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Paradoxes versus Contradictions
in Logic of Sentential Operators∗

Abstract. Classical logic, of first or higher order, is extended with senten-
tial operators and quantifiers, interpreted substitutionally over unrestricted
substitution class. Operators mark a single layered, consistent metalan-
guage. Self-reference, arising from substitutional quantification over sen-
tences, allows to express paradoxes which, unlike contradictions, do not
lead to explosion. Semantics of the resulting language, using semi-kernels
of digraphs, is non-explosive yet two-valued and has classical semantics as
a special case for clasically consistent theories. A complete reasoning is
obtained by extending LK with two rules for sentential quantifiers. Adding
(cut) yields a complete system for the explosive semantics.

Keywords: sentential operators; semantic and intensional paradoxes; classi-
cal logic; paraconsistent semantics; (semi)kernels of digraphs

1. Introduction

Much of the appeal of dialetheism arises from the liar and his likes ap-
pearing true and false, true iff false, or something of the sort. Confronted
with the liar, we note the contradiction and . . . continue reasoning the
way we did before, as if locking it in a drawer to be reopened only for a
renewed contemplation of its oddity. We do not explode, which seems an
over-reaction. But declaring contradictions true is no less drastic. The
notion of contradiction becomes abstruse, if at all survives. Unsatisfiable
sentences disappear, at least in LP, where being only false is inexpressible
and each falsifiable sentence is also satisfiable.
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Logic of sentential operators, LSO, avoids both extremes. It distin-
guishes contradictions from paradoxical claims which only lead to them,
enabling classical reasoning (except explosion) in the face of the latter.
The difference may be illustrated by the scenario from [4]:

Imagine a situation in which many clubs have hired secretaries but have
established rules excluding such secretaries from membership. Suppose
that these secretaries form their own club, the rules of which state: ‘A
person is eligible to join this club if, and only if, he (she) is secretary of
a club which he (she) is not eligible to join.’ All goes well for the club
until it hires itself a secretary [. . . ] who has the misfortune of being
secretary of no other club.

Possible occurrences of such situations are not prevented by the implied
contradiction. It does not affect the world and clubs can function with
secretaries until the unfortunate hiring, upon which one simply adjusts
the rule, e.g., excepting the secretaries’ club. The possibility of actually
occurring distinguishes such situations from plain contradictions. One
can not both be and not be a secretary (putting possible ambiguities
aside)  presumably, even for the dialetheists.

Another difference is that paradoxes, although implying contradic-
tions, are not merely hidden or unnoticed ones. Contradictions, when
identified, are simply recognized as false, while paradox can not be as-
signed any boolean value. This difference disappears when metalanguage
is internalized in the object-language via Gödelization or similar means.
Paradox becomes then a mere contradiction involving perhaps meta-
language, but only informally, since metalanguage became part of the
object-language. The main medicines in classical context are restrictions
on convention (T) that ensure consistency by preventing interpretation
of some numbers as statements, which they actually code. But conven-
tion (T) provides only one example of problems. When metapredicates,
internalized as predicates on arithmetized syntax, reproduce some basic
modal properties, elements of temporality, or just negation, the diago-
nalization lemma yields paradoxes without convention (T) [14, 24, 12, 6].

Corresponding paradoxes do not arise with operators, suggesting that
they may be less paradox prone. Advantages of modal operators are re-
viewed in [11], while this paper develops such suggestions into a general
formalization of sentential operators, not limited to modalities. We view
an operator applied to a sentence S as a metastatement about S. It
may concern syntax of S, its semantics or mark its intensional context,
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e.g., of being said or claimed. Appropriate axiomatizations can turn
operators into usual modalities, but we do not address special cases and
view operators here primarily as devices of metalanguage. Of course,
with operators handling enough of syntax, especially substitution, the
usual paradoxes return [17, 9], but this requires operators on open for-
mulas, which are left for future work. In the present paper operators
and quantification over sentences (closed formulas) give self-reference
without diagonalization lemma nor unavoidable paradoxes. Reflecting a
language model different from that arising with predicates over arithme-
tized syntax, sentential operators offer a different view of paradoxes and
different ways to avoid them:

• Paradoxes are not mere contradictions but form locally coherent
wholes. Unlike contradictions, they can occur in the world without
forcing any explosion.

• They arise only in the metalanguage, by unfortunate definitions of
sentential operators (restriction to sentences reflects only restrictions
of the present formalism, not of this claim which extends to operators
on open formulas).

• Paradoxical claims imply only specific contradictions. The liar im-
plies that he is lying and not lying, but nothing about the actual
world or statements of others. In particular, no object-level state-
ments follow from such metalevel claims.

• Paradoxes are avoided by not making such claims, formally, excluding
certain valuations of sentential operators, which form atomic state-
ments of the metalanguage.

• The difference between merely implying a contradiction and explo-
sion is captured in reasoning by inadmissibility of (cut). It is admis-
sible only at the object-level, while adding its unrestricted version
turns paraconsistent logic into explosive one.

Paraconsistency of LSO is thus extremely weak. No model satisfies
A ∧ ¬A, but paradoxes of metalanguage, implying contradictions, have
locally coherent models. Contradictions implied concern only metalan-
guage, statements under operators, e.g., that the liar lies and tells the
truth. Like in informal reasoning, virtually nothing else is implied by the
liar. Affecting thus only metalanguage, paradoxes do not force explosion
and allow classically consistent interaction with the rest of the world,
e.g., in the object-language.

Section 2 introduces an extension of any classical, first or higher
order, language with sentential quantifiers and operators and Section 3
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presents the corresponding semantic notions. Any classical language L
is first extended with quantification over sentences, s-quantification, that
is not propositional (ranging only over truth-values) but substitutional
with the unrestricted substitution class, containing all sentences of the
extended language. This extension does not introduce any paradoxes, as
it does not even increase expressive power of the language. Then, as in-
dicated, we do not internalize metalanguage, but use instead sentential
operators (sentential predicates or s-predicates are synonyms), obtain-
ing the full language L+. Operators distinguish the metalevel from the
object-level. Unrestricted s-quantification extends to the full language
L+ which remains consistent, that is, paradoxes can be avoided, but can
now occur. Just like informally they occur due to some maliciously for-
mulated claims, they appear formally due to unfortunate atomic claims,
valuations of s-predicates. Reading K(S) as Karen saying sentence S,
Kl = ∀φ(Kφ → ¬φ) states that every sentence Karen says is false.
K(Kl) is not paradoxical, as Karen can also say some true things. How-
ever, Karen saying only Kl is paradoxical, implying Kl ∧ ¬Kl, and this
is caused only by what Karen is saying, valuation of the s-predicate K.

S-predicates need not be truth-functional and can treat arguments
purely syntactically, but do not aim at any deeper analysis of intensional
phenomena. LSO is an intensional logic only in so far as s-predicates can
be opaque, failing to preserve logical equivalence of arguments. However,
it neither provides any intensional semantics nor considers the status of
propositions or propositional attitudes. Propositions appear at most as
mere sentences, while examples blur easily borders between “says φ”,
“thinks φ”, “intends φ”, etc.. The significant distinction is that between
statements with and without s-predicates, between the metalevel and
the object-level. Modalities, attitudes or intensions can be handled by
further axiomatizations of s-predicates.

Although intensional paradoxes are not addressed explicitly, they
arise and can be treated in LSO in the same way as the semantic ones.
The liar is significantly different neither from one not believing any of
his beliefs nor from a club whose members are people not belonging to
any club. Problems are caused by the same patterns involving primarily
vicious circularity, captured precisely by our semantics utilizing graphs.
Truth of sentence ∀φ.φ requires truth of each instance, in particular, of
this very sentence. It is false due to existence of other false sentences,
but the graph semantics substantiates such dependencies and allows to
handle related circularity and impredicativity, marginalizing for instance
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the issue of (un)groundedness. Vicious circles, that is, unresolvable odd
cycles in language graphs, are the prime reasons for paradoxes, distin-
guishing them also from contradictions. (Also Yablo-like paradoxes can
be expressed in LSO, but we do not discuss them separately here.)

Another central feature of our semantics is that interpretation of
consistent theories, coinciding with the classical semantics, arises as a
special case of the non-explosive one. Relations between the two are
summarized in Section 3.5. Informally, exclusive claim of always lying
does not entail much beyond the contradiction that one is lying and
not lying. LSO reflects this limited consequence. Nothing follows about
what others may be saying, nor about whiteness of snow. Semantics of
such local coherence, admitting nonsense but circumscribing its effects,
utilizes the graph-theoretic generalization of kernels (providing the clas-
sical, explosive semantics) to semi-kernels. These are like locally coherent
situations, allowing classical valuation of the pronounced sentences but
disallowing its extension to the whole language, when contradiction is
implied.

These close connections between explosive and paraconsistent seman-
tics are reflected in reasoning system LSO, extending LK with two rules
for s-quantifiers. S-predicates and s-quantification bring flavor of higher
order, but the operator form of the former and substitutional interpre-
tation of the latter allow LSO to be sound and complete for the paracon-
sistent semantics of FOL+. This reasoning is classical in that it retains
all rules of LK, except for (cut). Explosive  one might want to say,
fully classical  semantics is reflected by reasoning in LSO extended with
(cut). It conjoins a specific contradiction, implied by a paradox, with all
statements, implied by any contradiction. Thus also (cut) reflects the
difference between contradictions and paradoxes, or between the object-
level, where it is admissible, and the metalevel, where it makes paradoxes
explode.

Although LSO allows thus paradoxes to occur, providing the means
for their analysis as well as for functioning in their presence, it does not
imply any paradoxes. Central theorems ensure consistency of the whole
language, relatively to the choice of the atomic claims.

Section 4 collects earlier examples into a bigger one, illustrating also
connections to the motivations (but not the formalism) of Jaśkowski’s
discussive logic. Section 5 summarizes the main threads, while Appen-
dices A and B contains the proofs and needed technicalities.
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2. Reasoning about sentences

A classical (propositional, first or higher order) language L is extended
in two steps. First, LΦ is obtained by adding free sentential variables,
s-variables Φ, as well as bound s-variables Ψ which are s-quantified in
the usual manner, so that ∀φ∀x(A(x) ∨φ) is a sentence.1 To this we add
operators (or s-predicates), applicable to sentences, so that ∀x∀φ(A(x) ∨
φ ∨ P (φ)) is a sentence. In the resulting language L+, the substitution
class for the interpretation of s-quantifiers comprises all sentences of L+.
The grammar below contains these extensions of FOL to FOL+ in the
underlined productions for atoms A+

X,Φ and formulas F+
X,Φ

TX ::= X | Y | Const | Func(TX , . . . ,TX)

A+
X,Φ ::= P1(TX , . . . ,TX) | C | P2(F+

X,Φ, . . . ,F
+
X,Φ,TX , . . . ,TX)

F+
X,Φ ::= A+

X,Φ | ¬F+
X,Φ | F+

X,Φ ∧ F+
X,Φ | ∀Y.F+

X,Φ | Φ | Ψ | ∀Ψ.F+
X,Φ

Sentential constants C can be applied for naming sentences. S-predicates
P2 can also have terms TX as arguments, but these are handled in the ex-
pected way, mostly, without explicit mention. Not assuming any seman-
tic restrictions, s-predicates treat their arguments purely syntactically,
acting possibly as metapredicates in a theory of syntax, although the
grammar above restricts their application to formulas and terms. In this
paper, we restrict them even further, essentially to sentential operators,
defining their semantics only in contexts where their arguments have no
free variables, primarily, when applied to sentences. Like all formulas,
atoms are divided into

(a) L atoms, AX , e.g., A(t) for A ∈ P1 and t ∈ TX , and
(b) metalevel or s-atoms, A◦

X,Φ = A+
X,Φ \ AX , e.g., C ∈ C, R(S, t) for

R ∈ P2, S ∈ F+
X,Φ, t ∈ TX .

For a set M , by TM we denote the free term algebra over M , by SM/S
+
M

all L/L+ sentences over TM , and by S/S+ all L/L+ sentences. Super-
script _◦ marks the metalevel, added to the object-level L and yielding
the resulting extension _+, e.g., L◦ = L+ \ L, S◦

M = S+
M \ SM , etc..

Reasoning system LSO for FOL+, given below, extends LK with two
rules for s-quantifiers. The basic syntax uses only {∧,¬, ∀}, with other

1 Syntactic distinction between free and bound variables (Φ ∩ Ψ = ∅ for s-
variables, and X ∩ Y = ∅ for object-variables, where X/Φ are free and Y/Ψ bound) is
a technicality which can be ignored in the text and examples as long as substitutions
avoid variable capture. It only simplifies the proof of completeness.
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connectives and ∃, and rules for them, defined in the classical way. Se-
quents, written Γ ⇀⇁ ∆, are formed from countable sets Γ ∪ ∆ of F+

X,Φ.
By Γ ⊢ ∆ we denote provability of Γ ⇀⇁ ∆ in LSO.

(Ax) Γ ⊢ ∆ for Γ ∩∆ 6= ∅

(¬L)
Γ ⊢ ∆,A

¬A, Γ ⊢ ∆
(¬R)

A, Γ ⊢ ∆

Γ ⊢ ∆,¬A

(∧L)
A,B, Γ ⊢ ∆

A ∧B, Γ ⊢ ∆
(∧R)

Γ ⊢ ∆,A Γ ⊢ ∆,B

Γ ⊢ ∆,A ∧ B

(∀L)
F (t), Γ, ∀yF (y) ⊢ ∆

Γ, ∀yF (y) ⊢ ∆
t ∈ TX (∀R)

Γ ⊢ ∆,F (x)

Γ ⊢ ∆, ∀yF (y)
x ∈ X

(∀+
L )

F (S), Γ, ∀ψF (ψ) ⊢ ∆

Γ, ∀ψF (ψ) ⊢ ∆
S ∈ F+

X,Φ (∀+
R )

Γ ⊢ ∆,F (α)
Γ ⊢ ∆, ∀ψF (ψ)

α ∈ Φ

In (∀+
L ), (∀L) the substituted t, S are arbitrary (S violates typically sub-

formula property), while x, α in (∀+
R ), (∀R) are fresh free variables.

Infinite sequents allow to handle cases of infinite axiomatizations.
An example is a typical situation of making only finitely many claims.
Karen saying only A or B is not captured by K(A) ∨K(B), but requires
in addition explicit ¬K(S) for every S distinct from A and B. Such
cases have finite representation using s-predicate for syntactic equality
of sentences, s-equality S

.= Q, which requires only a trivial check. We
consider practically only sequents with no free s-variables, but they are
useful as eigenvariables, rule (∀+

R ), and for handling s-equalities. For
instance, ‘Karen saying only φ’ is expressible as Kφ∧∀ψ(Kψ → ψ

.= φ),
abbreviated by K!φ. The following rules suffice, for S,Q,R ∈ F+

X,Φ; in
(neq) Q 6∼ R denotes that Q and R are not unifiable (with standard
first-order unification, only substituting formulas for s-variables):

(ref) S
.= S, Γ ⊢ ∆

Γ ⊢ ∆
(rep)

A(S), A(Q), S .= Q, Γ ⊢ ∆

A(Q), S .= Q, Γ ⊢ ∆

(neq) Γ ⊢ ∆,Q
.= R

Γ ⊢ ∆
Q 6∼ R.

Claims like ‘for every sentence α except S1, . . . , Sn: D(α)’ become
finitely expressible as ∀α(α 6

.= S1, . . . , α 6
.= Sn → D(α)), allowing some-

times to establish ∀φD(φ) by finite case analysis, introducing fresh
α ∈ Φ:

Γ ⊢ ∆,D(S1) . . . Γ ⊢ ∆,D(Sn) Γ ⊢ ∆,D(α), α .= S1, . . . , α
.= Sn

(∀
.
=

R)
Γ ⊢ ∆, ∀φD(φ)
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Some properties of LSO, like soundness/completeness, the interaction of its
object-level and metalevel, the role of (cut), will be discussed along with the
explanation of the semantics.

3. Semantics

We keep the presentation focused on FOL, but semantic definitions and results
of this section work equally for higher order classical logics. Informally, an
interpretation of the object-level sentences S in a structure M is extended to
S+ by interpreting s-quantifiers substitutionally:

M |= ∀φF (φ) ⇐⇒ ∀S ∈ S+: M |= F (S). (3.1)

The right side has instances like F (∀φF (φ)) or F (F (∀φF (φ)) ∧ ∀φF (φ)), ap-
parently involving the definiendum. Such circularities are handled by recasting
semantics in terms of graph kernels.

Saying “graph” we mean a digraph G = (VG,EG), with EG ⊆ VG × VG,
and E−

G denoting the converse of EG. The subscript _G is dropped when
an arbitrary or fixed graph is addressed. For a binary relation E, we let
E(x) = {y | E(x, y)} and extend function applications pointwise to sets,
E(X) =

⋃

x∈X E(x). A kernel (or solution, introduced in [27]) of G is a K ⊆ V,
which is

(a) independent, i.e., E−(K) ⊆ V\K, and
(b) absorbing, i.e., V\K ⊆ E−(K),

in short, such that E−(K) = V \ K. Equivalently, it is an assignment κ ∈ 2V,
such that

∀x ∈ V: κ(x) = 1 ⇐⇒ ∀y ∈ E(x) : κ(y) = 0. (3.2)

Intuitively, each edge marks negation of its target, and branching stands for
conjunction of such negations. Given (3.2), the set {x ∈ V | κ(x) = 1} satisfies
(a) and (b), while if K satisfies (a), (b) then κ ∈ 2V given by κ(x) = 1 ⇐⇒
x ∈ K satisfies (3.2). We therefore do not distinguish the two and by sol(G)
denote the set of kernels or such assignments. Graph G is solvable if sol(G) 6= ∅.

The equation E−(K) = V\K means that kernel K covers the whole graph,
where a subset L ⊆ V covers vertices L∪E−(L), denoted by E−[L]. A valuation
is coherent on vertices for which it satisfies (3.2), so a kernel represents a
coherent valuation of all sentences. Our semantics is two-valued but admits
paraconsistency, that is, only locally coherent valuations with no extension to
the whole language. In the absence of a kernel, containing all sentences required
to be true, a relevant part of the graph may still be covered by a semi-kernel,
[15], namely, an L ⊆ V such that

E(L) ⊆ E−(L) ⊆ V\ L. (3.3)
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The set of semi-kernels of G is denoted by SK(G). A kernel is a semi-kernel
covering the whole graph. In a kernel, falsehood of every vertex in V \ K is
justified by an edge it has to some (true) vertex in K. In a semi-kernel L, such a
justification is required only for vertices which are out-neighbours of L and must
have an edge back to L, E(L) ⊆ E−(L). The inclusion E−(L) ⊆ V \ L makes
L independent. A semi-kernel L satisfies equivalence (3.2) for all x ∈ E−[L].
Thus it represents a coherent situation, in the sense that all statements denied
by any true one (in L) are false (in E−(L)), while every false statement denies
some true one. We will later see that such a coherent situation, although locally
consistent in this sense, can entail inconsistency.

Every graph possesses a semi-kernel, since ∅ satisfies trivially (3.3). But
semi-kernels of interest are nontrivial, also in graphs not possessing any kernel,
as we will see in what follows.2

3.1. Language graphs

Semantics of a language L+ is defined by (semi)kernels of language graphs. One
such graph is constructed for each L-domain: a set M with an interpretation of
L-terms TM but not of the predicate symbols. Graph’s vertices are sentences
S+
M and outgoing edges amount to conjunction of the negations of their targets.

A sink is a vertex with no outgoing edges and X stands for ¬X.

Definition 3.1. The language graph GM (L+), for a language L+ and domain
M , is given by:
1. Vertices V = S+

M
2. Each atomic sentence A ∈ A+

M , except s-equality, has a 2-cycle to its nega-
tion: A⇆ A.

3. For each S ∈ S+
M , s-equality atom S

.
= S is a sink; for each syntactically

distinct S,Q ∈ S+
M , vertex Q .= S has an edge to the sink Q .= S.

4. Each nonatomic sentence S ∈ S+
M is the root of the subgraph GM (S):

GM (S) = root with edges to the root of:

(a) ¬F → GM (F ),
(b) F1 ∧ F2 → GM (¬Fi), for i ∈ {1, 2},
(c) ∀xFx → GM (¬F (m)), for each m ∈ M ,
(d) ∀φFφ → GM (¬F (S)), for each S ∈ S+.

This definition is for FOL, but when L is higher-order the only difference
is the domain M , containing required sets, with object quantifier(s) in 4.(c)
ranging over their required L-domains.

2 The branch of argumentation theory arising from [7] shares only its origins in
a similar reading of digraphs and their (semi)kernels. Links to reference graphs, used
in [21, 3] for paradox analysis, although closer, are also insignificant.
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∀φD(φ)
yysss �� ''PP

PP

''

∃xD(x)

��
D(S1)

��

D(S2)

��

D(∀φD(φ))

��

. . .

��

∀x¬D(x)

yyrrr
r

�� %%❑❑
❑❑

))D(S1) D(S2) D(∀φD(φ)) . . . D(a) D(b) D(c) . . .

Figure 3.1.

Keeping L+ implicit, we write usually GM instead of GM (L+), and by LGr
denote the class of all language graphs for a language relevant in any actual
context. We drop also M when it is inessential, and write G for GM (L+).

Drawing graphs, different vertices are often labelled by the same sentence.
Two such vertices, say x and y, have then isomorphic out-neighbourhoods and
recursively so, i.e., the subgraphs E∗(x) and E∗(y) are isomorphic. Identifying
such vertices does not change (semi)kernels in any essential way, as intuition
suggests and Fact A.2 shows. Aux denotes the set of such extra vertices serving
the presentation only.

For S ∈ S, the subgraph G(S) is actually a tree T (S), reminding of S’s
parse tree but, primarily, reflecting the semantics of the formula constructors
(¬,∧, ∀) in terms of kernels. Out-branching represents conjunction (or universal
quantification), and each edge negation of its target. The 2-cycles at atoms
force, in any kernel, choice of one element from each pair, giving valuations of
atoms; sinks are true by (3.2).

The universal and existential quantifiers give rise to branchings, as shown in
Figure 3.1, to instantiations of the quantified variables by all elements a, b, c, . . .
of the domain, and of s-variables by all S+. (A double edge x → y → z, where
x has no other out-neighbours and y no other neighbours, can be contracted
by removing y and identifying x = z, Fact A.1. This is done for ∃-pattern to
the right.)

Quantifier prefix is converted to the graph by successively performing such
branchings and instantiations, until no quantified variables remain.

Representation of propositional connectives follows the same pattern: con-
junction by branching and negation by an edge. Assuming a sentence in prenex
form with the matrix in DNF, the quantifier prefix ends with DNF-feet, one
for each instantiation of the quantified variables. For example, DNF matrix
D(φ, x) = (¬φ ∧ ¬Q(x)) ∨ (¬P (φ) ∧ R), where R is a ground atom, gives one
DNF-foot for each instantiation of φ and x, e.g., by S ∈ S+ and a ∈ M in
GM (D(S, a)) (see Figure 3.2).

Vertex ◦
D(S,a)

is the sentence ¬C1(S, a) ∧ ¬C2(S, a) ∈ S+
M , while the auxil-

iary C1(S, a) the sentence ¬S∧¬Q(a). For K ∈ sol(GM (D(S, a))): D(S, a) ∈ K
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D(S, a) // ◦
D(S,a)

tt❤❤❤❤❤
❤❤❤❤

❤
))❙❙❙

❙❙❙

C1(S, a)
�� &&◆◆

◆◆
C2(S, a)

�� %%❑❑
❑❑❑

S Q(a)
��

P (S)
��

R

��
¬S

OO

Q(a)

OO

P (S) R

OO

Figure 3.2. A DNF-foot of matrix D(φ, x) = (¬φ ∧ ¬Q(x)) ∨ (¬P (φ) ∧ R).

iff ◦
D(S,a)

/∈ K iff C1(S, a) ∈ K ∨ C2(S, a) ∈ K iff {¬S,¬Q(a)} ⊆ K ∨

{¬P (S), R} ⊆ K, reflecting the expected D(S, a) = 1 iff S = 0 = Q(a)∨P (S) =
0 ∧R = 1.

Subgraph GM (L) described so far captures language L. For each L-sentence
A, its subgraph GM (A) sketched above is a tree except that, instead of leaves,
there are atoms with 2-cycles. Exactly one element from such a cycle can be
in any kernel and every such a tree has exactly one kernel for every selection
from these cycles. Inclusion of P (S) and R from (3.2) in a kernel K forces,
by independence, P (S) and R out of it. This, in turn, forces C2(S, a) ∈ K
by absorption, so that ◦

D(S,a)
6∈ K and D(S, a) ∈ K. This implication from

{P (S), R} ⊆ K to D(S, a) ∈ K reflects the implication from ¬P (S) ∧ R to
D(S, a). Kernel K of GM (L) represents exactly the satisfied formulas under
valuation of atoms K|AM

, given by the selection from atomic 2-cycles.
There is thus a bijection mapping a FOL structure (M, ρ), ρ ∈ 2AM, to the

language graph with kernel (GM (L), Kρ), where A ∈ Kρ ⇐⇒ ρ(A) = 1 for
LM -atoms A. Then also for all S ∈ SM

(M, ρ) |= S ⇐⇒ S ∈ Kρ (3.4)

and this correspondence underlies the generalization of FOL semantics in what
follows. A kernel for a language graph determines boolean values of all sen-
tences, amounting to absence of paradoxes.

The full graph GM (L+) has, besides the forest GM (L) described above, also
subgraph GM (L◦) containing subgraphs GM (A) for sentences with s-quantifiers,
A ∈ S◦

M . Such a GM (A) is obtained point 4.(d) of Definition 3.1, but substi-
tution into A of each S ∈ S+ for s-variable φ in a sentential position, i.e., not
in the scope of any s-predicate, like φ in C1 = ¬φ ∧ ¬Q(x), becomes so to
say postponed. S is not processed during further construction, and the vertex
appearing in its position(s) as leaf of the DNF-foot in (3.2) obtains a double
edge to the root of the subgraph GM (S). (The double edge can be contracted, as
explained before but keeping the two separate gives a more intuitive picture.) In
particular, also sentence A is thus substituted for s-variable φ, and the resulting
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Figure 3.3.

leaf has a double edge to the root of this very GM (A). Every S ∈ S+, substituted
for φ in A, either occurs on some path from the root A as an internal node or
not. In the former case, the leaf S is called an internal atom of GM (A), and
has a double edge back to its occurrence in GM (A) (possibly forming a cycle).
In the latter case, when S occurs in GM (A) only as a leaf, it is its external

atom, ext(GM (A)), and has a double edge to the root of its separate GM (S). In
this case, if S itself is s-quantified, its subgraph instantiates its s-variables by
all sentences, in particular by A, giving paths back to the root of GM (A). All
s-quantified sentences among S◦ form thus one strongly connected component
of GM (L+). Their leaves instantiated with sentences SM have double edges to
the subgraph GM (L), but there are no edges returning thence to GM (L◦).

Such double edges, yielding cycles and connecting distinct sentence sub-
graphs, arise only from sentences substituted for s-variables in sentential posi-
tions. Sentences substituted into nominal positions, i.e., into the scope of some
s-predicate, form atoms with 2-cycles to their duals, like P (S) ⇆ P (S) in (3.2),
arising from substituting S into P (φ).3

Example 3.1. Let S1, S2, . . . stand for all S+, except the leftmost two in each
graph sketched below: G(A∀), for sentence A∀ = ∀φ.φ, and G(A∃) for A∃ =
¬∀φ.¬φ. Only the essential aspects are indicated, ignoring other edges and
cycles in Figure 3.3.

In the left graph G(A∀), the two vertices A∀ (as well as ∀φ.φ and A∀) could
be identified. Any Si ∈ S+ valuated to 0 yields Si = 1 and ∀φ.φ = 0, but even
if all Si = 1, the mere cycles involving A∀ and A∀ force ∀φ.φ = 0. To obtain a
kernel, the odd cycle via A∀ must be broken, i.e., some of its vertices must have
an out-neighbour = 1. If all Si = 0, this still happens when both A∀ = 1 = ◦,
making A∀ = A∀ = 0 = ∀φ.φ. Thus, ∀φ.φ is a counterexample to its own truth.

3 These 2-cycles are formed only for atoms with the outermost s-predicate. Sub-
stituting S into P (φ, Q(φ)) yields atom P (S, Q(S)) with edges to its dual P (S, Q(S)).

The inner Q(S) does not obtain any edges to its dual Q(S), which happens only for
the atom Q(S) that occurs in sentential position.
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A dual situation occurs in G(A∃), where kernel requires breaking the odd
cycle via • and A∃. This happens if any Si = 1, but even if they all are 0,
the odd cycle via A∃ and even one via A∃ force ∃φ.φ = 1. The only way to
break the odd cycle is then by A∃ = 0, which requires A∃ = 1, complying with
• = 0 = ◦ and ∃φ.φ = 1, which provides thus a witness to its own truth.

This completes the description of language graphs. They can be seen as
consisting of the trees for all object-language sentences and the circular com-
ponent of the metalanguage, capturing respectively the classical compositional
semantics of the former and the holistic self-references of the latter. Before
using them to define validity, an important issue should be clarified. One
wonders naturally if complexity of language graphs does not hide unavoidable
paradoxes. Section 3.2 shows that, for language LΦ with s-quantifiers but no
s-predicates, language graphs not only have kernels, but have unique one for
every valuation of L atoms. Section 3.3 shows then that although in the full
language L+ paradoxes become expressible, also its graphs are solvable.

3.2. Sentential quantifiers and solvability of G(LΦ)

In LΦ, extending the object-language L with s-quantifiers but no s-predicates,
s-variables occur only in sentential positions. The only atoms are L-atoms A
(and possibly C. When A = ∅, the language ∅Φ is that of quantified boolean
sentences, QBS.) Given a domain M and ρ ∈ 2AM , all LΦ sentences obtain
values under unique extension of ρ to a kernel ρ̂ of the graph GM (LΦ).

Theorem 3.1 (A.4). In any graph GM (LΦ), each valuation of atoms ρ ∈ 2AM

has a unique extension ρ̂ ∈ sol(GM (LΦ)) with ρ̂|AM
= ρ.

Proofs are given in Appendix A (with the corresponding theorem number
in parentheses), but we comment briefly that the proof of this theorem relies
on the lemma below, showing that for any solution of G−

M (S)  denoting, for
S ∈ SΦM \ SM , vertices of GM (S) without those in its DNF-feet  depends on
the valuation of AM , but not of external atoms ext(GM (S)), as the second part
of the lemma states. In a way, DNF-matrix determines a boolean function,
and the value of S depends on this function (and valuation of AM ), rather
than on the values of external atoms, which span all possibilities. Valuation of
ext(GM (S)) affects, of course, values in DNF-feet, where they occur. For either
A from Example 3.1, the lemma implies that valuation of G−(A), i.e., the root
vertex with its marked cycles, is independent from valuation of all external
atoms among S1, S2, etc..

Lemma 3.2 (A.5). For every GM (LΦ) and sentence A ∈ SΦM , each valuation

ρ of atoms AM and external atoms of GM (A), ρ ∈ 2AM ∪ext(GM (A)), has a

unique extension to ρA ∈ sol(GM (A)). Valuation of atoms, ρ|AM
, determines

restriction of ρA to G−
M (A).
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Valuation of sentences SΦM \ SM does not have any standard definition,
which is merely suggested by (3.1). By Theorem 3.1, such a valuation ρ̂ is
determined by ρ ∈ 2AM , just as is valuation of SM . Existence and uniqueness
of ρ̂ ensure well-definedness of (3.1), given by the following.

Definition 3.2. An LΦM -sentence A is true in an L domain M under valuation
ρ ∈ 2AM , (M, ρ) |= A, iff ρ̂(A) = 1 for the unique solution ρ̂ ∈ sol(GM (LΦ))
with ρ̂|AM

= ρ.

This gives, for any theory Γ ⊆ SΦ a well-defined class of its models

Mod(Γ ) = {(M, ρ) | ∀A ∈ Γ : (M, ρ) |= A} =
⋂

A∈Γ Mod(A).

The bijection (3.4) between FOL structures and graphs with kernels, mapping
(M, ρ) to (GM , Kρ), extends to FOLΦ mapping (M, ρ) to (GM , ρ̂).

Theorem 3.1 implies that extension of a classical language L with quan-
tification over all sentences to LΦ preserves L’s property of having a unique
consistent valuation of all sentences for every valuation of atoms: LΦ remains
free from paradoxes. The same holds for the language L

.
=, extending LΦ with

syntactic equality
.
=, by a non-trivial extension of the proof of Theorem 3.1.

Claim 3.3. In any graph GM (L
.
=), each valuation of atoms ρ ∈ 2AM has a

unique extension ρ̂ ∈ sol(GM (L
.
=)) with ρ̂|AM

= ρ.

3.3. Sentential predicates and solvability of G(L+)

Predicates applied to sentences provide only fresh atoms, so one might think
that everything works unchanged. It does, if only such predicates are intro-
duced without sentential quantifiers. The language graph  which is then, as
for the object-language, a forest only with new s-atoms  is uniquely solvable
for every valuation of atoms. However, combination of s-predicates with s-
quantifiers changes things dramatically. For instance, blind ascriptions of truth,
called also infinitary conjunctions, namely claims like “All Ks are true”, for
K ∈ P2, become expressible as ∀φ(Kφ → φ).4 Technically, a more signifi-
cant novelty is the dependence of valuations of s-predicates on their argument
sentences, not only boolean values of these sentences, and the possibility of
violating semantic equivalence of arguments. Consequently, only even cycles
can be broken, without breaking the corresponding odd ones, leading to para-
doxes. Unlike valuations of L-atoms in a domain M , which determine unique

4 Their role for truth-theory has been discussed at least since Quine’s [20]. When
syntax is arithmetized, they become problematic due to complications in controlling
their interaction with the restrictions on convention (T), e.g., [10, 18]. In LSO, a
paradox requires a sentence or s-variable to occur in both a sentential and a nominal
position, exemplified also by such blind ascriptions.
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Figure 3.4.

solutions of the graph GM (LΦ), some valuations of s-atoms can make graph
GM (L+) unsolvable, as illustrated by the example below.

Concerning representation of the liar, its form L ↔ ¬L, or L ↔ ¬T (L)
with (T) ∀φ(T φ ↔ φ), gives a straightforward contradiction, distinguished
from paradox in Section 3.5. Self-reference arises in LSO via s-quantification,
so “This sentence is false” is recast as saying only “Every sentence I am saying
now is false”.

Example 3.2. The liar Karen says only that everything she is saying is false,
K!Kl, where Kl = ∀φ(Kφ → ¬φ). Semi-kernel L = {K(Kl)}∪{K(S) | S 6

.= Kl}
captures this situation, but can not be extended to any kernel because K(Kl) =
1 makes K(Kl) = 0, while each X∧K(X) = 0, for X 6

.
= Kl, due to K(X) = 1.

Thus odd cycle Kl − Kl −Kl∧K(Kl) remains unresolved (see Figure 3.4).

FOL+ can thus express some paradoxes, but does not imply any. They
appear, as in the example, only due to unfortunate valuations of s-atoms. For
a classical language L, L+ remains consistent.

Theorem 3.4. Every language graph GM (L+) has a kernel.

A simple way of ensuring solvability of a graph GM (L+) is to start with
its solvable subgraph GM (LΦ), and to introduce new s-predicate by definitional

extension, i.e., by a sentence

∀φ(P (φ) ↔

Æ

ψF [φ, ψ]) (3.5)

where F is an LΦ-formula (possibly with free variables φ among those of the left
side P (φ)). Theorem 3.4 follows directly from the following. (Kernel models of
Γ , explained below, are graph kernels containing Γ .)

Theorem 3.5 (A.8). For every Γ ⊆ L+ and its definitional extension F , every

kernel model of Γ can be extended to a kernel model of Γ ∪ F .

In practice, s-predicates are introduced also in ways other than definitional
extensions, and then consistency has to be verified in each case. Theorem 3.5,
applied after 3.1(3.3) guarantees only that no contradiction nor paradox is
hiding in the language itself.
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3.4. Semi-kernel and kernel semantics

Semantics utilizes (semi)kernels, representing sets of true sentences under val-
uations of atoms determined by these (semi)kernels. An L+-sequent Γ ⇀⇁ ∆ is
valid, Γ |= ∆, iff every relevant situation satisfies it in every language graph
GM ∈ LGr(L⊕), where L⊕ ⊇ L+ is an arbitrary extension of L+ with fresh
s-constants.5 A situation is a semi-kernel L, it is relevant if it covers Γ ∪ ∆,
i.e., Γ ∪ ∆ ⊆ E−[L] = E−(L) ∪ L, and it satisfies the sequent if some D ∈ ∆
is true, i.e., D ∈ ∆ ∩ L, or some G ∈ Γ is false, i.e., G ∈ E−(L). (This is
generalized to valuations α ∈ (M ∪ S+)V(Γ,∆) of free variables V(Γ,∆), with
α(A) denoting the result of such a valuation of A’s free s-variables in S+ and
its free o-variables in M .)

Γ |= ∆ ⇐⇒ ∀L⊕ ⊇ L+ ∀GM ∈ LGr(L⊕) ∀L ∈ SK(GM ) : L |= Γ ⇀⇁ ∆,

L |= Γ ⇀⇁ ∆ ⇐⇒ ∀α ∈ MV(Γ,∆) : L |=α Γ ⇀⇁ ∆,

L |=α Γ ⇀⇁ ∆ ⇐⇒ α(Γ ∪∆) ⊆ E−[L] → (α(Γ ) ∩ E−(L) 6= ∅)

∨ (α(∆) ∩ L 6= ∅). (3.6)

For Γ ⊆ S+, semi-kernel models are pairs (G, L) ∈ LGr(L+)×SK(G) satisfying
⇀⇁ F , for all F ∈ Γ . Such models allow conundrums among S◦ affect their own
truth, yielding paradoxes or sentences with undetermined values, even when the
object-language and s-atoms are fully interpreted. Nevertheless, each valuation
ρ of L-atoms determines interpretation of the object-language, independent
from possible paradoxes in the following sense. By Theorem 3.1, the subgraph
G(L) (and G(LΦ)) has a kernel – reflecting simply the standard interpretation
of L under ρ. Due to absence of edges from G(L) to G(L◦), this kernel is a
semi-kernel of G(L+), independent from valuation of metalevel sentences S◦

and from possible nonexistence of a kernel of G(L+) extending ρ.
Metastatements in S◦ do not affect facts also in the sense that John saying

S excludes John not saying S, but allows John to say not-S and Karen to
say anything. Contradicting anybody, even facts, does not affect the object-
level, only limits the shared situation to the things agreeable with one’s claims,
precluding extension of such an agreement (semi-kernel) to the full language
(kernel).

Semantics is thus non-explosive, admitting seeds of inconsistency in semi-
kernels which can not be extended to kernels, but is two-valued: each semi-
kernel determines a unique boolean value of each sentence, perhaps vacuously
by not covering it. Semi-kernel models of a theory Γ need not cover the whole

5 Definition relative to such extensions L⊕ of L+ plays role in the proof of com-
pleteness Theorem 3.6 (Fact B.3). Completeness for validity relative only to L

+ could
be obtained by replacing (∀+

R
) by infinitary rule with premises Γ ⊢ ∆, F (S) for all

S ∈ S+.
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language, and may exist even if Γ implies a contradiction, like model L for
K!Kl in Example 3.2. Even then consequences of Γ are not arbitrary, relying
on its semi-kernel models. Syntactic and semantic analyses of FOL+ theories
are not separated by any gap. LSO provides a sound and complete reasoning
for semi-kernel semantics.

Theorem 3.6. For a countable Γ ∪∆ ⊆ FOL+: Γ ⊢ ∆ ⇐⇒ Γ |= ∆.

Now, every kernel is a semi-kernel, so narrowing (3.6) to kernels yields a
special case of the semantics. An L+-sequent Γ ⇀⇁ ∆ is c-valid, Γ |=c ∆, iff
in every language graph GM ∈ LGr(L+), every kernel satisfies it under every
valuation of free variables. The only difference from (3.6) is that in the first
line, L ∈ SK(GM ) is replaced by K ∈ sol(GM ):

Γ |=c ∆ ⇐⇒ ∀L⊕ ⊇ L+ ∀GM ∈ LGr(L⊕) ∀K ∈ sol(GM ) : K |= Γ ⇀⇁ ∆.
(3.7)

For Γ ⊆ S+, kernel models are pairs (G, K) ∈ LGr(L+) × sol(G) satisfying
⇀⇁ F , for all F ∈ Γ . Such a model covers the whole language graph, since for
K ∈ sol(G) : E−(K) = V \ K. (Hence, the antecedent of implication in the
third line of (3.6) is now trivially satisfied.) Consequently, if Γ forms a (locally
coherent) situation but implies a contradiction, like K!Kl in Example 3.2, it
may have a semi-kernel model but not any kernel model. (Non)explosiveness
of (semi)kernel semantics deserves some closer comments.

3.5. Paraconsistency versus (cut)

Although Karen can say whatever she likes, even K(S ∧ ¬S), LSO is not di-
aletheic, as there is no semi-kernel satisfying S ∧ ¬S, that is, containing both
S and ¬S. Its derivability from some assumptions signals the impossibility of
combining them with any coherent valuation of S. Turning this into a defini-
tion, we call S ⊆ S+ a contradiction, S ∈ C, if it is not contained in any semi-
kernel, i.e., S 6⊆ L for every language graph G and L ∈ SK(G). It is a tautology,
S ∈ T, if it is contained in every semi-kernel covering it, S ⊆ E−[L] ⇒ S ⊆ L.
By Theorem 3.6, C = {S ⊆ S+ | S ⊢ ∅} and T = {S ⊆ S+ | ∀Si ∈ S : ∅ ⊢ Si}
for FOL+. For a single sentence, S ∈ C abbreviates {S} ∈ C.

Although not dialetheic, LSO is non-explosive because semi-kernels admit
contradictions outside the covered set. Semantics (3.6) is local, checking satis-
faction of Γ ⇀⇁ ∆ only in semi-kernels covering Γ ∪∆. A paradox  apparently
meaningful statements which, at a closer analysis (expanding the context),
lead to a contradiction  is represented by a set of sentences contained in a
semi-kernel which can not be extended to a kernel. Statements implying a
contradiction can thus form locally coherent situations that need not imply ev-
erything. For a semi-kernel L, truth condition (3.2), restricted to E−[L] is the
classical (kernel) condition. Consequently, reasoning with the same essentially
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classical system LSO remains sound. The difference from classical reasoning
concerns provable contradictions.

If Karen claims to be always lying then LSO proves that she does not,
K(Kl) ⊢ ¬Kl, but this is no paradox. As noted by Prior, [19], Karen must
then sometimes lie, K(Kl) ⊢ ¬∀φ(Kφ → φ). The resulting Prior’s theorem,
K(∀φ(Kφ → ¬φ)) → (∃φ(Kφ∧φ)∧∃φ(Kφ∧¬φ)), is still no paradox, as Karen
can also say other things. If this is everything she says, then LSO proves that
she is always lying, and K!Kl ⊢ Kl ∧ ¬Kl witnesses to a paradox.

Now, a contradiction entails every sentence S reflecting the fact that it
does not belong to any semi-kernel. Still, although Kl ∧ ¬Kl ⊢ S for all S,
so K!Kl 6⊢ S for some S, e.g., for S = J(S0), as witnessed by the following
semi-kernel satisfying K!Kl and ¬S:

Z = {¬S,K(Kl), ∀φ(Kφ → φ
.
= Kl)} ∪ {¬K(Si) | Si 6

.
= Kl}. (3.8)

Semi-kernel Z witnesses also to K!Kl 6⊢ ∅, justifying the fact that K!Kl is not
a contradiction. Karen can say only that she always lies.

This brings forth the difference between a contradiction, entailing every
sentence and belonging to no semi-kernel, and a “half-contradiction” like K!Kl

which entails some contradiction, but not every sentence, and can be contained
in a semi-kernel. S is an s-contradiction (a paradox) if S ⊢ C for some C ∈ C,
but there is a semi-kernel L ⊇ S. An s-contradiction involves necessarily s-
predicates and the contradiction it entails involves these s-predicates. It does
not entail most other contradictions nor any contingent object-level sentences.

Since s-contradiction entails some contradiction, like K!Kl ⊢ ¬Kl ∧ Kl,
while contradiction entails every sentence S, like ¬Kl ∧ Kl ⊢ S, using (cut)
would yield K!Kl ⊢ S. However, semi-kernel in (3.8) provides a countermodel
Z 6|= K!Kl ⇀⇁ S, so (cut) is not sound. It is trivially admissible for the object-
language, as long as only LK is used, but changes the semantic for the whole
LSO. The contradiction Kl ∧ ¬Kl, following from Karen’s statement, is not
‘discovered’ in Z. A semi-kernel that is not a kernel represents a limited context
which is only locally consistent. It satisfies the classical condition (3.2) only on
vertices it is covering without taking into account the whole language. Z allows
thus Karen to say only Kl, but asking whether she is saying truth or not, Kl or
¬Kl, expands this context to the point where the paradox  the impossibility
of a valuation of Kl coherent with Z  is discovered. This still does not prevent
John from saying (or not) S0, captured by a semi-kernel extending Z with
J(S0) (or ¬J(S0)).

Provability K!Kl ⊢ Kl ∧ ¬Kl does not imply nonexistence of a situation
where Karen says only Kl, that is, of a semi-kernel containing K!Kl, as prov-
ability K!Kl ⊢ ∅ would do, but nonexistence of such a semi-kernel covering also

Kl∧¬Kl. As its graph is (Kl ∧ ¬Kl) //
**

Kl // Kl . . . , this means that no semi-
kernel containing K!Kl can contain Kl or ¬Kl. Semi-kernels containing K!Kl
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Figure 4.1. Truth-teller J(Jt).

have a special relation to this particular contradiction, like informal reasoning
concluding that the liar lies and does not lie, but nothing more. Most contra-
dictions are still not derivable from K!Kl. To derive everything from K!Kl, via
the contradiction it entails, (cut) is needed. It makes derived contradictions
explode, bringing us back to the kernel semantics (3.7). Adding (cut) to LSO,
yielding ⊢c, does not trivialize logic, as it happens in non-transitive ST-systems
[26, 25, 5]. Instead, it turns paraconsistent logic into explosive ones, providing
a sound and complete reasoning system for it.

Fact 3.7 (B.4). For a countable Γ ∪∆ ⊆ FOL+: Γ |=c ∆ iff Γ ⊢c ∆.

4. An example

Non-explosive paradoxes are one feature distinguishing the metalanguage from
the object-language. Another such feature are sentences that remain indeter-
minate in spite of fully interpreted object-language and s-atoms.

John saying only that he always tells the truth, the framed J(Jt) with
Jt = ∀φ(Jφ → φ) on the drawing (see Figure 4.1), is the truth-teller. Each

X
∧J(X), for X 6

.
= Jt, is false due to John not saying X, while J(Jt) = 0 leaves

2-cycle
Jt

∧J(Jt) ⇆ Jt with one solution Jt = 1 and the other Jt = 0.
Thus, unlike for the object-language L, valuation of all L+-atoms may

leave values of some L+-sentences undetermined. Considering this fact a flaw,
as sometimes happens, seems due to internalization of the metalanguage in the
object-language, which suggests that the former is just part of the latter and
should behave in the same way. In LSO this indeterminacy is simply another,
besides paradoxes, feature distinguishing the two. The difference between such
innocent self-reference of the truth-teller and vicious circularity of paradoxes,
reflecting informal indeterminacy of the former versus impossibility of valuating
the latter, is captured by even versus odd cycles in language graphs.

The unproblematic status of the truth-teller amounts to the informal ob-
servation that it says nothing. Making no real claim, its truth or falsity makes
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no difference. A difference appears if he says also something else, because
then, no matter what else it is, the 2-cycle Jt⇆

Jt
∧J(Jt) can always be solved

by
Jt

∧J(Jt) = 1 and Jt = 0. The mere claim of telling only truth implies
consistency of this claim being false.6

As we saw in Section 3.5, the liar K, stating only the single claim Kl =
∀φ(Kφ → ¬φ), does not entail almost anything except the contradiction of K
lying and not lying. Semi-kernel Z \ {¬S} from (3.8), limits its consequences
to this minimum. Generally, semi-kernels make statements of distinct persons
independent, so that all can occur simultaneously, even if they contradict each
other. In this sense LSO follows the tradition of Jaśkowski’s discussive logic.
Contradictory statements, confronting each other in the metalanguage, need
not cause explosion, unlike contradictions which always do. Thus Karen saying
X and Karen not saying X is a contradiction, unlike Karen saying X and ¬X,
which remains the problem of Karen’s or her interlocutors.

Figure 4.2 gives a part of the graph G+ for a discussive example, with John
saying that Karen always lies, J(Kl), and Karen saying that John always tells
the truth. It joins the graph for the truth-teller Jt = ∀ψ(Jψ → ψ) with that
for the liar Kl = ∀φ(Kφ → ¬φ) from Example 3.2. The two interact via the
semi-kernel containing the framed statements, assumed to hold.

Truths J(Kl) = 1 = K(Jt) force Jt = 0, reflected by the provability
J(Kl), K(Jt) ⊢ ¬Jt. The situations of John and Karen are not symmetric,
since J(Kl), K(Jt) 0 ¬Kl, with Kl = 1, for instance, if Karen says nothing but
Jt, making all S∧K(S) = 0 (Jt∧K(Jt) = 0 because ¬Jt = 1). Neither Kl is
provable, J(Kl), K(Jt) 0 Kl, since Karen can say any true sentence.

If Jt is the only thing Karen says, K!Jt, while John does not say anything
else (that is false), e.g., J !Kl, a paradox results, with the unresolved odd cycle
C (marked with double arrows). This situation is possible, witnessed by the
semi-kernel {J(Kl), K(Jt)} ∪ {J(S) | S 6

.= Kl} ∪ {K(S) | S 6
.= Jt}, but has no

extension covering Kl and Jt, hence none to a kernel. The paradox, created thus
by Karen and John, can be resolved only if either or both withdraw their claims
or make some additional ones. If neither does, both can continue reasoning
classically and consistently, recognizing even the facts J !Kl and K!Jt. As long
as they do not apply (cut), they do not explode and can agree, in particular,
on the truths of object-language. But without resolving the paradox, no such
consensus can be extended to the full language and deciding whether Karen
always lies or John always tells the truth.

6 Buridan’s early proposal, that each statement claims its own truth in addition to
whatever it may be saying, provides thus a ‘solution’ to the liar and similar paradoxes
by making them false  but for the price of consistency of all statements being false.
Earlier, Bradwardine maintained falsity of paradoxes without this over-generalization,
taking only some  self-negating  statements as claiming also their truth [cf. 23, 22].
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Figure 4.2. A part of graph for Kl = ∀φ(Kφ → ¬φ) and Jt = ∀φ(Jφ → φ).

5. Summary

Paradoxes appearing only in the metalanguage distinguish LSO from all usual
approaches, where the metalanguage is internalized in the object-language.
Although the distinction can be recovered from such a coding, the view of
paradoxes and their sources changes drastically. With arithmetized syntax,
they arise due to the diagonalization lemma, primarily, via convention (T). In
classical context, a paradox becomes then a contradiction causing explosion and
search for restrictions on convention (T), which deny some coded statements
the character of truth-bearers. In LSO, paradoxes appear due to valuation
of metapredicates and affect only metalevel, leaving all interpretations of the
object-language available.

In LSO, the metalanguage differs from the object-language not only by
possible paradoxes but also by statements, like the truth-teller, that remain
indeterminate even when all atoms are consistently valuated. Uneasiness with
such sentences seems to arise from conflating the object-language with the
metalanguage or else extrapolating to the latter the unique interpretability
of the former under every valuation of atoms. This fundamental distinction
between the two language levels is the only one in LSO, and no hierarchy of
metalevels arises. There is only one metalevel, at which language can speak
about itself. Whether and how this allows extensions of LSO to capture own
syntax and semantics is the main question for further work.

Representation of intensional and semantic statements in language graphs is
completely identical, the differences amounting at most to differences of various
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operators. Capturing intensional and modal logics in LSO is a natural topic for
future work. So far, its general schema and simple examples suggest structural
identity of semantic and intensional paradoxes, arising due to the same, vicious
circularity represented by the unresolvable odd cycles in language graphs.

The claim about circularity requires, of course, a comment. Yablo paradox
appears noncircular, unless one plays with some esoteric notions of circularity.
In LSO circularity is just a graph cycle and Yablo graph (ω, {〈i, j〉 | i < j})
has none. Theorem 3.4 ensures that language graphs are free from paradoxes,
including Yablo’s, so they do not affect our metatheory. The essential aspects
of Yablo can be captured inside LSO, e.g., by the following theory Y from [13]:

(a) a transitive binary relation R on a nonempty subset of sentences,
(b) that has no endpoints, ∀α∃βR(α, β), and where
(B) s-predicate P satisfies: ∀α(P (α) ↔ ∀β(R(α, β) → ¬P (β))).

A single sentence with a loop provides a model of R, and so do ω sentences with
a strict total order without maximum, but no semi-kernel contains Y. Its author
observes that its “inconsistency [. . . ] has nothing to do with truth, for it [. . . ]
arises irrespective of what P means: other than the Yablo scheme itself (B) and
the auxiliary axioms (a), (b), no specific axioms for P are used in the deduction
of the inconsistency.” Indeed, Y with variables ranging over objects rather than
sentences is a contradiction. It has nothing to do with truth predicate which
only recovers paradoxical effects when the metalanguage is internalized in the
object-language. According to our definition of paradox, as inclusion in a semi-
kernel which can not be extended to a kernel, this formulation of Yablo is not
a paradox but a plain contradiction.

Our model of paradoxes complies with the diagnosis from [4], according to
which they arise from taking for granted some assumptions that, on a closer
analysis, display a contradiction. Often, such assumptions are hidden behind
the name “definition”. Restricting Y above to (a) and (b), one might see (B)
merely as a definition of P , albeit a self-referential one. Such a view has perme-
ated much of the discussion, e.g., around revision theory. LSO embodies this
idea, since paradoxes arise here exactly due to the way s-predicates are defined
by their valuations. So understood definitions are, however, just axioms or val-
uations  far from logically innocent. Unlike nominal definitions or definitional
extensions, particular valuations of predicates amount to specific axioms and
valuations of metapredicates amount to specific metalinguistic claims.

Granting that paradoxes yield inconsistency due to bad assumptions or
‘definitions’ does not extend to the extreme cases of the view originating with
Tarski’s diagnosis and voiced occasionally, if only informally, in recent years,
according to which natural language simply is inconsistent [8, 1, 16, 2]. This
view, arising from perceiving predicates on arithmetized syntax as an adequate
model of (natural) metalanguage, need not be maintained if we replace them
by operators. Language modeled in LSO is consistent, and one can expect
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possibility of its extension to operators on open formulas, needed for internal
theory of syntax and semantics, but this remains to be investigated.

LSO reflects the informal intuition that paradoxes do not reside in the
language as such, but in the way we talk about it. S-predicates and their
valuations/definitions represent just various ways of talking about language in
the language. Each paradox makes a claim, involving valuation of the applied
s-predicates, and can be avoided by avoiding the unfortunate claims. The fact
that a paradoxical s-predicate can be defined in the language does not make the
language paradoxical, just as expressibility of a contradiction does not make it
inconsistent. Predicates like heterological are disturbing when presented but
do not bother us because possibility of defining them, and this means making
some claims, leaves also open the possibility of restricting their applicability or
not making such claims. If nobody claims to be (always) lying, no liar paradox
results and the language remains consistent.

To this, however, one wants to object! Statements like L “This sentence is
false” do not have to be claimed, they cause trouble by simply being there. Well,
by simply being, the liar sentence makes a claim. In the usual representation, it
claims L ↔ ¬T (L) or simply L ↔ ¬L, expressing the pretense to truth of this
unsatisfiable equivalence, liar’s semantic claim. The liar’s sentence L is distinct
from the claim “L is true iff it is false” which, however, is involved in L. (The
name “truth condition” might replace “claim”, if it were not overloaded with
other associations.) Typically this claim, or condition, amounts to disquotation
captured by convention (T). It breaks however for a paradox, which amounts
to the nonexistence of a boolean value satisfying its claim. The liar, repre-
sented as a mere contradiction, is avoided as contradictions are in general, by
withdrawing the unsatisfiable claim, L ↔ ¬L or L ↔ ¬T (L). (LSO can avoid
the latter, since it does not enjoy  or rather suffer from  the diagonalization
lemma.) More elaborate cases, like somebody claiming only to be always lying,
represented explicitly as paradoxes in LSO, show plainly that troubles arise
from impossible claims. Therefore, informally we ignore paradoxes so easily:
no matter truth-values of the pronounced sentences, the claims hidden behind
them are false.
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A path a0 . . . ak is isolated if EG(ai) = {ai+1} for 0 ¬ i < k and E−
G(ai) =

{ai−1} for 0 < i < k. A double edge, introduced earlier, is an isolated path
of length 2. Contraction of such an isolated path amounts to identifying the
first and the last vertex, joining their neighbourhoods and removing the in-
termediate vertices, i.e., obtaining graph G′ where VG′ = VG \ {a1 . . . ak},
EG′(a0) = EG(ak) and E−

G′(a0) = E−
G(a0) ∪ E−

G(ak) \ {ak−1}. The first fact is a
trivial observation.

Fact A.1. If G′ results from G by contracting an isolated path of even length,

then ∀K ′ ∈ sol(G′)∃!K ∈ sol(G): K ′ ⊆ K, and ∀K ∈ sol(G) : K ∩ VG′ ∈
sol(G′).

The same holds if G′ results from a transfinite number of such contractions,
provided that no ray, i.e., an infinite outgoing path with no repeated vertex, is
contracted to a finite path.

The second fact justifies duplication of vertices S+
M as Aux, without af-

fecting solutions. It shows that identifying vertices with identical out-neigh-
bourhoods preserves and reflects (semi)kernels. To define this operation, let
RG ⊆ VG × VG relate two vertices in G with identical out-neighbourhoods,
i.e., RG(a, b) ⇐⇒ EG(a) = EG(b). It is an equivalence, so let G↓ denote the
quotient graph over equivalence classes, [v] = {u ∈ VG | RG(v, u)}, with edges
EG↓([v], [u]) ⇐⇒ ∃v ∈ [v], u ∈ [u] : EG(v, u). The operation can be iterated
any number n of times, denoted by G↓n and defined by:
• G↓1 = G↓ and G↓(n+1) = (G↓n)↓.
Vertices of G↓n are taken as subsets of VG, [u]n = {v ∈ VG | ∃i ¬ n :
RG↓i([v]i, [u]i)}. For limit ordinals λ, G↓λ is given by
• VG↓λ = {[u]λ | u ∈ VG},
where [u]λ =

⋃

i<λ[u]i = {v ∈ VG | ∃i < λ : RG↓i([u]i, [v]i)} and
• EG↓λ ([v]λ, [u]λ) ⇐⇒ ∃n ∈ λ : EG↓n([v]n, [u]n).

Fact A.2. For every ordinal n, and SKr denoting either kernels or semi-kernels

(sol or SK):

(a) K ∈ SKr(G) ⇒ {[v]n | v ∈ K} ∈ SKr(G↓n), and

(b) K↓n ∈ SKr(G↓n) ⇒
⋃

K↓n ∈ SKr(G).

Proof. (1) The proof for n = 1 shows the claim also for every n = n′ + 1.
(a)K↓ = {[v] | v ∈ K} is independent, for if EG↓([v], [w]) for some [v], [w] ∈ K↓,
then EG(v, w) for some v ∈ [v], w ∈ [w]. But then v, w ∈ K contradicting
independence of K  if x ∈ K then [x] ⊆ K, since ∀x, y ∈ [v] : EG(x) = EG(y),
so EG(x) ∩K = ∅ ⇐⇒ EG(y) ∩K = ∅.

If [v] ∈ VG↓\K
↓, then [v] ⊆ VG\K ⊆ E−

G(K), so ∀v ∈ [v] ∃w ∈ K : EG(v, w).
Then [w] ∈ K↓ and [v] ∈ E−

G↓
([w]) ⊆ E−

G↓
(K↓). Thus VG↓ \K↓ ⊆ E−

G↓
(K↓), so

K↓ ∈ sol(G↓).
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If K ∈ SK(G) and [v] ∈ E−
G↓

(K↓), i.e., for some v ∈ [v], w ∈ K : v ∈ E−
G(w),

then [v] ⊆ E−
G(w) and [w] ∈ K↓, so [v] ∈ E−

G↓
(K↓), i.e., EG↓(K↓) ⊆ E−

G↓
(K↓),

so K↓ ∈ SK(G↓).
(b) K =

⋃

K↓ = {v ∈ VG | [v] ∈ K↓} is independent, for if EG(v, u) for
some v, u ∈ K, then also EG↓([v], [u]) contradicting independence of K↓. If
x 6∈ K then [x] 6∈ K↓, and since EG↓([x], [v]) for some [v] ∈ K↓, so for some
y ∈ [x] and v ∈ [v] ⊆ K, EG(y, v). But since EG(y) = EG(x), so also EG(x, v),
i.e., x ∈ E−

G(K). Thus VG \K ⊆ E−
G(K), and K ∈ sol(G).

If K↓ ∈ SK(G↓) and v ∈ EG(K), then [v] ∈ EG↓(K↓) ⊆ E−
G↓

(K↓), i.e.,
[v] ∈ E−

G↓
([w]) for some [w] ∈ K↓. Then [w] ⊆ K and [v] ⊆ E−

G([w]), so that
EG(K) ⊆ E−

G(K).
(2) We show the claim for limit λ.
(a) If K ∈ sol(G), let K↓λ = {[v]λ | v ∈ K}. If EGλ ([v]λ, [u]λ) for some

[v]λ, [u]λ ∈ K↓λ, i.e., v, u ∈ K, then for some n ∈ λ: EGn([v]n, [u]n), which
means that K↓n = {[x]n | x ∈ K} is not a kernel of Gn, contrary to point (1).
Hence K↓λ is independent. If [v]λ ∈ VGλ \ K↓λ, then [v]λ ⊆ VG \ K, so for
any v ∈ [v], there is a u ∈ EG(v) ∩ K. Then [u]λ ∈ EGλ ([v]λ) ∩ K↓λ, hence
VGλ \K↓λ ⊆ E−

Gλ(K↓λ), and K↓λ ∈ sol(G↓λ).
If K ∈ SK(G), i.e., EG(K) ⊆ E−

G(K) and [v]λ ∈ EG↓λ (K↓λ), then for some
n ∈ λ: [v]n ∈ EG↓n([w]n) for some [w]n ∈ K↓n. Then also [w]n ∈ E−

G↓n(K↓n),
as K↓n ∈ SK(G↓n) by IH, but then also [w]λ ∈ E−

G↓λ (K↓λ). Thus EG↓λ (K↓λ) ⊆

E−
↓λ (K↓λ).

(b) For a kernel K↓λ of G↓λ, let K =
⋃

K↓λ = {v ∈ VG | [v]λ ∈ K↓λ}.
If v ∈ E−

G(x) for some x ∈ K, then v 6∈ K for if v ∈ K, i.e., [v]λ ⊆ K, then
[v]λ ∈ E−

G↓λ([x]λ)∩K↓λ ⊆ E−
G↓λ(K↓λ)∩K↓λ contradicting independence ofK↓λ.

If v ∈ VG \ K, i.e., [v]λ 6∈ K↓λ, then there is some [u]λ ∈ EG↓λ ([v]λ) ∩ K↓λ.
Since [u]λ ∈ EG↓λ ([v]λ), so for some n < λ, [u]n ∈ EG↓n([v]n), that is, for some
u′ ∈ [u]n, u′ ∈ EG(v). Since [u]λ ∈ K↓λ, so [u]n ⊆ [u]λ ⊆ K, hence v ∈ E−

G(K)
and K ∈ sol(G).

If K↓λ ∈ SK(G↓λ), independence of K follows as above. If v ∈ EG(K),
then [v]λ ∈ EG↓λ(K↓λ) ⊆ E−

G↓λ(K↓λ), i.e., ∃n ∈ λ : [v]n ∈ E−
G↓n(K↓n). By IH,

[v]n ⊆ E−
G(K↓n) ⊆ E−

G(K). Hence EG(K) ⊆ E−
G(K).

A.2. Logical and graph equivalences

We formulate logical and some other notions of equivalence in terms of graphs.
Two L+

M sentences are equivalent, in GM (L+), if for every semi-kernel L cover-
ing both, either both belong to L or neither does. L+ sentences are (logically)
equivalent if they are so in every language graph, according to the third line
below:

for A,B ∈ VG: A G
⇐⇒ B iff
∀L ∈ SK(G) : {A,B} ⊆ E−[L] → (A ∈ L ↔ B ∈ L),
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for A,B ∈ S+
M : A

L+

M⇐⇒ B iff A
GM (L+)

⇐⇒ B,

for A,B ∈ S+ : A L+

⇐⇒ B iff ∀M : A
L+

M⇐⇒ B.

A more specific equivalence will be used, corresponding to prenex operations.
Each sentence can be written in PDNF, that is, prenex normal form with matrix

in DNF. Two L+
M sentences are PDNF equivalent, denoted by A

P
⇐⇒ B, if

they have (also) identical PDNFs. To show that PDNF equivalence implies L+

equivalence, we use a more structural notion of equivalence in a graph.
By E∗

G we denote the reflexive and transitive closure of EG and by E∗
G(S),

for S ∈ VG, the subgraph of G induced by all vertices reachable from S. A
common cut of A,B ∈ VG is a set of vertices C ⊆ E∗

G(A) ∩ E∗
G(B), such that

every path leaving A and prolonged sufficiently far crosses C and so does every
path leavingB. (C may intersect A andB and contain vertices on various cycles
intersecting A and B.) We say that A and B are cut equivalent, A c

⇐⇒ B,
if there is a common cut C such that for every correct (not falsifying (3.2))
valuation of C, every correct extension to {A,B} forces identical value of A

and B. Obviously, if A c
⇐⇒ B in a graph G, then also A

G
⇐⇒ B, as each

K ∈ sol(G) determines a correct valuation of every common cut of A and B.

Fact A.3. For A,B ∈ S+
M in GM (L+), if A

P
⇐⇒ B then A

c
⇐⇒ B, hence

A
L+

M⇐⇒ B.

Proof. For G = GM (L+) with {L ∈ SK(G) | {A,B} ⊆ L} 6= ∅, we verify
standard prenex transformations, considering only s-quantifiers, as o-quantifiers
can be treated in the same way.

1. The claim holds trivially for B renaming bound s-variables (without
name clashes) of A, as the two have the same subgraph. This is also the case
for the subgraphs of A = ¬∀φD[φ] and B = ∃φ¬D[φ].

2. A = (∀φD[φ]) ∧ C
G

⇐⇒ ∀φ(D[φ] ∧ C) = B, with no free occurrences of
φ in C. On the schematic subgraph in Figure A.1 below, Xi, Xj . . . stand for
all S+

M and common cut is marked by the waved line.
Inspecting the graph, we see that, for any semi-kernel E−[L] ⊇ {A,B}:

B ∈ L iff (D[Xi] ∧ C) ∈ L for all Xi iff C ∈ L and D[Xi] ∈ L for all Xi iff
A ∈ L.

3. For A = ¬∃φD[φ] G
⇐⇒ ∀φ¬D[φ] = B the schema is as Figure A.2.

Trivially, for any semi-kernel E−[L] ⊇ {A,B} : A ∈ L ⇐⇒ B ∈ L.

Thus, every sentence in L+ has an L+

⇐⇒-equivalent PDNF sentence. A useful
consequence is that, considering below solvability of GM (LΦ) or GM (L+), we
can limit attention to sentences in PDNF.
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A.3. No paradoxes in LΦ  solvability of G(LΦ)

Extending classical language L with s-quantifiers to LΦ does not introduce any
paradoxes. The following theorem shows a stronger claim that, in a domain M ,
all LΦM sentences obtain unique values under every valuation of LM sentences.
Throughout, valuation of atoms AM is assumed to determine a unique valuation
of object-level sentences SM , so the two are practically identifiable.

Theorem A.4 (3.1). In any GM (LΦ), each valuation of atoms ρ ∈ 2AM has a

unique extension ρ̂ ∈ sol(GM (LΦ)) with ρ̂|AM
= ρ.

Proof. Graph GM (LΦ) consists of two subgraphs, the strong component with
all s-quantified sentences, GM (LΦ \ L) =

⋃

A∈SΦ

M
\SM

GM (A), and the forest
GM (L) =

⋃

B∈SM
TM(B) of trees for sentences without s-quantifiers, with no

edges from the latter to the former. For each A ∈ SΦM \ SM in the former,
there are (single or double) edges from external atoms V ∈ ext(GM (A)), to
the roots of GM (V ), that are trees TM (V ) when V ∈ SM . By Lemma 3.2
below, valuation ρ of SM = VGM (L), determines a solution ρ−

A of each G−
M (A)

(subgraph of GM (A) without its DNF-feet), compatible with every valuation
of ext(GM (A)). Hence, these can be combined into ρ ∪

⋃

A∈SΦ

M
\SM

ρ−
A forcing

value ρ−
V (V ) at each V ∈ ext(GM (A)), and thus determining solutions of all

DNF-feet. Each GM (A) obtains thus a solution ρA ⊃ ρ−
A, yielding a unique

ρ̂ = (ρ ∪
⋃

A∈SΦ

M
\SM

ρA) ∈ sol(GM (L)), extending ρ.
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The missing lemma shows that for each sentence A ∈ SΦM \ SM , solution
of the subgraph of GM (A) without its DNF-feet, denoted by G−

M (A), depends
on the valuation of SM , but not of external atoms ext(GM (A)), as the second
part of the lemma states. Valuation of ext(GM (A)) affects, of course, values in
DNF-feet in which they occur.

Lemma A.5 (3.2). For every graph GM (LΦ) and sentence A ∈ SΦM , each val-

uation ρ of AM and of external atoms of GM (A), ρ ∈ 2AM ∪ext(GM (A)), has a

unique extension to ρA ∈ sol(GM (A)). Restriction ρ|SM
, determines restriction

of ρA to G−
M (A): if ρ|SM

= σ|SM
then ρA|G−

M
(A) = σA|G−

M
(A).

Proof. By Fact A.3, we can limit attention to sentences in PDNF.
Figure A.3 illustrates the general situation which we first describe. For

A ∈ SΦM , with the number q(A) = n + 1  1 of s-quantifiers and s-variables,
and for n-sequence of sentences π ∈ (SΦM )n substituted for the n s-variables
of A bound by its first n quantifiers, the roots of all feet, A(πS) = D[πS],
S ∈ SΦM , are grandchildren of vertex A(π) =

Æ

φD[πφ]. (On the drawing,

Æ

= ∃ and all feet have the common parent •; when

Æ

= ∀, their distinct
parents are children of A(π).) Each foot A(πS) represents an application of
the same boolean function dπ(φ) = D[πφ], evaluating D[πφ] given valuation
of its parameters π, φ and, possibly, some atoms LA ⊂ SM occurring in the
original matrix D[. . .]. For any ρ ∈ 2SM, LA obtain fixed values so, considering
dπ, we assume the effects of ρ(LA) taken into account.

1. The internal vertices of π, int(π) are sentences occurring on the path
after substitutions, and external ones are those which do not, ext(π) = SΦM \
int(π). Some ‘sinks’ of the feet have single or double edges to vertices from π,
which are int(π), including π0 = A and

Æ

φD[πφ] (when this is substituted for
φ in D[πφ].) As branches from • instantiate φ with every sentence S ∈ SΦM , all
sentences from int(π) occur in some feet.



Paradoxes versus contradictions . . . 31

2. Depending on whether

Æ

is ∀ or ∃, the value at vertex

Æ

φD[πφ], as a
function of values of its grandchildren, is either

∃φD[πφ] =
∨

S∈SM
dπ(S) or ∀φD[πφ] =

∧

S∈SM
dπ(S). (∗)

We consider first the case when |π| = q(A) − 1, i.e., A(π) =

Æ

φD[πφ] is the
grandparent of the completely substituted (roots of) DNF-feet (D[πA], D[πB],
etc., on the drawing).

Each valuation of sentences from π, abbreviated as α ∈ 2π, specializes
dπ(φ) to a unary boolean function dα(π)(φ) = D[α(π)φ], and (∗) to

∃φD[α(π)φ] =
∨

S∈SM
dα(π)(S) or ∀φD[α(π)φ] =

∧

S∈SM
dα(π)(S). (∗∗)

3. As a boolean function of one variable, dα(π)(φ) is either constant or
not. If it is constant, i.e., dα(π)(φ) = dα(π)(¬φ), then

Æ

φD[α(π)φ] obtains
the same value in either case of (∗∗). Otherwise, dα(π)(¬φ) = ¬dα(π)(φ) and,
since for each S ∈ SΦM both dα(π)(S) and dα(π)(¬S) enter evaluation of (∗∗),
this yields constant 0 at their least common predecessor (• when

Æ

= ∃ and
A(π) when

Æ

= ∀). In this way, for every α ∈ 2π, A(π) obtains a unique
value ←α(A(π)), induced from all D[α(π)S] by (∗∗), but determined already by
dα(π)(φ), independently from

(a) valuation α(A(π)), i.e., if α0, α1 ∈ 2π differ only at A(π), then ←α0(A(π)) =
←
α1(A(π)), and

(b) independently from valuation of ext(π), since each external vertex S en-
ters both evaluation of dα(π)(S) and of dα(π)(¬S), with jointly constant
contribution to (∗∗) as just explained.

Point (a) means that cycles from the feet to A(π) admit a unique solution
ρA(π),α to the subgraph GM (A(π)) of GM (A), given any ρ ∈ 2SM ∪ext(π) and

α ∈ 2π
−

, where π− is π without its last element A(π). By point (b), ρ|ext(π) is
inessential, so if ρ|S−

M

= σ|S−
M

then ρA(π),α(A) = σA(π),α(A).
4. This is the basis for the claim that for each A with q(A)  1 and

each path π from the root A with |π| < q(A), each valuation of π− and SM
determines a unique value of A(π). We use its formulation above, i.e., for each
ρ ∈ 2SM ∪ext(π) and each α ∈ 2π, vertex V = A(π) (above the roots of the feet)
obtains a unique value ←α(V ), which depends at most on valuation of vertices
on π− (above V ), but neither on the value (a) of α(V ) nor (b) of ρ(X), for any
X ∈ ext(π).

The claim is shown by induction on h − l, where h  1 is the distance of
the root A from the roots of the feet and l is the distance of V from the root
A, h > l  0. The basis h− l = 1 is 3.

5. The argument from 3 works also in the induction step. In Figure A.4
for 0 ¬ |π| = l < h − 1, we have the following counterpart of the drawing
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from 3, with A(π) =

Æ

φ

Æ

ψD[πφψ], where

Æ

ψ is the sequence of remaining
quantifiers, and ψ1, ψ2 at the bottom signal various substitutions for ψ.
Given α ∈ 2π, IH applied to the lowest triangles on the drawing, i.e., subgraphs
GM (A(πS)) with roots A(πS) for S ∈ SΦM , gives to each A(πS) a unique value,
independent of valuation of ext(πS). Consequently A(πφ) is a function of only
π and φ, so that for any α ∈ 2π, it represents a function dα(π) of φ. The same
argument and cases for dα(π) as in 3 show that the value ←α(A(π)), induced to
the common grandparent of all A(πS) under valuation α ∈ 2π, is equal whether
α(A(π)) = 1 or α(A(π)) = 0, giving point a) of induction. As for each A(πS)
its value under ←α is independent from valuation of ext(πS) by IH, the induced
value ←α(A(π)) is independent from ext(π) =

⋂

S∈SM
ext(πS), giving point (b)

of induction. Consequently, ←α(A(π)) is unique and independent of valuations
of ext(π) and of A(π), which establishes the induction step.

6. Thus, the value of the root A is determined, for each ρ ∈ 2SM , indepen-
dently from valuation of ext(GM (A)). Starting now from A and using claim 4
downwards, the value of A(S), for each S ∈ SΦM , is determined by ρ and value
of A (independently from valuation of ext(GM (A))). Since A is determined
by ρ, so is the value of A(S). Proceeding inductively down the tree TM (A),
valuation ρ−

A of TM (A)− is seen determined by ρ, independently from valuation
of ext(GM (A)). The latter determines then values in all feet of GM (A), yielding
a unique solution ρA of GM (A), with ρ−

A ⊂ ρA and ρA|SM ∪ext(GM (A)) = ρ.

A.4. Solvability of G(L+)

We show that any solution of a graph for any language L+ can be extended
to a solution of a graph for LP , i.e., L+ augmented with a countable number
of new s-predicates. Starting then with a solvable graph for LΦ (or for L

.
=),
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yields the general claim. We show this first for adding only a single predicate
P by definitional extension, that is, by a sentence

∀φ(P (φ) ↔

Æ

ψF [φ, ψ]) (3.5)

where F is an L+-formula, with no P and free variables φ among those of the
left side P (φ). In the standard graph GM (LP ), we can then replace, for every
S ∈ SPM , edge P (S) → ¬P (S) in the 2-cycle P (S) ⇆ ¬P (S) by edge from
P (S) to its defining sentence

Æ

ψF [S, ψ], obtaining graph GP . Each solution
K of GP determines a solution of the standard language graph for LP , with
value of each atom P (S) determined by K. (The standard graph may also have
other solutions, not respecting (3.5).) Lemma A.7 below, giving immediately
Theorem 3.5, shows that GP preserves solutions of the underlying graph G
for L+. Its proof amounts to elimination of symbol P , replacing each P (S)
by its definiens

Æ

ψF [S, ψ]. Such a replacement, trivial in FOL, must proceed
recursively on a cyclic graph (e.g., P (P (S)) needs repeated replacements) and
involves some technicalities. These end with the paragraph before Lemma A.7.

The proof assumes a solvable language graph G (for any language L or L+)
over some domain M , in which no two vertices have equal out-neighbourhoods.
(If G contains such vertices, as language graphs with auxiliary vertices do, their
identification preserves essentially the solutions by Fact A.2, and we apply the
construction and fact below to the so quotiented G.) The graph GP for LP

contains G as an induced subgraph.
As the first step, we quotient atoms of GP containing P . Let ≃ be con-

gruence on LPM -sentences induced by the basic reflexive relation P (S) ≃0

Æ

ψF [S, ψ], for every LPM -sentence S. For every s-predicate Q distinct from
P , we identify every two atoms Q(A1 . . .An) ≃ Q(B1 . . .Bn) when Ai ≃ Bi
for 1 ¬ i ¬ n. Each equivalence class contains an atom Q(S1 . . . Sn) for some
Si ∈ S+

M , not containing any P , so in the following we can assume only such
atoms present, as vertices of the resulting graph H . It is a simple observation
that quotient q : GP → H , where EH(q(x)) = {q(y) | y ∈ EGP (x)} in the
resulting graph H , reflects kernels, so the preimage of any kernel of H is a
kernel of GP .

We now map γ : H → G, performing a sequence of identifications
γi : Hi−1 → Hi, for 0 < i ∈ ω and H0 = H . Each γi is identity on the subgraph
G of Hi, identifying some vertices from Vi \ VG with some in VG. First, we
identify γ1(P (S)) =

Æ

ψF [S, ψ], removing the double edge and the interme-
diate vertex •P (S) between P (S) and its definiens

Æ

ψF [S, ψ], for S ∈ SPM .
Then γi+1(v) = w when vertices v ∈ Vi \ VG and w ∈ VG have the same out-
neighbourhood. More precisely, let V0 = VH ,E0 = EH and define γ as shown
in Figure A.5.

Function γ is well-defined by the assumption that G has no pair of vertices
with identical out-neighbourhoods. For A,B ∈ VH and n ∈ ω, we denote
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i = 1, let Re0 =
⋃

{{P (S), •P (S)} | S ∈ SPM , {•P (S)} = E0(P (S))} and:

γ1(v) =
{ Æ

ψF [S, ψ], if v = P (S) for any S ∈ SPM
v if v 6∈ Re0

The resulting graph H1 is given by:
V1 = V0 \Re0, and E1(v) = {γ1(w) | w ∈ E0(v)} \Re0

i+ 1, let Rei = {v ∈ Vi \ VG | ∃w ∈ VG : Ei(v) = Ei(w)} and:

γi+1(v) =
{

w ∈ VG so that Ei(v) = Ei(w) if v ∈ Rei
v if v 6∈ Rei

The resulting graph Hi+1 is given by:
Vi+1 = Vi \Rei and Ei+1(v) = Ei(γi+1(v)) \Rei

γ(v) = γn(v), for v ∈ VH , and the least n ∈ ω such that
∀m > n : γm(v) = γn(v).

Figure A.5. Function γ : VH → VG

by A ∼n B that γn(A) = γn(B), and by A ∼ B that γ(A) = γ(B), i.e.,
∃n ∈ ω : A ∼n B.

Example A.1. Let P (φ) ↔ ∃ψ(φ ∧ ψ) and, for some S ∈ SM , consider vertex
P (P (S)) ∈ VH . The relevant parts of the graph H are sketched in Figure A.6,
with A/X , B/X , . . . denoting vertices with X substituted for the ∃-quantified
ψ. The subscripts L,R mark these instantiations in the respective subgraphs,
e.g., A/L = P (S) ∧ A and A/R = ∃φ(S ∧ φ) ∧ A. Sentences A,B, . . . (and
A,B, . . .) are duplicated in both subgraphs to increase readability, but they are
actually the same vertices.

1. P (P (S)) ∼1 ∃ψ(P (S) ∧ ψ) and P (S) ∼1 ∃ψ(S ∧ ψ), hence E1(P (S)) =
{γ1(P (S))} = {∃ψ(S ∧ ψ)} = E1(∃ψ(S ∧ ψ)) and, consequently,

2. P (S) ∼2 ∃ψ(S ∧ ψ). Then, for each A ∈ SPM we have E2(A/L) =
{∃ψ(S ∧ ψ), A} = E2(A/R), so

3. A/L ∼3 A/R, for every A ∈ SPM .
4. Consequently, •L ∼4 •R and then
5. ∃ψ(∃φ(S ∧ φ) ∧ ψ)) ∼5 ∃ψ(P (S) ∧ ψ) ∼1 P (P (S)), leaving only G’s

subgraph to the right.

The equivalence ∼ is a congruence on VH in the sense that if all out-
neighbours of A and B are ∼-equivalent then also A ∼ B, i.e., for EH(A) =
{Ai | i ∈ I} and EH(B) = {Bi | i ∈ I}:

if (∀i ∈ I : Ai ∼ Bi) then A ∼ B. (A.1)
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This holds since each sentence subgraph GM (A) (tree TM (A)) has finite height
h(A), in particular distance from the root A to atoms P (S) of GM (A) is at most
h(A). Hence, if ∀i ∈ I : Ai ∼ Bi then ∃n ¬ max{h(A), h(B)}∀i ∈ I : Ai ∼n

Bi.7 The equality γn(Ai) = γn(Bi) implies, in turn, that En(A) = {γn(Ai) |
i ∈ I} = {γn(Bi) | i ∈ I} = En(B), which yields A ∼n+1 B.

Fact A.6. (a) ∀S ∈ SPM \ SM ∃Q ∈ SM : Q ∼ S, hence γ(H) = G.

(b) H and G have essentially the same solutions.

(c) Every solution of G extends to a unique solution of GP .

Proof. Point (a) is shown by induction on the number p of P s in a sentence
S ∈ SPM \ SM .

1. If p = 1 and S is atomic, then S = P (R) for some R ∈ SM , so S ∼1

Æ

ψF [R, ψ] ∈ SM .
2. If p = 1 and S is not atomic, we proceed by structural induction on S,

with point 1 providing the basis and induction hypothesis IH2:
(i)

∧

i∈I Si, for finite I. By IH2, for each Si there is Qi ∈ SM with Si ∼ Qi,
so

∧

i∈I Si ∼
∧

i∈I Qi by (A.1), and
∧

i∈I Qi ∈ SM .
(ii) ¬A. By IH2, A ∼ Q for some Q ∈ SM , so ¬A ∼ ¬Q by (A.1), while

¬Q ∈ SM .
(iii) S =

Æ

φA[φ], where φ does not occur under P , so that, for some
R ∈ SM and context A[φ,_] with no P , we have S =

Æ

φA[φ, P (R)]. Since

7 This implication fails in general graphs for ∼ defined in (A.5) from some basis
∼1, when I is infinite and distance from Ai, Bi, i ∈ I, to relevant pairs X ∼1 Y is
unbounded.
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P (R) ∼1

Æ

ψF [R] ∈ SM , taking Q =

Æ

φA[φ,

Æ

ψF [R]] ∈ SM , we obtain
A[T, P (R)] ∼ A[T,

Æ

ψF [R]] for every T ∈ SPM by (A.1), i.e., for all grandchil-
dren of S and Q. By (A.1), this yields S ∼ Q.

(iv) S =

Æ

φA[P (C[φ])], i.e., S contains quantification into P , for some
contexts A[_], C[_] without any P , as p = 1. For grandchildren of S, namely,
A[P (C[T ])] for all T ∈ SPM , the equivalence P (C[T ]) ∼1

Æ

ψF [C[T ], ψ] gives
A[P (C[T ])] ∼ A[

Æ

ψF [C[T ], ψ]] by (A.1). Sentences on the left, for all T ∈ SPM ,
comprise all grandchildren of S, and those on the right all grandchildren of
Q =

Æ

φA[

Æ

ψF [C[φ], ψ]] ∈ SM , so S ∼ Q by (A.1).
3. For the induction step for p > 1, the two cases depend on whether P is

nested or not.
(i) If the number of P s not nested under others is n > 1, consider all these

highest P s in TM (S), i.e., S = C[P (A1), . . . , P (An)], where C[_] contains no
P s. For R = C[

Æ

ψF [A1, ψ], . . . ,

Æ

ψF [An, ψ]], S ∼ R by (A.1). R has p−n < p
P s so, by IH, R ∼ Q for some Q ∈ SM . Hence S ∼ Q.

(ii) If all P s are nested under each other, then S = C[P (A)] for some context
C[_] without any P s, and with p−1 occurrences of P inA. P (A) ∼1

Æ

ψF [A, ψ]
and, by IH,

Æ

ψF [A, ψ] ∼ R for some R ∈ SM , so that also P (A) ∼ R. Then
C[P (A)] ∼ C[R], by (A.1) and C[R] ∈ SM , as required.

The equality γ(H) = G follows since each S ∈ VH \VG represents a sentence
in SPM \ SM .

(b) For i  0, Hi is the quotient of H by ∼1,. . . ,∼i. By Fact A.1, H1

has essentially the same solutions as H . (No ray is contracted to a finite path,
because the case P (S) ∼1

Æ

ψF [S, ψ] is applied at most finitely many times
along each path under each sentence Q, since Q contains at most finitely many
nested P s.) By Fact A.2, the same holds for H1 and every Hi, i > 1, including
limits Hλ. Thus, H and γ(H) = G have essentially the same solutions.

(c) By the observation before this fact, quotient GP → H reflects solutions,
so that the preimage of every solution of H is a solution of GP . Using (b), each
solution of G extends to one for GP .

Let definitional extension refer to any well-ordered chain starting with any
theory Γ0 ⊆ L0 ⊆ L+ and adding, at step i + 1, axiom (3.5) with a fresh
predicate P 6∈ Li and F (φ, ψ) ∈ Li, for language Li of theory Γi obtained at
step i. In the limits, the language and theory are unions of all steps. The
following counterpart of model theoretic conservativity of usual definitional
extensions holds.

Lemma A.7. Each solution of a language graph G0 = GM (L0) extends to a

solution of the graph of its definitional extension.

Proof. Fact A.6.(c) gives the claim for an extension with a single predicate.
By IH, definitional extension Gi of G0 with P1, . . . , Pi, preserves all solutions
of G. Graph Gi+1, obtained now by adding Pi+1, whose definiens Fi+1 can
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utilize Pj , j ¬ i, preserves by Fact A.6 solutions of Gi, and hence of G. This
establishes successor step.

For any limit, the language LωM =
⋃

i∈ω LiM extends the initial language L0
M

with all ω predicates P1, P2, . . . introduced on the way. Its graphGω =
⋃

i∈ωGi,
with unions taken on vertices and on edges, contains all double edges from the
new predicate’s instances to their definienses. We repeat the proof with the
unions of all equivalences used along the way. As the first step, let ≃ω be a
congruence on LωM -sentences induced from the relation A ≃ω B ⇐⇒ ∃n ∈ ω:
A ≃n B, where ≃n is the congruence ≃ on LnM -sentences from step n. Identifi-
cation of all atoms Q(A1 . . .Ak) ≃ω Q(B1 . . .Bk) when Ai ≃ω Bi for 1 ¬ i ¬ k
gives a quotient H reflecting kernels as before. Each equivalence class contains
an atom from L0

M . Let H denote the resulting graph, and Hi its restriction
to the subgraph induced by vertices of Gi (with the atoms identified as just
described), so that H =

⋃

i∈ωHi.
In the chain G0 = H0 ⊆ H1 ⊆ H2 ⊆ . . ., for each pair of subsequent

Hi−1 ⊆ Hi, the construction from (A.5) yields γi : Hi → Hi−1 satisfying Fact
A.6. Composing γ1(γ2(. . . (γi−1(γi(Hi))) . . .)) gives surjective γi : Hi → G0,
where γj(Hi) = γi(Hi) for any j  i. Hence, the union γω =

⋃

i∈ω γ
i gives a

surjective quotient γω : H → G0, reflecting solutions.

A non-paradoxical language L+ is one having a solvable graph GM (L+) so,
by this lemma, its definitional extension remains non-paradoxical.

Theorem A.8 (3.5). For every Γ ⊆ L+ and its definitional extension F , every

kernel model of Γ can be extended to a kernel model of Γ ∪ F .

B. Soundness and completeness

Facts B.1 and B.3 below show soundness and completeness of LSO for semi-
kernel semantics from (3.6), establishing Theorem 3.6. Fact 3.7 shows then
soundness and completeness of LSO with (cut) for kernel semantics (3.7).

Fact B.1. The rules of LSO are sound and invertible for semi-kernel semantics

from (3.6).

Proof. Given an arbitrary language graph G ∈ LGr(L+) (over an arbitrary
domain M), soundness for each rule follows by showing that every semi-kernel
L covering the conclusion satisfies it, assuming validity of the premise(s), while
invertibility by showing that every semi-kernel L covering (each) premise sat-
isfies it, assuming validity of the rule’s conclusion.

1. (∧R). For soundness, assume Γ |= ∆,A1 and Γ |= ∆,A2, and let
semi-kernel L cover the rule’s conclusion, under a given α ∈ (M ∪ S+)V(Γ,∆).
Assume that α(Γ ) ⊆ L, α(∆) ⊆ E−(L) and α(A1 ∧ A2) ∈ E−(L)  if not,
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then L |=α Γ ⇀⇁ ∆,A1 ∧ A2, as desired. Since α(A1 ∧ A2) ∈ E−(L) and
E(α(A1 ∧ A2)) = {¬α(A1),¬α(A2)} so, for some i ∈ {1, 2}, ¬α(Ai) ∈ L, and
then α(Ai) ∈ E−(L), contradicting the assumption Γ |= ∆,Ai.

For invertibility, let Γ |= ∆,A1 ∧A2 and L cover A1 (or A2) under α. If (*)
α(Γ ) ⊆ L and α(∆∪ {A1}) ⊆ E−(L), then L′ = L∪ {¬α(A1)} is a semi-kernel,
since E(¬α(A1)) = {α(A1)} ⊆ E−(L) ⊆ E−(L′). L′ covers also α(A1 ∧ A2) ∈
E−(¬α(A1)). Thus L′ covers the conclusion, while α(Γ ) ∩ E−(L′) = ∅ and
α(∆∪{A1∧A2})∩L′ = ∅, so L′ 6|= Γ ⇀⇁ ∆,A1∧A2, contrary to Γ |= ∆,A1∧A2.
Hence (*) fails, so α(Γ ) ∩ E−(L) 6= ∅ or α(∆ ∪ {A1}) ∩ L 6= ∅, yielding the
claim.

Assignments α to free variables do not affect the argument, so covering by
L below is to be taken relatively to a given α, which we do not mention, except
for (∀R) and (∀+

R ).
2. (∧L). For soundness, assume Γ,A1, A2 |= ∆, let semi-kernel L cover

the rule’s conclusion, Γ ⊆ L and ∆ ⊆ E−(L). If A1 ∧ A2 ∈ L, then E(A1 ∧
A2) = {¬A1,¬A2} ⊆ E−(L), so E({¬A1,¬A2}) = {A1, A2} ⊆ L, contradicting
Γ,A1, A2 |= ∆. Thus A1 ∧ A2 ∈ E−(L) and L |= Γ,A1 ∧ A2 ⇀⇁ ∆.

For invertibility, assume Γ,A1 ∧A2 |= ∆, let semi-kernel L cover the rule’s
premise, and assume Γ ⊆ L and ∆ ⊆ E−(L). If A1, A2 ∈ L, which is the
only way L can contradict Γ,A1, A2 |= ∆, then {¬A1,¬A2} ⊆ E−(L), and
L′ = L ∪ {A1 ∧A2} is also a semi-kernel:

E(L′) = E(L ∪ {A1 ∧A2}) = E(L) ∪ E({A1 ∧A2}) ⊆
E−(L) ∪ {¬A1,¬A2} ⊆ E−(L) ⊆ V\ (L ∪ {A1 ∧A2}).

The last inclusion follows because E−(L) ⊆ V \ L and A1 ∧ A2 6∈ E−[L], since
A1 ∧ A2 ∈ L contradicts Γ,A1 ∧ A2 |= ∆ (as Γ ⊆ L and ∆ ⊆ E−(L)), while
A1 ∧ A2 ∈ E−(L) contradicts independence of L, implying ¬Ai ∈ L (for i = 1
or i = 2), while ¬Ai ∈ E−(L) since Ai ∈ L.

Since L′ 6|= Γ,A1 ∧ A2 ⇀⇁ ∆ contradicts the assumption, either A1 6∈ L or
A2 6∈ L, and L |= Γ,A1 ∧A2 ⇀⇁ ∆ as desired.

3. (¬R). For soundness, assume Γ,A |= ∆, let semi-kernel L cover the
rule’s conclusion, and assume Γ ⊆ L and ∆ ⊆ E−(L). If ¬A ∈ L, we are done,
while if ¬A ∈ E−(L) then A ∈ L, which contradicts the assumption, since now
Γ ∪ {A} ⊆ L and ∆ ⊆ E−(L).

For invertibility, assuming Γ |= ∆,¬A, let L cover the rule’s premise, Γ ⊆
L and ∆ ⊆ E−(L). If A ∈ L then ¬A ∈ E−(L) and L 6|= Γ ⇀⇁ ∆,¬A,
contradicting the assumption. So A ∈ E−(L), as required for L |= Γ,A ⇀⇁ ∆.

4. (¬L). For soundness, assume Γ |= ∆,A, let L cover the rule’s conclusion,
Γ ⊆ L and ∆ ⊆ E−(L). If ¬A ∈ E−(L), we are done, while if ¬A ∈ L then
A ∈ E(¬A) ⊆ E−(L), contradicting the assumption, since now Γ ∪ {A} ⊆ L
and (∆ ∪ {A}) ⊆ E−(L).
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For invertibility, assume Γ,¬A |= ∆, let L cover the rule’s premise, Γ ⊆ L
and ∆ ⊆ E−(L). If A ∈ E−(L) then L′ = L∪ {¬A} is a semi-kernel, because L
is and E(¬A) = {A} ⊆ E−(L). But L′ contradicts the assumption, so A ∈ L,
as required for L |= Γ ⇀⇁ ∆,A.

5. (∀L). For soundness, assume F (t), Γ, ∀xF (x) |= ∆ and let L cover the
rule’s conclusion. If ∀xF (x) 6∈ L, i.e., ∀xF (x) ∈ E−(L), then L |= Γ, ∀xF (x) ⇀⇁
∆. If ∀xF (x) ∈ L then also F (t) ∈ L, since ¬F (t) ∈ E(∀xF (x)) ⊆ E−(L)
and E(¬F (t)) = {F (t)}. As L covers the premise, either Γ ∩ E−(L) 6= ∅, since
F (t) 6∈ E−(L), or ∆ ∩ L 6= ∅. Either case yields the claim for L, which was
arbitrary, so Γ, ∀xF (x) |= ∆.

For invertibility, if Γ, ∀xF (x) |= ∆ and L covers the rule’s premise, it covers
also this conclusion. Satisfying it, L trivially satisfies the premise.

6. (∀R). For soundness, let (*) Γ |= ∆,F (y) and L cover the rule’s con-
clusion under a given assignment α to V(Γ,∆, ∀xF (x)) 6∋ y. Assume also
α(Γ ) ⊆ L and α(∆) ⊆ E−(L). If α(∀xF (x)) 6∈ L then α(∀xF (x)) ∈ E−(L) and
some α(¬F (m)) ∈ L, since E(α(∀xF (x))) = {α(¬F (m)) | m ∈ M}. Extending
α with α(y) = m, we obtain L 6|=α Γ ⇀⇁ ∆,F (y), contrary to (*). Thus,
α(∀xF (x)) ∈ L and L |=α Γ ⇀⇁ ∆, ∀xF (x).

For invertibility, if L 6|=α Γ ⇀⇁ ∆,F (y), for α(y) = m, i.e., α(Γ ) ⊆ L,
α(∆) ⊆ E−(L) and α(F (m)) ∈ E−(L), then L′ = L ∪ {α(¬F (m))} is a semi-
kernel, because L is and E(α(¬F (m))) = {α(F (m))} ⊆ E−(L) ⊆ E−(L′). L′

covers the conclusion since α(∀xF (x)) ∈ E−(α(¬F (m))), but L′ 6|=α Γ ⇀⇁
∆, ∀xF (x).

7. (∀+
L ). The argument repeats that for (∀L). For soundness, let Γ , F (S),

∀φF (φ) |= ∆ and L cover the rule’s conclusion (under a fixed α). If ∀φF (φ) 6∈ L
then ∀φF (φ) ∈ E−(L), yielding L |= Γ, ∀φF (φ) ⇀⇁ ∆. If ∀φF (φ) ∈ L then also
F (S′) ∈ L, for each sentence instantiating S, since ¬F (S′) ∈ E(∀φF (φ)) ⊆
E−(L) and E(¬F (S′)) = {F (S′)}. Thus L covers also the premise, hence,
either Γ ∩ E−(L) 6= ∅, since F (S) 6∈ E−(L), or ∆ ∩ L 6= ∅. Either case yields
the claim for L, which was arbitrary (as was α), so Γ, ∀φF (φ) |= ∆.

For invertibility, if Γ, ∀φF (φ) |= ∆ and L covers the rule’s premise, it covers
also this conclusion. Satisfying it, L trivially satisfies the premise.

8. (∀+
R ). For soundness, Γ |= ∆,F (ψ), with a fresh ψ ∈ Φ, iff Γ |= ∆,F (S)

for every S ∈ S+. Let L cover the rule’s conclusion. If ∀φF (φ) ∈ L then
L satisfies the rule’s conclusion. If ∀φF (φ) 6∈ L then ∀φF (φ) ∈ E−(L), so
some ¬F (S) ∈ L, since E(∀φF (φ)) = {¬F (S) | S ∈ S+}. Now L covers also
Γ ⇀⇁ ∆,F (S) and F (S) 6∈ L. Since Γ |= ∆,F (S), either Γ ∩ E−(L) 6= ∅ or
∆ ∩ L 6= ∅. In each case L satisfies the conclusion.

For invertibility, assume Γ |= ∆, ∀φF (φ), and let L cover Γ ⇀⇁ ∆,F (ψ)
under α(ψ) = S. Assume α(Γ ) ⊆ L and α(∆) ⊆ E−(L), since otherwise L |=α

Γ ⇀⇁ ∆,F (ψ). Then ∀φF (φ) ∈ L and, as L is a semi-kernel, ¬F (S) ∈ E−(L), so
F (S) ∈ L and L |=α Γ ⇀⇁ ∆,F (ψ). Since α was arbitrary, L |= Γ ⇀⇁ ∆,F (ψ).
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9. S-equality rules are sound and invertible, because atoms introduced in
premises are redundant (due to point 3 of Definition 3.1 of language graph).
E.g., S

.
= S in the premise of (ref) is satisfied (being a sink) for each sentence

S, hence satisfaction of the premise implies satisfaction of the conclusion. Con-
versely, satisfaction of the conclusion by any semi-kernel allows its extension
with any sink, in particular, with S

.
= S. Analogous argument works for (rep)

and (neq).

The following simple consequence of Definition 3.1 is used in the complete-
ness proof below.

Fact B.2. In any graph GM ∈ LGr(L+), the following relations hold be-

tween the form of a nonatomic sentence X ∈ S+
M and forms of its out- and

in-neighbours:
(a) E−(X) = {¬X}  when X does not start with ¬,
(b) E−(¬X) = {¬¬X}∪{X∧S | S ∈ S+

M}∪· · ·∪{∀φ.D(φ) | ∃S ∈ S+
M : D(S) =

X} ∪ {∀x.D(x) | ∃t ∈ TM : D(t) = X},
(c) when X does not start with ¬, then each out-neighbour of X does,
(d) E(¬X) = {X}.

For atomic X, E−(X) = {¬X} = E(X) and E−(¬X) = {X} = E(¬X).

The proof of completeness can apply the standard techniques because proofs
in LSO, even if infinite, are well-founded trees with axioms as leaves. A few
adjustments are needed for handling deviations from LK. We must ensure not
only that all formulas are processed and all terms are substituted by (∀L), but
also that all sentences are substituted by (∀+

L ). Missing subformula property,
due to substitution of all sentences for s-variables, is handled by retaining
the principal formula from the conclusion in all its premises, in a bottom-up
construction of a derivation tree. Any nonaxiomatic branch (either infinite or
terminating with a non-axiom) provides a countermodel.

Fact B.3. For a countable Γ ∪∆ ⊆ FOL+:

Γ 0 ∆ =⇒ ∃G∃L ∈ SK(G) : L 6|= Γ ⇀⇁ ∆.

Proof. We assume an enumeration EF of all formulas F+
X,Φ, where each

formula occurs infinitely often, and an enumeration ET = t1, t2 . . . of terms
TX so that each occurs infinitely often. (FOL variables, requiring special
care, are treated in the standard way and ignored below. Recall that we
assume disjoint sets of free and bound variables.) We enumerate all triples
〈Si, tj , Sk〉 ∈ EF × ET × EF , with each 〈Si, tj ,_〉 and 〈Si,_, Sk〉 occurring
infinitely often.

This is interleaved with an enumeration of all pairs EF × EF , where each
pair contains either identical or non-unifiable formulas and occurs infinitely
often.
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1. We construct a derivation tree, starting with the root Γ ⊢ ∆, which is to
be proven. An active sequent  initially, only the root  is a nonaxiomatic leaf
of the tree constructed bottom-up so far. We proceed along the enumeration
of the triples and pairs. For each 〈Si, tj, Sk〉, we find the active occurrences (in
the active sequents) of Si. Pairs 〈Si, Sj〉 serve treatment of .= atoms.

(ii) Encountering a pair 〈Si, Sj〉, we apply rules for
.
=. If Si

.
= Sj , we add

it to the antecedent of each active sequent. For each active sequent containing
Si

.
= Q in its antecedent, along with any formula A(Si), we add to it A(Q). If

Si, Sj are not unifiable, we add atom Si
.
= Sj to the consequent of every active

sequent.
The remaining cases address triples 〈Si, tj , Sk〉 encountered in the enumer-

ation.
(ii) If Si ∈ A+ ∪ Φ, or Si has no active occurrences, proceed to the next

item in the enumeration.
(iii) Otherwise, proceed retaining Si from the active sequent, which instan-

tiates the conclusion of the relevant rule, in the new leaves obtained from the
rule’s premises. E.g., if Si = A ∧ B then every active sequent of the form
Γ ′, A ∧ B, Γ ′′ ⊢ ∆ is replaced by

A,B, Γ ′, A ∧B, Γ ′′ ⊢ ∆

Γ ′, A ∧B, Γ ′′ ⊢ ∆

while every active sequent of the form Γ ⊢ ∆′, A ∧B,∆′′ by

Γ ⊢ A,∆′, A ∧B,∆′′ Γ ⊢ B,∆′, A ∧B,∆′′

Γ ⊢ ∆′, A ∧ B,∆′′

Analogously, for negation  other elements of the triple do not matter here.
(iv) If Si = ∀xD(x), each active sequent of the form Γ ′, ∀xD(x), Γ ′′ ⊢ ∆,

is replaced by the derivation with a new leaf adding D(tj) to its antecedent
D(tj), Γ ′, ∀xD(x), Γ ′′ ⊢ ∆

Γ ′, ∀xD(x), Γ ′′ ⊢ ∆
.

Every active sequent of the form Γ ⊢ ∆′, ∀xD(x), ∆′′ is replaced by
Γ ⊢ D(x), ∆′, ∀yD(y), ∆′′

Γ ⊢ ∆′, ∀yD(y), ∆′′

for a fresh eigenvariable x ∈ X.
(v) If Si = ∀φD(φ), then replace every active sequent of the form Γ ′,

∀φD(φ), Γ ′′ ⊢ ∆ by

D(Sk), Γ ′, ∀φD(φ), Γ ′′ ⊢ ∆

Γ ′, ∀φD(φ), Γ ′′ ⊢ ∆

while every active sequent of the form Γ ⊢ ∆′, ∀φD(φ), ∆′′ by
Γ ⊢ ∆′, D(α), ∆′′

Γ ⊢ ∆′, ∀φD(φ), ∆′′

for a fresh s-eigenvariable α ∈ Φ.
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2. A branch gets closed when its leaf is an axiom, and the tree is obtained
as the ω-limit of this process. If all branches are closed (finite), the derivation
yields a proof of the root.

Otherwise, a finite nonaxiomatic branch gives easily a countermodel. We
show that also infinite branch gives a countermodel of all sequents on this
branch, including the root sequent.

3. The claim is that if β is an infinite branch, with β′
L/β′

R all formulas
occurring in β on the left/right of ⊢, then there is a language graph G with
a semi-kernel L′ such that β′

L ⊆ L′ and β′
R ⊆ E−(L′). The rest of the proof

establishes this claim.
Absence of any axiom in β implies that β′

L∩β′
R = ∅, which is often applied

implicitly. β′
L = βL ∪ EqL, where EqL are

.
=-atoms S

.
= S occurring on the

left. β′
R = βR∪EqR, where EqR are .=-atoms occurring on the right, with EqR

denoting the set of their negations.
If β contains any FOL-atoms, construct first a FOL-structure M , giving a

countermodel to (βL ∩ SM ) ⇀⇁ (βR ∩ SM ), in the standard way. Otherwise, set
M = ∅. Let G = GM (L⊕), for the language L⊕ obtained from the original L+

by adding each free s-variable occurring on the branch as a fresh s-constant C.
(This is the reason for the extension ∀L⊕ ⊇ L+ in definitions of the semantics
(3.6) and (3.7).) By S+

M we denote sentences of L⊕ over terms TM . We show
that (def) L = βL ∪ (E(βR) ∩ E−(βR)) is a semi-kernel of G, with βR ⊆ E−(L)
and βL ⊆ L. Then L′ = L ∪EqL ∪ EqR is a required semi-kernel of G.

4. First,
.
=-atoms can be treated separately. Since β′

L ∩ β′
R = ∅, each

S
.
= T ∈ EqR has syntactically distinct sentences, while each such atom in EqL

has the form S
.= S. Any semi-kernel of G, in particular L, can be extended

to semi-kernel L′ = L ∪ EqL ∪ EqR, as the added vertices are sinks of G, by
Definition 3.1. Thus E(EqL ∪ EqR) = ∅, while EqR ⊆ E−(L′) ∩ (V\ L′).

5 To show L ∈ SK(G), we show first βR ⊆ E−(L), which follows from
definitions of L and G by considering the cases for A ∈ βR. Use of Fact B.2
(Definition 3.1) is marked by superscript _B.2.

(i) If A ∈ A+ ∪ C then E(A)
B.2
= {¬A}

B.2
= E−(A), so ¬A ∈ L by (def) and

A
B.2
∈ E−(L).

(ii) If A = ¬C then C ∈ βL ⊆ L, so A
B.2
∈ E−(L).

(iii) If A = C ∧D then C ∈ βR (or D ∈ βR), so ¬C
B.2
∈ E−(C) ∩ E(C ∧D) ⊆

E−(βR) ∩ E(βR) ⊆ L, and thus A = C ∧ D
B.2
∈ E−(¬C) ⊆ E−(L). (The

case of D ∈ βR is analogous.)

(iv) If A = ∀x.D(x) then D(c) ∈ βR, for some c ∈ M , so ¬D(c)
B.2
∈ E−(D(c))∩

E(∀x.D(x)) ⊆ L, and A
B.2
∈ E−(¬D(c)) ⊆ E−(L).

(v) If A = ∀φ.D(φ) then D(ψ) ∈ βR for some ψ ∈ C, so ¬D(ψ)
B.2
∈ E−(D(ψ))

∩E(∀φ.D(φ)) ⊆ L, and A ∈ E−(¬D(ψ)) ⊆ E−(L).
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6. We show E(L) ⊆ E−(L) ∩ (V \ L), partitioning L = βL ∪ Z, where
Z = (E(βR) ∩ E−(βR)) \ βL, and establish first E(βL) ⊆ E−(L) ∩ (V \ L),
considering cases of A ∈ βL.

(i) For atoms A ∈ A+ ∪ C, A ∈ βL ⊆ L and A 6∈ βR imply ¬A 6∈ βL and,

since E(¬A) B.2= {A}, ¬A 6∈ E−(βR). Thus E(A) B.2= {¬A} ⊆ E−(A) ∩ V \ L ⊆
E−(L) ∩ V\ L.

(ii) A = ¬C ∈ βL implies C ∈ βR, so E(A)
B.2
= {C} ⊆ βR ⊆ E−(L) by

point 5.
We show E(A) ⊂ V \ L. C 6∈ βL since βL ∩ βR = ∅. Suppose C ∈

E(βR) ∩ E−(βR). If C = ¬D then ¬D ∈ E−(βR), i.e., E(¬D) B.2= {D} ⊂ βR,
while A = ¬C = ¬¬D ∈ βL implies also ¬D ∈ βR and D ∈ βL, contradicting
βL ∩ βR = ∅.

Otherwise, i.e., if C does not start with ¬, then for any F ∈ βR for which
C ∈ E(F ), Fact B.2.(c–d) forces F = ¬C = A, contradicting βR ∩ βL = ∅.

(iii) A = B ∧ C ∈ βL implies {B,C} ⊂ βL and {¬B,¬C} ∩ βL = ∅, so

E(B ∧C) B.2= {¬B,¬C} ⊆ V\ βL and E(B ∧C) = {¬B,¬C}
B.2
⊆ E−({B,C}) ⊆

E−(βL). If, say, ¬B ∈ E−(βR), then B ∈ βR would contradict βL ∩ βR = ∅.
The same if ¬C ∈ E−(βR). Thus, E(B ∧ C) ⊆ E−(L) ∩ V\ L.

(iv) A = ∀φD(φ) ∈ βL ⇒ {D(S) | S ∈ S+
M} ⊆ βL, so E(∀φD(φ)) B.2=

{¬D(S) | S ∈ S+
M}

B.2
⊆ E−({D(S) | S ∈ S+

M}) ⊆ E−(βL) ⊆ E−(L).
If any ¬D(S) ∈ L then either ¬D(S) ∈ βL, so D(S) ∈ βR, or ¬D(S) ∈

E(βR) ∩ E−(βR), which implies D(S) ∈ βR, since E(¬D(S)) B.2= {D(S)}. In
either case, D(S) ∈ βR contradicts βL ∩ βR = ∅. Thus E(∀φ.D(φ)) ⊆ V\ L.

(v) For A = ∀x.D(x), the argument is as in (iv). ∀x.D(x) ∈ βL implies

{D(t) | t ∈ TM} ⊆ βL, so E(∀xD(x)) B.2= {¬D(t) | t ∈ TM}
B.2
⊆ E−({D(t) | t ∈

TM}) ⊆ E−(βL) ⊆ E−(L).
If any ¬D(t) ∈ L, then either ¬D(t) ∈ βL, so D(t) ∈ βR, or ¬D(t) ∈

E(βR) ∩ E−(βR), which implies D(t) ∈ βR, since E(¬D(t)) B.2= {D(t)}. In
either case, D(t) ∈ βR contradicts βL ∩ βR = ∅. Thus E(∀x.D(x)) ⊆ V\ L.

7. Also each sentence S ∈ Z = (E(βR) ∩ E−(βR)) \ βL satisfies E(S) ⊆
E−(L) ∩ (V\ L):

(i) If S ∈ Z does not start with ¬, then E−(S) B.2= {¬S}, so ¬S ∈ βR,
implying S ∈ βL, so S 6∈ Z.

(ii) If S = ¬A ∈ Z ⊆ E−(βR) then E(¬A)
B.2
= {A} ⊂ βR

5
⊆ E−(L). If A ∈

Z, then it starts with ¬ by point 7(i), i.e., A = ¬B and E(¬B) B.2= {B} ⊂ βR.
Since also A ∈ βR so B ∈ βL, contradicting βL ∩ βR = ∅. Hence A 6∈ Z and
A 6∈ βL (since A ∈ βR), i.e., A 6∈ L = Z ∪ βL, so that E(¬A) = {A} ⊆ V\ L.

By points 6 and 7, we haver E(L) = E(βL) ∪ E(Z) ⊆ E−(L) ∩ (V \ L), so
L ∈ SK(G).
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Soundness and completeness with (cut) for the explosive kernel semantics
(3.7) follow by adjusting the above proofs.

Fact B.4 (3.7). For a countable Γ ∪∆ ⊆ FOL+: Γ |=c ∆ iff Γ ⊢c ∆.

Proof. Soundness and invertibility follow by the same argument as in Fact
B.1, with some simplifications due to each kernel K ∈ sol(G) covering the
whole graph, E−

G(K) = VG \K.
For completeness, we modify the construction from the proof of Fact B.3,

by interleaving the enumeration of all triples EF ×ET ×EF and pairs EF ×EF
with enumeration E′

F of single formulas F+
X,Φ, where each formula occurs only

once. Following this interleaved enumeration yields now a new case 1.vi of an
Si ∈ E′

F in constructing a derivation, in which we expand each active sequent
Γ ⇀⇁ ∆ with the premises of (cut) over Si, i.e., with Γ ⇀⇁ ∆,Si and Γ, Si ⇀⇁ ∆.
A semi-kernel falsifying any one of them, falsifies the conclusion. Given an
infinite nonaxiomatic branch β, a language graph GM is obtained as in the
proof of Fact B.3, over domain M consisting of free variables and ground terms
used in the standard construction of a FOL countermodel for β ∩ SM . Point 3
of the proof of Fact B.3 shows also now β to determine a semi-kernel K of
GM , falsifying each sequent on β. Now, β contains one of the premises of an
application of (cut) for each Si ∈ E′

F = S+
M . As every sentence S+

M occurs thus
in βL or βR, semi-kernel K covers all S+

M , so it is a kernel of GM .
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