reading of the truth-values. The second one
employs six-sided inferences, and recovers the validities of each mixed
Strong Kleene logic in one single framework. We have also introduced
a sequent calculus that is sound and complete with respect to both ap-
proaches. Finally, we suggested that both the plurality of Strong Kleene
logics and the unified system 6SK gain normative status and model the
intended formal epistemic norms thanks to bridge principles.

However, some lines of inquiry remain open. We briefly mentioned
that there are several other schemas that one can choose to work with,
instead of the ones given by the Strong Kleene valuations. So, exploring
these other alternatives and the different mixed logics they would yield
(that, in turn, might model a different set of formal epistemic norms,
and subsequently give rise to new norms via some other bridge prin-
ciples) is one possible route in which to continue researching. Thus,

16 The proof is not hard, but quite long. In light of Fact 4.4, either 0 ∈ x (i.e., the
premise-standard) or not. In both cases, either 0 ∈ y (i.e., the conclusion-standard)
or not. If 0 ∈ x, then Γ0 is empty. If not, Γ0 = Γ . And if 0 ∈ y, then ∆0 is empty.
If not, ∆0 = ∆. The proof then moves, in each of these four branches, to consider
whether ½ ∈ x or not, and whether ½ ∈ y or not, and then to whether 1 ∈ x or
not, and whether 1 ∈ y or not. Contradiction emerges sooner or later in any of these
branches.
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we leave as pending work the possibility of employing a different three-
valued schema, such as the Weak Kleene or supervaluational one, or
switching to a four-valued setting altogether. The latter would allow
us to make more fine-grained distinctions among the set of attitudes we
have grouped together under the label ‘neither acceptance nor rejection’.
But, on the downside, working with extra truth-values (or with non-
compositional schemas, for that matter) would increase the complexity
of the investigation considerably.
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Appendix: Cut-Elimination

We demonstrate that the three rules of Cut are eliminable in SC6SK.
The proof strategy is adapted from [10, §1.8.2]. We start by defining the
height of a derivation:

Definition 7.1. Let D denote a derivation (proof), and S a sequent.
Then we define the height of a derivation recursively as follows:

• Let D be a proof of an axiom. Then hD = 1.
• Let D be a proof of S, S be immediately deduced from S′, and D′ be

a proof of S′. Then hD = hD′ + 1;
• Let D be a proof of S, S be immediately deduced from S′ and
S′′, with D′ and D′′ being their proofs, respectively. Then hD =
max(hD′, hD′′) + 1.

Writing ⊢n S means that the sequent S has height n at most.

We provide a proof by means of a double induction: (i) on the sum
of the heights of proofs of both premises, and (ii) on the complexity of
the cut-formula A. This will allow us to prove, in the first place, that
Cut on axiomatic sequents is eliminable. Then, the inductive step will
establish that it is also eliminable for sequents of any height.

1. Base case. We show the proof for Cut1, the other two cases are
completely analogous. Assume D is a derivation in which Cut1 is used
to derive Γ | Σ | ∆ from two instances of Id.
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1.1. Base case. The cut-formula is a propositional variable, A := p.
We have two subcases to consider, one where the cut-formula is active
in Id and one where it is not:
• Subcase (i). If Γ,A | Σ | ∆ := Γ, p | Σ′, p | ∆′, p, then considering

the context-sharing requirement, the other premise is of the form
Γ | Σ′, p, p | ∆′, p whereas the conclusion is Γ | Σ′, p | ∆′, p. Given
that we are working with sets, both the conclusion and the right
premise are identical.

• Subcase (ii). If a formula B, which is not the cut-formula, appears
in Γ , Σ and ∆, then the conclusion of Cut1 is Γ | Σ | ∆ :=
Γ ′, B | Σ′, B | ∆′, B (an axiom). Therefore, it can be proven in
a one step derivation without using Cut1.

1.2. Inductive step. If Cut on cut-formulas of complexity < k is
eliminable, then Cut on a cut-formula of complexity k is eliminable.
Notice that the basis above covers the cases where the cut-formula is a
negation or a conjunction, since nothing in the proof depends on A being
atomic. Hence, the proof is the same.

Conclusion of 1.1 and 1.2: Cut on axiomatic sequents is eliminable.

2. Inductive step. If Cut with the left (right) height < n is eliminable,
then Cut with height n is eliminable too. We have to consider the
following (exhaustive) cases: either the cut-formula is principal in both
premises or is not principal in at least one premise.

2.1. Base case. First, consider the case where the cut-formula is an
atom and is principal in both premises. If this is the case, then A := p
and it was obtained from Id or Weak. If at least one premise of Cut is
an axiom, we proceed in a similar fashion as in 1. Otherwise, the cut-
formula is an atom, is principal in both premises and it was obtained
from Weak:

...
Γ | Σ | ∆

Weak
Γ, p | Σ | ∆

...
Γ | Σ | ∆

Weak
Γ | Σ, p | ∆

Cut1
Γ | Σ | ∆

Hence, there is also a derivation of Γ | Σ | ∆ of lesser height that, by
hypothesis, uses no Cuts.

Second, suppose the cut-formula is an atom and is not principal in
at least one of the premises. Let it be the right premise. Then there are
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several subcases to consider: one where the right premise Γ | Σ, p | ∆
was obtained by one of the rules for negation, the rules for conjunction
or Weak. We see what happens when it is deduced from a single-premise
and a multipremise rule.

Subcase (i). The right premise deduced by L¬:

...
Γ ′,¬B, p | Σ | ∆

...
⊢m−1 Γ

′ | Σ, p | ∆,B
L¬

⊢m Γ ′,¬B | Σ, p | ∆
Cut1

Γ ′,¬B | Σ | ∆

Take the derivation of the left premise and replace each ∆ with ∆,B.
All such replacements keep the application of rules correct, since B ap-
pears as context in every axiomatic sequent used to derive Γ ′,¬B, p|Σ |∆
and also in each subsequent step. Hence, we obtain a derivation of
Γ ′,¬B, p |Σ |∆,B.

Take the derivation of the right premise and replace each Γ ′ with
Γ ′,¬B. Again, these replacements also keep the application of rules
correct. We omit the L¬ step, since it is no longer necessary at this
stage, thus reducing the height of the right premise:

...
Γ ′,¬B, p | Σ | ∆,B

...
⊢m−1 Γ

′,¬B | Σ, p | ∆,B
Cut1

Γ ′,¬B | Σ | ∆,B
L¬

Γ ′,¬B,¬B | Σ | ∆

We repeat ¬B for clarity, but given that we are working with sets,
we know we have arrived at the same sequent. Notice that we did not
reduce the complexity of the cut-formula, but we made a permutation
of the application of rules after which the new Cut is of lesser height, so
it follows (by the inductive hypothesis) that it is eliminable.

Subcase (ii). The right premise deduced by R∧:

...
⊢n Γ, p | Σ | ∆′, B ∧ C

...
Γ | Σ, p | ∆′, B

...
Γ | Σ, p | ∆′, C

R∧
⊢m Γ | Σ, p | ∆′, B ∧ C

Cut1
⊢j Γ | Σ | ∆′, B ∧ C

Where j = max(n,m) + 1. After performing similar replacements,
using Cut1, we arrive at:
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...

Γ, p |Σ |∆′,B ∧ C,B

...

Γ | Σ, p |∆′,B ∧ C,B

⊢j′<j Γ | Σ | ∆′, B ∧ C, B

...

Γ, p |Σ |∆′,B ∧ C,C

...

Γ |Σ, p |∆′,B ∧ C,C

⊢j′<j Γ | Σ | ∆′, B ∧ C, C
R∧

Γ | Σ | ∆′, B ∧ C, B ∧ C

Now we have introduced two cuts instead of one but both of lower
height, and thus, eliminable by inductive hypothesis.

2.2. Inductive step. If Cut on cut-formulas of complexity < k is elim-
inable, then Cut on a cut-formula of complexity k is eliminable. First,
consider the case where the cut-formula is principal in both premises.

Subcase (i). The cut-formula is principal in both premises and it is
a negation. Then this

...

Γ | Σ | ∆,A
L¬

Γ,¬A | Σ | ∆

...

Γ | Σ,A | ∆
M¬

Γ | Σ,¬A | ∆
Cut1

Γ | Σ | ∆

is replaced with:

...

Γ | Σ | ∆,A

...

Γ | Σ,A | ∆
Cut2

Γ | Σ | ∆

The original derivation is not replaced with a proof of the conclusion
without Cut. However, in the new proof, Cut is performed on a formula
of lesser complexity, hence it is eliminable by the (subsidiary) inductive
hypothesis.

Subcase (ii). The cut-formula is principal in both premises and it is
a conjunction. Then this

...

Γ, A, B | Σ | ∆
L∧

Γ, A ∧ B | Σ | ∆

...

Γ | Σ, A | ∆, A

...

Γ | Σ, B | ∆, B

...

Γ | Σ, A, B | ∆
M∧

Γ | Σ, A ∧ B | ∆
Cut1

Γ | Σ | ∆

is replaced with:
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.

.

.

Γ | Σ,B | ∆,B
W

Γ,A | Σ,B | ∆,B

.

.

.

Γ,A,B | Σ | ∆
W

Γ,A,B | Σ,B | ∆
Cut3

Γ,A | Σ,B | ∆

.

.

.

Γ,A,B | Σ | ∆
Cut1

Γ, A | Σ | ∆

B1

Γ,B | Σ,A | ∆

.

.

.

Γ | Σ,A,B | ∆
Cut1

Γ | Σ,A | ∆
Cut1

Γ | Σ | ∆

Where B1 is:
...

Γ,A,B |Σ |∆
Weak

Γ,A,B |Σ,A |∆

...

Γ |Σ,A |∆,A
Weak

Γ,B |Σ,A |∆,A
Cut3

Γ,B |Σ,A |∆

Notice that, even though we used more Cuts than before, all are
eliminable by the inductive hypothesis because they were performed on
formulas of lesser complexity.

Now we move on to the case where the cut-formula is not principal
in at least one premise. If it is not principal in the left premise, then
some formula B in either Γ , Σ or ∆ was introduced by Weak, or by the
corresponding negation rule, or by the corresponding conjunction rule.
This leaves us with 9 subcases to consider. We prove two, and leave the
remaining cases to the reader.

Subcase (i). The left premise is deduced from M∧:

...

Γ,A | Σ, B | ∆, B

...

Γ,A | Σ, C | ∆, C

...

Γ,A | Σ, B, C | ∆
M∧

Γ,A | Σ, B ∧ C | ∆

...

Γ | Σ,A, B ∧ C | ∆
Cut1

Γ | Σ, B ∧ C | ∆

Take the derivation of each premise of M∧ and replace each Σ with
Σ,B ∧C. As previously stated, these replacements keep the application
of rules correct, given that B ∧C appears as context in every axiomatic
sequent and also in each subsequent step.

First, we take the right premise of Cut1 and perform similar replace-
ments, in order to obtain a derivation of Γ | Σ,A,B∧C,B | ∆,B. Then,
using Cut1, we obtain that:

.

.

.

Γ, A | Σ, B ∧ C, B | ∆,B

.

.

.

Γ | Σ, A, B ∧ C, B | ∆, B

Γ | Σ, B ∧ C, B | ∆, B

B1

Γ | Σ, B ∧ C, C | ∆, C

B2

Γ | Σ, B ∧ C, B, C | ∆
M∧

Γ | Σ, B ∧ C, B ∧ C | ∆
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Second, we adjust contexts in the derivation of the right premise of
Cut1 once more, so as to get Γ |Σ,A,B∧C,C |∆,C. Thus, we get that
B1 is:

...

Γ,A | Σ,B ∧ C,C | ∆,C

...

Γ | Σ,A,B ∧ C,C | ∆,C
Cut1

Γ | Σ,B ∧ C,C | ∆,C

Third, we make the pertinent changes in the right premise of Cut1

one last time, in order to get a derivation of Γ | Σ,A,B ∧ C,B,C | ∆.
From here, we get that B2 is:

...

Γ,A | Σ,B ∧ C,B, C | ∆

...

Γ | Σ,A,B ∧ C,B, C | ∆
Cut1

Γ | Σ,B ∧ C,B, C | ∆

Subcase (ii). The left premise is deduced from M¬:

...

⊢n−1 Γ,A | Σ,B | ∆
M¬

⊢n Γ,A | Σ,¬B | ∆

...

⊢m Γ | Σ,A,¬B | ∆
Cut1

Γ | Σ,¬B | ∆

Take the derivation of the left sequent and change each Σ for Σ,¬B,
and take the derivation of the right sequent and change each Σ for Σ,B.
With these changes, we replace the previous proof with:

...

⊢n−1 Γ,A | Σ,B,¬B | ∆

...

⊢m Γ | Σ,A,B,¬B | ∆
Cut1

Γ | Σ,B,¬B | ∆
M¬

Γ | Σ,¬B,¬B | ∆

Given that Contraction is worked into the system since we are using sets,
this permutation gives us a proof of the same sequent.

Conclusion of 2.1 and 2.2: Cut on sequents of any height is elim-
inable.

Conclusion of 1 and 2: Cut is eliminable.
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