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Logical Forms, Substitutions and Information Types

Abstract. This paper explores the relation between the philosophical idea
that logic is a science studying logical forms, and a mathematical feature of
logical systems called the principle of uniform substitution, which is often
regarded as a technical counterpart of the philosophical idea. We argue that
at least in one interesting sense the principle of uniform substitution does
not capture adequately the requirement that logic is a matter of form and
that logical truths are formal truths. We show that some specific logical
expressions can produce propositions of different kinds and the resulting
diversity of informational types can lead to a justified failure of uniform
substitution without undermining the view that logic is a purely formal
discipline.

Keywords: logical form; uniform substitution; information types; non-
classical logics

1. Introduction

The common practice of modern logic is to employ artificial languages
containing expressions which do not represent concrete sentences of nat-
ural languages but rather their forms, and are accordingly called for-
mulas. The semantics of a particular logical theory provides a space of
possible interpretations, i.e. possible ways in which formulas can be filled
in with content. Some formulas are true throughout all interpretations
and thus, in a clear sense, true independently of any particular content.
Such formulas represent logically valid forms, and concrete fully-fledged
sentences that we subsume under these forms can be called logically true
(at least from the perspective of the given logical theory). This I believe
is the received view of logic.
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There is one principle that is often interpreted as a technical counter-
part of the claim that logic is a matter of form. It is called the principle
of uniform substitution and it says that all substitutional instances of
logically valid formulas (or arguments) are also logically valid. The fol-
lowing thesis is usually accepted:

Since logic is not concerned with content of sentences but only
with their forms, any system that deserves to be called logical
must respect the principle of uniform substitution.

Indeed, the most common logical systems respect this principle. How-
ever, there are significant exceptions: for instance, Carnap’s modal logic
C (1947), Veltman'’s data logic DL (1985), public announcement logic PAL
(Plaza, 1989), and inquisitive logic InqL (Ciardelli et al., 2019). These
examples illustrate that at least in some interesting sense the thesis is
mistaken: one can have a system that deserves to be called logical al-
though it does not satisfy the principle of uniform substitution. The goal
of the paper is to clarify this point and argue that a failure of uniform
substitution does not undermine the view that logic is concerned only
with forms and that logical laws are formal laws.

The paper is structured as follows. Section 2 explains the common
view of the status of the principle of uniform substitution in logic. Sec-
tion 3 presents four examples of logics in which uniform substitution
fails and explains the reasons behind these failures. Section 4 discusses
common features of these examples and compares two alternative inter-
pretations of the role of atomic formulas in logical theories. Only one of
these interpretations allows for the failure of uniform substitution. It is
argued that this perspective has some significant advantages and that it
is not in conflict with the view that logic is concerned with forms but
not with content. Section 5 briefly discusses some weaker alternatives to
the principle of uniform substitution and specifies a minimal requirement
that any logic should satisfy.

2. The principle of uniform substitution

Even though there are interesting problems concerning substitution that
are specific to first-order languages (see Schurz, 1995), we will restrict
ourselves, for the sake of simplicity, just to the propositional languages.
Consider any propositional formal language built up from a collection
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of atomic formulas by a set of propositional connectives. The central
notion of our discussion is the notion of substitution. A substitution is a
function that assigns a formula to each atomic formula. Such a function
can be homomorphically extended to the whole language in accordance
with the following constraint:

s(C(p1y---yn)) = C(s(e1),- -, 8(¢n)), for each connective C.

One can simply say that s(¢) is obtained from ¢ by simultaneous
replacement of all occurrences of each atomic formula p with s(p). Now
the principle of uniform substitution applied to a particular logic in a
given propositional language states that the logic is closed under all
substitutions. More precisely, if the logic is represented by its notion of
logical truth, the principle of uniform substitution says the following;:

For every formula ¢ and every substitution s, if ¢ is logically
true then s(y) is logically true.

If the logic in question is represented by its notion of a logically valid
argument, we can use this formulation:

For all formulas @1, ..., ¢n, 1 and substitution s, if p1,...,©n/ 1
is a logically valid argument then s(p1), ..., s(¢n)/s(y) is also a
logically valid argument.

This property is often endorsed only implicitly. It is often hidden be-
hind schematic representation of logical principles, and behind the talk
about instantiations of schemata. However, such a presentation is eas-
ily translatable into formulations that explicitly involve the notion of
substitution.

In fact, the best-known logical systems satisfy the principle of uni-
form substitution. It holds for example for classical logic, intuitionistic
logic, C.I. Lewis’ modal logics S1-Sb, the relevant logic R, Lukasiewicz
fuzzy logic, Lambek calculus and so on. Of course, this is not a coinci-
dence. This property is regarded as an essential feature of these logics,
which is preserved even in the most abstract generalizations of the notion
of a logical system.

For example, a set £ of formulas (of the usual language of intu-
itionistic logic) is called an intermediate logic if it satisfies the following
properties: (a) it contains all intuitionistically valid formulas but only
classically valid formulas, i.e. IL € £ < CL; (b) £ is closed under modus
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ponens; (c) L is closed under uniform substitution. There are uncount-
ably many such “logics”. (Chargov and Zakharyaschev, 1997)

Similarly, a set £ of formulas (of the usual language of modal logic)
is called a mormal modal logic if it satisfies the following properties:
(a) £ contains all classically valid formulas; (b) £ contains the formula
COp — q) — (Op — q); (¢) £ is closed under the rules of modus
ponens and necessitation; (d) £ is closed under uniform substitution.
Again, there are uncountably many such “logics” (see, e.g., Chargov and
Zakharyaschev, 1997).

Uniform substitution is also regarded as a cornerstone of abstract
algebraic logic where we encounter the following abstract definition of a
logic viewed as a consequence relation (Font, 2016). A (sentential) logic
of type L is a pair £ = (L, }), where L is an algebraic language and - is
a subset of P(Fmyz) x Fmy, (i.e., a relation between sets of formulas and
formulas) that satisfies the following properties, for all I, A € P(Fmyp,)
and ¢ € Fmp:

(a) If o e I', then I' - .

(b) f I' ¢ and I' € A then A |- ¢.

(c) f I'— @ and A+ o for all ¢ € I" then A - .1

(d) If I' = ¢, then s(I') - s(ip), for every substitution s.

Why is the principle of uniform substitution so essential for logic?
Because it is supposed to correspond somehow to the essential idea that
logic is concerned with form and not with content. Let us spell out this
connection more carefully. It seems reasonable to claim that if a natural
language sentence is an instance of the form s(y), then it is also an
instance of the form ¢. For example, the sentence

(A) Peter is a lawyer and Berta is a politician.

is a natural language instance of the form ¢ = p A ¢. In comparison, the
sentence

(B) If Paul is now at home, he is watching TV and if he is not at home,
he is running.

is of the form s(p) = (t — r)A(—t — s), assuming that s(p) = t — r and
s(q) = —t — s. But since (B) is also a conjunction of two sentences it can
alternatively be formalized in a less fine-grained way by ¢. Then it seems

L The condition (b), even though included by Font, is actually redundant because
it can be obtained from the conditions (a) and (c).
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that the principle of uniform substitution must hold. In general, if a for-
mula s(¢) is not logically valid then there should be a natural language
instance of this form that is false. But then this natural language sen-
tence is also an instance of the form 1. Hence, the formula 1) should not
be regarded as valid, too, because it has false natural language instances.

Having this picture in mind, the principle of uniform substitution
seems to have a different status than other logical laws like, for instance,
the law of excluded middle, the law of non-contradiction, transitivity
of implication, contraposition and distributivity. It is quite common to
motivate a non-classical logic by formulating natural language counterex-
amples to classical logical laws. The counterexamples usually illustrate a
sense in which a principle does not hold, and it is legitimate just to take
this sense seriously and explore whether it can motivate a system with
appealing mathematical properties. For example, one can ask whether
the sentence

(C) Peter’s wife is a lawyer or she is not a lawyer.
(But Peter has no wife!)

is a counterexample to the principle of excluded middle. In the usual
manner, one can explain its problematic features away to preserve clas-
sical logic. Alternatively, one can take the problems seriously and design
a perhaps many-valued logic that aims at reflecting such phenomena
as presuppositions in a way that invalidates the principle of excluded
middle.

Is it possible to provide in an analogous way a natural language coun-
terexample to the principle of uniform substitution? This looks a priori
implausible. Such a counterexample would consist in providing a natural
language sentences (A) of a form ¢ that would be intuitively regarded
as logically valid, and another sentence (B) of a form s(¢) (for some
substitution s) that would be intuitively invalid. However, the fact that
(B) is intuitively invalid together with the fact that it can be formalized
as a substitutional instance of the form of (A) seems to commit us already
at the level of natural language to regard (A) as invalid.

Note that this picture, according to which the principle of uniform
substitution must hold, presupposes a particular interpretation of the
role atomic formulas play in the formalization. Atomic formulas here
cannot be viewed as placeholders for some elementary sentences that do
not have any further analysable logical structure, for example in the sense
of (Wittgenstein, 1922), but rather they must be viewed as placeholders
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for arbitrary sentences, even the complex ones. This will be important
in what follows.

3. Logics violating uniform substitution

Despite the prima facie plausibility of the principle of uniform substitu-
tion, there are some unusual logical systems that violate this principle.
Some motivation for its violation comes from the area of nonmonotonic
logic because it employs supraclassical consequence relations. For exam-
ple, David Makinson says:

The moral of this story is that the supraclassical closure relations that
we shall be offering as bridges between classical consequence and non-
monotonic consequence relations are not closed under substitution. Nor,
for that matter, are the nonmonotonic relations that issue from them.
This runs against ingrained habit. Students of logic are brought up with
the idea that any decent consequence relation should be purely formal,
or structural, and hence satisfy substitution. Indeed, those terms are
often used in the texts as synonyms for closure under substitution. To
understand nonmonotonic logic, this is a habit to suspend.

(Makinson, 2003, p. 74)

This seems to indicate that we might also drop the idea that logic is a dis-
cipline concerned purely with logical forms. I do not want to go that far.
In this section, we focus on several other examples of logics in which the
principle of uniform substitution fails and in the next section I will argue
that this is not in conflict with viewing logic as a purely formal science.

Our first example of a logic in which uniform substitution fails is
Carnap’s modal logic C (Carnap, 1946, 1947). Carnap, when developing
one of the first versions of a possible world semantics, proceeded as
follows: First, he introduced a notion of truth relative to a given state
description (a syntactic analogue of the notion of a possible world). Then
he defined the notion of L-truth (logical truth) as truth in all state
descriptions. Finally, he incorporated this metalinguistic notion directly
into the object language by introducing a modal operator N and defining
the following truth condition:

N is true (in a state description w) if and only if ¢ is L-true.

One can easily check that all the principles of the logic S5 are valid in
this semantics. However, the resulting logic is not identical with S5. If
we incorporate logical validity directly inside the object language, we can
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express also satisfiability (O =4ef =N —¢) but, unlike logical validity,
satisfiability is not closed under uniform substitution. For instance, (g
is L-true but {(g A —¢q) is not. See (Schurz, 2001), for further discussion.

A second example of a logic in which substitution fails is Veltman’s
data logic (Veltman, 1985). Let us denote it as DL. Instead of the notions
of truth and falsity simpliciter, DL is based on the notions of truth and
falsity on the basis of available evidence. Its semantics is very much like
Kripke semantics for intuitionistic logic with some subtle differences. As
in Kripke semantics, models of DL are some partially ordered sets. The
points in such a model are interpreted as bodies of available evidence
and the ordering represents growing of evidence. There are two relations
between these points and formulas: truth and falsity relative to available
evidence.

“s = ” means: ¢ is true on the basis of s,
“s = ¢” means: ¢ is false on the basis of s.

A formula is called T-stable (F-stable) if it is always upward persistent
with respect to = (=). The idea is that growing evidence means the
growth of the body of established basic truths and falsities. Atomic
formulas are both T-stable and F-stable in this sense. However, the
language contains operators may and must which reflect some non-
persistent features of the current state. They are characterized by the
following semantic clauses generating unstable sentences:

s = may  iff for some t = s, t = ¢,
s may piff fornot>=s,tkE= g,
sk must p iff fornot = s, t o ¢,
s = must @ iff for some t > s, t = .

While ¢ is both T-stable and F-stable, may q is not T-stable and must ¢
is not F-stable. This causes failure of uniform substitution on the level
of logic. Entailment is defined as preservation of =, and so, for instance,
q entails must ¢ but may q does not entail must may q.

Our third example is dynamic epistemic logic, or more specifically,
public announcement logic PAL (Plaza, 1989; van Ditmarsch et al., 2007).
PAL characterizes basic logical features of the following epistemic oper-
ators indexed by agents: K,y represents the form: the agent a knows
that ¢; and (@)1 represents the form: if all agents receive the true
information that ¢, ¥ will be true.

The formula ¢ — {g)q is valid in PAL. It expresses that if ¢ is true
then after it is announced, it remains true. This sounds plausible if
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we assume that ¢ stands for a factual sentence. For example, after it is
announced that Earth is heavier than Venus, this fact remains to be true.
However, this is not so, if we announce an epistemic fact. In this case the
announcement can change its truth value. For example, assuming that
Paul does not know that Earth is heavier than Venus, after this fact is
announced, Paul’s epistemic state is changed by the announcement and
it ceases to be true that Paul does not know that Earth is heavier than
Venus. So, while ¢ — {¢) ¢ is logically true in PAL, its substitutional
instance (¢ A =K,q) — {g A = K.q)(¢ A —K,q) is not.

Our final example is Inquisitive Logic InqL (Ciardelli et al., 2019).
Inquisitive logic is a logic of questions. Its language contains a question
generating operator \v called inquisitive disjunction. p\ q represents the
form of a disjunctive question: whether p or q. A polar (yes/no) question
whether p can be defined as a special case of a disjunctive question,
namely as the question whether p or not p, and it can be formalized as
P =def PV —D.

The syntax of inquisitive logic allows one to embed \ under other
connectives. One can form in this way conjunctions of two questions (the
question whether p and whether q, i.e. 7pA?q) or conditional questions
(the question whether q if p, i.e. p —7q). One can also negate ques-
tions: —(p WV ¢). The meaning of this construction is a claim that the
presupposition of the question p\ ¢ is not true. But the presupposition
of the question whether p or q is the claim that p or q. So, —(p\WV q) is
equivalent to —(p v ¢), and thus —=—(p\ ¢) is equivalent to ——(p v q).

The declarative part of InqL is just classical logic. For example,
——=q < g and —=—(p v q) < (p v q) are logically valid. However, in
the light of what was said, the formula ——(p WV q) < (pWVq), as a
substitutional instance of ——¢q < ¢, cannot be valid. Its validity would
imply the validity of (p v ¢) < (p\V ¢), which would lead to a collapse
of the inquisitive disjunction into the declarative one.

4. General factors leading to a failure of substitution
Let us generalize and reflect on some common features of these examples:
if substitution fails in a given logic L, it is so typically because

(a) the language of £ involves different types of sentences;
(b) atomic formulas in £ are related to some specific basic type;
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(c) the other types in £ are generated by some specific logical operators
of the language of L;

(d) the language of L involves operators that are polymorphic, i.e. they
can be applied to sentences of various types.

As Carnap (1946) himself indicates the logic C is committed to the Trac-
tarian theory of mutually independent atomic facts and atomic sentences
representing (truly or falsely) these facts. These sentences form a spe-
cific type and atomic formulas of the propositional formal language are
placeholders for sentences of this type. Nevertheless, the formal logical
language involves logical operators that generate from this basic type
other types of sentences, for instance the type of logical truths. These
logical operators are polymorphic. For example, negation can be applied
to an atomic sentence as well as to a logical truth.

The logic DL relates atomic formulas to T- and F-stable sentences and
contains operators like may and must that generate unstable sentences.
Other logical operators can be applied without restrictions.

The logic PAL distinguishes between factual and epistemic sentences.
Atomic formulas are related to the factual sentences, and the public
announcement operator generates epistemic sentences from the factual
ones. Again the other operators are polymorphic.

Finally, InqL distinguishes between declarative and inquisitive sen-
tences. Atomic formulas are related to the former type and inquisitive
disjunction creates the latter from the former. All operators of the propo-
sitional language can be applied to statements as well as to questions.

Let us discuss the difference between the two basic views of atomic
formulas that we have encountered:

Al. atomic formulas as placeholders for arbitrary sentences;
A2. atomic formulas as placeholders for “elementary sentences” or sen-
tences of a particular kind that provides the basic building blocks.

The view Al is directly related to the possibility of substituting any
formula for any atomic formula and thus it implies that the principle
of uniform substitution should hold. So, only the second view A2 pro-
vides space for a failure of substitution. If a logical system is built in
accordance with A2 and it relates atomic formulas to a specific type of
sentence, it might very well happen that there are particular logical laws
valid for this type but not valid generally. This was illustrated in the
previous section with the four examples.
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Both these alternative views of atomic formulas, Al and A2, are
legitimate and even the first perspective A1 could be, in a sense clarified
below, applied to the logical systems discussed in the previous section.
For any logic £, even if it is not closed under uniform substitution, we
can meaningfully ask what its schematic fragment is. The schematic
fragment can be defined as the set

Sch(L) = {¢ | s(¢) € L, for every substitution s}.

If £ is based on A2, like the four logics from the previous section, the
schematic fragment of £ is the system of universal invariants, that is, of
the laws that the logic £ generates when we reinterpret atomic formulas
and switch from A2 to Al.

The difference between a logic and its schematic fragment reflects
the difference between the two alternative views of atomic formulas.
The question what is the schematic fragment of a given logic is often
quite interesting and non-trivial. For Carnap’s modal logic C we obtain
Sch(C) = S5. This was proved already by Carnap (1946). T am not aware
of any results concerning the schematic fragment of Veltman’s data logic.
The schematic fragment of PAL was characterized in (Holliday et al.,
2012). The schematic fragment of inquisitive logic corresponds to the
Medvedev logic of finite problems ML (Ciardelli and Roelofsen, 2011).

The relation between a logic and its schematic fragment can be very
tricky, as the case of inquisitive logic shows. The system of InqL is quite
simple and well-behaving but its schematic fragment ML is a rather mys-
terious logic. Some deep facts about this logic are known, for example
that it is not finitely axiomatizable (Maksimova et al., 1979), but in
spite of a serious investigation many basic questions remain open. Most
importantly, it has been a long standing open problem in the area of in-
termediate logics whether ML is decidable and recursively axiomatizable.

One may prefer the first interpretation of atomic formulas A1l and
then regard the schematic fragment as the real target of logical study.
However, it should be taken into account that the relation between a
logic and its schematic fragment is asymmetric. Clearly, every logic
determines uniquely its schematic fragment. However, in general, it is
not possible to recover the logic £ from its schematic fragment Sch(L).
We can have different logics with the same schematic fragment. For
example, there are uncountably many different non-classical inquisitive
logics that all have ML as their schematic fragment (Puncochér, 2016).
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This means that when we focus directly on the schematic fragment we
may lose some structure and thus some interesting information. This is
a strong argument in favour of the restricted interpretation of atomic
formulas A2 that allows for the failure of uniform substitution.

Moreover, I want to argue that the view of atomic formulas A2 is
not in conflict with the claim that logical truths are true purely due to
their form. In each example presented in the previous section uniform
substitution failed because the logic in question contained some basic
type of sentences and operators generating from this basic type some
other types (not always substitutable for the basic type). This can be
viewed as reflecting a formal feature of natural language expressions: it
is the logical form of a sentence, and not its particular content, that
determines the type of the sentence.

Take, for an illustration, the case of modus tollens. Imagine a con-
text in which one marble is randomly selected from a box that contains
marbles classified as big or small and as blue or red. One can produce
natural language instances of modus tollens like the following one:

If the drawn marble is big, then it is blue
The drawn marble is not blue

The drawn marble is not big

This seems to be a perfectly valid argument. Is it valid on the basis
of its form or on the basis of its content? There seems to be nothing
specific about the content of the premises and conclusion that would
be responsible for its validity. One can completely change the content
without loosing validity, for example by producing this argument:

If Paul is a minister, then he has a good salary
Paul does not have a good salary

Paul is not a minister

Nevertheless, there are counterexamples to modus tollens like the one
discussed in (Yalcin, 2012). Assume that the marbles in the box are
distributed according to the following table:

blue red
big 10 30
small | 50 10
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Moreover, consider this argument:

If the marble is big, then it is probably red
The marble is not probably red

The marble is not big

It seems that in the specified context the premises are true though the
drawn marble may very well be big. This means that the following
argument form is not valid:

F1  p — probably q, —probably q / —p

However, it is crucial for the counterexample that the consequent of the
implication in the first premise is of a particular form, namely of the
form probably p. “Probably” can surely be viewed as an operator that
generates a specific type of sentence. So, the failure of F1 does not imply
that also the argument form

F2  p—r—r/-p

is invalid, even though F1 is a substitutional instance of F2. This exam-
ple illustrates that we can reasonably have logically valid arguments, i.e.
arguments that are valid due to their form rather than content, and at
the same time we can have substitutional instances of these arguments
that are invalid. So, the view A2 is not in conflict with the usual interpre-
tation of formulas as capturing logical forms and the usual understanding
of logical validity as purely formal validity.

5. Weaker forms of substitution

Is there a weaker version of the principle of substitution that logics should
satisfy? It is clear that some form of substitution should be present in
a logical system. However, it is difficult to specify generally what the
restrictions should look like. They depend on the goal of a particular
logical inquiry. There may be different reasons for the failure of sub-
stitution and these different reasons lead to different weakenings of the
principle of uniform substitution. Let me illustrate this with an example.

In (Punc¢ochar, 2022) I introduced a logic in which substitution also
fails, but for a very specific reason. The logic is based on a stratification
of formulas into degrees. Every formula ¢ is of a particular degree d(¢p).
We say that a substitution is normal if it assigns only formulas of the
same degree, that is, if there is a k such that d(s(p)) = k, for each
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atomic formula p. Hence, normal substitutions are those that do not
assign formulas of different kinds. The proposed logic is not in general
closed under non-normal substitutions but it is closed under all normal
substitutions, i.e. it has the following property:

If p1,...,¢n/1 is a valid argument form then for every normal sub-
stitution s, the argument form s(¢1),...,s(pn)/s(¢) is also valid.

This is a desirable result given the motivation with which the logic was
introduced but it can be hardly regarded as a general requirement that
would be applicable to all logics. For instance, all the examples of a failure
of uniform substitution that we discussed in Section 3 concerned formu-
las/arguments with just one atomic formula (Qq in C, ¢ = must ¢ in DL,
q — {¢)q in PAL, and ——¢ <> ¢ in IngL). In such cases non-normality
cannot play any role since it requires at least two atomic formulas to
which formulas of different degrees are assigned by the substitution. If we
want a generally applicable restriction, we must find something weaker.
The following principle might seem to be a suitable candidate:

The principle of basic substitutions: a logic should be closed under
the substitutions assigning only formulas that are of the same type
as atomic formulas.

Unfortunately, even this principle seems to be too strong. It holds for
all logics that we discussed except Carnap’s logic C, where O(p A —q) is
valid but O(p A —p) is not.

One can find suggestions of minimal principles of substitutions, under
which all logics should be closed, in (Schurz, 2001). One such suggestion
is based on semantic considerations and I will not reconstruct it here.
Instead, I will just mention the following simple and purely syntactic
candidate for the weakest principle of substitution:

The weakest principle of substitution: a logic should be closed under
injective substitutions of the shape s: At — At.

Schurz calls such substitutions syntactically isomorphic. 1 believe that
this principle is universal. A mere renaming of atomic formulas, respect-
ing the differences between atomic formulas, cannot have any impact on
the questions of validity and invalidity. This, however, does not mean
that one cannot introduce a logical system that has different categories
of atomic formulas for which different laws hold. In such a case one
should be able injectively substitute at least atomic formulas of matching
categories.
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6. Conclusion

Let us summarize the main points made in this paper. In a sense, the
principle of uniform substitution is a technical articulation of the for-
mal nature of logic. However, this sense is related to a particular view
of the role of atomic formulas in formal languages. There is an alter-
native understanding of this role that allows for violation of uniform
substitution without undermining the view of logic as a discipline purely
concerned with forms. In order to obtain such a failure we need: plu-
rality of sentential types, atomic formulas related to a particular type,
type-transforming logical operators, and polymorphic logical operators.
There might be different sources of the failure of uniform substitution
and they are related to different weakenings of the general principle.
There is a minimal principle of substitution that should be respected by
any logic. Any logic should be closed under injective substitutions of the
shape s: At — At.
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