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Abstract. The article proposes a formal semantics of happiness and sadness
modalities in the imperfect information setting. It shows that these modal-
ities are not definable through each other and gives a sound and complete
axiomatization of their properties.
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1. Introduction

Different formal models of human emotions have been studied in the liter-
ature. Doyle, Shoham, and Wellman propose a logic of relative desire [6].
Lang, van der Torre, andWeydert introduce utilitarian desires [9]. Meyer
states logical principles aiming at capturing anger and fear [13]. Steune-
brink, Dastani, and Meyer expand this work to hope [16]. Adam, Herzig,
and Longin propose formal definitions of hope, fear, relief, disappoint-
ment, resentment, gloating, pride, shame, admiration, reproach, gratifi-
cation, remorse, gratitude, and anger [1]. Lorini and Schwarzentruber
define regret and elation [11].

The focus of this article is on happiness and sadness. These notions
have long been studied in literature on philosophy [2, 4, 7, 18], psychol-
ogy [3, 17], and economics [5, 8]. Note that happiness/sadness are vague
terms that have multiple meanings that overlap with several other terms
such as joy/distress and elation/disappointment.

Two approaches to capturing happiness and sadness in formal logical
systems have been proposed. The first approach is based on Ortony,
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Clore, and Collins’ definitions of joy and distress (the capitalization is
original):

[. . . ] we shall often use the terms “joy” and “distress” as convenient
shorthands for the reactions of being pleased about a desirable
event and displeased about an undesirable event, respectively.

[14, p. 88]

Adam, Herzig, and Longin formalized these definitions. An agent feels
joy about ϕ if she believes that ϕ is true and she desires ϕ. An agent
feels distress about ϕ if she believes ϕ is true, but she desires ϕ to be
false [1]. Similarly, Lorini and Schwarzentruber define that an agent is
elated/disappointed about ϕ if ϕ is desirable/undesirable to the agent,
the agent knows that ϕ is true, and she also knows that the others could
have prevented ϕ from being true [11]. Although Adam, Herzig, and
Longin use beliefs while Lorini and Schwarzentruber use knowledge and
the latter authors also add “could have prevented” part, both definitions
could be viewed as a variation of Ortony, Clore, and Collins’ definitions
of joy/distress.

Meyer suggested a very different approach to defining these notions.
He writes “an agent that is happy observes that its subgoals (towards
certain goals) are being achieved, and is ‘happy’ with it”. He acknowl-
edges, however, that this definition might be capturing only one of the
forms of what people mean by happiness [13].

Note, for example, that if Pavel, the second author of this article,
receives an unexpected gift from Sanaz, the first author, then he will
experience “joy” as defined by Ortony, Clore, and Collins. However, he
will not be “happy” as defined by Meyer because receiving such a gift
has never been among Pavel’s goals1.

In this article, we adopt Ortony, Clore, and Collins’ definitions, but
we use the terms happiness/sadness instead of joy/distress. While the
cited above works suggest formal semantics and list formal properties of
happiness and sadness, none of them gives an axiomatization of these
properties. In this article, we propose such an axiomatization and prove
its completeness. We also show that notions of happiness and sadness in
our formal system are, in some sense, dual but are not definable through
each other.

1 Ortony, Clore, and Collins give a similar example with an unexpected inheri-
tance from an unknown relative.
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The rest of the article is structured as follows. First, we formally
define epistemic models with preferences that serve as the foundation
of our semantics of happiness and sadness. Then, we define the formal
syntax and semantics of our system and illustrate them with several
examples. In Section 7, we show that sadness cannot be defined through
happiness. In spite of this, as we show in Section 8 there is a certain
duality between the properties of happiness and sadness. We use this
duality to observe that happiness can not be defined through sadness
either. In Section 9, we list the axioms of our logical system. In the
section that follows, we prove its soundness. In Sections 11 and 12, we
show how utilitarian and goodness-based approaches to desires, already
existing in the literature, could be adapted to happiness and sadness. In
the rest of the article, we prove the completeness of our logical section.
The last section provides a conclusion.

2. Epistemic Models with Preferences

Throughout the article, we assume a fixed countable set of agents A
and a countable set of propositional variables. The semantics of our
logical system is defined in terms of epistemic models with preferences.
These models extend standard Kripke models for epistemic logic with a
preference relation for each agent in set A.

Definition 2.1. A tuple (W, {∼a}a∈A, {≺a}a∈A, π) is called an epis-
temic model with preferences if

1. W is a set of epistemic worlds,
2. ∼a is an “indistinguishability” equivalence relation on set W for each

agent a ∈ A,
3. ≺a is a strict partial order preference relation on setW for each agent
a ∈ A,

4. π(p) is a subset of W for each propositional variable p.

We read w ≺a u as “an agent a prefers a world u over a world w”.
For any two sets of epistemic worlds U, V ⊆ W , we write U ≺a V if
u ≺a v for each world u ∈ U and each world v ∈ V .

An example of an epistemic model with preferences is depicted in
Figure 1. It captures the mentioned in the introduction scenario in
which the first author of this article, Sanaz, is sending a gift to the second
author, Pavel. If Pavel receives the gift, he will acknowledge it by sending



406 Sanaz Azimipour and Pavel Naumov

gift not sent gift lost in 
mail

gift 
received, 

note lost in 
mail

gift and 
note 

received

p

p

s

s,p

s,p

s,p

s,p

s,p

s,p

w u

vt

Figure 1. Gift Scenario.

back a thank-you card. We assume that either the gift or the card can be
lost in the mail and that there is no additional communication between
the authors.

This epistemic model with preferences in Figure 1 has four worlds
corresponding to four different scenarios. In the world t Sanaz did not
send the gift. In the world v, she sent the gift, but it was lost in the
mail. In the world u, Pavel received the gift, but his card is lost in the
mail. Finally, in the world w Pavel received the gift and Sanaz received
his card. Sanaz cannot distinguish the world v, in which the gift is lost,
from the world u, in which the card is lost. Pavel cannot distinguish the
world t, in which the gift is not sent, from the world v, in which the gift
is lost. He also cannot distinguish the world u, in which the card is lost,
from the world w, in which the card is received. In the diagram, the
indistinguishability relations of Sanaz and Pavel are denoted by dashed
lines labelled by s and p respectively. Although in general, according to
Definition 2.1, different agents might have different preference relations
between worlds, in this scenario we assume that Sanaz and Pavel have
the same preferences. These preferences are shown in the diagram using
directed edges. For example, the directed edge from v to t labelled with
s, p means that they both would prefer if Sanaz does not send the gift
at all to the scenario when the gift is lost in the mail.
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The preference relation could be used to capture the agent’s utility
function, desires, motivations, goals, and intentions. For instance, in the
example depicted in Figure 1, Sanaz’s preferences capture her intentions
for Pavel to receive the gift when she sends it in the mail.

3. Syntax and Semantics

In this section, we introduce the formal syntax and semantics of our log-
ical system. Throughout the article, we assume a fixed countable set of
agents A and a fixed nonempty countable set of propositional variables.
The language Φ of our logical system is defined by the grammar:

ϕ := p | ¬ϕ | ϕ→ ϕ | Nϕ | Kaϕ | Haϕ | Saϕ,

where p is a propositional variable and a ∈ A is an agent. We read the
formula Nϕ as “a statement ϕ is true in every world”, the formula Kaϕ
as “an agent a knows ϕ”, the formula Haϕ as “an agent a is happy about
ϕ”, and the formula Saϕ as “an agent a is sad about ϕ”. We assume that
Boolean connectives conjunction ∧, disjunction ∨, and biconditional ↔
are defined through negation ¬ and implication → in the standard way.
By Nϕ we denote the formula ¬N¬ϕ. We read Nϕ as “a statement ϕ is
true in at least one of the worlds”.

Definition 3.1. For any world w ∈W of an epistemic model with pref-
erences (W, {∼a}a∈A, {≺a}a∈A, π) and any formula ϕ ∈ Φ, satisfaction
relation w  ϕ is defined as follows:
1. w  p, if w ∈ π(p),
2. w  ¬ϕ, if w 1 ϕ,
3. w  ϕ→ ψ, if w 1 ϕ or w  ψ,
4. w  Nϕ, if u  ϕ for each world u ∈W ,
5. w  Kaϕ, if u  ϕ for each world u ∈W such that w ∼a u,
6. w  Haϕ, if the following three conditions are satisfied:

(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) for any two worlds u, u′ ∈W , if u 1 ϕ and u′  ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ϕ,

7. w  Saϕ, if the following three conditions are satisfied:
(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) for any two worlds u, u′ ∈W , if u  ϕ and u′ 1 ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ϕ.
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Items 6 and 7 of Definition 3.1 capture the notions of happiness and
sadness studied in this article. Item 6 states that to be happy about a
condition ϕ, the agent must know that ϕ is true, the agent must prefer
the worlds in which condition ϕ is true to those where it is false, and
the condition ϕ must not be trivial. These three parts are captured by
items 6(a), 6(b), and 6(c) of the above definition. Note that we require
condition ϕ to be non-trivial to exclude an agent from being happy about
conditions that always hold in the model. Thus, for example, we believe
that an agent cannot be happy that 2 + 2 = 4.

Similarly, item 7 states that an agent is sad about condition ϕ if she
knows that ϕ is true, she prefers worlds in which condition ϕ is false to
those in which condition ϕ is true, and condition ϕ is not trivial. Note
that being sad is different from not being happy. In fact, later in this
article we show that neither of modalities H and S is expressible through
the other.

We conclude this section with a technical observation that follows
from Definition 3.1. Informally, it states that if two formulae are satisfied
in the same worlds of a model, then these formulae evoke the same
emotions in all worlds of the model.
Lemma 3.1. For any agent a ∈ A, any formulae ϕ,ψ ∈ Φ, and any
epistemic model with preferences (W, {∼a}a∈A, {≺a}a∈A, π), if w  ϕ iff
w  ψ for each world w ∈W , then′

1. w  Haϕ iff w  Haψ for each world w ∈W ,
2. w  Saϕ iff w  Saψ for each world w ∈W . a

4. The Gift Scenario

In this section, we illustrate Definition 3.1 using the gift scenario de-
picted in the diagram in Figure 1. For the convenience of the reader, we
reproduce this diagram in Figure 2.
Proposition 4.1. z  Hp(“Pavel received a gift from Sanaz”) if and
only if z ∈ {w, u}.
Proof. (⇒) Suppose z /∈ {w, u}. Thus, z ∈ {t, v}. Hence, see Figure 2,

z 1 “Pavel received a gift from Sanaz”.

Therefore, z 1 Hp(“Pavel received a gift from Sanaz”) by item 6(a) of
Definition 3.1 because z ∼p z.
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Figure 2. Gift Scenario (repeated from Figure 1).

(⇐) Let z ∈ {w, u}. To show

z  Hp(“Pavel received a gift from Sanaz”),

we will verify conditions (a), (b) and (c) of item 6 of Definition 3.1
separately:
Condition a: Consider any world z′ such that z ∼p z′. To verify the con-
dition, it suffices to show that z′  “Pavel received a gift from Sanaz”.
Indeed, assumptions z ∈ {w, u} and z ∼p z′ imply that z′ ∈ {w, u}, see
Figure 2. Therefore, again see Figure 2,

z′  “Pavel received a gift from Sanaz”.

Condition b: Consider any two epistemic worlds x, y such that
x 1 “Pavel received a gift from Sanaz”, (4.1)
y  “Pavel received a gift from Sanaz”. (4.2)

To verify the condition, it suffices to show that x ≺p y. Indeed,
assumptions (4.1) and (4.2) implies that x ∈ {t, v} and y ∈ {w, u}, see
Figure 2. Note that {t, v} ≺p {w, u}, see Figure 2. Therefore, x ≺p y.
Condition c: t 1 “Pavel received a gift from Sanaz”. a

The proofs of the remaining propositions in this section can be found
in Appendix A.
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Proposition 4.2.
z  Hs(“Pavel received a gift from Sanaz”) iff z ∈ {w}.

The next proposition shows that Sanaz is happy that Pavel is happy
only if she gets the thank-you card and, thus, she knows that he received
the gift.

Proposition 4.3.
z  HsHp(“Pavel received a gift from Sanaz”) iff z ∈ {w}.

Note that because Sanaz never acknowledges the thank-you card,
Pavel does not know that Sanaz is happy. Hence, he cannot be happy
that she is happy. This is captured in the next proposition.

Proposition 4.4.
z 1 HpHs(“Pavel received a gift from Sanaz”) for each z ∈ {w, u, v, t}.

Proposition 4.5. z 1 HpHsHp(“Pavel received a gift from Sanaz”) for
each epistemic world z ∈ {w, u, v, t}. a

The next proposition states that Sanaz is sad about Pavel not receiv-
ing the gift only if she does not send it. Informally, this proposition is
true because Sanaz cannot distinguish a world v in which the gift is lost
from a world u in which the card is lost.

Proposition 4.6.
z  Ss¬(“Pavel received a gift from Sanaz”) iff z ∈ {t}.

By Proposition 4.6, Sanaz is sad about Pavel not receiving the gift
only if she does not send it. Since Pavel cannot distinguish a world t in
which the gift is sent from a world v in which it is lost, Pavel cannot know
that Sanaz is sad. This is formally captured in the next proposition.

Proposition 4.7. z 1 KpSs¬(“Pavel received a gift from Sanaz”) for
each epistemic world z ∈ {w, u, t, v}.

Proposition 4.8.
z  Sp¬(“Pavel received a gift from Sanaz”) iff z ∈ {v, t}.

Proposition 4.9.
z  SsSp¬(“Pavel received a gift from Sanaz”) iff z ∈ {t}.

Proposition 4.10. z 1 KpSsSp¬(“Pavel received a gift from Sanaz”)
for each epistemic world z ∈ {w, u, v, t}.
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Iranian Russian

Iranian 1,3 0,0
Russian 0,0 3,1

Table 1. The Battle of Cuisines. Sanaz is the first player, Pavel is the second.

5. The Battle of Cuisines Scenario

In this section, we illustrate Definition 3.1 using a scenario based on a
classical strategic game. Suppose that the two co-authors independently
decide on a restaurant where to have dinner. Sanaz, being Iranian,
wants to explore Russian cuisine, while Pavel would prefer to have din-
ner in an Iranian restaurant. The epistemic worlds in this model are
pairs (rs, rp) of restaurant choices made by Sanaz and Pavel respectively,
where rs, rp ∈ {Iranian,Russian}. We will consider the situation after
they both have already arrived at a restaurant and thus each of them al-
ready knows the choice made by the other. Hence, both of them can dis-
tinguish all epistemic worlds. In other words, this is a perfect information
scenario. We specify the preference relations of Sanaz and Pavel through
their respective utility functions us and up captured by the pay-off ma-
trix in Table 1. For example, (Russian, Iranian) ≺s (Iranian, Iranian) be-
cause the value of Sanaz’s utility function in the world (Iranian, Iranian)
is larger than in the world (Russian, Iranian): us(Iranian, Iranian) = 1,
us(Russian, Iranian) = 0. The same scenario could also be captured in a
diagram depicted in Figure 3.

Proposition 5.1.
(Russian,Russian) 1 Hp(“Pavel is in the Russian restaurant”).

Proof. Note that
(Iranian, Iranian) 1 “Pavel is in the Russian restaurant”,
(Russian,Russian)  “Pavel is in the Russian restaurant”.

At the same time, see Table 1,

up(Russian,Russian) = 1 < 3 = up(Iranian, Iranian).

Hence, (Iranian, Iranian) ⊀p (Russian,Russian). Therefore, by item 6(b)
of Definition 3.1,

(Russian,Russian) 1 Hp(“Pavel is in the Russian restaurant”). a
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Figure 3. The Battle of Cuisines.

The proofs of the remaining propositions in this section can be found
in Appendix B.

Note that Sanaz prefers the world (Russian,Russian) to any other
world. This, however, does not mean that she is happy about everything
in this world. The next two propositions illustrate this.

Proposition 5.2.
(Russian,Russian) 1 Hs(“Sanaz is in the Russian restaurant”).

Proposition 5.3.
(x, y)  Hs(“Sanaz and Pavel are in the same restaurant”) iff x = y.

Proposition 5.4.
(x, y)  Hp(“Sanaz and Pavel are in the same restaurant”) iff x = y.

Proposition 5.5.
(x, y)  HpHs(“Sanaz and Pavel are in the same restaurant”) iff x = y.

Proposition 5.6.
(x, y)  HsHpHs(“Sanaz and Pavel are in the same restaurant”) if and
only if x = y.

Proposition 5.7.
(x, y)  Hs(“Sanaz and Pavel are in the Russian restaurant”)
if and only if x = y = Russian.
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Proposition 5.8.
(Russian,Russian) 1

Hp(“Sanaz and Pavel are in the Russian restaurant”).

Proposition 5.9.
(Russian,Russian) 1

HpHs(“Sanaz and Pavel are in the Russian restaurant”).

Proposition 5.10.
(x, y)  Ss(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

Proposition 5.11.
(x, y)  Sp(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

Proposition 5.12.
(x, y)  SpSs(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

6. The Lottery Scenario

Be happy for this moment.
This moment is your life.

The Rubáiyát of Omar
Khayyám

As our next example, consider a hypothetical situation where Sanaz
and Pavel play lottery with Omar Khayyám, an Iranian mathematician,
astronomer, philosopher, and poet. Each of them gets a lottery ticket
and it is known that exactly one out of three tickets is the winning ticket.
We consider the moment when each of the players has already seen her
or his own ticket but does not know yet what are the tickets of the other
players. We assume that each of the three players prefers the outcome
when she or he wins the lottery.

Figure 4 depicts the epistemic model with preferences capturing the
above scenario. It has three epistemic worlds, u, v, and w in which
the winner is Sanaz, Omar, and Pavel respectively. Dashed lines repre-
sent indistinguishability relations. For example, the dashed line between
worlds w and v labelled with s shows that Sanaz cannot distinguish the
world in which Pavel wins from the one in which Omar wins. This is true
because we consider the knowledge at the moment when neither of the
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Figure 4. Lottery Epistemic Model with Preferences.

players knows yet what the tickets of the other players are. The directed
edges between worlds represent preference relations. For example, the
directed edge from w to v labelled with o captures the fact that Omar
would prefer to win the lottery rather than lose it.

Proposition 6.1. x  Hs(“Sanaz won the lottery”) iff x = u.

Proof. (⇒) Suppose that x 6= u. Thus, x 1 “Sanaz won the lottery”,
see Figure 4. Therefore, x 1 Hs(“Sanaz won the lottery”) by item 6(a)
of Definition 3.1.
(⇐) Suppose that x = u. To prove the required statement, it suffices to
verify conditions (a), (b), and (c) from item 6 of Definition 3.1:
Condition a: Consider any world y such that u ∼s y. We will show
that y  “Sanaz won the lottery”. Indeed, assumption u ∼s y im-
plies that u = y, see Figure 4. Therefore, see again Figure 4, y 
“Sanaz won the lottery”.
Condition b: Consider any y, z such that y 1 “Sanaz won the lottery”
and z  “Sanaz won the lottery”. We will show that y ≺s z. Indeed,
by looking at Figure 4, the first assumption implies that y ∈ {w, v}.
Similarly, the second assumption implies that z = u. Statements y ∈
{w, v} and z = u imply that y ≺s z - see again Figure 4.
Condition c: w 1 “Sanaz won the lottery”. a
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The proofs of the remaining propositions in this section can be found
in Appendix B.1.
Proposition 6.2. u 1 Hs(“Pavel lost the lottery”).
Proposition 6.3. u 1 KpHs(“Sanaz won the lottery”).
Proposition 6.4. u  Sp(“Pavel lost the lottery”).
Proposition 6.5. u  KsSp(“Pavel lost the lottery”).

7. Undefinability of Sadness through Happiness

In this section, we prove that sadness is not definable through happiness.
More formally, we show that the formula Sap is not equivalent to any
formula in the language Φ−S:

ϕ := p | ¬ϕ | ϕ→ ϕ | Nϕ | Kaϕ | Haϕ,

which is obtained by removing modality S from the full language Φ of
our logical system. In the next section, we will use a duality principle to
claim that happiness is not definable through sadness either.

Without loss of generality, in this section, we assume that the set
of agents A contains a single agent a and the set of propositional vari-
ables contains a single variable p. To prove the undefinability of sadness
through happiness we consider two epistemic models with preferences
depicted in Figure 5. By l and r we mean the satisfaction relations
for the left and the right model respectively.

In Lemma 7.3, we show that these two models are indistinguishable
in language the Φ−S. In Lemma 7.4 and Lemma 7.5, we prove that
w1 l Sap and w1 1r Sap respectively. Together, these three statements
imply the undefinability of modality S in the language Φ−S, which is
stated in the end of this section as Theorem 7.1. We start with two
auxiliary lemmas used in the proof of Lemma 7.3.
Lemma 7.1. w 1l Haϕ for all w ∈ {w1, w2, w3} and ϕ ∈ Φ.
Proof. Suppose that w l Haϕ. Thus, by item 6 of Definition 3.1,

u l ϕ for each world u ∈W such that w ∼a u, (7.1)
u ≺a u′ for all worlds u, u′ ∈W such that u 1 ϕ and u′  ϕ, (7.2)

and there is a world ŵ ∈ {w1, w2, w3} such that

ŵ 1 ϕ. (7.3)
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Since relation ∼a is reflexive, statement (7.1) implies that

w  ϕ. (7.4)

Thus, using statements (7.2) and (7.3),

ŵ ≺a w. (7.5)

Hence, see Figure 5 (left),

ŵ ∈ {w1, w3} and w = w2. (7.6)

Note that w2 ∼a w3, see Figure 5 (left). Thus, by (7.6), w ∼a w3; and,
by (7.1):

w3  ϕ. (7.7)

Hence, ŵ 6= w3 because of statement (7.3). Thus, ŵ = w1 due to (7.6).
Then, w1 1 ϕ because of (7.3). Therefore, w1 ≺a w3 by (7.2) and (7.7),
which is a contradiction; see Figure 5 (left). a

Lemma 7.2. w 1r Haϕ for all w ∈ {w1, w2, w3} and ϕ ∈ Φ.

Proof. Suppose w r Haϕ. Thus, w r ϕ by item 6(a) of Definition 3.1
and the reflexivity of relation ∼a. At the same time, by item 6(c) of Def-
inition 3.1, there must exist a world u ∈ W such that u 1r ϕ. By item
6(b) of the same Definition 3.1, the assumption w r Haϕ and the state-
ments u 1r ϕ and w r ϕ imply that u ≺a w, which is a contradiction
because relation ≺a in the right model is empty, see Figure 5. a

Lemma 7.3. w l ϕ iff w r ϕ for all w and ϕ ∈ Φ−S.

Proof. We prove the statement by structural induction on the formula
ϕ. For the case when ϕ is propositional variable p, observe that πl(p) =
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{w1, w3} = πr(p) by the choice of the models, see Figure 5. Thus, w l p
iff w r p for any world w by item 1 of Definition 3.1. The case when
ϕ is a negation or an implication follows from the induction hypothesis
and items 2 and 3 of Definition 3.1 in a straightforward way.

Suppose that ϕ has the form Nψ. If w 1l Nψ, then by item 4 of
Definition 3.1, there must exist a world u ∈ {w1, w2, w3} such that u 1l
ψ. Hence, by the induction hypothesis, u 1r ψ. Therefore, w 1r Nψ, by
item 4 of Definition 3.1. The proof in the other direction is similar.

Assume that ϕ has the form Kaψ. If w 1l Kaψ, then, by item 5
of Definition 3.1, there is a world u ∈ {w1, w2, w3} such that w ∼la u
and u 1l ψ. Then, w ∼ra u because relations ∼l and ∼r are equal, see
Figure 5 and, by the induction hypothesis, u 1r ψ. Therefore, w 1r Kaψ
by item 5 of Definition 3.1. The proof in the other direction is similar.

Finally, suppose that ϕ has the form Haψ. Therefore, w 1l ϕ and
w 1r ϕ by Lemma 7.1 and Lemma 7.2 respectively. a

Lemma 7.4. w1 l Sap.

Proof. We verify the three conditions from item 7 of Definition 3.1
separately:
Condition a: Observe that w1 ∈ {w1, w3} = πl(p), see Figure 5 (left).
Then, w1 l p by item 1 of Definition 3.1. Note also that there is only one
world u ∈ {w1, w2, w3} such that w1 ∼la u (namely, the world w1 itself),
see Figure 5 (left). Therefore, u  p for each world u ∈ {w1, w2, w3}
such that w1 ∼a u.
Condition b: Note that πl(p) = {w1, w3}, see Figure 5 (left). Then,
w1 l p, w3 l p, and w2 1l p by item 1 of Definition 3.1. Also, observe
that w1 ≺la w2 and w3 ≺la w2, see Figure 5 (left). Thus, for any worlds
u, u′ ∈ {w1, w2, w3}, if u  p and u′ 1 p, then u ≺a u′.
Condition c: w2 1l p by item 1 of Definition 3.1 and because w2 /∈
{w1, w3} = πl(p), see Figure 5 (left). a

Lemma 7.5. w1 1r Sap.

Proof. Note that πr(p) = {w1, w3}, see Figure 5 (right). Thus, w1 r p
and w2 1r p by item 1 of Definition 3.1. Observe also, that w1 ⊀a w2,
Figure 5 (right). Therefore, w1 1r Sap by item 7(b) of Definition 3.1. a

The next theorem follows from the three lemmas above.

Theorem 7.1. Modality S is not definable in language Φ−S. a
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8. Duality of Happiness and Sadness

As we have shown in the previous section, the sadness modality is not
definable through the happiness modality. In spite of this, there still is a
connection between these two modalities captured below in Theorem 8.1.
To understand this connection, we need to introduce the notion of a
converse model and the notion of τ -translation. As usual, for any binary
relation R ⊆ X × Y , by converse relation Rc we mean the set of pairs
{(y, x) ∈ Y ×X | (x, y) ∈ R}.

Definition 8.1. By the converse model M c of an epistemic model with
preferenceM = (W, {∼a}a∈A, {≺a}a∈A, π), we mean the model (W, {∼a
}a∈A, {≺c

a}a∈A, π).

For any epistemic model with preference, by  we denote the satis-
faction relation for this model and by c the satisfaction relation for the
converse model.

Definition 8.2. For any formula ϕ ∈ Φ, the formula τ(ϕ) ∈ Φ is defined
recursively as follows:

τ(p) = p, where p is a propositional variable,
τ(¬ϕ) = ¬τ(ϕ),
τ(ϕ→ ψ) = τ(ϕ)→ τ(ψ),
τ(Nϕ) = Nτ(ϕ),
τ(Kaϕ) = Kaτ(ϕ),
τ(Haϕ) = Saτ(ϕ),
τ(Saϕ) = Haτ(ϕ).

We are now ready to state and prove the “duality principle” that
connects modalities H and S.

Theorem 8.1. w  ϕ iff w c τ(ϕ), for each world w of an epistemic
model with preferences.

Proof. We prove the theorem by induction on structural complexity of
a formula ϕ. If ϕ is a propositional variable, then the statement of the
theorem holds because the model and the converse model have the same
valuation function π. If ϕ is a negation, an implication, an N-formula,
or an K-formula, then the statement of the theorem follows from the
induction hypothesis and items 2–5 of Definition 3.1, respectively.
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Suppose that ϕ has the form Haψ. First, assume that w  Haψ.
Thus, by item 6 of Definition 3.1, the following three conditions are
satisfied:
(a) u  ψ for each world u ∈W such that w ∼a u,
(b) for any two worlds u, u′ ∈W , if u 1 ψ and u′  ψ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ψ.

Hence, by the induction hypothesis,
(d) u c τ(ψ) for each world u ∈W such that w ∼a u,
(e) for any two worlds u, u′ ∈ W , if u 1c τ(ψ) and u′ c τ(ψ), then

u ≺a u′,
(f) there is a world u ∈W such that u 1c τ(ψ).

Note that statement (e) is logically equivalent to
(g) for any two worlds u, u′ ∈ W , if u c τ(ψ) and u′ 1c τ(ψ), then

u′ ≺a u.

By the definition of converse partial order, (g) is equivalent to
(h) for any two worlds u, u′ ∈ W , if u c τ(ψ) and u′ 1c τ(ψ), then

u ≺c
a u
′.

Thus, w c Saτ(ψ) by item 7 of Definition 3.1 using statements (d), (h),
and (f). Therefore, w c τ(Haψ). The proof in the other direction and
the proof for the case when ϕ has the form Saψ are similar. a

The next theorem follows from Theorem 7.1 and Theorem 8.1.

Theorem 8.2. Modality H is not definable in language Φ−H.

9. Axioms of Emotions

In addition to propositional tautologies in language Φ, our logical system
contains the following axioms, where E ∈ {H, S}:

Truth: Nϕ→ ϕ, Kaϕ→ ϕ, and Eaϕ→ ϕ,
Distributivity:
N(ϕ→ ψ)→ (Nϕ→ Nψ),
Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ),
Negative Introspection: ¬Nϕ→ N¬Nϕ, and ¬Kaϕ→ Ka¬Kaϕ,
Knowledge of Necessity: Nϕ→ Kaϕ,
Emotional Introspection: Eaϕ→ KaEaϕ,
Emotional Consistency: Haϕ→ ¬Saϕ,
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Coherence of Possible Emotions:
NEaϕ ∧ NEaψ → N(ϕ→ ψ) ∨ N(ψ → ϕ),
NHaϕ ∧ NSaψ → N(ϕ→ ¬ψ) ∨ N(¬ψ → ϕ),
Counterfactual: Eaϕ→ ¬Nϕ,
Emotional Predictability:
NHaϕ ∨ NSa¬ϕ→ (Kaϕ→ Haϕ),
NHa¬ϕ ∨ NSaϕ→ (Kaϕ→ Saϕ),
Substitution: N(ϕ↔ ψ)→ (Eaϕ→ Eaψ).

The Truth, the Distributivity, and the Negative Introspection axioms for
modalities N and K are well-known properties from the modal logic S5.
The Truth axiom for modality E states that if an agent is either happy or
sad about ϕ, then ϕ must be true. This axiom reflects the fact that our
emotions are defined through the agent’s knowledge. We will mention
belief-based emotions in the conclusion.

The Knowledge of Necessity axioms states that each agent knows
all statements that are true in all worlds of the model. The Emotional
Introspection axiom captures one of the two possible interpretations of
the title of this article: each agent knows her emotions. The other
interpretation of the title is stated below as Lemma 9.2. The Emotional
Consistency axiom states that an agent cannot be simultaneously happy
and sad about the same thing.

Let us now turn our attention to the Coherence of Possible Emo-
tions axioms. Note first that the same agent cannot be happy about
statements ϕ and ¬ϕ in the same world because, by item 6(a) of Defini-
tion 3.1, that would mean that both of these statements are true in this
world. Thus, the formula Haϕ∧Ha¬ϕ→ ⊥ is universally true under our
semantics. Next, recall that Nϕ stands for the formula ¬N¬ϕ. Thus, the
formula NHaϕ states that an agent a could possibly be happy about ϕ.
Let us now observe that an agent cannot be possibly happy about ϕ and
possibly happy about ¬ϕ. Indeed, suppose that there are worlds w1 and
w2 such that w1  Haϕ and w2  Ha¬ϕ. Then, w1  ϕ and w2 1 ϕ by
item 6(a) of Definition 3.1. Thus, item 6(b) of Definition 3.1 implies that
w ≺a u and u ≺a w, which contradicts item 3 of Definition 3.1. Hence,
the formula NHaϕ∧NHa¬ϕ→ ⊥ is universally true under our semantics.
Finally, note that above observation can be generalized to the statement
NHaϕ∧NHaψ → N(ϕ→ ψ)∨N(ψ → ϕ) for arbitrary formulae ϕ and ψ.
Indeed, suppose that the conclusion of this implication does not hold.
Thus, statements N(ϕ → ψ) and N(ψ → ϕ) are both false. Hence, by
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Good French Grade Bad French Grade

Good Math Grade 2 1
Bad Math Grade 1 0

Table 2. Student’s Satisfaction Level.

item 4 of Definition 3.1, there must exist worlds w1 and w2 such that
w1 1 ϕ → ψ and w2 1 ψ → ϕ. Then, w1  ϕ ∧ ¬ψ and w2  ψ ∧ ¬ϕ.
Note that w1  ϕ and w2  ¬ϕ imply w2 ≺a w1 by the assumption
NHaϕ and item 6(b) of Definition 3.1. Similarly, w2  ψ and w1  ¬ψ
imply w1 ≺a w2 by the assumption NHaψ, which is a contradiction.
Therefore, the statement NHaϕ ∧ NHaψ → N(ϕ → ψ) ∨ N(ψ → ϕ) is
universally true under our semantics. This statement is a special case
of a Coherence of Possible Emotions axiom. In Section 10, we formally
prove the soundness of these axioms in the general form along with the
soundness of the other axioms of our system. Note that Coherence of
Possible Emotions axioms reflect the semantics of happiness and sadness
that we proposed in Definition 3.1. As we discuss in the end of Section 12,
these axioms do not hold under goodness-based semantics of emotions.

One can express a concern about the Coherence of Possible Emotions
axioms, stating that a student is happy to get a good grade on a math
exam and is also happy to get a good grade on a French exam, but a
good grade on either of these exams seems to imply a good grade on the
other. Although at first this appears to be a counterexample to the Co-
herence of Possible Emotions axioms, it is not. Indeed, consider Table 2
that captures the student’s satisfaction level in the described situation.
The cells of this table represent epistemic worlds distinguishable to the
student. Note that the satisfaction level in the first row of the table
is not strictly higher than in the second row. Thus, the student is not
happy to get a good grade on the math exam. Similarly, the student is
not happy to get a good grade on the French exam. At the same time,
the satisfaction level in the world where the student gets at least one
good grade is higher than in the world where the student gets no such
grades. Thus, the student is happy to have a good grade on at least one
of these two exams. One can also observe that the student is happy to
get good grades on both of these exams. Note that getting good grades
on both exams implies getting a good grade on at least one exam, just
like claimed by the first Coherence of Possible Emotions axiom.
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The Counterfactual axiom states that an agent cannot have an emo-
tion about something which is universally true in the model. This axiom
reflects items 6(c) and 7(c) of Definition 3.1.

Because the assumptions of both Emotional Predictability axioms
contain disjunctions, each of these axioms could be split into two state-
ments. The first statement of the first Emotional Predictability axiom
says that if an agent is possibly happy about ϕ, then she must be happy
about ϕ each time she knows that ϕ is true. The second statement of
the same axiom says that if an agent is possibly sad about ¬ϕ, then she
must be happy about ϕ each time she knows that ϕ is true. The second
Emotional Predictability axiom is the dual form of the first axiom.

Finally, the Substitution axiom states that if two statements are
equivalent in each world of the model and an agent has an emotion
about one of them, then she must have the same emotion about the
other statement.

We write ` ϕ and say that a statement ϕ is a theorem of our logical
system if ϕ is derivable from the above axioms using the Modus Ponens
and the Necessitation inference rules:

ϕ,ϕ→ ψ

ψ

ϕ

Nϕ.

For any set of statements X ⊆ Φ, we write X ` ϕ if a formula ϕ is
derivable from the theorems of our system and a set X using only the
Modus Ponens inference rule. We say that a set X is inconsistent if
there is a formula ϕ ∈ Φ such that X ` ϕ and X ` ¬ϕ.

Lemma 9.1. Inference rule ϕ

Kaϕ
is derivable.

Proof. This rule is a combination of the Necessitation rule, the Knowl-
edge of Necessity axiom, and Modus Ponens. a

Lemma 9.2. ` Eaϕ→ Kaϕ.

Proof. Note that ` Eaϕ→ ϕ by the Truth axiom. Thus, ` Ka(Eaϕ→
ϕ) by Lemma 9.1. Hence, ` KaEaϕ→ Kaϕ by the Distributivity axiom
and the Modus Ponens inference rule. Therefore, ` Eaϕ → Kaϕ by the
Emotional Introspection axiom and propositional reasoning. a

The next three lemmas are well known in model logic. We omit their
proofs.
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Lemma 9.3 (deduction). If X,ϕ ` ψ, then X ` ϕ→ ψ.

Lemma 9.4. If ϕ1, . . . , ϕn ` ψ, then �ϕ1, . . . ,�ϕn ` �ψ, where � is
either modality N or modality Ka.

Lemma 9.5 (positive introspection). ` �ϕ → ��ϕ, where � is either
modality N or modality Ka.

Lemma 9.6. 1. N(ϕ→ ψ),N(¬ϕ→ ¬ψ) ` N(ϕ↔ ψ),
2. N(ϕ→ ¬ψ),N(¬ϕ→ ψ) ` N(ϕ↔ ¬ψ).

Proof. It is provable in the propositional logic that ϕ→ ψ,¬ϕ→ ¬ψ `
ϕ↔ ψ. Thus, N(ϕ→ ψ),N(¬ϕ→ ¬ψ) ` N(ϕ↔ ψ) by Lemma 9.4. The
proof of the second part of the lemma is similar. a

Lemma 9.7. 1. N(ϕ↔ ψ),NHaϕ ` NHaψ,
2. N(ϕ↔ ψ),NSa¬ϕ ` NSa¬ψ,
3. N(ϕ↔ ¬ψ),NSa¬ϕ ` NSaψ.

Proof. Formula N(ϕ ↔ ψ) → (Haϕ → Haψ) is an instance of the
Substitution axiom. Thus, ` N(ϕ ↔ ψ) → (¬Haψ → ¬Haϕ) by the
laws of propositional reasoning. Hence, N(ϕ↔ ψ),¬Haψ ` ¬Haϕ by the
Modus Ponens rule applied twice. Then, NN(ϕ↔ ψ),N¬Haψ ` N¬Haϕ
by Lemma 9.4. Thus, by Lemma 9.5 and the Modus Ponens inference
rule, N(ϕ ↔ ψ),N¬Haψ ` N¬Haϕ. Hence, N(ϕ ↔ ψ) ` N¬Haψ →
N¬Haϕ by Lemma 9.3. Then, by the laws of propositional reasoning,
N(ϕ ↔ ψ) ` ¬N¬Haϕ → ¬N¬Haψ. Thus, by the definition of modality
N, we have N(ϕ ↔ ψ) ` NHaϕ → NHaψ. Therefore, by the Modus
Ponens inference rule, N(ϕ↔ ψ),NHaϕ ` NHaψ.

To prove the second statement, observe that (ϕ↔ ψ)→ (¬ϕ↔ ¬ψ)
is a propositional tautology. Thus, ϕ ↔ ψ ` ¬ϕ ↔ ¬ψ by Modus Po-
nens. Hence, N(ϕ ↔ ψ) ` N(¬ϕ ↔ ¬ψ) by Lemma 9.4. Then, to prove
the second statement, it suffices to show that N(¬ϕ ↔ ¬ψ),NSa¬ϕ `
NSa¬ψ. The proof of this is the same as the proof of the first statement.

The proof of the third statement is similar to the proof of the second,
but it starts with the tautology (ϕ↔ ¬ψ)→ (¬ϕ↔ ψ). a

Lemma 9.8 (Lindenbaum). Any consistent set of formulae can be ex-
tended to a maximal consistent set of formulae.

Proof. The standard proof of Lindenbaum’s lemma applies here [12,
Proposition 2.14]. a
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10. Soundness

The Truth, the Distributivity, and the Negative Introspection axioms for
modalities K and N are well-known principles of S5 logic. The soundness
of the Knowledge of Necessity axiom follows from Definition 3.1. Below
we prove the soundness of each of the remaining axioms as a separate
lemma. We state strong soundness as Theorem 10.1 at the end of the sec-
tion. In the lemmas below we assume that w ∈W is an arbitrary world
of an epistemic model with preferences M = (W, {∼a}a∈A, {≺a}a∈A, π).

Lemma 10.1. If w  Eaϕ, then w  ϕ.

Proof. First, we consider the case E = H. Note that w ∼a w because
∼a is an equivalence relation. Thus, the assumption w  Haϕ implies
w  ϕ by item 6(a) of Definition 3.1. The proof for the case E = S is
similar, but it uses item 7(a) of Definition 3.1 instead of item 6(a). a

Lemma 10.2. If w  Eaϕ, then w  KaEaϕ.

Proof. First, we consider the case E = H. Consider any world w′ ∈W
such that w ∼a w′. By item 5 of Definition 3.1, it suffices to show that
w′  Haϕ. Indeed, by item 6 of Definition 3.1, the assumption w  Haϕ
of the lemma implies that
(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) for any two worlds u, u′ ∈W , if u 1 ϕ and u′  ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ϕ,

By the assumption w ∼a w′, statement (a) implies that

(a′) u  ϕ for each world u ∈W such that w′ ∼a u.

Finally, statements (a′), (b), and (c) imply that w′  Haϕ by item 6 of
Definition 3.1. The proof for the case E = S is similar, but it uses item
7 of Definition 3.1 instead of item 6. a

Lemma 10.3. If w  Haϕ, then w 1 Saϕ.

Proof. By item 6(a) of Definition 3.1, the assumption w  Haϕ implies
that w  ϕ. By item 6(c) of Definition 3.1, the same assumption implies
that there is a world w′ ∈ W such that w′ 1 ϕ. By item 6(b) of
Definition 3.1 the assumption w  Haϕ and statements w′ 1 ϕ and
w  ϕ imply that w′ ≺a w. Thus, w ⊀a w′ because relation ≺a is a
strict partial order. Therefore, w 1 Saϕ by item 7(b) of Definition 3.1
and statements w  ϕ and w′ 1 ϕ. a
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Lemma 10.4. For any E ∈ {H, S}, if w  NEaϕ and w  NEaψ, then
either w  N(ϕ→ ψ) or w  N(ψ → ϕ).

Proof. First, we consider the case E = H. Suppose that w 1 N(ϕ→ ψ)
and w 1 N(ψ → ϕ). Thus, by item 4 of Definition 3.1, there are epistemic
worlds w1, w2 ∈W , such that w1 1 ϕ→ ψ and w2 1 ψ → ϕ. Hence, by
item 3 of Definition 3.1,

w1  ϕ, w1 1 ψ, w2  ψ, w2 1 ϕ. (10.1)

At the same time, by the definition of modality N and items 2 and 4
of Definition 3.1, the assumption w  NHaϕ of the lemma implies that
there is a world w′ such that w′  Haϕ. Hence, w2 ≺a w1 by item 6(b)
of Definition 3.1 and parts w2 1 ϕ and w1  ϕ of statement (10.1).

Similarly, the assumption w  NHaψ of the lemma and parts w1 1
ψ and w2  ψ of statement (10.1) imply that w1 ≺a w2. Note that
statements w2 ≺a w1 and w1 ≺a w2 are inconsistent because relation ≺a
is a strict partial order.

The proof in the case E = S is similar, but it uses item 7(b) of
Definition 3.1 instead of item 6(b). a

Lemma 10.5. If w  NHaϕ and w  NSaψ, then either w  N(ϕ→ ¬ψ)
or w  N(¬ψ → ϕ).

Proof. Suppose that w 1 N(ϕ → ¬ψ) and w 1 N(¬ψ → ϕ). Thus,
by item 4 of Definition 3.1, there are epistemic worlds w1, w2 ∈W , such
that w1 1 ϕ → ¬ψ and w2 1 ¬ψ → ϕ. Hence, by item 3 and item 2 of
Definition 3.1,

w1  ϕ, w1  ψ, w2 1 ψ, w2 1 ϕ. (10.2)

At the same time, by the definition of modality N and items 2 and 4
of Definition 3.1, the assumption w  NHaϕ of the lemma implies that
there is a world w′ such that w′  Haϕ. Hence, w2 ≺a w1 by item 6(b)
of Definition 3.1 and parts w2 1 ϕ and w1  ϕ of statement (10.2).

Also, by item 7(b) of Definition 3.1, the assumption w  NSaψ of
the lemma and parts w1  ψ and w2 1 ψ of statement (10.2) imply
that w1 ≺a w2. Note that statements w2 ≺a w1 and w1 ≺a w2 are
inconsistent because relation ≺a is a strict partial order. a

Lemma 10.6. If w  Eaϕ, then w 1 Nϕ.
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Proof. First, suppose that E = H. Then, by item 6(c) of Definition 3.1,
the assumption w  Eaϕ implies that there is an epistemic world u ∈W
such that u 1 ϕ. Therefore, w 1 Nϕ by item 4 of Definition 3.1.

The proof in the case E = S is similar, but it uses item 7(c) of
Definition 3.1 instead of item 6(c). a

Lemma 10.7. If either w  NHaϕ or w  NSa¬ϕ, then the statement
w  Kaϕ implies w  Haϕ.

Proof. First, suppose that w  NHaϕ. Thus, by the definition of
modality N and items 2 and 4 of Definition 3.1, there is an epistemic
world w′ ∈W such that w′  Haϕ. Hence, by item 6 of Definition 3.1,
(a) u  ϕ for each world u ∈W such that w′ ∼a u,
(b) for any two worlds u, u′ ∈W , if u 1 ϕ and u′  ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ϕ.

Also, by item 5 of Definition 3.1, the assumption w  Kaϕ implies that
(a′) u  ϕ for each world u ∈W such that w ∼a u.

By item 6 of Definition 3.1, statements (a′), (b), and (c) imply w  Haϕ.
Next, suppose that w  NSa¬ϕ. Thus, by the definition of modality

N and items 2 and 4 of Definition 3.1, there is an epistemic world w′ ∈W
such that w′  Sa¬ϕ. Hence, by item 7 of Definition 3.1,
(a) u  ¬ϕ for each world u ∈W such that w′ ∼a u,
(b) for any two worlds u, u′ ∈W , if u  ¬ϕ and u′ 1 ¬ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ¬ϕ.

Also, by item 5 of Definition 3.1, the assumption w  Kaϕ implies that

(a′) u  ϕ for each world u ∈W such that w ∼a u.

Note that by item 2 of Definition 3.1, statement (b) implies that
(b′) for any two worlds u, u′ ∈W , if u 1 ϕ and u′  ϕ, then u ≺a u′.

And, by item 2 of Definition 3.1, statement (a) implies that
(c′) w′ 1 ϕ

because relation ∼a is reflexive. Finally, note that by item 6 of Defini-
tion 3.1, statements (a′), (b′), and (c′) imply w  Haϕ. a

The proof of the next lemma uses the converse models and trans-
lation τ that have been introduced in Definition 8.1 and Definition 8.2
respectively.
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Lemma 10.8. If either w  NHa¬ϕ or w  NSaϕ, then the statement
w  Kaϕ implies w  Saϕ.

Proof. Let M c be the converse model of the epistemic model with
preferences M and c be the satisfaction relation for the model M c.
By Lemma 10.7, if either w c NHaτ(ϕ) or w c NSa¬τ(ϕ), then the
statement w c Kaτ(ϕ) implies w c Haτ(ϕ). Thus, by Definition 8.2,
if either w c τ(NSaϕ) or w c τ(NHa¬ϕ), then the statement w c

τ(Kaϕ) implies w c τ(Saϕ). Therefore, by Theorem 8.1, if either w 
NSaϕ or w  NHa¬ϕ, then the statement w  Kaϕ implies w  Saϕ. a

Lemma 10.9. If w  N(ϕ↔ ψ) and w  Eaϕ, then w  Eaψ.

Proof. First, we consider the case E = H. By item 6 of Definition 3.1,
the assumption w  Haϕ implies that
(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) for any two worlds u, u′ ∈W , if u 1 ϕ and u′  ϕ, then u ≺a u′,
(c) there is a world u ∈W such that u 1 ϕ.

Thus, by the assumption w  N(ϕ↔ ψ) and item 4 of Definition 3.1,
(a′) u  ψ for each world u ∈W such that w ∼a u,
(b′) for any two worlds u, u′ ∈W , if u 1 ψ and u′  ψ, then u ≺a u′,
(c′) there is a world u ∈W such that u 1 ψ.

By item 6 of Definition 3.1, statements (a′), (b′), and (c′) imply w  Haψ.
The proof in the case E = S is similar, but it uses item 7 of Defini-

tion 3.1 instead of item 6. a

The strong soundness theorem below follows from the lemmas proven
above.

Theorem 10.1. For any epistemic world w of an epistemic model with
preferences, any set of formulae X ⊆ Φ, and any formula ϕ ∈ Φ, if w  χ
for each formula χ ∈ X and X ` ϕ, then w  ϕ. a

11. Utilitarian Emotions

Lang, van er Torre, and Weydert introduced a notion of utilitarian desire
which is based on a utility function rather than a preference relation [9].
Although desire, as an emotion, is different from the happiness and sad-
ness emotions that we study in this article, their approach could be
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adapted to happiness and sadness as well. To do this, one needs to
modify Definition 2.1 to include agent-specific utility functions instead
of agent-specific preference relations:

Definition 11.1. A tuple (W, {∼a}a∈A, {ua}a∈A, π) is called an epis-
temic model with utilities if
1. W is a set of epistemic worlds,
2. ∼a is an “indistinguishability” equivalence relation on set W for each

agent a ∈ A,
3. ua is a “utility” function from set W to real numbers for each agent
a ∈ A,

4. π(p) is a subset of W for each propositional variable p.

Below is the definition of the satisfaction relation for the epistemic
model with utilities. Its parts 6(b) and 7(b) are similar to the utilitarian
desire definition in [9]. Unlike the current article, [9] does not prove any
completeness results. In the definition below we assume that language
Φ is modified to incorporate a no-negative real “degree” parameter into
modalities Hda and Sda. We read the statement Hdaϕ as “an agent a is
happy about ϕ with degree d”. Similarly, we read Sdaϕ as “an agent a is
sad about ϕ with degree d”.

Definition 11.2. For any model with utilities (W, {∼a}a∈A, {ua}a∈A,
π), any world w ∈ W , and any formula ϕ ∈ Φ, satisfaction relation
w  ϕ is defined as follows:
1. w  p, if w ∈ π(p),
2. w  ¬ϕ, if w 1 ϕ,
3. w  ϕ→ ψ, if w 1 ϕ or w  ψ,
4. w  Nϕ, if v  ϕ for each world v ∈W ,
5. w  Kaϕ, if v  ϕ for each world v ∈W such that w ∼a v,
6. w  Hdaϕ, if the following three conditions are satisfied:

(a) v  ϕ for each world v ∈W such that w ∼a v,
(b) for any v, v′ ∈W , if v 1 ϕ and v′  ϕ, then ua(v) + d ≤ ua(v′),
(c) there is a world v ∈W such that v 1 ϕ,

7. w  Sdaϕ, if the following three conditions are satisfied:
(a) v  ϕ for each world v ∈W such that w ∼a u,
(b) for any v, v′ ∈W , if v  ϕ and v′ 1 ϕ, then ua(v) + d ≤ ua(v′),
(c) there is a world u ∈W such that u 1 ϕ.

We have already defined utility functions for our Battle of Cuisines
scenario, see Section 5. In the two propositions below we use this scenario
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to illustrate the utilitarian happiness modality. Note how Sanaz is much
happier to be with Pavel in a Russian restaurant than she is to be with
him in a restaurant.

Proposition 11.1. (x, x)  H1
s(“Sanaz and Pavel are in the same res-

taurant”), where x ∈ {Iranian,Russian}.

Proof. We verify conditions (a)–(c) from item 6 of Definition 11.2.
Condition a: Consider any epistemic world (y, z) such that (x, x) ∼s
(y, z). It suffices to show that

(y, z)  “Sanaz and Pavel are in the same restaurant”.

The latter is true because assumption (x, x) ∼s (y, z) implies that x = y
and x = z in the perfect information setting of the Battle of Cuisines
scenario.
Condition b: Consider any worlds (y, z) and (y′, z′) such that

(y, z) 1 “Sanaz and Pavel are in the same restaurant”, (11.1)
(y′, z′)  “Sanaz and Pavel are in the same restaurant”. (11.2)

Statement (11.1) implies that us(y, z) = 0, see Table 1. Similarly, state-
ment (11.2) implies that us(y′, z′) ≥ 1. Therefore, us(y, z) + 1 = 1 ≤
us(y′, z′).
Condition c:

(Russian, Iranian) 1 “Sanaz and Pavel are in the same restaurant”. a

Proposition 11.2.
(Russian,Russian) 

H2
s(“Sanaz and Pavel are in the Russian restaurant”).

Proof. Conditions (a) and (c) from item 6 of Definition 11.2 could
be verified similarly to the proof of Proposition 11.1. Below we verify
condition (b).

Consider any worlds (y, z) and (y′, z′) such that
(y, z) 1 “Sanaz and Pavel are in the Russian restaurant”, (11.3)
(y′, z′)  “Sanaz and Pavel are in the Russian restaurant”. (11.4)

Statement (11.3) implies that us(y, z) ≤ 1, see Table 1. Similarly, state-
ment (11.4) implies that us(y′, z′) = 3. Therefore, us(y, z) + 2 ≤ 1 + 2 =
3 = us(y′, z′). a
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12. Goodness-Based Emotions

Lorini and Schwarzentruber proposed a different framework for defining
emotions [11]. Instead of specifying preference relations on the epistemic
worlds, they label some of the worlds as desirable or “good”. In such a
setting they define modalities “rejoice” and “disappointment” that are
similar to our modalities “happiness” and “sadness”. In this section,
we compare their approach to ours. Although their framework endows
agents with actions, it appears that actions are essential for defining re-
gret and are less important for capturing rejoicing and disappointment.
In the definition below, we simplify Lorini and Schwarzentruber’s frame-
work to action-less models that we call epistemic models with goodness.

Definition 12.1. A tuple (W, {∼a}a∈A, {Ga}a∈A, π) is called an epis-
temic model with goodness if
1. W is a set of epistemic worlds,
2. ∼a is an “indistinguishability” equivalence relation on set W for each

agent a ∈ A,
3. Ga ⊆ W is a nonempty set of “good” epistemic worlds for an agent
a ∈ A,

4. π(p) is a subset of W for each propositional variable p.

To represent the gift example from Figure 1 as an epistemic model
with goodness, we need to specify the sets of good epistemic worlds Gs
and Gp of Sanaz and Pavel. A natural way to do this is to assume that
Gs = Gp = {w}. In other words, the ideal outcome for both of them
would be if the gift and the card reached the recipients.

In the lottery example, the desirable outcome for each agent is when
the agent wins the lottery. In other words, Gs = {u}, Gp = {w}, and
Go = {v}, see Figure 4.

In the Battle of Cuisines example captured in Table 1, the choice
of good epistemic worlds is not obvious. On one hand, we can assume
that good worlds for both Sanaz and Pavel are the ones where they have
positive pay-offs. In this case,

Gs = Gp = {(Iranian, Iranian), (Russian,Russian)}.

Alternatively, we can choose the good worlds to be those where they get
the maximal payoff. In that case, Gs = {(Russian,Russian)} and Gp =
{(Iranian, Iranian)}. Note that our epistemic models with preferences
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approach provides a more fine-grained semantics that does not force the
choice between these two alternatives.

In the definition below, we rephrase Lorini and Schwarzentruber’s for-
mal definitions of “rejoice” and “disappointment” in terms of epistemic
models with goodness. We denote modalities “rejoice” and “disappoint-
ment” by H and S respectively to be consistent with the notations in the
rest of this article.
Definition 12.2. For any world w ∈ W of any epistemic model with
goodness (W, {∼a}a∈A, {Ga}a∈A, π) and any formula ϕ ∈ Φ, the satis-
faction relation w  ϕ is defined as follows:
1. w  p, if w ∈ π(p),
2. w  ¬ϕ, if w 1 ϕ,
3. w  ϕ→ ψ, if w 1 ϕ or w  ψ,
4. w  Nϕ, if u  ϕ for each world u ∈W ,
5. w  Kaϕ, if u  ϕ for each world u ∈W such that w ∼a u,
6. w  Haϕ, if the following three conditions are satisfied:

(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) u  ϕ for each world u ∈ Ga,
(c) there is a world u ∈W such that u 1 ϕ,

7. w  Saϕ, if the following three conditions are satisfied:
(a) u  ϕ for each world u ∈W such that w ∼a u,
(b) u 1 ϕ for each world u ∈ Ga,
(c) there is a world u ∈W such that u 1 ϕ.
Consider the discussed above epistemic model with goodness for the

gift scenario in which Gs = Gp = {w}. It is relatively easy to see that
all propositions that we proved in Section 4 for the preference-based
semantics hold true under the goodness-based semantics of modalities H
and S given in Definition 12.2.

The situation is different for the Battle of Cuisines scenario. If 1
denotes the satisfaction relation of the epistemic model with goodness
where

Gs = Gp = {(Iranian, Iranian), (Russian,Russian)},

then the following two propositions are true just like they are under our
definition of happiness (see Proposition 5.3 and Proposition 5.2):
Proposition 12.1.

(Russian,Russian) 1

Hs(“Sanaz and Pavel are in the same restaurant”).
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Proof. It suffices to verify conditions (a), (b) and (c) of item 6 from
Definition 12.2.
Condition a: Since the Battle of the Cuisines is a setting with perfect
information, it suffices to show that

(Russian,Russian) 1 (“Sanaz and Pavel are in the same restaurant”).

Note that the last statement is true by the definition of the world
(Russian,Russian).
Condition b: Statement “Sanaz and Pavel are in the same restaurant” is
satisfied in both good worlds: (Iranian, Iranian) and (Russian,Russian).
Condition : Statement “Sanaz and Pavel are in the same restaurant” is
not satisfied in the world (Russian, Iranian). a

Proposition 12.2.
(Russian,Russian) 11 Hs(“Sanaz is in the Russian restaurant”).

Proof. Note that (Iranian, Iranian) is a good world, in which the state-
ment “Sanaz is in the Russian restaurant” is not satisfied. Therefore, the
statement of the proposition is true by item 6(b) of Definition 12.2. a

However, for the relation 2 of the epistemic model with goodness
where Gs = {(Russian,Russian)} and Gp = {(Iranian, Iranian)}, the
situation is different:

Proposition 12.3.
(Russian,Russian) 2

Hs(“Sanaz and Pavel are in the same restaurant”).

Proof. The proof is similar to the proof of Proposition 12.1 except that
in Condition b we only need to consider the world (Russian,Russian). a

Proposition 12.4.
(Russian,Russian) 2 Hs(“Sanaz is in the Russian restaurant”).

Proof. It suffices to verify conditions (a), (b), and (c) of item 6 of
Definition 12.2:
Condition a: Since the Battle of the Cuisines is a setting with perfect
information, it suffices to show that

(Russian,Russian) 2 (“Sanaz is in the Russian restaurant”).
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Observe that the last statement is true by the definition of the world
(Russian,Russian).
Condition b: Note that in the current setting set Gs contains only ele-
ment (Russian,Russian) and that

(Russian,Russian) 2 (“Sanaz is in the Russian restaurant”).

Condition c:

(Iranian,Russian) 12 (“Sanaz is in the Russian restaurant”). a

We conclude this section by an observation that the Coherence of Pos-
sible Emotions axiom is not universally true under the goodness-based
semantics. Indeed, note that according to Propositions 12.3 and 12.4,
there is an epistemic world in which Sanaz is happy that “Sanaz is in
the Russian restaurant” and there is an epistemic world in which she
is happy that “Sanaz and Pavel are in the same restaurant”. If the
Coherence of Possible Emotions axiom holds in this setting, then one of
these statements would imply the other, but neither of them does.

13. Canonical Model

In the rest of this article, we prove the strong completeness of our logical
system with respect to the semantics given in Definition 3.1. As usual,
the proof of the completeness is based on a construction of a canonical
model. In this section, for any maximal consistent set of formulae X0 ⊆
Φ, we define a canonical epistemic model with preferences M(X0) =
(W, {∼a}a∈A, {≺a}a∈A, π).

As common in modal logic, we define worlds as maximal consistent
sets of formulae. Since the meaning of modality N in our system is “for
all worlds”, we require all worlds in the canonical model to have the same
N-formulae. We achieve this through the following definition.

Definition 13.1. W is the set of all such maximal consistent sets of
formulae Y that {ϕ ∈ Φ | Nϕ ∈ X0} ⊆ Y .

Note that although the above definition only requires all N-formulae
from set X0 to be in set Y , it is possible to show that the converse is
also true due to the presence of the Negative Introspection axiom for
modality N in our system.
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Lemma 13.1. X0 ∈W .

Proof. Consider any formula Nϕ ∈ X0. By Definition 13.1, it suffices to
show that ϕ ∈ X0. Indeed, the assumption Nϕ ∈ X0 implies that X0 ` ϕ
by the Truth axiom and the Modus Ponens inference rule. Therefore,
ϕ ∈ X0 because set X0 is maximal. a

Definition 13.2. For any worlds w, u ∈W , let w ∼a u if ϕ ∈ u for each
formula Kaϕ ∈ w.

Alternatively, one can define w ∼a u if sets w and u have the same
Ka-formulae. Our approach results in shorter proofs, but it requires to
prove the following lemma.

Lemma 13.2. The relation ∼a is an equivalence relation on the set W .

Proof. Reflexivity: Consider any formula ϕ ∈ Φ. Suppose that Kaϕ ∈
w. By Definition 13.2, it suffices to show that ϕ ∈ w. Indeed, assumption
Kaϕ ∈ w implies w ` ϕ by the Truth axiom and the Modus Ponens
inference rule. Therefore, ϕ ∈ w because set w is maximal.
Symmetry: Consider any epistemic worlds w, u ∈ W such that w ∼a u
and any formula Kaϕ ∈ u. By Definition 13.2, it suffices to show ϕ ∈ w.
Suppose the opposite. Then, ϕ /∈ w. Hence, w 0 ϕ because set w is
maximal. Thus, w 0 Kaϕ by the contraposition of the Truth axiom.
Then, ¬Kaϕ ∈ w because set w is maximal. Thus, w ` Ka¬Kaϕ by
the Negative Introspection axiom and the Modus Ponens inference rule.
Hence, Ka¬Kaϕ ∈ w because set w is maximal. Then, ¬Kaϕ ∈ u by
assumption w ∼a u and Definition 13.2. Therefore, Kaϕ /∈ u because set
w is consistent, which contradicts the assumption Kaϕ ∈ u.
Transitivity: Consider any epistemic worlds w, u, v ∈W such that w ∼a
u and u ∼a v and any formula Kaϕ ∈ w. By Definition 13.2, it suffices
to show ϕ ∈ v. Assumption Kaϕ ∈ w implies w ` KaKaϕ by Lemma 9.5
and the Modus Ponens inference rule. Thus, KaKaϕ ∈ w because set w is
maximal. Hence, Kaϕ ∈ u by the assumption w ∼a u and Definition 13.2.
Therefore, ϕ ∈ v by the assumption u ∼a v and Definition 13.2. a

The next step in specifying the canonical model is to define prefer-
ence relation ≺a for each agent a ∈ A, which we do in Definition 13.5.
Towards this definition, we first introduce the “emotional base” ∆a for
each agent a. The set ∆a contains a formula δ if agent a could either be
possibly happy about δ or possibly sad about ¬δ.
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Definition 13.3. ∆a = {δ ∈ Φ | NHaδ ∈ X0} ∪ {δ ∈ Φ | NSa¬δ ∈ X0}.

The next lemma holds because set Φ is countable.

Lemma 13.3. The set ∆a is countable for each agent a ∈ A. a

Next, we introduce a total pre-order va on the emotional base ∆a of
each agent a ∈ A. Note that this pre-order is different from the canonical
preference relation ≺a that we introduce in Definition 13.5.

Definition 13.4. For any agent a ∈ A and any two formulae δ, δ′ ∈ ∆a,
let δ v δ′ if N(δ → δ′) ∈ X0.

Lemma 13.4. N(¬δ′ → ¬δ) ∈ X0 for any agent a ∈ A and any two
formulae δ, δ′ ∈ ∆a such that δ v δ′.

Proof. Formula (δ → δ′) → (¬δ′ → ¬δ) is a propositional tautology.
Thus, ` N((δ → δ′) → (¬δ′ → ¬δ)) by the Necessitation inference rule.
Hence,

` N(δ → δ′)→ N(¬δ′ → ¬δ) (13.1)
by the Distributivity axiom and Modus Ponens.

Suppose that δ v δ′. Thus, N(δ → δ′) ∈ X0 by Definition 13.4.
Hence, X0 ` N(¬δ′ → ¬δ) by statement (13.1) and the Modus Ponens
inference rule. Therefore, N(¬δ′ → ¬δ) ∈ X0 because set X0 is maximal.

a

Lemma 13.5. For any agent a ∈ A, the relation v is a total pre-order
on the set ∆a.

Proof. We need to show that relation v is reflexive, transitive, and
total.
Reflexivity: Consider an arbitrary formula δ ∈ Φ. By Definition 13.4,
it suffices to show that N(δ → δ) ∈ X0. Indeed, the formula δ → δ
is a propositional tautology. Thus, ` N(δ → δ) by the Necessitation
inference rule. Therefore, N(δ → δ) ∈ X0 because set X0 is maximal.
Transitivity: Consider arbitrary δ1, δ2, δ3 ∈ Φ such that N(δ1 → δ2) ∈ X0
and N(δ2 → δ3) ∈ X0. By Definition 13.4, it suffices to show that
N(δ1 → δ3) ∈ X0. Indeed, note that the formula

(δ1 → δ2)→ ((δ2 → δ3)→ (δ1 → δ3))

is a propositional tautology. Thus,

` N((δ1 → δ2)→ ((δ2 → δ3)→ (δ1 → δ3)))
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by the Necessitation inference rule. Hence, by the Distributivity axiom
and the Modus Ponens inference rule,

` N(δ1 → δ2)→ N((δ2 → δ3)→ (δ1 → δ3)).

Then,
X0 ` N((δ2 → δ3)→ (δ1 → δ3))

by the assumption N(δ1 → δ2) ∈ X0 and the Modus Ponens inference
rule. Thus,

X0 ` N(δ2 → δ3)→ N(δ1 → δ3)
by the Distributivity axiom and the Modus Ponens inference rule. Hence,
by the assumption N(δ2 → δ3) ∈ X0 and the Modus Ponens rule,

X0 ` N(δ1 → δ3).

Therefore, N(δ1 → δ3) ∈ X0 because set X0 is maximal.
Totality: Consider arbitrary formulae δ1, δ2 ∈ ∆a. By Definition 13.4, it
suffices to show that either N(δ1 → δ2) ∈ X0 or N(δ2 → δ1) ∈ X0. By
Definition 13.3, without loss of generality, we can assume that one the
following three cases take place:
Case I : NHaδ1,NHaδ2 ∈ X0. Then, X0 ` N(δ1 → δ2) ∨ N(δ2 → δ1)
by the first Coherence of Possible Emotions axiom and propositional
reasoning. Therefore, because setX0 is maximal, either N(δ1 → δ2) ∈ X0
or N(δ2 → δ1) ∈ X0.
Case II: NSa¬δ1,NSa¬δ2 ∈ X0. Similarly to the previous case, we can
show that either N(¬δ1 → ¬δ2) ∈ X0 or N(¬δ2 → ¬δ1) ∈ X0. Without
loss of generality, suppose that N(¬δ1 → ¬δ2) ∈ X0. Since (¬δ1 →
¬δ2)→ (δ2 → δ1) is a propositional tautology, by the Necessitation rule,
we have ` N((¬δ1 → ¬δ2) → (δ2 → δ1)). Hence, ` N(¬δ1 → ¬δ2) →
N(δ2 → δ1), by the Distributivity axiom and Modus Ponens. Thus,
X0 ` N(δ2 → δ1), by the assumption N(¬δ1 → ¬δ2) ∈ X0. Therefore,
N(δ2 → δ1) ∈ X0 because set X0 is maximal.
Case III: NHaδ1,NSa¬δ2 ∈ X0. Thus, by the second Coherence of
Possible Emotions axiom and propositional reasoning, X0 ` N(δ1 →
¬¬δ2)∨N(¬¬δ2 → δ1). Hence, either N(δ1 → ¬¬δ2) ∈ X0 or N(¬¬δ2 →
δ1) ∈ X0 because set X0 is consistent. Then using an argument similar
to the one in Case II and propositional tautologies

(δ1 → ¬¬δ2)→ (δ1 → δ2) and (¬¬δ2 → δ1)→ (δ2 → δ1)

one can conclude that either N(δ1 → δ2) ∈ X0 or N(δ2 → δ1) ∈ X0. a
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We now are ready to define preference relation≺a on epistemic worlds
of the canonical model.

Definition 13.5. w ≺a u if there is a formula δ ∈ ∆a such that δ /∈ w
and δ ∈ u.

Note that the transitivity of the relation ≺a is not obvious. We prove
it as a part of the next lemma.

Lemma 13.6. ≺a is a strict partial order on W .

Proof. Irreflexivity: Suppose that w ≺a w for some world w ∈ W .
Thus, by Definition 13.5, there exists a formula δ ∈ ∆a such that δ /∈ w
and δ ∈ w, which is a contradiction.
Transitivity: Consider any worlds w, u, v ∈ W such that w ≺a u and
u ≺a v. It suffices to prove that w ≺a v. Indeed, by Definition 13.5,
assumptions w ≺a u and u ≺a v imply that there are formulae δ1, δ2 in
∆a such that

δ1 /∈ w, δ1 ∈ u, δ2 /∈ u, and δ2 ∈ v. (13.2)

By Lemma 13.5, either δ1 v δ2 or δ2 v δ1. We consider these two cases
separately.
Case I: δ1 v δ2. Then, N(δ1 → δ2) ∈ X0 by Definition 13.5. Hence,
δ1 → δ2 ∈ u by Definition 13.1. Thus, u ` δ2 by the part δ1 ∈ u of
statement (13.2) and Modus Ponens. Therefore, δ2 ∈ u because set u is
maximal, which contradicts the part δ2 /∈ u of statement (13.2).
Case II: δ2 v δ1. Then, N(δ2 → δ1) ∈ X0 by Definition 13.5. Thus,
δ2 → δ1 ∈ v by Definition 13.1. Hence, v ` δ1 by the part δ2 ∈ v
of statement (13.2) and Modus Ponens. Then, δ1 ∈ v because set v is
maximal. Therefore, w ≺a v by Definition 13.5 and the part δ1 /∈ w of
statement (13.2). a

Definition 13.6. π(p) = {w ∈W | p ∈ w}.

This concludes the definition of the canonical epistemic model with
preferences M(X0) = (W, {∼a}a∈A, {≺a}a∈A, π).

14. Properties of a Canonical Model

As usual, the proof of the completeness is centered around an “induction”
or “truth” lemma. In our case, this is Lemma 14.11. We precede this
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lemma with several auxiliary lemmas that are used in the induction step
of the proof of Lemma 14.11. For the benefit of the reader, we group
these auxiliary lemmas into several subsections. Throughout this section
up to and including Lemma 14.11, we assume a fixed canonical model
M(X0).

14.1. Properties of Modality N

Lemma 14.1. For any worlds w, u ∈ W and any formula ϕ ∈ Φ, if
Nϕ ∈ w, then ϕ ∈ u.

Proof. Suppose that ϕ /∈ u. Thus, u 0 ϕ because set u is maxi-
mal. Hence, Nϕ /∈ u by the Truth axiom. Then, NNϕ /∈ X0 by Def-
inition 13.1. Thus, X0 0 NNϕ because set X0 is maximal. Hence,
Nϕ /∈ X0 by Lemma 9.5. Then, ¬Nϕ ∈ X0 because set X0 is maximal.
Thus, X0 ` N¬Nϕ by the Negative Introspection axiom and the Modus
Ponens inference rule. Hence, N¬Nϕ ∈ X0 because set X0 is maximal.
Then, ¬Nϕ ∈ w by Definition 13.1. Therefore, Nϕ /∈ w because set w is
consistent. a

Lemma 14.2. For any world w ∈W and any formula ϕ ∈ Φ, if Nϕ /∈ w,
then there is a world u ∈W such that ϕ /∈ u.

Proof. Consider the set X = {¬ϕ} ∪ {ψ | Nψ ∈ X0}. We start by
showing that set X is consistent. Suppose the opposite. Then, there are
formulae Nψ1, . . . ,Nψn ∈ X0 such that ψ1, . . . , ψn ` ϕ. Thus,

Nψ1, . . . ,Nψn ` Nϕ

by Lemma 9.4. Hence, X0 ` Nϕ because Nψ1, . . . ,Nψn ∈ X0. Then,
X0 ` NNϕ by Lemma 9.5 and the Modus Ponens inference rule. Thus,
NNϕ ∈ X0 because set X0 is maximal. Hence, Nϕ ∈ w by Definition 13.1
which contradicts the assumption Nϕ /∈ w of the lemma. Therefore, set
X is consistent.

Let set u be a maximum consistent extension of set X. Such a set
exists by Lemma 9.8. Note that u ∈ W by Definition 13.1 and the
choice of sets X and u. Also, ¬ϕ ∈ X ⊆ u by the choice of sets X and
u. Therefore, ϕ /∈ u because set u is consistent. a
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14.2. Properties of Modality K

Lemma 14.3. For any agent a ∈ A, any worlds w, u ∈ W , and any
formula ϕ ∈ Φ, if Kaϕ ∈ w and w ∼a u, then ϕ ∈ u.

Proof. Assumptions Kaϕ ∈ w and w ∼a u imply ϕ ∈ u by Defini-
tion 13.2. a

Lemma 14.4. For any agent a ∈ A, any world w ∈W , and any formula
ϕ ∈ Φ, if Kaϕ /∈ w, then there is a world u ∈ W such that w ∼a u and
ϕ /∈ u.

Proof. First, we show that the following set of formulae is consistent

X = {¬ϕ} ∪ {ψ | Kaψ ∈ w} ∪ {χ | Nχ ∈ X0}. (14.1)

Assume the opposite. Then, there are formulae

Kaψ1, . . . ,Kaψm ∈ w (14.2)

and formulae
Nχ1, . . . ,Nχn ∈ X0 (14.3)

such that
ψ1, . . . , ψm, χ1, . . . , χn ` ϕ.

Thus, by Lemma 9.4,

Kaψ1, . . . ,Kaψm,Kaχ1, . . . ,Kaχn ` Kaϕ.

Hence, by assumption (14.2),

w,Kaχ1, . . . ,Kaχn ` Kaϕ. (14.4)

Consider any integer i ≤ n. Note that Nχi → Kaχi is an instance of
the Knowledge of Necessity axiom. Then, ` N(Nχi → Kaχi) by the Ne-
cessitation inference rule. Thus, ` NNχi → NKaχi by the Distributivity
axiom and the Modus Ponens inference rule. Note that ` Nϕ→ NNϕ by
Lemma 9.5. Hence, ` Nχi → NKaχi by the laws of propositional reason-
ing. Then, X0 ` NKaχ by assumption (14.3). Thus, NKaχ ∈ X0 because
set X0 is maximal. Hence, Kaχi ∈ w by Definition 13.1 for any integer
i ≤ n. Then, statement (14.4) implies that w ` Kaϕ. Thus, Kaϕ ∈ w
because set w is maximal, which contradicts assumption Kaϕ /∈ w of the
lemma. Therefore, set X is consistent.
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By Lemma 9.8, set X can be extended to a maximal consistent set u.
Then, {χ | Nχ ∈ X0} ⊆ X ⊆ u by equation (14.1). Thus, u ∈W by Def-
inition 13.1. Also, {ψ | Kaψ ∈ w} ⊆ X ⊆ u by equation (14.1). Hence,
w ∼a u by Definition 13.2. Finally, ¬ϕ ∈ X ⊆ u also by equation (14.1).
Therefore, ϕ /∈ u because set u is consistent. a

14.3. Common Properties of Modalities H and S

Recall that by E we denote one of the two emotional modalities: H and S.

Lemma 14.5. For any agent a ∈ A, any worlds w, u ∈ W , and any
formula ϕ ∈ Φ, if Eaϕ ∈ w and w ∼a u, then ϕ ∈ u.

Proof. By Lemma 9.2 and the Modus Ponens inference rule, the as-
sumption Eaϕ ∈ w implies w ` Kaϕ. Thus, Kaϕ ∈ w because set
w is maximal. Therefore, ϕ ∈ u by Lemma 14.3 and the assumption
w ∼a u. a

Lemma 14.6. For any world w ∈W , and any formula Eaϕ ∈ w, there is
a world u ∈W such that ϕ /∈ u.

Proof. By the Counterfactual axiom and the Modus Ponens inference
rule, assumption Eaϕ ∈ w implies w ` ¬Nϕ. Thus, Nϕ /∈ w because set
w is consistent. Therefore, by Lemma 14.2, there is a world u ∈W such
that ϕ /∈ u. a

14.4. Properties of Modality H

Lemma 14.7. For any agent a ∈ A, any worlds w, u, u′ ∈ W , and any
formula ϕ ∈ Φ, if Haϕ ∈ w, ϕ /∈ u and ϕ ∈ u′, then u ≺a u′.

Proof. The assumption Haϕ ∈ w implies ¬Haϕ /∈ w because set w
is consistent. Thus, N¬Haϕ /∈ X0 by Definition 13.1 because w ∈ W .
Hence, ¬N¬Haϕ ∈ X0 because set X0 is maximal. Then, NHaϕ ∈ X0
by the definition of modality N. Thus, ϕ ∈ ∆a by Definition 13.3.
Therefore, u ≺a u′ by Definition 13.5 and the assumptions ϕ /∈ u and
ϕ ∈ u′ of the lemma. a

Lemma 14.8. For any agent a ∈ A, any world w ∈W , and any formula
ϕ ∈ Φ, if Haϕ /∈ w, Kaϕ ∈ w, and Nϕ /∈ w, then there are worlds
u, u′ ∈W such that ϕ /∈ u, ϕ ∈ u′, and u 6≺a u′.
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Proof. By Lemma 13.5, relation v forms a total pre-order on set ∆a.
By Lemma 13.3, set ∆a is countable. Thus, by the axiom of countable
choice, there is an ordering of all formulae in set ∆a that agrees with
pre-order v. Generally speaking, such an ordering is not unique. We fix
any such ordering:

δ0 v δ1 v δ2 v δ3 v . . . (14.5)

If set ∆a is finite, the above ordering has some finite number n of ele-
ments. In this case, the ordering is isomorphic to ordinal n. Otherwise,
it is isomorphic to ordinal ω. Let α be the ordinal which is the type of
ordering (14.5). Ordinal α is either finite or is equal to ω.

For any ordinal k ≤ α, we consider set

Yk = {ϕ} ∪ {¬δi | i < k} ∪ {ψ | Nψ ∈ X0}. (14.6)

Claim 1. If there is no finite ordinal k < α such that Yk is consistent
and Yk+1 is inconsistent, then Yα is consistent.

Proof of Claim. To prove that Yα is consistent, it suffices to show that
Yk is consistent for each ordinal k ≤ α. We prove this by transfinite
induction.

Zero Case: Suppose that Y0 is not consistent. Thus, there are formulae
Nψ1, . . . ,Nψn ∈ X0 such that

ψ1, . . . , ψn ` ¬ϕ.

Hence,
Nψ1, . . . ,Nψn ` N¬ϕ

by Lemma 9.4. Then, X0 ` N¬ϕ by the assumption Nψ1, . . . ,Nψn ∈ X0.
Thus, because set X0 is maximal,

N¬ϕ ∈ X0. (14.7)

Hence, ¬ϕ ∈ w, by Definition 13.1. Then, w ` ¬Kaϕ by the contra-
position of the Truth axiom and propositional reasoning. Therefore,
Kaϕ /∈ w because set w is consistent, which contradicts the assumption
Kaϕ ∈ w of lemma.

Successor Case: Suppose that set Yk is consistent for some k < α. By
the assumption of the claim, there is no finite ordinal k < α such that Yk
is consistent and Yk+1 is inconsistent. Therefore, set Yk+1 is consistent.
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Limit Case: Suppose that set Yω is not consistent. Thus, there are
formulae Nψ1, . . . ,Nψn ∈ X0 and some finite k < ω such that

ψ1, . . . , ψn,¬δ0, . . . ,¬δk−1 ` ¬ϕ.

Therefore, set Yk is not consistent.
�

Let k′ be any finite ordinal k′ < α such that Yk′ is consistent and
Yk′+1 is inconsistent. If such a finite ordinal does not exist, then let k′
be ordinal α. Note that in either case, set Yk′ is consistent by Claim 1.
Let u′ be any maximal consistent extension of set Yk′ . Such an extension
exists by Lemma 9.8. Note that ϕ ∈ Yk′ ⊆ u′ by (14.6) and the choice
of u′.
Claim 2. u′ ∈W .

Proof of Claim. Consider any formula Nψ ∈ X0. By Definition 13.1,
it suffices to show that ψ ∈ u′. Indeed, ψ ∈ Yk′ by (14.6) and the
assumption Nψ ∈ X0. So ψ ∈ u′ because Yk′ ⊆ u′ by the choice of u′.

�

Consider the following set of formulae:

Z = {¬ϕ} ∪ {δi | k′ ≤ i < α} ∪ {ψ | Nψ ∈ X0}. (14.8)

Claim 3. The set Z is consistent.

Proof of Claim. We consider the following two cases separately:
Case 1: k′ < α. Suppose that set Z is not consistent. Thus, there are
finite ordinals m < α and n < ω and formulae

Nψ1, . . .Nψn ∈ X0 (14.9)

such that k′ ≤ m and

δk′ , δk′+1, . . . , δm, ψ1, . . . , ψn ` ϕ.

Hence, by the Modus Ponens inference rule applied m− k′ times,

δk′ , δk′ → δk′+1, δk′+1 → δk′+2, δk′+2 → δk′+3, . . . , δm−1 → δm,

ψ1, . . . , ψn ` ϕ.

Then, by Lemma 9.3,

δk′ → δk′+1, δk′+1 → δk′+2, . . . , δm−1 → δm, ψ1, . . . , ψn ` δk′ → ϕ.
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Thus, by Lemma 9.4,

N(δk′ → δk′+1),N(δk′+1 → δk′+2), . . . ,N(δm−1 → δm),
Nψ1, . . . ,Nψn ` N(δk′ → ϕ).

Recall that δk′ v δk′+1 v · · · v δm by assumption (14.5). Hence, it
follows that N(δk′ → δk′+1),N(δk′+1 → δk′+2), . . . ,N(δm−1 → δm) ∈ X0
by Definition 13.4. Then,

X0,Nψ1, . . . ,Nψn ` N(δk′ → ϕ).

Thus, by assumption (14.9),

X0 ` N(δk′ → ϕ). (14.10)

At the same time, k′ < α by the assumption of the case. Hence, set
Yk′+1 is not consistent by the choice of the finite ordinal k′. Then, by
equation (14.6), there must exist formulae

Nψ′1, . . . ,Nψ′p ∈ X0 (14.11)

such that
¬δ0,¬δ1,¬δ2, . . . ,¬δk′ , ψ′1, . . . , ψ

′
p ` ¬ϕ.

In other words,

¬δk′ ,¬δk′−1,¬δk′−2, . . . ,¬δ0, ψ
′
1, . . . , ψ

′
p ` ¬ϕ.

Thus, by applying the Modus Ponens inference rule k′ times,

¬δk′ ,¬δk′ → ¬δk′−1,¬δk′−1 → ¬δk′−2, . . . ,¬δ1 → ¬δ0, ψ
′
1, . . . , ψ

′
p ` ¬ϕ.

Hence, by Lemma 9.3,

¬δk′ → ¬δk′−1,¬δk′−1 → ¬δk′−2, . . . ,¬δ1 → ¬δ0, ψ
′
1, . . . , ψ

′
n `
¬δk′ → ¬ϕ.

Then, by Lemma 9.4,

N(¬δk′ → ¬δk′−1),N(¬δk′−1 → ¬δk′−2), . . . ,N(¬δ1 → ¬δ0),
Nψ′1, . . . ,Nψ′n ` N(¬δk′ → ¬ϕ).

Recall that δ0 v δ1 v · · · v δk′ , by (14.5). Thus, it follows that

N(¬δ1 → ¬δ0),N(¬δ2 → ¬δ1), . . . ,N(¬δk′ → ¬δk′−1) ∈ X0

by Lemma 13.4. Hence,

X0,Nψ′1, . . . ,Nψ′n ` N(¬δk′ → ¬ϕ).
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Then, by assumption (14.11),

X0 ` N(¬δk′ → ¬ϕ). (14.12)

Thus, by item 1 of Lemma 9.6 and statement (14.10),

X0 ` N(δk′ ↔ ϕ). (14.13)

Note that δk′ ∈ ∆a because (14.5) is an ordering of set ∆a. Hence, by
Definition 13.3, either NHaδk′ ∈ X0 or NSa¬δk′ ∈ X0. Then, by items 1
and 2 of Lemma 9.7 and statement (14.13), either X0 ` NHaϕ or X0 `
NSa¬ϕ. Thus, either X0 ` NNHaϕ or X0 ` NNSa¬ϕ by the definition of
modality N, the Negative Introspection axiom, and the Modus Ponens
inference rule. Hence, either NNHaϕ ∈ X0 or NNSa¬ϕ ∈ X0 because set
X0 is maximal. Then, either NHaϕ ∈ w or NSa¬ϕ ∈ w by Definition 13.1
and assumption w ∈ W of the lemma. Thus, w ` Kaϕ → Haϕ by
the first Emotional Predictability axiom and propositional reasoning.
Hence, w ` Haϕ by assumption Kaϕ of the lemma and the Modus Ponens
inference rule. Therefore, Haϕ ∈ w because set w is maximal, which
contradicts assumption Haϕ /∈ w of the lemma.
Case 2: α ≤ k′. Recall that k′ ≤ α by the choice of ordinal k′ made
after the end of the proof of Claim 1. Thus, k′ = α. Hence, Z =
{¬ϕ} ∪ {ψ | Nψ ∈ X0} by equation (14.8). Then, inconsistency of set Z
implies that there are formulae

Nψ1, . . .Nψn ∈ X0 (14.14)

such that ψ1, . . . , ψn ` ϕ. Thus, Nψ1, . . . ,Nψn ` Nϕ by Lemma 9.4.
Hence,

X0 ` Nϕ (14.15)
by the assumption (14.14). Then, X0 ` NNϕ by Lemma 9.5 and the
Modus Ponens inference rule. Hence, NNϕ ∈ X0 because set X0 is
maximal. Therefore, Nϕ ∈ w, by Definition 13.1, which contradicts the
assumption of the lemma. �

Let u be any maximal consistent extension of set Z. Note that ¬ϕ ∈
Z ⊆ u by equation (14.8) and the choice of set u.
Claim 4. u ∈W .

Proof of Claim. Consider any formula Nψ ∈ X0. By Definition 13.1, it
suffices to show that ψ ∈ u. Indeed, ψ ∈ Z by equation (14.8) and the
assumption Nψ ∈ X0. Thus, ψ ∈ u because Z ⊆ u by the choice of u.

�
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Claim 5. u 6≺a u′.

Proof of Claim. Suppose that u ≺a u′. Thus, by Definition 13.5, there
is a formula δ ∈ ∆a such that δ /∈ u and δ ∈ u′. Recall that (14.5) is an
ordering of ∆a. Hence, there must exist an integer i < α such that

δi /∈ u and δi ∈ u′. (14.16)

We consider the following two cases separately:
Case 1: i < k′. Then, ¬δi ∈ Yk′ ⊆ u′ by equation (14.6) and the choice
of set u′. Thus, δi /∈ u′ because set u′ is consistent, which contradicts to
statement (14.16).
Case 2: k′ ≤ i. Then, δi ∈ Z ⊆ u by equation (14.8) and the choice of
set u, which contradicts statement (14.16). �

This concludes the proof of the lemma. a

14.5. Properties of Modality S

Lemma 14.9. For any agent a ∈ A, any worlds w, u, u′ ∈ W , and any
formula ϕ ∈ Φ, if Saϕ ∈ w, ϕ ∈ u and ϕ /∈ u′, then u ≺a u′.

Proof. Note that ϕ ↔ ¬¬ϕ is a propositional tautology. Thus, `
N(ϕ ↔ ¬¬ϕ) by the Necessitation inference rule. Hence, ` Saϕ →
Sa¬¬ϕ by the Substitution axiom and the Modus Ponens inference rule.
Then, w ` Sa¬¬ϕ by the Modus Ponens inference rule and the as-
sumption Saϕ ∈ w of the lemma. Thus, ¬Sa¬¬ϕ /∈ w because set
w is consistent. Hence, N¬Sa¬¬ϕ /∈ X0 by Definition 13.1. Then,
¬N¬Sa¬¬ϕ ∈ X0 because set X0 is maximal. Thus, NSa¬¬ϕ ∈ X0
by the definition of modality N. Hence, ¬ϕ ∈ ∆a by Definition 13.3.
Therefore, u ≺a u′ by Definition 13.5 and the assumptions ¬ϕ /∈ u and
¬ϕ ∈ u′ of the lemma. a

Lemma 14.10. For any agent a ∈ A, any world w ∈W , and any formula
ϕ ∈ Φ, if Saϕ /∈ w, Kaϕ ∈ w, and Nϕ /∈ w, then there are worlds
u, u′ ∈W such that ϕ ∈ u, ϕ /∈ u′, and u 6≺a u′.

Proof. The proof of this lemma is similar to the proof of Lemma 14.8.
Here we outline the differences. The choice of ordering (14.5) and of
ordinal α remains the same. Sets Yk for any ordinal k ≤ α is now
defined as

Yk = {¬ϕ} ∪ {¬δi | i < k} ∪ {ψ | Nψ ∈ X0}. (14.17)
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This is different from equation (14.6) because set Yk now includes ¬ϕ
instead of ϕ.

The statement of Claim 1 remains the same. The proof of this claim
is also the same except for the Zero Case. In Zero Case, the proof is
similar to the original till equation (14.7). Because set Yk now contains
¬ϕ instead of ϕ, equation (14.7) will now have the form Nϕ ∈ X0. Thus,
in our case, X0 ` NNϕ by Lemma 9.5 and the Modus Ponens inference
rule. Hence, NNϕ ∈ X0 because set X0 is maximal. Then, Nϕ ∈ w by
Definition 13.1, which contradicts the assumption Nϕ /∈ w of the lemma.

The statement and the proof of Claim 2 remain the same. Set Z will
now be defined as

Z = {ϕ} ∪ {δi | k′ ≤ i < α} ∪ {ψ | Nψ ∈ X0}. (14.18)

This is different from equation (14.8) because set Z now includes ϕ
instead of ¬ϕ.

The statement of Claim 3 remains the same. Case 1 of the proof of
this case is similar to the original proof of Claim 3 till formula (14.12),
except for ϕ will be used instead of ¬ϕ, and ¬ϕ instead of ϕ everywhere
in that part of the proof. In particular formula (14.10) will now have the
form

X0 ` N(δk′ → ¬ϕ). (14.19)
and formula (14.12) will now have the form

X0 ` N(¬δk′ → ϕ). (14.20)

The argument after formula (14.12) will change as follows. By item 2 of
Lemma 9.6 and statements (14.19) and (14.20),

X0 ` N(δk′ ↔ ¬ϕ). (14.21)

Note that δk′ ∈ ∆a because (14.5) is an ordering of set ∆a. Hence, by
Definition 13.3, either NHaδk′ ∈ X0 or NSa¬δk′ ∈ X0. Then, by items 1
or 3 of Lemma 9.7 and statement (14.13), either X0 ` NHa¬ϕ or X0 `
NSaϕ. Thus, either X0 ` NNHa¬ϕ or X0 ` NNSaϕ by the definition of
modality N, the Negative Introspection axiom, and the Modus Ponens
inference rule. Hence, either NNHa¬ϕ ∈ X0 or NNSaϕ ∈ X0 because set
X0 is maximal. Then, either NHa¬ϕ ∈ w or NSaϕ ∈ w by Definition 13.1
and assumption w ∈ W of the lemma. Thus, w ` Kaϕ → Saϕ by
the second Emotional Predictability axiom and propositional reasoning.
Hence, w ` Saϕ by assumption Kaϕ of the lemma and the Modus Ponens
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inference rule. Therefore, Saϕ ∈ w because set w is maximal, which
contradicts assumption Saϕ /∈ w of the lemma.

The Case 2 of the proof of Claim 3 will be similar to the original
proof of Claim 3 till formula (14.15) except that a formula except for
ϕ will be used instead of ¬ϕ, and ¬ϕ instead of ϕ everywhere in that
part of the proof. Statement (14.15) will now have the form X0 ` N¬ϕ.
From this point, the proof will continue as follows. Statement X0 `
N¬ϕ implies that N¬ϕ ∈ X0 because set X0 is maximal. Then, ¬ϕ ∈
w by Definition 13.1. Hence, w ` ¬Kaϕ by the contraposition of the
Truth axiom. Therefore, Kaϕ /∈ w because set w is consistent, which
contradicts the assumption Kaϕ ∈ w of the lemma.

The statements and the proofs of Claim 4 and Claim 5 remain the
same as in the original proof. a

14.6. Final Steps

We are now ready to state and to prove the “induction” or “truth”
lemma.

Lemma 14.11. w  ϕ iff ϕ ∈ w.

Proof. We prove the lemma by structural induction on a formula ϕ.
If ϕ is a propositional variable, then the required follows from Defini-
tion 13.6 and item 1 of Definition 3.1. If ϕ is a negation or an implication,
then the statement of the lemma follows from the induction hypothesis
using items 2 and 3 of Definition 3.1 and the maximality and the con-
sistency of the set w in the standard way.

Suppose that ϕ has the form Kaψ.
(⇐) By Lemma 14.3, assumption Kaψ ∈ w implies that ψ ∈ u for any
world u ∈ W such that w ∼a u. Thus, by the induction hypothesis,
u  ψ for any world u ∈ W such that w ∼a u. Therefore, w  Kaψ by
item 5 of Definition 3.1.
(⇒) Assume that Kaψ /∈ w. Thus, by Lemma 14.4, there is a world
u ∈ W such that w ∼a u and ψ /∈ u. Hence, u 1 ψ by the induction
hypothesis. Therefore, w 1 Kaψ by item 5 of Definition 3.1.

If ϕ has the form Nψ, then the proof is similar to the case Kaψ except
that Lemma 14.1 and Lemma 14.2 are used instead of Lemma 14.3 and
Lemma 14.4 respectively. Also, item 4 of Definition 3.1 is used instead
of item 5.

Assume that ϕ has the form Haψ.
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(⇐) Assume that Haψ ∈ w. To prove that w  Haψ, we verify
conditions (a), (b), and (c) from item 6 of Definition 3.1.

(a) The assumption Haψ ∈ w implies w ` Kaψ by Lemma 9.2 and the
Modus Ponens inference rule. Thus, Kaψ ∈ w because set w is maximal.
Hence, by Lemma 14.3, for any world u ∈ W , if ψ ∈ u, then w ∼a u .
Therefore, by the induction hypothesis, u  ψ for any world u ∈W such
that w ∼a u.

(b) By Lemma 14.7, assumption Haψ ∈ w implies that for any worlds
u, u′ ∈ W , if ψ /∈ u and ψ ∈ u′, then u ≺a u′. Thus, by the induction
hypothesis, for any worlds u, u′ ∈W , if u 1 ψ and u′  ψ, then u ≺a u′.

(c) By the Counterfactual axiom and the Modus Ponens inference
rule, the assumption Haψ ∈ w implies that w ` ¬Nψ. Thus, Nψ /∈ w
because set w is consistent. Hence, by Lemma 14.2, there is a world
u ∈W such that ψ /∈ u. Therefore, u 1 ψ by the induction hypothesis.

(⇒) Assume that Haψ /∈ w. We consider the following three cases
separately:

Case I : Kaψ /∈ w. Thus, by Lemma 14.4, there is a world u ∈ W
such that w ∼a u and ψ /∈ u. Hence, u 1 ψ by the induction hypothesis.
Therefore, w 1 Haψ by item 6(a) of Definition 3.1.

Case II : Nψ ∈ w. Then, ψ ∈ u for any world u ∈W by Lemma 14.1.
Thus, by the induction hypothesis, u  ψ for any world u ∈ W . There-
fore, w 1 Haψ by item 6(c) of Definition 3.1.

Case III : Kaψ ∈ w and Nψ /∈ w. Thus, by the assumption Haψ /∈ w
and Lemma 14.8, there are worlds u, u′ ∈ W such that ψ /∈ u, ψ ∈ u′,
and u 6≺a u′. Hence, u 1 ψ and u′  ψ by the induction hypothesis.
Therefore, w 1 Haψ by item 6(b) of Definition 3.1.

If ϕ has the form Saψ, then the argument is similar to the one
above, except that Lemma 14.9 and Lemma 14.10 are used instead of
Lemma 14.7 and Lemma 14.8 respectively. a

Theorem 14.1 (strong completeness). If X 0 ϕ, then there is a world w
of an epistemic model with preferences such that w  χ for each formula
χ ∈ X and w 1 ϕ.

Proof. The assumption X 0 ϕ implies that set X ∪{¬ϕ} is consistent.
Thus, by Lemma 9.8, there is a maximal consistent set w such that
X ∪ {¬ϕ} ⊆ w. Consider a canonical epistemic model with preferences
M(w). By Lemma 13.1, set w is one of the worlds of this model. Then,
w  χ for any formula χ ∈ X and w  ¬ϕ by Lemma 14.11. Therefore,
w 1 ϕ by item 2 of Definition 3.1. a
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15. When You No Longer Know It

In Definition 2.1, we have assumed that each agent a ∈ A has the same
preference relation ≺a no matter what the current epistemic world is.
Since the model is assumed to be commonly known to all agents, this
implies that the preference relation of each agent is also known to all
agents. Hence, for instance, it is impossible in our setting to model a
situation when Sanaz does not know that Pavel prefers epistemic worlds
when he receives the gifts to those where he does not.

Note that the assumption that the preferences of each agent are com-
mon knowledge is very common in the literature. It appears in game
theory when games with imperfect information as discussed [15, p.76].
It was made in previous logical works that studied the interplay between
knowledge and preferences [10, 19]. The only existing paper that gives a
logical formalism for emotions in an imperfect information setting is [11].
Instead of preferences, it is using an atomic proposition gooda for each
agent a. These propositions “are used to specify those worlds which are
good for an agent” [11, p.827]. Because gooda is a part of the model
description, all agents in the system have common knowledge of what
worlds are good for which agents.

It is possible, however, to slightly modify the setting in the current
article to capture situations when the preferences of the agents are not
known to other agents (or even to the agents themselves). To do this,
we need to parameterise the preference relations by worlds. Informally,
u ≺wa v means that “in a world w an agent a prefers a world v over a
world u”. The formal definition of the more general class of models is
below.

Definition 15.1. A tuple (W, {∼a}a∈A, {≺wa }w∈Wa∈A , π) is called an gen-
eralised epistemic model with preferences if
1. W is a set of epistemic worlds,
2. ∼a is an “indistinguishability” equivalence relation on set W for each

agent a ∈ A,
3. ≺wa is a strict partial order preference relation on setW for each world
w ∈ and each agent a ∈ A,

4. π(p) is a subset of W for each propositional variable p.

For this more general class of models, Definition 3.1 can be modified
by using relation u ≺wa u′ instead of relation u ≺a u′ in items 6(b) and
7(b) of the definition.
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It is easy to see that in this more general setting the Emotional
Introspection, the Coherence of Possible Emotions, the Emotional Pre-
dictability axioms are no longer valid. The title of the current section
reflects the fact that the Emotional Introspection axiom, which is the
title of the whole article, no longer holds.

We do not believe that the existing proof of the completeness can
be adopted to show the completeness of the logical system containing
the remaining axioms with respect to generalised epistemic model with
preferences.

16. Conclusion

In this article, we proposed formal semantics for happiness and sadness,
proved that these two notions are not definable through each other and
gave a complete logical system capturing the properties of these notions.
The approach to happiness that we advocated could be captured by the
famous saying “Success is getting what you want, happiness is wanting
what you get”. Although popular, this view is not the only possible one.
As we mentioned in the introduction, some view happiness as “getting
what you want”.

As defined in this article, happiness and sadness are grounded in
an agent’s knowledge. We think that an interesting next step could be
exploring belief-based happiness and sadness. A framework for beliefs,
similar to our epistemic models with preferences, has been proposed
in [10].

References
[1] Adam, C., A. Herzig, and D. Longin, “A logical formalization of

the occ theory of emotions”, Synthese 168 (2), 2009: 201–248. DOI:
10.1007/s11229-009-9460-9

[2] Ahmed, S., The Promise of Happiness, Duke University Press, 2010.

[3] Argyle, M., The Psychology of Happiness, Routledge, 2013.

[4] Bok, S., Exploring Happiness: From Aristotle to Brain Science, Yale Uni-
versity Press, 2010.

[5] Bruni, L., and P. L. Porta, Economics and Happiness: Framing the Anal-
ysis, OUP Oxford, 2005.

https://doi.org/10.1007/s11229-009-9460-9


If You’re Happy, Then You Know It 451

[6] Doyle, J., Y. Shoham, and M.P. Wellman, “A logic of relative desire”,
pages 16–31 in International Symposium on Methodologies for Intelligent
Systems, Springer, 1991. DOI: 10.1007/3-540-54563-8_65

[7] Feldman, F., “An improved whole life satisfaction theory of happiness?”,
International Journal of Wellbeing 9 (2), 2019. DOI: 10.5502/ijw.v9i2.762

[8] Frey, B. S., Happiness: A Revolution in Economics, MIT Press, 2010.

[9] Lang, J., L. Van Der Torre, and E. Weydert, “Utilitarian desires”, Au-
tonomous Agents and Multi-Agent Systems 5 (3), 2002: 329–363.

[10] Liu, F., Reasoning about Preference Dynamics, volume 354 of Springer
Science & Business Media, 2011.

[11] Lorini, E., and F. Schwarzentruber, “A logic for reasoning about coun-
terfactual emotions”, Artificial Intelligence 175 (3), 2011: 814–847. DOI:
10.1016/j.artint.2010.11.022

[12] Mendelson, E., Introduction to Mathematical Logic, CRC Press, Boca Ra-
ton, Florida, 2009.

[13] Meyer, J.-J. Ch., “Reasoning about emotional agents”, pages 129–133 in
Proceedings of the 16th European Conference on Artificial Intelligence,
2004.

[14] Ortony, A., G. L. Clore, and A. Collins, The Cognitive Structure of Emo-
tions, Cambridge University Press, 1988.

[15] Osborne, M. J., and A. Rubinstein, A Course in Game Theory, MIT Press,
Cambridge, MA, 1994.

[16] Steunebrink, B.R., M. Dastani, and J.-J. Ch. Meyer, “A logic of emotions
for intelligent agents”, page 142 in Proceedings of the National Conference
on Artificial Intelligence, volume 22, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press, 1999 (2007).

[17] Stewart, M.E., K. P. Ebmeier, and I. J. Deary, “Personality corre-
lates of happiness and sadness: Epq-r and tpq compared”, Per-
sonality and Individual Differences 38 (5), 2005: 1085–1096. DOI:
10.1016/j.paid.2004.07.007

[18] Suikkanen, J., “An improved whole life satisfaction theory of happiness”,
International Journal of Wellbeing 1 (1), 2011. DOI: 10.5502/ijw.v9i2.762

[19] Van Benthem, J., and Liu, F., “Dynamic logic of preference upgrade”,
Journal of Applied Non-Classical Logics 17 (2), 2007: 157–182. DOI:
10.3166/jancl.17.157-182

https://doi.org/10.1007/3-540-54563-8_65
https://doi.org/10.5502/ijw.v9i2.762
https://doi.org/10.1016/j.artint.2010.11.022
https://doi.org/10.1016/j.paid.2004.07.007
https://doi.org/10.5502/ijw.v9i2.762
https://doi.org/10.3166/jancl.17.157-182


452 Sanaz Azimipour and Pavel Naumov

Appendices: Proofs of Propositions
A. The Gift Scenario

Proposition 4.2.
z  Hs(“Pavel received a gift from Sanaz”) iff z ∈ {w}.

Proof. (⇒) Suppose that z /∈ {w}. Thus, either z ∈ {t} or z ∈ {u, v}.
We consider these two cases separately.
Case I : z ∈ {t}. Then, z 1 “Pavel received a gift from Sanaz”, see
Figure 2. Therefore, z  Hs(“Pavel received a gift from Sanaz”) by item
6(a) of Definition 3.1 and because z ∼s z.
Case II : z ∈ {u, v}. Then, z ∼s v, see Figure 2. Note that, see again
Figure 2, v 1 “Pavel received a gift from Sanaz”. Therefore, item 6(a)
of Definition 3.1 implies z 1 Hs(“Pavel received a gift from Sanaz”), .
(⇐) To show that w  Hs(“Pavel received a gift from Sanaz”), we verify
conditions (a), (b), and (c) of item 6 of Definition 3.1:
Condition a: Consider any world z such that w ∼s z. It suffices to show
that z  “Pavel received a gift from Sanaz”. Indeed, assumption w ∼s z
implies that z = w, see Figure 2. Note that

w  “Pavel received a gift from Sanaz”,

see again Figure 2.
Condition b: The proof is similar to the proof of Condition b in Propo-
sition 4.1.
Condition c: t 1 “Pavel received a gift from Sanaz”. a

The next proposition shows that Sanaz is happy that Pavel is happy
only if she gets the thank-you card and, thus, she knows that he received
the gift.

Proposition 4.3.
z  HsHp(“Pavel received a gift from Sanaz”) iff z ∈ {w}.

Proof. The statement x  “Pavel received a gift from Sanaz” is true
iff x ∈ {w, u}, see Figure 2. Thus, by Proposition 4.1, for any world
x ∈W ,

x  “Pavel received a gift from Sanaz” iff
x  Hp(“Pavel received a gift from Sanaz”).
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Hence, by Lemma 3.1, for any world x ∈W ,

x  Hs(“Pavel received a gift from Sanaz”) iff
x  HsHp(“Pavel received a gift from Sanaz”).

Therefore, z  HsHp(“Pavel received a gift from Sanaz”) iff z ∈ {w} and
Proposition 4.2. a

Proposition 4.4.
z 1 HpHs(“Pavel received a gift from Sanaz”) for each z ∈ {w, u, v, t}.

Proof. We consider the following two cases separately:
Case I : z ∈ {w, u}. Then, z ∼p u, see Figure 2. By Proposition 4.2,

u 1 Hs(“Pavel received a gift from Sanaz”).

Therefore, z 1 HpHs(“Pavel received a gift from Sanaz”) by item 6(a) of
Definition 3.1 and the statement z ∼p u.
Case II : z ∈ {v, t}. Then, z 1 Hs(“Pavel received a gift from Sanaz”)
by Proposition 4.2. Thus, z 1 HpHs(“Pavel received a gift from Sanaz”)
by item 6(a) of Definition 3.1. a

The proof of the next statement is similar to the proof of Proposi-
tion 4.4 except that it refers to Proposition 4.3 instead of Proposition 4.2.

Proposition 4.5. z 1 HpHsHp(“Pavel received a gift from Sanaz”) for
each epistemic world z ∈ {w, u, v, t}. a

The next proposition states that Sanaz is sad about Pavel not receiv-
ing the gift only if she does not send it. Informally, this proposition is
true because Sanaz cannot distinguish a world v in which the gift is lost
from a world u in which the card is lost.

Proposition 4.6.
z  Ss¬(“Pavel received a gift from Sanaz”) iff z ∈ {t}.

Proof. (⇒) Suppose that z /∈ {t}. Thus, either z ∈ {w} or z ∈ {u, v}.
We consider the these two cases separately:
Case I : z ∈ {w}. Then, z  “Pavel received a gift from Sanaz”, see
Figure 2. Thus, z 1 ¬(“Pavel received a gift from Sanaz”) by item 2 of
Definition 3.1. Therefore, z 1 Ss¬(“Pavel received a gift from Sanaz”)
by item 7(a) of Definition 3.1.
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Case II : z ∈ {u, v}. Then, z ∼s u, see Figure 2. Note that

u  “Pavel received a gift from Sanaz”,

see Figure 2. Thus, u 1 ¬(“Pavel received a gift from Sanaz”) by item
2 of Definition 3.1. So z 1 Ss¬(“Pavel received a gift from Sanaz”), by
item 7(a) of Definition 3.1 and the statement z ∼s u.
(⇐) To prove that t  Ss¬(“Pavel received a gift from Sanaz”), we ver-
ify conditions (a), (b), and (c) of item 7 in Definition 3.1 separately:
Condition a: Consider any world z′ such that t ∼s z′. It suffices to show
that z′  ¬(“Pavel received a gift from Sanaz”). Indeed, note that

t 1 (“Pavel received a gift from Sanaz”),

see Figure 2. Then, t  ¬(“Pavel received a gift from Sanaz”) by item 2
of Definition 3.1. Also note that the assumption t ∼s z′ implies that t =
z′, see Figure 2. Therefore, z′  ¬(“Pavel received a gift from Sanaz”).
Condition b: Consider any two epistemic worlds x, y such that

x  ¬(“Pavel received a gift from Sanaz”),
y 1 ¬(“Pavel received a gift from Sanaz”).

To verify the condition, it suffices to show that x ≺s y. Indeed, by item
2 of Definition 3.1,

x 1 “Pavel received a gift from Sanaz”,
y  “Pavel received a gift from Sanaz”.

Thus, x ∈ {t, v} and y ∈ {w, u}, see Figure 2. Note that {t, v} ≺s {w, u},
see also Figure 2. Therefore, x ≺s y.
Condition c: Note that w  “Pavel received a gift from Sanaz”. So,

w 1 ¬(“Pavel received a gift from Sanaz”)

by item 2 of Definition 3.1. a

By Proposition 4.6, Sanaz is sad about Pavel not receiving the gift
only if she does not send it. Since Pavel cannot distinguish a world t in
which the gift is sent from a world v in which it is lost, Pavel cannot know
that Sanaz is sad. This is formally captured in the next proposition.

Proposition 4.7. z 1 KpSs¬(“Pavel received a gift from Sanaz”) for
each epistemic world z ∈ {w, u, t, v}.
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Proof. We consider the following two cases separately:
Case I : z ∈ {w, u}. Then, z 1 Ss¬(“Pavel received a gift from Sanaz”)
by Proposition 4.6. Therefore,

z 1 KpSs¬(“Pavel received a gift from Sanaz”)

by item 5 of Definition 3.1.
Case II : z ∈ {t, v}. Then, z ∼p v, see Figure 2. Note that

v 1 Ss¬(“Pavel received a gift from Sanaz”)

by Proposition 4.6. Therefore,

z 1 KpSs¬(“Pavel received a gift from Sanaz”)

by item 5 of Definition 3.1 and the statement z ∼p v. a

Proposition 4.8.
z  Sp¬(“Pavel received a gift from Sanaz”) iff z ∈ {v, t}.

Proof. (⇒) Suppose that z /∈ {v, t}. Thus, z ∈ {w, u}. Hence, see
Figure 2, z  “Pavel received a gift from Sanaz”. Then, by item 2 of
Definition 3.1,

z 1 ¬(“Pavel received a gift from Sanaz”).

Therefore, z 1 Sp¬(“Pavel received a gift from Sanaz”), by item 7(a) of
Definition 3.1.
(⇐) Let z ∈ {v, t}. We verify conditions (a), (b), (c) from item 7 of Def-
inition 3.1 to prove that z  Sp¬(“Pavel received a gift from Sanaz”):
Condition a: Consider any world z′ such that z ∼p z′. It suffices to show
that z′  ¬(“Pavel received a gift from Sanaz”). Indeed, the assump-
tions z ∈ {v, t} and z ∼p z′ imply that z′ ∈ {v, t}, see Figure 2. Thus,
z′ 1 “Pavel received a gift from Sanaz”, see again Figure 2. Therefore,
by item 2 of Definition 3.1, z′  ¬(“Pavel received a gift from Sanaz”).
Condition b: The proof is similar to the proof of Condition b in Propo-
sition 4.6.
Condition c: Note that w  “Pavel received a gift from Sanaz”. So,

w 1 ¬(“Pavel received a gift from Sanaz”)

by item 2 of Definition 3.1. a
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Proposition 4.9.
z  SsSp¬(“Pavel received a gift from Sanaz”) iff z ∈ {t}.

Proof. Note that x 1 “Pavel received a gift from Sanaz” iff x ∈ {t, v},
see Figure 2. Thus, x  ¬(“Pavel received a gift from Sanaz”) iff x ∈
{t, v} by item 2 of Definition 3.1. Thus, by Proposition 4.8, for any
world x ∈W ,

x  ¬(“Pavel received a gift from Sanaz”) iff
x  Sp¬(“Pavel received a gift from Sanaz”).

Hence, by Lemma 3.1, for any world z ∈W ,

z  Ss¬(“Pavel received a gift from Sanaz”) iff
z  SsSp¬(“Pavel received a gift from Sanaz”).

So, by Proposition 4.6, z  SsSp¬(“Pavel received a gift from Sanaz”)
iff z ∈ {t}. a

Proposition 4.10. z 1 KpSsSp¬(“Pavel received a gift from Sanaz”)
for each epistemic world z ∈ {w, u, v, t}.

Proof. We consider the following two cases separately:
Case I : z ∈ {w, u}. Then,

z 1 SsSp¬(“Pavel received a gift from Sanaz”)

by Proposition 4.9. Therefore,

z 1 KpSsSp¬(“Pavel received a gift from Sanaz”)

by item 5 of Definition 3.1.
Case II : z ∈ {t, v}. Then, z ∼p v, see Figure 2. Note that, by Proposi-
tion 4.9, v 1 SsSp¬(“Pavel received a gift from Sanaz”). Therefore, by
item 5 of Definition 3.1,

z 1 KpSsSp¬(“Pavel received a gift from Sanaz”). a

B. The Battle of Cuisines Scenario

Proposition 5.2.
(Russian,Russian) 1 Hs(“Sanaz is in the Russian restaurant”).
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Proof. Note that
(Iranian, Iranian) 1 “Sanaz is in the Russian restaurant”,
(Russian, Iranian)  “Sanaz is in the Russian restaurant”.

At the same time, see Table 1,

us(Russian, Iranian) = 0 < 1 = us(Iranian, Iranian).

Hence, (Iranian, Iranian) ⊀s (Russian, Iranian). Therefore, by item 6(b)
of Definition 3.1,

(Russian,Russian) 1 Hs(“Sanaz is in the Russian restaurant”). a

Proposition 5.3.
(x, y)  Hs(“Sanaz and Pavel are in the same restaurant”) iff x = y.

Proof. (⇒) Suppose that x 6= y. Then,
(x, y) 1 “Sanaz and Pavel are in the same restaurant”,
(x, x)  “Sanaz and Pavel are in the same restaurant”.

Also, us(x, y) = 0 < 1 ≤ us(x, x) because x 6= y, see Table 1. Hence
(x, x) ⊀s (x, y). Therefore,

(x, y) 1 Hs(“Sanaz and Pavel are in the same restaurant”)

by item 6(b) of Definition 3.1. (⇐) Suppose x = y. We verify conditions
(a), (b), and (c) from item 6 of Definition 3.1 to prove that

(x, y)  Hs(“Sanaz and Pavel are in the same restaurant”).

Condition a: Since this is a model with perfect information, it suffices to
show that (x, y)  “Sanaz and Pavel are in the same restaurant”, which
is true due to the assumption x = y.
Condition b: Consider any two worlds (x1, y1), (x2, y2) ∈W such that

(x1, y1) 1 “Sanaz and Pavel are in the same restaurant”, (B.1)
(x2, y2)  “Sanaz and Pavel are in the same restaurant”. (B.2)

It suffices to show that (x1, y1) ≺s (x2, y2). Indeed, statements (B.1) and
(B.2) imply that x1 6= y1 and x2 = y2, respectively. Thus, us(x1, y1) =
0 < 1 ≤ us(x2, y2), see Table 1. Therefore, (x1, y1) ≺s (x2, y2).
Condition c: Note that

(Russian, Iranian) 1 “Sanaz and Pavel are in the same restaurant”. a
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The proof of the next proposition is similar to the proof of the one
above.

Proposition 5.4.
(x, y)  Hp(“Sanaz and Pavel are in the same restaurant”) iff x = y. a

Proposition 5.5.
(x, y)  HpHs(“Sanaz and Pavel are in the same restaurant”) iff x = y.

Proof. Note that

(x, y)  “Sanaz and Pavel are in the same restaurant”

iff x = y. Thus, by Proposition 5.3, for any world (x, y) ∈W ,

(x, y)  “Sanaz and Pavel are in the same restaurant” iff
(x, y)  Hs(“Sanaz and Pavel are in the same restaurant”).

Hence, by Lemma 3.1, for any world (x, y) ∈W ,

(x, y)  Hp(“Sanaz and Pavel are in the same restaurant”) iff
(x, y)  HpHs(“Sanaz and Pavel are in the same restaurant”).

Thus, (x, y)  HpHs(“Sanaz and Pavel are in the same restaurant”) iff
x = y, by Proposition 5.4. a

Proposition 5.6. (x, y)  HsHpHs(“Sanaz and Pavel are in the same
restaurant”) iff x = y.

Proof. Note that

(x, y)  “Sanaz and Pavel are in the same restaurant” iff x = y.

Thus, by Proposition 5.5, for any world (x, y) ∈W ,

(x, y)  “Sanaz and Pavel are in the same restaurant” iff
(x, y)  HpHs(“Sanaz and Pavel are in the same restaurant”).

Hence, by Lemma 3.1, for any world (x, y) ∈W ,

(x, y)  Hs(“Sanaz and Pavel are in the same restaurant”) iff
(x, y)  HsHpHs(“Sanaz and Pavel are in the same restaurant”).

Then, (x, y)  HsHpHs(“Sanaz and Pavel are in the same restaurant”)
iff x = y by Proposition 5.3. a
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Proposition 5.7.
(x, y)  Hs(“Sanaz and Pavel are in the Russian restaurant”) is true if
and only if x = y = Russian.

Proof. (⇒) By item 6(a) of Definition 3.1, the assumption of the propo-
sition

(x, y)  Hs(“Sanaz and Pavel are in the Russian restaurant”)

implies that

(x, y)  “Sanaz and Pavel are in the Russian restaurant”.

Therefore, x = y = Russian.
(⇐) Suppose x = y = Russian. To prove that

(x, y)  Hs(“Sanaz and Pavel are in the Russian restaurant”),

we verify conditions (a), (b), and (c) from item 6 of Definition 3.1:
Condition a: Since this is a model with perfect information, it suffices
to show that (x, y)  “Sanaz and Pavel are in the Russian restaurant”,
which is true due to the assumption x = y = Russian.
Condition b: Consider any two worlds (x1, y1), (x2, y2) ∈W such that

(x1, y1) 1 “Sanaz and Pavel are in the Russian restaurant”, (B.3)
(x2, y2)  “Sanaz and Pavel are in the Russian restaurant”. (B.4)

It suffices to show that (x1, y1) ≺s (x2, y2). Indeed, statement (B.3)
implies that us(x1, y1) ≤ 1, see Table 1. Similarly, statement (B.4)
implies that us(x2, y2) = 3. Thus, us(x1, y1) ≤ 1 < 3 = us(x2, y2).
Therefore, (x1, y1) ≺s (x2, y2).
Condition c: Note that

(Russian, Iranian) 1 “Sanaz and Pavel are in the Russian restaurant”.
a

Proposition 5.8.

(Russian,Russian) 1
Hp(“Sanaz and Pavel are in the Russian restaurant”).



460 Sanaz Azimipour and Pavel Naumov

Proof. Note that up(Iranian, Iranian) = 3 > 1 = up(Russian,Russian).
Thus,

(Iranian, Iranian) ⊀p (Russian,Russian).
Therefore, the proposition is true by item 6(b) of Definition 3.1. a

Proposition 5.9.
(Russian,Russian) 1

HpHs(“Sanaz and Pavel are in the Russian restaurant”).

Proof. Note that, by Proposition 5.7:

(Iranian, Iranian) 1
Hs(“Sanaz and Pavel are in the Russian restaurant”)

and

(Russian,Russian) 
Hs(“Sanaz and Pavel are in the Russian restaurant”).

At the same time,

up(Iranian, Iranian) = 3 > 1 = up(Russian,Russian).

Thus, (Iranian, Iranian) ⊀p (Russian,Russian). Therefore, the proposi-
tion is true by item 6(b) of Definition 3.1. a

Proposition 5.10.
(x, y)  Ss(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

Proof. (⇒) Suppose that x = y. Thus,

(x, y) 1 “Sanaz and Pavel are in different restaurants”.

Thus, by item 7(a) of Definition 3.1,

(x, y) 1 Ss(“Sanaz and Pavel are in different restaurants”).

(⇐) Suppose that x 6= y. To prove that

(x, y)  Ss(“Sanaz and Pavel are in different restaurants”),

we verify conditions (a), (b), and (c) from item 7 of Definition 3.1:
Condition a: Since this is a model with perfect information, it suffices to
show that (x, y)  “Sanaz and Pavel are in different restaurants”, which
is true due to the assumption x 6= y.
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Condition b: The proof of this condition is similar to the proof of Con-
dition b in the proof of Proposition 5.3.
Condition c:
(Iranian, Iranian) 1 “Sanaz and Pavel are in different restaurants”. a

The proof of the following statement is similar to the proof of the
one above.

Proposition 5.11.
(x, y)  Sp(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

Proposition 5.12.
(x, y)  SpSs(“Sanaz and Pavel are in different restaurants”) iff x 6= y.

Proof. Note that

(x, y)  “Sanaz and Pavel are in different restaurants”

iff x 6= y. Thus, by Proposition 5.10, for any world (x, y) ∈W ,

(x, y)  “Sanaz and Pavel are in different restaurants” iff
(x, y)  Ss(“Sanaz and Pavel are in different restaurants”).

Hence, by Lemma 3.1, for any world (x, y) ∈W ,

(x, y)  Sp(“Sanaz and Pavel are in different restaurants”) iff
(x, y)  SpSs(“Sanaz and Pavel are in different restaurants”).

Therefore, (x, y)  SpSs(“Sanaz and Pavel are in different restaurants”)
iff x = y by Proposition 5.11. a

B.1. The Lottery Scenario

Proposition 6.2. u 1 Hs(“Pavel lost the lottery”).

Proof. Note that

w 1 “Pavel lost the lottery”,
v  “Pavel lost the lottery”,

and w ⊀s v, see Figure 4. Therefore, u 1 Hs(“Pavel lost the lottery”)
by item 6(b) of Definition 3.1. a

Proposition 6.3. u 1 KpHs(“Sanaz won the lottery”).
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Proof. Note that u ∼p v, see Figure 4. Also, by Proposition 6.1,

v 1 Hs(“Sanaz won the lottery”).

Then, u 1 KpHs(“Sanaz won the lottery”) by item 5 of Definition 3.1.
a

Proposition 6.4. u  Sp(“Pavel lost the lottery”).
Proof. It suffices to verify conditions (a), (b), and (c) from item 7 of
Definition 3.1:
Condition a: Consider any world y such that u ∼p y. We will show that

y  “Pavel lost the lottery”.

Indeed, assumption u ∼p y implies that y ∈ {u, v}, see Figure 4. There-
fore, see again Figure 4, y  “Pavel lost the lottery”.
Condition b: Consider any y, z such that y  “Pavel lost the lottery”
and z 1 “Pavel lost the lottery”. We will show that y ≺p z. Indeed, the
assumption

y  “Pavel lost the lottery”
implies y ∈ {u, v}, see Figure 4. The assumption

z 1 “Pavel lost the lottery”

similarly implies that z = w. Statements y ∈ {u, v} and z = w imply
that y ≺s z, see again Figure 4.
Condition c: w 1 “Pavel lost the lottery”. a

Proposition 6.5. u  KsSp(“Pavel lost the lottery”).
Proof. Consider any world y such that u ∼s y. By item 5 of Defini-
tion 3.1, it suffices to show that y  Sp(“Pavel lost the lottery”). In-
deed, assumption u ∼s y implies that u = y, see Figure 4. Therefore,
y  Sp(“Pavel lost the lottery”) by Proposition 6.4. a
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