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Abstract. PCCP is the much discussed claim that the probability of a con-
ditional A → B is conditional probability. Triviality results purport to show
that PCCP  as a general claim  is false. A particularly interesting proof
has been presented in (Hájek, 2011), who shows that  even if a probability
distribution P initially satisfied PCCP  a rational update can produce a
non-PCCP probability distribution.

We argue that the notion of rational update in this argumentation is
construed in much too broad a way. In order to make the argumentation
precise, we discuss the general rules for modeling conditionals in probability
spaces and present formalized version(s) of PCCP and of minimal assump-
tions concerning the appropriate spaces. Using the introduced apparatus
we give a detailed analysis of Hájek’s (2011) triviality proof and show that
it is based on an application of revision rules which allow one to construct
probability distributions violating not only PCCP, but also fundamental
properties of conditionals. This means that they do not really provide
arguments against PCCP, properly formalized.

We also discuss a Dutch Book argument which shows that the updated
belief system is not coherent. This gives an additional, strong argument
against accepting the update rules. We also discuss the Converse Dutch
Book theorem and argue, that even if the produced probability measure
seems to violate it, it cannot serve as the counterexample, as it is not an
appropriate model for conditionals. Ultimately, we show that important
arguments against PCCP fail.
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1. Introduction

PCCP is the much debated claim that the probability of a conditional
A → B is conditional probability. There is an intense discussion on the
plausibility of its diverse variants.1 It is intuitive and easy to formulate 
as Hájek puts it, PCCP “rolls easily off the tongue” (Hájek, 2011, p. 7).2

Numerous examples suggest its truth, and Ramsey’s test is an impor-
tant argument in favor of it.3 PCCP is often called “Adams’ thesis” or
“Stalnaker’s thesis”: both are authors of versions of PCCP. (Stalnaker
later withdrew his support for PCCP, but we shall not discuss historical
details here.)4

However, there are also important arguments against PCCP based
on triviality results which purport to show that PCCP is false. The
seminal papers are (Lewis, 1976, 1986), generalizations are presented,
for instance, in (Hall, 1994; Hájek and Hall, 1994; Hájek, 2011) (see also
Milne, 2003; Fitelson, 2004), and an illuminating discussion can be found
in (Hájek, 2011, 2012).

We consider Hájek’s triviality proof given in (2011) to be particu-
larly interesting in this context: it is simple, intuitive, general, and its

1 See, for instance, (Hájek, 2011, 2012) or (Khoo and Santorio, 2018) for a pre-
sentation and discussion. Stalnaker (2009) gives a general presentation. For a more
general discussion, see, for instance, (van Fraassen, 1976; Bennett, 2003; Edgington,
1995; Rehder, 1982; Stalnaker, 2019), and many others. (Edgington, 2020) contains a
thorough discussion on indicative conditionals with an extensive bibliography. PCCP
is valid in McGee’s model (1989) and in Bernoulli-Stalnaker spaces, see (van Fraassen,
1976; Kaufmann, 2004, 2005, 2009, 2015, 2023).

2 “What is the probability that I throw a six if I throw an even number, if not
the probability that if I throw an even number, it will be a six?” (van Fraassen, 1976,
p. 273). Examples are abundant: consider a standard pack of cards and conditionals:
If it is a spade, it is an ace; If it is red, it is diamonds; If it is an ace, it is a spade.
What are the probabilities of these sentences? The obvious intuitive answers are: 1

13 ,
1
2 , 1

4 . What else could they be?
3 “If two people are arguing ‘If p will q?’ and both are in doubt as to p, they are

adding p hypothetically to their stock of knowledge and arguing on that basis about
q. . . . We can say that they are fixing their degrees of belief in q given p” (Ramsey,
1990, p. 247).

4 Adams’ important papers are (1965; 1970; 1975; 1998); in (Adams, 1965) the
term “assertability” is used. Stalnaker’s seminal paper is (1968). However, there are
important differences between them: Stalnaker speaks of conditional degrees of belief,
while Adams’ original formulation refers to assertability. Stalnaker’s thesis applies to
compound conditionals, while Adams’ definition only applies to simple conditionals,
i.e., A → B, with A, B being factual sentences not containing a conditional connective.



A misleading triviality argument 351

assumptions are listed in a clear way. Hájek’s proof is intended to show
then even if PCCP is initially accepted, after a rational update U, the
agent might arrive at a new probability distribution PU, which violates
PCCP. This means that accepting PCCP is – more or less – the matter
of coincidence. As soon as new, relevant information is available, PCCP
might be abandoned. According to Hájek, his argument shows

[. . . ] how precarious PCCP is: while it may hold for a single probability
function (for all that the theorem tells us), it is easily torn asunder. If
you are a Bayesian agent who seeks to conform to PCCP at all times,
you are apparently unable to revise boldly and moderately your opinions
regarding certain propositions.

The consequence is as follows:

There is no binary operator #, conditional-like or otherwise, such that
the equation P(A#B) = P(B|A) survives all revisions by a given bold
and moderate revision rule. (Hájek, 2011, p. 13)

Hájek’s proof is claimed to show an inherent weakness and instability
in PCCP. It also inspires a more general discussion concerning the status
of revision rules in the context of conditionals. Therefore, we focus on
Hájek’s proof in the present paper. We claim that Hájek’s construction
does not really provide an argument against PCCP, properly formulated.
Triviality results  in general – show that in every class of probability
functions fulfilling certain closure conditions there must be a function vi-
olating PCCP. This is true  but this does not refute PCCP (at least 
not in its reasonable, non-extreme version) because these probability dis-
tributions serving as counterexamples are not reasonable formalizations
of our system of beliefs. So the complaint that they do not satisfy PCCP
is void of argumentative power.

Hájek analyzed bold and moderate update rules (conditionalization
is an example, the general definition is reminded in Section 3). Such
rules seem perfectly suited to update factual knowledge. However, our
analysis shows that when beliefs involving conditionals are updated, it
is not enough to assume that the update rule is bold and moderate.
The very special and intricate character of conditionals and conditional
knowledge makes the boldness and moderateness condition insufficient.
Even conditionalization must be handled with care in such situations.

In the present paper we focus on two issues:
1. We provide an analysis in terms of a Dutch Book and show, that

the agent who follows Hájek’s update can be Dutch Booked.
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2. We give an analysis in terms of formal properties of probability
spaces modeling conditionals, and show, that even a very weak and obvi-
ous meaning postulate concerning conditionals is violated in the course
of Hájek’s update. So, even if we neglect arguments involving Dutch
Books (some authors are skeptical about their force), there are funda-
mental reasons which make the update method inacceptable.

The structure of the paper is as follows:
In Section 2, Modeling factual and conditional beliefs in probability

spaces, we discuss the assumptions which must be met when we are
modeling beliefs about probabilities of conditionals A → B. We also for-
mulate some reasonable expectations concerning spaces that are appro-
priate for interpreting conditionals and present the formalized version(s)
of PCCP.

In Section 3, Hájek’s update method we present a slightly simplified
and modified proof of how the update works.

In Section 4, Hájek’s update and Dutch Books we first discuss an
attempt to directly justify PCCP by a Dutch Book argumentation. Af-
terwards we show that the agent who uses Hájek’s update method can
be Dutch Booked.

In Section 5, Hájek’s update produces a space violating (IMP∗) we
present another argument showing that Hájek’s update method leads to
bizarre results.

In Section 6, The Fall of Converse Dutch Book theorem? we discuss
the Converse Dutch Book Theorem. Our result shows that there is a
probability distribution P∗U, such that the agent using P∗U can be Dutch
Booked. This might suggest that the Converse Dutch Book theorem is
false. However, we argue that it is not the case – it indicates a problem
with the update U which produces P∗U.

Section 7 is a short Conclusion.

2. Modeling factual and conditional beliefs in probability spaces

We start with a set of factual beliefs expressed in the factual language
LFACT. It is sufficient to assume that it is a fragment of the standard
propositional calculus (for simplicity we can take the language to be
finite, but this is not crucial). The underlying logic is classical. We
assume that factual beliefs can be modeled in a standard probability
space S = (Ω, Σ, P), where Ω is the set of elementary events, Σ is the
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algebra (σ-field) of events, and P is the probability distribution. This
means in particular that sentences from LFACT are interpreted in S as
events. For any sentence A ∈ LFACT, we shall use the symbol [A] for its
interpretation in S = (Ω, Σ, P), i.e., for the corresponding event [A] ⊆ Ω.5

Let LCOND be a language containing (apart from factual sentences)
also (some) simple conditionals of the form A → B, for A, B ∈ LFACT,
i.e., A, B being factual. We assume that LCOND is closed under Boolean
connectives, i.e., if (A → B) ∈ LCOND, utterances like ¬(A → B) or
C ∧ (A → B) can be made.6

2.1. The probability space S∗

We assume that systems of beliefs  both factual and conditional  of
the agents are modeled in probability spaces.7 In particular, the factual
system of beliefs is modeled in a probability space S = (Ω, Σ, P). If the
agent also holds conditional beliefs, the space S might be not appro-
priate to model them  and a new probability space S∗ = (Ω∗, Σ∗, P∗)
is needed. Its form depends on the language LCOND  i.e., on which
conditionals we need to model. Obviously, the original space S and the
“conditional space” S∗ must be connected in a reasonable way.

Throughout the text we will use a simple toy example as an illus-
tration. This allows us to exhibit the relevant phenomena. Consider an
agent who has beliefs concerning a die. The sample space S = (Ω, Σ, P)
is very simple: Ω = {1, 2, 3, 4, 5, 6} and the σ-field Σ consists of 64 events
(all subsets of Ω). The probability distribution P reflect the properties
of the die (for instance whether it is fair). The factual language LFACT

contains claims like: A = The number is Even; B = It is a Six; C = It is

Prime, etc. These sentences have obvious interpretations in S as events:

5 Formally, we demand that [A] is the element of the σ-field Σ.
6 In this paper we only consider simple conditionals A → B, so we do not discuss

the potential hierarchy of languages comprising nested conditionals and more complex
constructions. For the purpose of argumentation, it is enough to assume that it
contains only one such conditional. So, we do not need even to assume that LCOND

contains all conditionals A → B, for A, B ∈ LFACT.
7 In our opinion formalizing the discussion using the tools of standard probabil-

ity theory allows to elucidate several issues. However, many of the arguments and
analyses given in the present text have their counterparts if we only use the notion
of credence, i.e., an assignment Cr: LCOND → [0, 1], which has the needed formal
features of probability theory (but no probability space is postulated). We prefer to
follow the “probability-space paradigm”.
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[A] = {2, 4, 6}, [B] = {6}, [C] = {2, 3, 5}. Of course, the Boolean struc-
ture of the language is preserved in the Boolean structure of the events,
which means that [¬A] = Ω\[A] (complement), [A ∧ B] = [A] ∩ [B], etc.

We also want to express conditional claims like If it is Even, it is

a Six (Even → Six) and evaluate their probabilities. Obviously, the
judgments should be based on our factual beliefs  for instance, whether
the die is fair. It is also clear that if our factual beliefs change (we learn
something new about the die), at least some of our beliefs concerning the
probability of conditionals will change. For instance, if we learn that the
numbers on the die are 1,2,3,4,5,5 (the 6 has been replaced by a 5), our
judgment concerning Even → Six will change rather dramatically. In-
deed, it would be very strange to assign a positive probability to Even→
Six in a situation when a 6 cannot occur at all.

In general, the conditional A → B might have no interpretation in
sample space S. Consider Even → Six. Which of the 64 subsets of
Ω = {1, 2, 3, 4, 5, 6} might be its interpretation? It is not {2, 4, 6};
it is not {6} either  and obviously none of the 64 subsets of Ω are
appropriate.8 The sample space S = (Ω, Σ, P) is designed to model
factual beliefs, and it rarely even has the opportunity to feature an event
that is an interpretation of conditional A → B. This means that we need
another probability space S∗ = (Ω∗, Σ∗, P∗), in which the conditional
α = A → B has an interpretation as an event.9

It is important to be precise about the notation:

1. A, B, C, . . . (with italics) refer to factual sentences.
2. [A], [B], [C] are events representing A, B, C in sample space S.

8 Consider the fair die, and the conditional If it is not a Six, it is a Five. Its
intuitive probability is 1

5  but the space S contains no event of this probability.
Another example is given by a sample space with three elementary events Ω = A, B, C

with probabilities P(A) = P(B) = P(C) = 1
3 . If we agree that the probability of the

conditional (A ∨ B) → A is 1
2 , then it becomes clear that we need another probability

space, as there is no event with a probability of 1
2 within Ω (this example is presented

in (Hájek, 2012)). Hájek (1989) shows that any non-trivial finite-ranged probability
function has more distinct conditional probability values than distinct unconditional
probability values. This means that if PCCP holds, the original probability space is
not the right one. But even without PCCP it is clear, that Ω is not well suited to
model conditionals.

9 We use the symbol S∗ to indicate the general character of the space: the par-
ticular class of sentences which are interpreted within S∗ is not relevant. For the sake
of our analysis, we only need to assume that α = A → B has an interpretation in the
probability space S∗ as an event [A → B]∗.
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3. The stars indicate that the given entity is associated with space S∗.
This means that [A]∗, [B]∗, [C]∗, [A → B]∗ are events in S∗ repre-
senting the corresponding sentences.

In order to construct the probability space S∗ we have to determine
the set of elementary events Ω∗. Every elementary event ω ∈ Ω∗ has to
decide whether it supports the given α ∈ LCOND or not. In other words,
when specifying the suitable Ω∗, we have to define the relation “ω � α”.
Only then we will be able to identify the semantic correlate of α as the
set [α]∗ = {ω ∈ Ω∗ : ω � α}. This means that if we want to model the
conditional A → B as an event in a probability space, we need to accept
the notion of circumstances in which the conditional A → B is true and
in which it is false. Given this, we can say that the probability P∗ of a
conditional is the probability of its truth in the space S∗.

In general, [A] and [A]∗ might be very different objects  the first
being the interpretation of the factual sentence A in sample space S,
the second being the interpretation of the very same sentence A in S∗.
Nevertheless, we expect that in both spaces S and S∗, the probability
assignments made on factual sentences coincide and that the structure
of factual knowledge is preserved. Indeed, the agent who wants to model
conditional claims does it on the base of factual knowledge, which is not
forgotten. This is assured by the postulate according to which there is a
homomorphic imbedding of S into S∗. Intuitively, an imbedding might
be imagined as presenting a copy of the space S = (Ω, Σ, P) within
S∗ = (Ω∗, Σ∗, P∗), which preserves the essential features of S and assures
that factual knowledge is properly modeled in S∗.

Formally, a homomorphic imbedding of S = (Ω, Σ, P) into S∗ =
(Ω∗, Σ∗, P∗) is a function ι : Σ → Σ∗ satisfying the following conditions:

a. ι(Ω) = Ω∗;
b. ι(X ∩ Y) = ι(X) ∩ ι(Y), for X, Y ⊆ Ω;
c. ι(Xc) = (ι(X))c, for X ⊆ Ω;
d. P∗(ι(X)) = P(X), for X ⊆ Ω.

Conditions (a)–(d) apply to any two probability spaces S and S∗. Here
we are concerned with two spaces modeling LFACT and LCOND so we add
one more important condition:

(e) ι([A]) = [A]∗, for A ∈ LFACT.

The last condition states, that the imbedding ι is faithful to the inter-
pretations of the factual sentences. We interpret the factual sentence A
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as [A] within S, and then “transfer” this interpretation into S∗, using
the imbedding ι. We can also give a direct interpretation of A within
S∗ which is the event [A]∗. Condition (e) states that these two methods
coincide. This means that the space S∗ = (Ω∗, Σ∗, P∗) preserves the
structure of interpretation of LFACT within S. Of course, the probabili-
ties of factual sentences A ∈ LFACT given in S, are preserved in S∗, i.e.
P∗([A]∗) = P([A]) (by (d) and (e)).

2.2. A minimal meaning postulate (IMP)

So far we have made no assumptions whatsoever concerning the interpre-
tation of the conditional connective →. The class of meaning postulates
we accept depends on our interpretation of the conditional. They ex-
press our intuitions concerning → and are later formalized as logical or
probabilistic principles.

We want to make our assumptions as weak and uncontroversial as
possible.10 The following principle seems rather undisputable:

(IMP) If A is possible, and B is impossible, then A → B is impossible.

It motivates the principle according to which it is not rational to hold
probabilistic beliefs such that:

(i) P(A) > 0;
(ii) P(B) = 0 and;
(iii) P(A → B) > 0.

Indeed, the agent, who thinks that A is be possible, B is impossible,
however is willing to assign positive probability to A → B is not ra-
tional. Consider someone who observes a fake die, where the 6 never
comes up (the agent knows this!) and assigns positive probability to the
conditional If it is Even, than it is an Six  knowing perfectly well that
the probability of It is a Six is 0. Such a system of beliefs would be quite
bizzare.11

10 We believe that there are many reasonable and well-motivated meaning postu-
lates concerning the conditional connective →. However, here we only want to discuss
the “update phenomena” and we show that even a very weak meaning postulate shows
that the discussed update method is problematic.

11 Similarly, we would hardly assign positive probability to the claim If John

comes to the party, his wife will come too, knowing that John is quite likely to come,
but his wife never goes to parties (or that John has no wife).
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The principle (IMP) might be considered to be a minimal postulate
concerning the coherence between the factual beliefs and the beliefs con-
cerning conditionals. It is important to formalize it, as it allows to make
the analysis precise.

We give its probabilistic version, worded in terms of a relationship
between P and P∗:

(IMP(P;P∗)) If P([A]) > 0 and P([B]) = 0, then P∗([A → B]∗) = 0.

This assumption stresses the balance between the probabilities of the fac-
tual sentence A, B and the conditional A → B. Observe that IMP(P;P∗)
excludes only the extreme case, but imposes no restrictions on P∗([A →
B]∗) when P([A]) > 0 and P([B]) > 0. It is really very weak and in no
sense it assumes PCCP.

As we assumed that there is an imbedding of S into S∗, IMP(P;P∗)
is equivalent to a version mentioning only the space S∗:

(IMP∗(P∗)) If P∗([A]∗) > 0 and P∗([B]∗) = 0, then P∗([A → B]∗) = 0.

The version IMP∗(P∗) might be considered to be an internal version
of the rationality/coherence postulate concerning any probability space
S∗ = (Ω∗, Σ∗, P∗) which is intended to model conditional knowledge. It
is a criterion for whether a probability space S∗ has any chance of being
a reasonable model for a coherent, rational system of beliefs  which
include also conditional propositions. If S∗ does not satisfy IMP∗(P∗),
then it is not a reasonable candidate at all.12

We will use the term “LCOND-space” for any probability space S∗

extending S (via imbedding) and satisfying IMP(P;P*). For any fac-
tual probability space S there might be many admissible LCOND-spaces
S∗, the conditions do not specify one single “canonical” construction of
S∗ from S. For convenience, let LCOND-SPACES(S) denote the class of
LCOND-spaces S∗ suitable for extending S. So S∗ ∈ LCOND-SPACES(S)
iff: (i) S is imbeddable in S∗; and (ii) S and S∗ satisfy (IMP*).

2.3. The formalized version(s) of PCCP

PCCP is the general claim that probability of conditionals is conditional
probability. In discussions the notion of probability is often taken to be

12 All these considerations apply also to the “credence version”. If someone rejects
the idea of modeling conditionals in a probability space and is interested only in direct
credence assignments to sentences, i.e. Cr : LCOND → [0, 1], then (Cr-IMP) has the
form: (Cr-IMP) If Cr(A) > 0 and Cr(B) = 0, then Cr(A → B) = 0.



358 Anna Wójtowicz, Krzysztof Wójtowicz

informal (i.e. as subjective probability, degree of belief etc)  and it is
not always clear what exactly the thesis is meant to express. Once we
have the spaces S and S∗ at disposal, we can present the formal counter-
part(s). We consider PCCP to express a kind of harmony between the
factual beliefs and conditional beliefs. The following formulation seems
to express it in the most natural way:

(P∗CCP(S; S∗)) P∗([A → B]∗) = P([B]|[A]) for all A, B ∈ LCOND with
(A → B) ∈ LCOND and P([A]) > 0.

Given the imbedding of S into S∗, it is equivalent to the “S∗-internal”
form:

((P∗CCP∗)(S∗)) P∗([A → B]∗) = P∗([B]∗|[A]∗) for all A, B ∈ LFACT

with (A → B) ∈ LCOND and P∗([A]∗) > 0.13

Regardless of the formulation, these principles mention  apart from
the factual space S in the first version  a particular probability space
S∗ with the corresponding probability distribution P∗. It might be one
of many possible LCOND-spaces, so it is important to stress, that this
version has a “local” character, relativized to a given S∗. PCCP as a
general claim would be a general statement concerning probability spaces
from a certain class K. PCCP in its strongest possible form would be
the claim that PCCP holds in in all LCOND-spaces S∗, i.e. (in semiformal
notation) ∀S∗ ∈ LCOND(S)-CLASS, PCCP(S*). This principle is false
and hardly worth discussing: there are LCOND-spaces violating PCCP.
So, a reasonable form of PCCP is relativized to a class of spaces K ⊆
LCOND(S)-CLASS.

Discussions concerning the justification of PCCP might have a two-
fold character. Very broadly, we might engage in:

1. Philosophical discussion justifying PCCP as a intuitive claim.
2. Formal analysis, concerning mathematical, formal versions of PCCP.

Ad 1. “Philosophical PCCP” states, that the only reasonable probabil-
ity assignment to conditionals satisfies PCCP. The potential justifica-
tion would  generally speaking  in a philosophical (semantic, linguis-
tic, epistemological etc.) analysis of concepts. It would involve identi-
fying meaning postulates adequately characterizing the conditional con-

13 The general (much stronger) version of this postulate is P∗([α → β]∗) =
P∗([β]∗|[α]∗) for all α, β ∈ LCOND such that (α → β) ∈ LCOND and P∗([α]∗) > 0.
Here we only need the simplest version.
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nective →. Depending on the results of this analysis, we would consider
diverse forms of PCCP to be justified or not.

Ad 2. As formal claims, formalized version(s) of PCCP concern math-
ematical structures. Their proofs would  in general  have a relative
character: if a probability space S∗ modeling conditionals satisfies cer-
tain assumptions A, then S∗ satisfies PCCP. These assumptions A might
be formalizations of meaning postulates or logical principles concerning
conditionals. Constructing the formal proof of “A implies PCCP” might
be interesting from the mathematical point of view. Obviously, it could
not be in any sense an “absolute proof of PCCP”.

In the present paper we do not discuss the problem of presenting a
formal proof of PCCP in the second sense.14 However, we think that it
is possible to give a positive argument in favor of PCCP, based on Dutch
Book argumentation. We address this issue in Section 4.2.

It is worth observing that apart from its intrinsically interesting na-
ture, resolving this problem also has important consequences for the
discussion concerning causal versus evidential decision theory.15

2.4. The existence of a LCOND-space

The definition of a LCOND-space does not prove its existence but LCOND-
spaces exist and examples can be given. One of them is Stalnaker-
Bernoulli spaces (cf. van Fraassen, 1976; Kaufmann, 2004, 2005, 2009,
2015, 2023). The elementary events are infinite sequences and the prob-
ability measure P∗ is defined on (a kind of) cylindric sets first and then
extended to the appropriate σ-field generated by these sets. The set of
elementary events has the power of the continuum. A different example
is provided by spaces based on Markov chains (graphs) (see Wójtowicz
and Wójtowicz, 2021a,b, 2022). Elementary events are finite sequences
(generated by graphs) and the probability measure P∗ is given in a sim-
ple way. These spaces are countably infinite. An interesting example is

14 For instance, if we assume the formalized version of the Independence Principle
and some intuitive assumptions concerning the conditional connective, we can prove
PCCP.

15 “After all, if probabilities of conditionals really are conditional probabilities,
then the Gibbard-Harper theory is equivalent to Jeffrey’s; but since the latter is
simpler, then the former is otiose, as are all its allegedly equivalent reformulations.
Thirty-five years of literature on causal decision theory would then appear to be a big
red herring” (Hájek, 2011, p. 7).
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given in (Węgrecki and Wroński, 2023), where the elementary events are
constructed  broadly speaking  as a kind of formal expressions over
possible words. In the model Wójtowicz and Wójtowicz (2023), ele-
mentary events are permutations of the set of possible worlds.16 It is
interesting to observe that in all these spaces PCCP holds. However,
it is possible to transform them into non-PCCP spaces (by formally
redefining the probability measures). PCCP is in no way, even tacitly
assumed in the definition of LCOND-space.

3. Hájek’s update method

Triviality proofs purport to show that there is a fundamental problem
with PCCP.17 In particular, Hájek’s proof suggests that there is some
fundamental conflict between accepting PCCP and accepting update
rules which seem to be perfectly rational and justified. Indeed, Hájek
shows how to transform a probability distribution P∗ (which satisfies
PCCP) into a non-PCCP probability distribution P∗U, by updating on
information U.

Hájek’s focus is on bold and moderate update rules. Being bold
and moderate are  as Hájek argues  sufficient conditions for an up-
date method to be considered rational. Conditionalization satisfies these
conditions, but Hájek also mentions several other examples of update
methods.18

Assume the agents models their system of beliefs (including condi-
tionals) using the probability distribution P∗ (the star indicates that we
work with a probability space where conditionals are modeled). The
agent wants to modify the initial probability distribution P∗, taking into
account the information U and obtaining a new probability distribution
P∗U. Two conditions are relevant in this context:

16 Both these examples provide interpretation for the language LCOND containing
all simple conditionals and their Boolean combinations; the constructions can be
iterated.

17 The locus classicus is (Lewis, 1976). Lewis shows that if a suitable class of
probability measures is closed under conditionalization and PCCP holds, then the
probability measure for PCCP is trivial

18 If conditionalization as the update method is rejected, Lewis’ original proofs
are blocked. However, Hájek’s proof works for a wide class of update methods: he
mentions imaging, blurred imaging, maximum entropy, minimum cross entropy  but
stresses that the proof works for a wide class of such rules.
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(Boldness) P∗U(U) = 1.
(Moderateness) For any A such that the truth of A implies the
truth of U: If P∗(A) 6= 0, then P∗U(A) 6= 0.

Boldness means, that if you learn U, you fully believe it. Moderateness
is justified by Hájek as follows:

Moderation is surely a desideratum of a revision rule: your belief sys-
tem would be highly fragile if you could suddenly fully disbelieve some
proposition A that previously you gave some credence, when you learned
something implied by A. By the lights of your original credence unction,
A is confirmed (assuming the usual Bayesian account of confirmation);
but by the lights of your new credence function, it is maximally discon-
firmed. (Hájek, 2011, p. 10)

We present a slightly modified (and simplified) version of Hájek’s
proof. We make a simplifying (but safe) assumption, which shortens the
proof  but also reveals an important problem with the update.

A, B are factual sentences, A → B is the conditional in question. P∗

is the initial probability distribution. The “updating information” U is
[¬(A ∧ B)]∗. P∗U is the updated probability distribution. We assume:

1. [B]∗ ⊆ [A]∗

2. 0 < P∗([B]∗) < P∗([A]∗) < 1.
3. PCCP(P∗) holds for A → B, i.e. P∗([A → B]∗) = P∗([B]∗|[A]∗).

As [B]∗ ⊆ [A]∗, [(A ∧ B)]∗ = [B]∗, i.e. [A]∗ ∩ [B]∗ = [B]∗. So the update
is by U = [¬B]∗.

The proof proceeds in a few easy steps:

1. By PCCP(P∗), P∗([A → B]∗) = P∗([B]∗|[A]∗) = P∗([A]∗

∩[B]∗)
P∗([A]∗) =

P∗([B]∗)
P∗([A]∗)

2. As 0 < P∗([A]∗) < 1, we have: P∗([B]∗) < P∗([A → B]∗). This
implies that P∗([A → B]∗\[B]∗) > 0, i.e. P∗([A → B]∗ ∩ [¬B]∗) > 0

3. Obviously, [A → B]∗ ∩ [¬B]∗ ⊆ [¬B]∗. By moderateness, P∗U([A →
B]∗ ∩ [¬B]∗) > 0.

4. But then obviously P∗U([A → B]∗) > 0.
5. By boldness, P∗U([¬B]∗) = 1. This means that P∗U([B]∗) = 0.
6. As P∗([B]∗) < P∗([A]∗), this means that P∗([A]∗\[B]∗) > 0. As

[A]∗\[B]∗ = [A]∗ ∩ [¬B]∗, we have P∗([A]∗ ∩ [¬B]∗) > 0. Obvi-
ously, [A ∧ ¬B]∗ ⊆ [¬B]∗, so, by moderateness, we have P∗U([A]∗ ∩
[¬B]∗) > 0.

7. This means in particular that P∗U([A]∗) > 0.
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We have the required conclusion:
• P∗U([A]∗) > 0; P∗U([B]∗) = 0; P∗U([A → B]∗) > 0; and

P∗U([B]∗|[A]∗) = 0,
which means that PCCP is false for P∗U. According to Hájek’s argument,
this shows that PCCP is very unstable: even if you accept it, a rational
update U might easily force you to abandon PCCP.19

In Hájek’s original proof no conditions are imposed on the sentences
A and B, apart from P∗([¬(A ∧ B)]) 6= 0. Using this assumption, he
proves that P∗U([A → B]∗) > 0 and P∗U([B]∗|[A]∗) = 0. But it is suf-
ficient to assume that [B]∗ ⊆ [A]∗ to produce a probability distribution
which not only shows that PCCP is false, but also has the property that
P∗U([A]∗) > 0, P∗U([B]∗) = 0 and P∗U([A → B]∗) > 0. But this means
that (IMP∗), which is a fundamental condition, is violated.20

4. Hájek’s update and Dutch-Books

It is commonly assumed that the beliefs of a rational agent can be mod-
eled in a probability space.21 Agents who violate the rules of probability
calculus are threatened by a Dutch Book, which means that they can
suffer a financial or intellectual loss.22 We consider Dutch Book ar-
gumentation to be a very powerful tool for discovering incoherence in
the agents systems of beliefs. This applies also to a system of beliefs
including conditionals.23

19 Consider our toy example, taking A = Even and B = Six and U = [¬(Even ∧
Six)]∗. From the general proof it follows, that: (i) P∗U([Even]∗) > 0; (ii) P∗U([Six]∗) =
0 and (iii) P∗U([Even → Six]∗) > 0. So indeed, P∗CCP∗ does not hold for P∗U and
Even → Six.

20 Observe, that our proof is blocked if there are no events [A]∗, [B]∗ with 0 <

P∗([B]∗) < P∗([A]∗) < 1, i.e. when the probability space is trivial (using Lewis’s
terminology).

21 An interesting discussion can be found in (Hájek, 2008).
22 We agree that the subjective probabilities ascribed by the agents is connected

with the kind of bet the agents are going to make. This is a very common assump-
tion in the literature (see, e.g., Easwaran, 2011a,b, for a general presentation). For
a general presentation of Dutch Books see, e.g., (Vineberg, 2016), where extensive
references can be found.

23 The Dutch Book is based on the internal relationships between the agent’s
beliefs. It is the incoherence in the agent’s beliefs which leads to the diachronic Dutch
Book and an inevitable loss. The question whether they are adequate in any sense to
the empirical situation is irrelevant. Dutch Book is the coherence test, not the test
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It is obvious what the rules of the betting game are in case of a factual
sentence, like The number on the die is even. But what are the rules for
betting when a conditional is involved? Consider a fair die and the bet
on the conditional Even → Six. The game consists in rolling a die (i.e. 
formally  choosing an event from the probability space S = (Ω, Σ, P)).
It is fair to assume that the bet is:

• Won if we see a 6.
• Lost if we see a 2 or 4.
• Cancelled if we see a 1 or 3 or 5 (in this case the money is refunded).24

In general, the bet Bet(A → B) on the conditional A → B is:

• Won when A ∧ B happens
• Lost when A ∧ ¬B happens
• Cancelled when ¬A happens (in this case the money is refunded).25

These stipulations are entirely natural  and they are counterparts
of the following two natural assumptions concerning conditionals:

(1) The truth of A ∧ B guarantees the truth of the conditional A → B.
In terms of bets this means, that if you bet on A → B and an
A ∧ B-event occurs, you win.26

of empirical adequacy of the system of beliefs. So if the agent sets for instance $0.50
on It is a six and $0.90 on It is Even, they cannot be Dutch-booked (however, in the
long run the agent will probably lose the money).

24 Cancelling the bet is not a very special requirement. Consider a fair coin, you
bet $0.5 on Heads, and agree, that  apart from the standard rules  if is the coin is
lost (or evaporates), the money is refunded. This is very natural, as in this situation
we cannot decide the bet. No problems arise with this bet; in particular, no Dutch
Book can be constructed.

25 This is assumed for instance by McGee (1989) in his fair bet analysis concern-
ing also conjoined conditionals of the form (A → B) ∧ (C → D). The idea is not
new  in fact, the idea of the conditional bet dates back at least to (de Finetti, 1937).

26 (1) is a special case of the general rule, which  in its most general sense 
states that if we accept α → β, then we accept α ∧ β (for any α and β). In the
literature it is known, for instance, as Conjunctive Sufficiency (Egré and Rott, 2021),
Centering, or And-to-If (Cruz et al., 2016; Berto and Özgün, 2021). In the present
paper we only need to assume that both arguments of → are factual sentences (which
means that we need the weakest version of this principle).

Potential counterarguments against (1) rest on the assumption that the contents
of the antecedent and consequent in the conditional are somehow relevant to each
other. For a discussion see (Berto and Özgün, 2021). The discussed principle is
A ∧ β � A → β, so it is a logical principle, using the notion of logical consequence.
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(2) The truth of A∧¬B guarantees the falsity of the conditional A → B.
In terms of bets this means, that if you bet on A → B and an A∧¬B-
event occurs, you lose.

In all the examples we think of standard bets: the agent sells of buys
bets for some price $p (with 0 < p < 1), and the payout is $1.

4.1. Dutch Book and PCCP27

Consider an agent who accepts the aforementioned betting rules on con-
ditionals. Also, the agent is willing to engage in diachronic Dutch Book,
i.e. to make new bets when new information is introduced. The agent
does not accept PCCP, i.e. thinks that the probability of A → B is
not P(B|A). For simplicity assume that the agent ascribes probability
p > P(B|A) to A → B. Also, after the update U, the agent is willing to
use the new probability distribution P∗U and is ready to make new bets
according to the new belief system.

For simplicity, consider our toy example Even → Six (the die is fair).
The agent overestimates P∗(Even → Six) and is willing to pay $0.50

for the bet (in the game in which the die is rolled). The diachronic Dutch
Book against the agent consists of two steps:

Before the die roll.
1. The Bookkeeper sells four bets Bet(Even → Six) for $0.50

each (i.e. gets $2 from the agent);
2. The Bookkeeper sells Bet(Even) for $0.50.

After the die roll. The die is rolled.
1. If it is odd, Bet(Even) is lost, and Bet(Even → Six) is can-

celled.

Berto and Özgün note that “And-to-If” holds in the similarity-based possible world
semantics of (Stalnaker, 1968). They also contend that “A number of mainstream
theories of indicatives validate And-to-If: the material conditional view (Jackson,
1997; Grice, 1989) and the probabilistic-suppositional view (Adams, 1975; Edgington,
1995; Evans and Over, 2004), for instance, have it.” (Berto and Özgün, 2021, p. 3701).

It exceeds the scope of this paper to discuss the problem in detail. However it
is important to stress that (1) and (2) are assumed, among others, by Hájek and
Lewis. The main purpose of the paper is to discuss their arguments against PCCP,
which means that we are allowed (and even obliged) to accept the basic principles
concerning conditionals which are accepted by them.

27 In this section we make use of the results presented in (Wójtowicz and
Wójtowicz, 2021b).
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2. If it is even, the agent updates the probability distribution 
now it is PEven.28 The price for the fair bet on It is not a Six is
$2

3 (the agent accepts such bets). So after learning that Even
has occurred, the Bookkeeper sells four BetEven(Not a Six) for
$2

3 each.

After this bet is made, full information is revealed. The outcomes 
from the point of view of the agent  are presented in the table:

Bet(Even) Bet(Even → Six) BetEven (Not

a Six)
The total
outcome

Odd −$ 1
2 0 0 −$ 1

2

(the bet was
cancelled)

(the bet has
not been
placed)

Six +$ 1
2 +$2 −$ 8

3 −$ 1
6

Two or four −$ 1
2 −$2 −$ 4

3 −$ 1
6

The agent has been Dutch Booked. The cause of the disaster is
accepting the bet Bet(A → B) for a price p different from P(B|A).29

This means the only rational choice for the agent who is willing to engage
in bets, is to assume that the probability of A → B is P(B|A). Acting
in accordance with PCCP generates no unwanted consequences.

In the case of factual beliefs, if you violate probability calculus, you
will be punished. Form the considerations above it follows, that in case
of conditionals, if you violate PCCP you will be punished.30

Regardless of the general argument, we will analyze the betting be-
havior of two agents, Alice and Bob, who perform different updates.

28 The agent performs the update by conditionalizing on A, and is willing a
bet on B in light of the new knowledge. Now the probability estimate for B is the
conditional probability P(B|A)  and the fair price for BetA(B) is P(B|A).

29 Why exactly four bets? We need to make use of the difference between the
subjective evaluations of P(A → B) and P(B|A). Let the difference be γ = P(A →
B) − P(B|A). We need to make N bets so that N · γ > 1

2 . In our toy example γ = 1
6 ,

so N = 4 suffices.
30 Observe, that under these conditions, the bet on Even → Six for a price of $ 1

3

is fair. Indeed,the payouts are: (i) 1 if 6 occurs; (ii) 0 if 2 or 4 occur; (iii) 1
3 (refund)

if 1 or 3 or 5 occurs. The expected value is 1
6 · 1 + 2

6 · 0 + 3
6 · 1

3 = 1
3 , so the bet is fair.
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4.2. Alice and Bob  two different update methods

Alice and Bob are two agents who have beliefs concerning a fair die, and
model their beliefs in the appropriate probability space S. Alice and Bob
wholly agree with regard to the probabilities of factual sentences, i.e.,
they assign the same probabilities to One, Two, Three, Four, Five, Six31

and they also have an initial opinion on the probability of Even → Six.
Moreover they use the probability space S∗ with P(Even → Six) = 1

3 ,
i.e. they both accept PCCP(S∗). They are happy to bet on Even → Six,
making use of the betting scheme in Section 4.1. We have seen, they are
not vulnerable to a Dutch Book. This means simply, that in the game
which consists in rolling the die, there is no collection of bets which
assures their loss (independently of the result of the die roll).

Both Alice and Bob believe that after performing a rational update,
which leads to a new probability distribution, bets can be safely made
according to this new distribution. After all  if the update is rational,
the new distribution is rational as well!

However, their opinions on updating methods are different. Alice
makes her updates in what she considers to be the most common-sense
way, focusing on updating factual knowledge. Bob is glad to use Hájek’s
update method and works directly in the space S∗. They both believe
that making bets is a good and safe thing: indeed, they used their initial
P∗ with good results. So they are willing to make bets also after the
rational update has been made.

We analyze Bob’s behavior first.

4.3. Bob’s betting behavior

Bob accepts Hájek’s proviso that bold and moderate update rules work
properly (i.e. are rational) also for conditionals. Bob considers both the
initial P∗, and the update method to be rational. He had no qualms
about using P∗ in his bets: in fact, as we have seen no Dutch Book can
be constructed against Bob who uses the probability distribution P∗.
Bob also accepts bold and moderate updating, so he is happy to use the
new probability distribution P∗

Bob when making bets. So Bob works in
S∗ and performs a bold and moderate update on U = [¬Six]∗, arriving

31 If the die is fair, all these probabilities are 1
6 , but the argumentation does not

depend in any way on this particular probability distribution. If the die is not fair,
we have p1, . . . , p6 as the corresponding probabilities.
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at a new system of beliefs with P∗

Bob = (P∗)U as the new probability
distribution.32

We have seen that Hájek’s update rule leads to accepting:

(i) P∗

Bob([Even]∗) > 0;
(ii) P∗

Bob([Six]∗) = 0;
(iii) P∗

Bob([Even → Six]∗) > 0.

In Bob’s new system of beliefs the probability P∗

Bob([Even]∗) is some γ,
with 0 < γ < 1.

Two bets concerning the die roll are made, both considered by Bob
to be fair.

1. The Bookmaker sells the bet Bet(Even) for γ, i.e. gets $γ from Bob.
If the number is even, Bob gets $1; if it is odd  he loses the $γ.

2. The Bookmaker sells n bets on Even → Six. Bob believes that the
probability of this conditional is p > 0 so he is willing to buy n

standard bets for $p each (Bob considers this bet to be fair). If the
result is a 6, the Bookmaker will have to pay $n to Bob. If the
result is a 2 or 4  Bob looses the money. And if the result is an odd
number, the bet is cancelled (and the $np is refunded to Bob).

After the bets have been made, full information is revealed. The
possible outcomes of the game are given in the table (from Bob’s point
of view):

The result Bet(Even) Bet(Even→ Six) The total out-
come

1 or 3 or 5 −γ cancelled −γ

2 or 4 +(1 − γ) −np (1 − γ) − np

6 +(1 − γ) n(1 − p) Will never oc-
cur

We already know that the probability of 6 is 0 (indeed: we updated
on [¬Six]∗), which means that the last possibility surely does not occur.

32 For simplicity, the update might be conditionalization on [¬Six]∗, i.e. the new
probability distribution is the conditional probability P[¬Six]∗ . Conditionalization
is an example of a bold and moderate rule  and is easier to follow. If the update
method is standard conditionalization (and the die is fair) then P∗

Bob([Even]∗) = 3
5 ,

but this is not crucial. We might take any 0 < γ < 1 within Bob’s new system of
beliefs.
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This means, that if only we take n big enough so that np > (1−γ), then
regardless of the result on the die, Bob loses:

(i) If it is 1 or 3 or 5  he loses Bet(Even) and Bet(Even → Six) is
cancelled, so his total loss is $(1 − γ).

(ii) If it is 2 or 4  he wins Bet(Even) and loses Bet(Even → Six),
which means that he gets $(γ − np) in total. This is negative, so
Bob loses.

So we have a situation in which Bob is willing to accept two bets,
considering both to be fair: the bets correspond to the subjective prob-
ability P∗

Bob which was obtained by using a bold a moderate update rule
of the sentences in question. But this leads to a Dutch Book against
Bob, which means that his belief system is not consistent (not rational).

4.4. Alice’s betting behavior

Alice has never heard about being bold an moderate as the sufficient
condition for rational updates. She learns that Six is false, and updates
her beliefs in what she considers to be the most common-sense way,
taking care of updating factual knowledge first. This is because Alice
believes that all reasonable conditional beliefs are anchored in factual
knowledge. From her point of view, the new probabilities of factual
sentences are:

PAlice([One]) = PAlice([Two]) = PAlice([Three]) = PAlice([Four]) =
PAlice([Five]) = 1

5 ;
PAlice([Six]) = 0.

Observe that Alice works in the factual space S, making use of the
information ¬Six. So she arrives at the new probability distribution
PAlice. She then updates her beliefs on conditionals using this knowledge,
by choosing her favorite LCOND-space (SAlice)∗. Of course IMP∗(P∗)
holds there. This means in particular that (PAlice)∗([Even → Six]∗) = 0.
So this is exactly how Alice proceeds:

1. She learns that ¬Six is true.
2. She updates her factual space S, obtaining SAlice.
3. She chooses a LCOND-space (SAlice)∗. Here she makes use of the ob-

vious and commonsense (IMP∗) principle. Alice is free to choose any
of the LCOND-spaces (SAlice)∗  which are suitable for the updated
factual space SAlice.
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It is clear that she cannot be Dutch booked by using bets on Even →
Six: she knows that (PAlice)∗([Even → Six]∗) = 0, and is not going to
bet on it.

However, Alice’s update is not moderate with respect to the initial
P∗. Indeed: the truth of (Even → Six) ∧ ¬Six implies the truth of ¬Six

and P ∗([(Even → Six) ∧ ¬Six]∗) 6= 0, but (PAlice)∗([(Even → Six) ∧
¬Six]∗) = 0.

We do not know whether in the new (SAlice)∗ PCCP holds in gen-
eral or not. But our aim was to show that the proper update method
does not generate a counterexample (i.e. we only discuss Even → Six).
And obviously, Alice is free to choose a “PCCP-friendly” LCOND-space
(SAlice)∗: in Section 2.4 we mentioned several examples of such spaces,
which Alice has at her disposal.

4.5. Would you prefer to behave like Alice or like Bob?

We have arrived at the following observation:

Observation. There are functions P∗

Bob and (PAlice)∗ which are
modifications of the probability distribution P∗ (both making use
of the information that ¬Six is true), such that:
(a) P∗

Bob([X]∗) = P∗

Alice([X]∗), for every factual sentence 0X ;
(b) P∗

Bob([Even → Six]∗) 6= 0;
(c) (PAlice)∗([Even → Six]∗) = 0;
(d) P∗

Bob has been obtained from P∗ by using a bold and moderate
update rule (i.e. by updating on [¬Six]∗). Bob can be Dutch
Booked.

(e) (PAlice)∗ has been obtained in a “naïve” way: she steps back
into the factual space S, performs the update there (i.e. she
conditionalizes within S by [¬Six]), obtaining a new factual
space SAlice. Only later she produces the new space (SAlice)∗.
She violates the moderateness rule  but cannot be Dutch
Booked (at least when the bet on Even → Six is concerned)!

Observe the difference in notation (i.e. where the ∗ is placed). P∗

Bob

indicates that the update was performed directly in S∗. (PAlice)∗ in-
dicates, that first a factual update has been performed within S  pro-
ducing a new factual space SAlice  and after that a new LCOND-space
(SAlice)∗ has been chosen.33

33 Schematically, we can present the update scheme in the following way:



370 Anna Wójtowicz, Krzysztof Wójtowicz

Importantly, before the update neither Alice nor Bob could be Dutch
Booked. They both trust their common probability distributions PBob =
PAlice. They both believe, that rational updates keeps them safe from
Dutch-Booking: it is sufficient to stick to the values of the updated
probability distribution. However, they interpret the notion of rational
update method in a different way.

After the update, Alice’s system of beliefs is still Dutch Book resis-
tant. However, Bob can be Dutch Booked. This is not the problem with
the system of bets or with the Dutch Book as the “coherence test”. It
is rather the problem with the update, which produces Dutch Bookable
systems of beliefs. We will discuss this issue in more detail in Section 6.34

5. Hájek’s update produces a space violating (IMP*)

We have seen that Bob can be Dutch Booked. In our opinion, this is
a very important argument against P∗

Bob  i.e. in particular against the
update method. However, there is a discussion concerning the viabil-
ity of Dutch Book arguments.35 According to critical voices the Dutch
Book argument is not considered to be decisive. Consequently, if we
reject Dutch Book arguments, the results of the previous sections are
not convincing.

However, the presented Dutch Book phenomenon is a reflection of a
much deeper problem with the updates. And even if we disregard Dutch
Books, the problem remains. The update has produced a space violating
(IMP∗). Indeed, (S∗)U = (Ω∗, Σ∗, (P∗)U) (with U = [¬(Six)]∗) has the
property that:

Bob: P∗ ===========⇒
update within S∗

P∗

Bob

Alice: P∗ ==========⇒
focusing on fact

P ==========⇒
update within S

(PAlice) =================⇒
choosing an Lcond−space

(PAlice)∗

34 Dutch Books are coherence tests for systems of beliefs  regardless of whether
the agent models them in a mathematical probability space, or whether the agent
just assigns some credences (degrees of belief) to sentences and acts  i.e. bets  ac-
cordingly. If the agent’s beliefs are mirrored in the betting behavior, then they can
be tested for coherence. So the argumentation remains valid also in the context of
credence functions.

35 For instance, it might be questioned that the betting prices match subjective
probabilities or that even if a collection of bets is made, they are valued individually,
or that there are no “interference phenomena” between the bets  and so on. See,
e.g., (Hájek, 2009) for a presentation.
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(i) (P∗)U([Even]∗) > 0;
(ii) (P∗)U([Six]∗) = 0 and
(iii) (P∗)U([Even → Six]∗) > 0.

This means that either:

(1) we abandon (IM(P∗)U), or
(2) we agree that being bold and moderate is not a sufficient condition

of being a rational update method for conditionals. In particular,
not all conditionalizations might be appropriate.

We definitely opt for the second variant. Indeed, (IMP∗) is so con-
nected with our interpretation of the conditional connective that it is
virtually impossible to reject. Moreover, it is natural to suppose that
belief systems involving conditionals have some special features, and up-
dating has to take into account the specific character and meaning of
conditionals.

Update procedures need to take into account the complex and in-
tricate character of the conditional connective →. Bold and moderate
rules (in particular standard conditionalization) operate in the “Boolean
environment”  the only connectives (i.e. negation and conjunction) are
modeled as set-theoretic operations, i.e. as the complement and inter-
section of sets (events). Indeed, standard Dutch Books against someone
who violates for instance additivity is based on the correspondence be-
tween the Boolean functors and the Boolean set-theoretic operations.
But when the conditional connective is involved, probabilistic model-
ing should satisfy additional requirements. The proper modeling of ∧
and ¬ (which  by definition  holds in every probability space) is not a
sufficient condition.36

36 Hájek makes an interesting comment: “If you are a Bayesian agent who seeks
to conform to PCCP at all times, you are apparently unable to revise boldly and
moderately your opinions regarding certain propositions. These propositions then
have a curious status for you: you give them positive credence, but you can never
learn them  where learning is modeled by a bold and moderate rule. Borrowing
terminology from (van Fraassen, 1984), they are ‘Moore propositions’  propositions
that you cannot learn without violating a structural constraint that is imposed on you
(in this case, the upholding of PCCP). There is something Moore paradoxical about
your saying, or thinking: "p has positive probability, but it is impossible for me to
learn it", where p may be easily accessible to your enquiry.” (Hájek, 2011, p. 12–13).
He is certainly aware of the strange situation. Indeed, you ascribe positive credence
to A → B, but you will never witness a situation making it true (i.e. you will never
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It is an interesting general question how to identify the criteria for
proper update rules for conditionals. However, the problem is not easier
than the problem of identifying the proper logical or probabilistic rules
for conditionals. The general discussion exceeds the scope of the present
paper.

6. The Fall of Converse Dutch Book theorem?37

Two important claims concerning Dutch Books are found in the litera-
ture:

Dutch Book Theorem. If your belief system violates the proba-
bility calculus, you can be Dutch Booked.
Converse Dutch Book Theorem. If your belief system obeys the
probability calculus, you cannot be Dutch Booked.

The first theorem predicts a penalty for irrational belief systems (given
that “being rational” means “obeying the probability calculus”). The
Converse Dutch Book Theorem assures you that rational behavior keeps
you safe.

Now we have a situation, in which the agent obeys the probability
calculus (indeed, P∗

Bob is a mathematically correct probability distribu-
tion)  but can be Dutch Booked. Have we shown that the Converse
Dutch Book Theorem is false?

We strongly disbelieve this. We have a situation in which a Dutch
Book resistant probability distribution P∗ has been updated, and a
Dutch Bookable probability distribution P∗

Bob has been produced. But
in our opinion this suggests a problem with the update method, not with
the Converse Dutch Book theorem.

The explanation is hinted at in the previous section and indicates,
that probabilistic modeling of a rational belief system, when condition-
als are involved, differs from the Boolean case and imposes additional
restrictions on both the probability measures and the update methods.

witness A ∧ B). Our explanation is simple: in fact, there is no paradox. The credence
assignment is wrong, as it is obtained with the aid of a defect update rule.

37 The title of the section was inspired by Hájek’s paper The Fall of Adams’

Thesis?, (2012). Hájek’s paper contains a highly interesting analysis of PCCP and
its diverse versions.
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Not every probability distribution is acceptable  and this is for pro-
found reasons, concerning the very interpretation of conditionals. P∗

Bob

is not appropriate for modeling conditionals, and this is simply because
it violates (IMP∗), which is a very fundamental assumption. So surely it
cannot serve as a counterexample to the Converse Dutch Book theorem.

Informally speaking, ordinary probability assignments are consistent
with the meaning of ∧ and ¬. This is why following rules of probability
is sufficient to be Dutch Book resistant. However, now we have the new
connective → and in order to be safe from Dutch Booking, it is not
sufficient to give any probability assignment. It has to take into account
the specific meaning of →. To make the point more clear, we consider
the example of a new connective #.

6.1. The strange #

Consider the following example: we have a new connective # in the
language, and we have some rules concerning the bets, i.e. how the bets
on A#B are decided. Everyone using the connective accepts the rules.
Here they come:

If A ∧ B occurs  we win.
If ¬A ∧ B occurs  we lose.
If ¬B occurs  the bet is cancelled and the money is refunded.

These betting rules impose some restrictions on what # is: for instance
it is neither the conjunction nor the disjunction.

We also have some probability distribution P* in a space S*, which
assigns probabilities to the events, in particular to the event [A#B]∗.
For instance, if A = Even and B = Six, the probability of [A#B]∗ is 1

3 .
It turns out that the agent who uses P∗ can be Dutch Booked. Does

this mean that we have found a counterexample to the Reverse Dutch
Book theorem? This would be a very strange corollary: the very first
objection that comes to mind is that A#B is simply B → A, and the
probability of Six → Even is not 1

3 ! This probability modeling is obvi-
ously wrong! But this does not indicate that the Converse Dutch Book
theorem is wrong: it only indicates, that P∗ is simply inadequate. So
the fact, that P∗ is a probability distribution is not sufficient: it has to
model A#B in the appropriate way  i.e. so that the meaning postulates
(encoded  at least partially  in the betting rules) are satisfied.
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This phenomenon does not arise in the “Boolean environment”, as
the interpretation of functors are rigid: ∧ corresponds to ∩, and ¬ cor-
responds to the complement. The betting rules are also clear. But when
some new, non Boolean functor like # or → appears, we have to be
very careful with probability distributions: they must correspond to the
intended meaning of the functors – especially, if this intended meaning
is somehow reflected in the betting rules.

These observations remains valid also outside of the Dutch Book
paradigm. They show perfectly well that we are allowed to impose
conditions on the class of acceptable probability functions, if they are
intended to model the connective in question in accordance with the
intended meaning of the connective. And an acceptable update method
should not produce a probability distribution violating these conditions.

This toy example situation explains the sources of Bob’s loss. P∗
Bob

is not the appropriate modeling of A → B.
Finally, observe that the classical Reverse Dutch Book theorem op-

erates in the “Boolean environment” and is precise. We might formulate
its counterpart concerning conditionals. It is just a very tentative hy-
pothesis, not mathematically precise, as it contains an informal (and
vague) notion. However, we think that it worth discussing:

Conditional Dutch Book Resistance Hypothesis. Assume your
conditional system of beliefs is Dutch Book resistant. If your
update method is suitable for conditionals it remains Dutch Book
resistant.

Alice’s update is suitable. Bob’s update is not.

7. Conclusion

I. We assume (which is standard) that the probability of the conditional
A → B should be evaluated in the light of our factual knowledge. Also,
updating factual beliefs (usually) leads to an update of our beliefs con-
cerning conditionals.

II. The factual language LFACT is modeled in the sample space S =
(Ω, Σ, P). We also have the conditional language LCOND, which is an
extension of LFACT.

III. Usually, the sample space S does not allow one to interpret the
conditional A → B. We need a different space S∗ = (Ω∗, Σ∗, P∗), in
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which the conditional A → B has an interpretation as an event [A →
B]∗ ⊆ Ω∗. We call such a space “LCOND-space”.

IV. In general, LCOND-spaces are not uniquely determined, and they
might exhibit various properties (for instance  PCCP might be true
in some of them and false in others). But any LCOND-space S∗ has
to satisfy some fundamental assumptions concerning conditionals. In
particular, the probability space S should be imbeddable in S∗  i.e.,
factual sentences from LFACT should have interpretations in S∗ as events,
and their probabilities from S should be preserved in S∗.

V. We assume only one meaning postulate concerning conditionals:

IMP(P; P∗) If P([A]) > 0 and P([B]) = 0, then
P∗([A → B]∗) = 0

It corresponds to the intuitive principle (IMP), which states that if A is
possible and B is impossible, then A → B is impossible. This is rather
undisputable, and we expect the LCOND-spaces to satisfy (IMP∗).

VI. PCCP is the general claim that probability of conditionals is
conditional probability. It expresses coherence between factual beliefs
and conditional beliefs. We have considered two intimately connected
formalized versions of PCCP:

P
∗
CCP(S; S

∗). P∗([A → B]∗) = P([B]|[A])).
P

∗
CCP(S∗). P∗([A → B]∗) = P∗([B]∗|[A]∗).

VII. We give a version (simplification) of Hájek’s proof, and show that
it produces a probability distribution which cannot represent the system
of beliefs of a rational agent. To show this, we analyze the behavior
of two agents, Alice and Bob, and a toy example of a fair die. They
perform different updates, arriving at different probability assignments
of the conditional Even → Six.

VIII. Bob and Alice start with the same probability distribution
P∗, which is Dutch Book resistant. Later they perform two different
updates (both make use of a piece of information, “translated” into
an update procedure in a different way). They arrive at P∗

Bob and
(PAlice)∗. It turns out that Alice  using (PAlice)∗  cannot be Dutch
Booked, whereas Bob  using P∗

Bob  can!
IX. Following Hájek’s update rule leads to the conclusion that the

updated probability of the conditional Even → Six is positive, even if the
probability of Even is positive and probability of Six is 0! This violates
one of the obvious properties of conditionals, i.e. (IMP∗).
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X. This shows, that not every probability distribution is suited to
model conditionals  and not every update method is admissible. In
particular, being bold and moderate is neither a necessary nor a sufficient
condition of being Dutch Book resistant.

XI. Our findings might suggest, that the Converse Dutch Book is
false. Indeed, there is a Dutch Bookable probability distribution P∗

Bob.
However, the problem is that this probability distribution is not adequate
because it has been obtained in a wrong way. The classic Converse Dutch
Book theorem operates in the “Boolean environment”, and is not affected
in any way by our findings.

XII. Alice’s update method is safe: after her update, if she uses her
(PAlice)∗ she cannot be Dutch booked. The explanation is that condition-
als should be evaluated in the light of factual knowledge: if new factual
knowledge is obtained, the factual probability distribution is updated
(and PAlice is produced), and only then the appropriate LCOND-space
(SAlice)∗ is chosen. So, contrary to Hájek’s claim, if you are a Bayesian
agent who seeks to conform to PCCP at all times, you are able to ra-
tionally (even if not moderately from the point of view of the initial
distribution P∗) revise your opinions regarding certain propositions.
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