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Abstract. This paper discusses a generalization of logical expressivism. It
is shown that, in the wide sense defined here, the expressivist approach
is neutral with respect to different theories of inference and offers a nat-
ural framework for understanding logical forms and their function. An
expressivist strategy for explaining the development of logical forms is then
applied to the analysis of Frege’s Begriffsschrift, Gentzen’s sequent calculus
and Belnap’s display logic.
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1. Introduction

Andrea Iacona (2018) notices that logical forms are commonly conceived
as servants of two masters, so to speak: on the one hand, they are
ascribed with the logical function of explaining why certain inferences
are to be considered as logically valid; whilst on the other hand, they are
ascribed the semantic function of explaining why the meaning of complex
linguistic expressions depends on the meaning their components. Iacona
further argues that these functions are incompatible, so that the standard
understanding of logical forms is incoherent and should be revised. It
is the purpose of this paper to suggest that, in fact, it is possible to
characterize a minimal, but unitary notion of logical form. I intend to
do that by discussing the way in which logical forms can be understood
from the point of view of logical expressivism.
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I shall defend two claims:

1. Logical expressivism offers a natural framework for understanding
logical forms and their function.

2. The core expressivist thesis is neutral with respect to different and
possibly incompatible theories of inference.

The first of these claims should be clear enough in its formulation: by
“natural”, here, I simply mean that the framework offered by logical
expressivism is intuitive, effective and in accord with the traditional con-
ception of logical forms. The second claim, on the other hand, requires
some qualification. Let us start by acknowledging that logical forms are
essential to the account of logical consequence. It is also important to
notice, however, that logical forms only allow us to say that a formula A

logically follows from other formulas Γ , while it is the job of a theory of
inference to explain why the inference from Γ to A is valid. It is crucial
to distinguish these two roles. I will argue that logical forms have the
expressive role of making explicit inferential properties, whereas a theory
of inference has the explanatory role of accounting for those inferential
properties. There are, of course, different theories of inference that one
could endorse; my claim is that the use of logical forms as expressive
resources does not commit one specifically to any of them.

I shall proceed as follows. First, I define logical expressivism and
characterize an expressivist strategy to understand logical forms. Then
I apply such a strategy to the analysis of three cases: Frege’s Begriffs-
schrift, Gentzen’s sequent calculus and Belnap’s display logic. Finally,
in the light of this analysis, I discuss some of the consequences of the
expressivist account of logical forms.

2. The expressivist point of view

Logical expressivism was originally defined in the context of normative
inferentialism (Brandom, 1994, 2008; Peregrin, 2014). The core idea,
however, can be more generally expressed in the following way:

(LE) Logical vocabulary is characterized by the expressive role of mak-
ing explicit, in the language, properties of the inferences between
the contents of non-logical vocabulary.

The most paradigmatic example that is used to illustrate logical expres-
sivism is the case of conditionals. So, suppose one’s theory of inference



An expressivist strategy to understand logical forms 513

says that B follows from A. Then if one has the expressive resources of
conditionals in one’s vocabulary, one can use the formula “A → B” to
say in the language that the inference from A to B is a valid one.1

It is important to emphasize that a conditional says in the language
that an inference is valid. Clearly, the formula “A → B” does not
have the same content as the metalinguistic expression “A ⊢ B”: where
the deduction metatheorem is valid, the correct equivalence is between
“A ⊢ B” and “⊢ A → B” in the metalanguage.2 Notice also that treating
an inference as a valid one is something that is only done implicitly in a
logical system in which inferring from A to B is allowed. Obviously, one
does not need conditionals to say that the inference from A to B is valid.
One can say it in a pragmatic metalanguage – e.g. by saying that it is
correct to infer from A to B – or in a semantic one – e.g. in the standard
model-theoretic account of consequence relations. The point, however,
is that it is not possible to say that B follows from A in the language
unless the language contains the expressive resources of conditionals to
make that content explicit as a formula. The reason why it is important
to say it in the language is that once inferential properties are made
explicit as the content of a formula, then it is possible to apply rules
to that formula and draw inferences from it. Indeed, the value of the
expressive role of logical vocabulary lies not just in what contents are
expressed, but especially in the fact that once those contents are made
explicit as formulas in the language new things can be done implicitly.

The expressivist reading of conditionals described here can be gen-
eralized to all the expressive resources that allow one to make explicit
properties that contribute to determine the validity of inferences. These
properties are established by a theory of inference. Different logics can
be defined by making explicit inferential properties in different theories
of inference. Yet, as is affirmed in Claim (1), the expressivist reading

1 Here, the symbol “→” generically indicates a conditional. Depending on the
inferential theory that is endorsed, obviously, different kinds of conditionals can be
characterized by applying this expressive strategy.

2 Brandom (2008), for instance, defines logical vocabularies as pragmatic meta-
vocabularies of a special kind. On the one hand, they are universal: by making
explicit the game of giving and asking for reasons, they allow one to specify what one
must be able to do to deploy any vocabulary at all. On the other hand, the practices
required to deploy logical vocabularies can be elaborated just from the basic game
of giving and asking for reasons. Unlike the semantic case, therefore, both an object
vocabulary and its pragmatic metavocabulary may belong to the same language.
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of logical vocabulary will clearly remain the same for any of them. In
the following sections, this expressivist point of view will be adopted to
look at three cases in which new logical forms were developed to prove
significant proof-theoretic results. This review will allow us to vindicate
Claim (2) as well.

3. Frege’s Begriffsschrift

The definition of propositional connectives by Gottlob Frege is the mo-
tivating example in the original presentation of logical expressivism by
Brandom himself. Indeed, there are explicit indications in Frege’s work
that the development of a “concept script” in symbolic logic can be inter-
preted as an expressive enterprise on his part. For instance, in the article
“Boole’s Logical Calculus and the Concept-script,” written shortly after
the Begriffsschrift, he explains: «I sought as far as possible to translate
into formulae everything that could also be expressed verbally as a rule
of inference» (Frege, 1979, 37).

The problem with applying the expressivist strategy to Frege is that
he defines no explicit theory of inference. Frege is characteristically more
interested in making inferences as explicit as possible than defining what
inferences consist in (see Ricketts & Levine, 1996). However, he certainly
has a solid, implicit understanding of the validity of inferences. The most
obvious way to extrapolate it is to look at how he explains the rules of
inference that he himself uses in his calculus. As is well known, the
only inferential rule contained in the Begriffsschrift is modus ponens. In
order to explain why modus ponens is a valid rule of inference, Frege says
that it is not possible to judge a conditional and its antecedent without
also judging the consequent (Frege, 1879, 15–16).3 When he talks about
possibilities in this case, he has in mind the possible permutations of
the assertion and the denial of two contents. In more general terms,
his idea could be put by saying that an inference is valid if there is no
possible case – i.e. no permutation – in which the premisses hold and
the conclusion does not.

3 Frege will repeat the same idea in the definition of his “methods of inference”
in the Grundgesetze (Frege, 1893/1903, 57–64). Here, the formulation is different
because he does not talk about assertions and denials of contents of possible judgments
anymore and applies instead the distinction between sense and reference: therefore,
he says that his rules are correct because it is not possible for their premisses to be
the True and the conclusion to be the False.
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With respect to this theory of inference, at the level of propositional
contents Frege has three essential expressive needs: saying that a content
holds, saying that a content must hold if another does, and saying that
a content cannot hold if another does. Clearly, these are the expressive
roles of the judgment-stroke, the conditional-stroke, and the negation-
stroke, respectively. By introducing this logical vocabulary, Frege pro-
vides himself with the resources to express logical truths in his formal
language, i.e. contents that hold in virtue of the inferential properties
expressed by logical constants.4 Let us review them one by one.

A judgment-stroke placed before the sign for a content A expresses
the judgment of A. A judgment, Frege explains, is «inwardly to recog-
nize something as true» (Frege, 1979, 2). The judgment-stroke, then, is
required to make explicit that a content holds. A content is something
that can hold, or, as he will later come to say, a thought. The fact that
a content holds has a crucial significance in Frege’s theory of inference:
it is only when a content holds that it makes a difference with respect to
the validity of inferences, because it is only when a content holds that
it excludes possible cases. It is for this reason that inferences can be
drawn only from judged contents in his view. And yet, Frege notices
that there are some cases in which it must be possible to express a
content without asserting it. These cases are precisely those in which
the other two strokes are applied. We will return to this distinction after
the discussion of the two latter notations.

Let us consider the definition of the conditional-stroke first. Frege
introduces it in §5 of the Begriffsschrift. Here is where he lists all of
the four permutations of assertions and denials of two possible contents
of judgments A and B. He then establishes that the judgment of a
conditional-stroke corresponds to the denial of the case in which the
antecedent A is affirmed and the consequent B is denied. In this sense,
the conditional-stroke makes it explicit that the content B must hold
if the content A does. As he admits, there is no particular reason for
choosing the denial of that specific permutation as far as the calculus
is concerned, given that there are other ways to exclude possible cases.
More precisely, as we know, there are sixteen Boolean functions for two
contents that may either hold or not hold, and any of them would do to

4 There is, in fact, another expressive resource that Frege introduces in his Be-

griffsschrift, namely the concavity notation to express generality. Danielle Macbeth
(2005) gives an excellent analysis of the expressive needs that Frege intended to satisfy
with a notation for generality in the wider context of his logicist enterprise.
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contribute to the definition of a functionally complete set of connectives
in the calculus. Yet not all of them have an expressive role.

When it comes to justifying his choice, Frege often says that it is the
easiest to use “in inference”. This means that the choice is not significant
so much for the calculus as for the practice of drawing inferences, but
it is still quite vague. In “Boole’s Logical Calculus and the Concept-
script”, however, he adds an important clue: he says that he adopted this
interpretation of the conditional-stroke «because its content has a close
affinity with the important relation of ground [Grund] and consequent
[Folge]» (Frege, 1979, 37). It is easy to see what the affinity is: the
denial of the case where the antecedent A is affirmed and the consequent
B is denied is precisely the condition for the inference from A to B

to be valid in Frege’s theory of inference. This clue explains how he
thinks the conditional-stroke to be expressively related to inference: the
conditional-stroke makes it explicit as the content of a possible judgment
that an inference is valid.

The negation-stroke is the third and last of the expressive resources of
the Begriffsschrift that we consider here. Negation is required because it
must be possible to deny contents. More precisely, it must be possible to
say that a content cannot hold if another does: this is essential to make
it explicit in the language that an inference is not valid, i.e. that the
premisses may hold together with a content that cannot hold together
with the conclusion.

There is, however, an interesting complication at this point, because
there are in fact two strategies for making explicit that a content cannot
hold if another does: this can be done either by admitting negative judg-
ments or by admitting judgments of negative contents. Frege, however,
thinks that the former is nonsense. Once the distinction between sense
and reference will be firmly under his belt, he will explain that it is be-
cause a judgment is already «a choice between opposite thoughts» (Frege,
1979, 189). According to this idea a negative judgment is the judgment
of a negative content and the opposition between judgments is explained
on the basis of the opposition between judged contents. However, that
this is the only sensible approach is not yet obvious in the framework
of the Begriffsschrift, where a content is only the content of a possible
judgment: why could not it be also the content of a possible negative
judgment? Although Frege never mentions it,5 there is an expressivist

5 Frege (1919) officially insists that judgments cannot be iterated and therefore
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reason for that. If the fact that a content cannot hold if another does
is made explicit by means of a negative judgment, then the opposition
between positive and negative judgments themselves will remain implicit
and not expressed in the language.

This last remark highlights an important difference between the ex-
pressive roles of the judgment-stroke and the other strokes. Condition-
als and negations make explicit inferential properties as contents in the
language that can be judged and used to draw inferences. Judgment
expresses nothing of the sort. In fact, a judgment-stroke cannot be pre-
ceded by other strokes. In particular, it cannot be preceded by another
judgment-stroke, meaning that it does not express a content in the lan-
guage. In the Begriffsschrift, therefore, the expressive need to say that
a content holds is not addressed on the same level as the others. From
the expressivist point of view, the distinction that Frege draws between
a sign for content and a sign for judgment can be read as a distinction
between two kinds of expressive resources that belong respectively to the
language and the pragmatic metalanguage of the calculus.

4. Gentzen’s Sequent Calculus

It is well known that Gentzen develops sequent calculus to prove his
Hauptsatz, by overcoming what he thinks to be shortcomings in the log-
ical form of his natural deduction calculus for classical logic (Gentzen,
1934/35, 69). Indeed, the way in which the rules of the calculus are de-
fined allows for a more elegant formulation of the problem of establishing
the subformula principle as the problem of cut elimination. Yet, subse-
quent results of normalization will show that the logical forms of natural
deduction can make explicit all the inferential properties required to
establish the same principle (Prawitz, 1965; Negri and von Plato, 2001).
And in any case, there is an even more obvious expressive feature of
sequent calculus that is always universally recognized: sequents make
explicit inferences in natural deduction. Prawitz, paradigmatically, no-
tices that «[t]he calculi of sequents can be understood as meta-calculi for
deducibility relation in the corresponding systems of natural deduction»
(Prawitz, 1965, 90). Here, he uses the notion of “meta-calculus” in a very
specific sense. He intends to point out that if a sequent is understood as

rejects the account of negation in terms of negative judgments on the grounds that it
could not make sense of embedded negations.



518 Giacomo Turbanti

expressing an inference in natural deduction, then the rules of sequent
calculus can be seen as instructions to construct proofs in natural deduc-
tion. More specifically, he notices that the right rules of sequent calculus
govern how a proof in natural deduction can be transformed “on the
bottom” by applying introduction rules, while the left rules of sequent
calculus govern how a proof in natural deduction can be obtained as a
transformation “on the top” by applying elimination rules.

However, the expressive role of sequent calculus is not to be measured
only with respect to natural deduction. From the point of view of logical
expressivism, in more general terms, sequents are an expressive device
that allows one to say explicitly what is implicitly done by treating a
sequence of formulas as a proof. The full extent of this achievement
might not be obvious at first sight, especially if one only looks at what
sequents express explicitly and only sees that a sequent “Γ ⇒ A” can be
informally interpreted as “Γ ⊢ A”, but it gets clear as soon as one also
considers how sequents are used implicitly in the calculus.

In this sense, it is interesting to compare sequents with conditionals.
A conditional “A → B” makes it explicit that B follows from A. A
sequent “A ⇒ B” makes it explicit that the inference from A to B is a
proof of B on the grounds of A. This makes a decisive difference in the
language: the rules for propositional connectives transform contents into
contents, the rules for sequents transform proofs into proofs.6

Thanks to this expressive advantage, sequent calculus allows for a
proof theory where proofs themselves are the objects of study in a spe-
cific, explicit sense (Kreisel, 1971). This can easily be seen by comparing
cut elimination in sequent calculus with normalization in natural deduc-
tion (Prawitz, 1965, 1971). The two results are usually considered as
having the same proof-theoretic significance, which is often encapsulated
in the subformula principle. Besides, both results are proved by showing
that certain derivations are equivalent to one another. It must not be
forgotten, however, that in fact they say different things in completely
different ways.

6 As is well known, Gentzen originally declared that the “informal meaning” of a
sequent “A1, . . . , An ⇒ A” is the same as that of the conditional “A1 ∧ · · · ∧ An → A”
(Gentzen, 1934/35, 82). In a similar way, Hertz had suggested to consider his Sätze

“a → b” as «formal “implications” in the sense of Russell» (Hertz, 1922, 12, n. 1).
In fact, however, neither Gentzen’s sequents nor Hertz’s sentences behave like im-
plications in their calculi. While both can be intuitively understood as expressing a
conditional relation, they have a different expressive role than logical connectives.
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The rules of natural deduction establish that certain formulas follow
from other formulas. Normalization proceeds by showing that a given
procedure for deriving a certain conclusion from certain premisses by
applying certain rules can be transformed into another procedure for de-
riving the same conclusion from the same premisses by applying different
rules: it shows that in doing the former one is also doing the latter.

The rules of sequent calculus already establish that certain proofs
can be transformed into other proofs. Cut elimination proceeds then
by showing that these transformations can always be performed without
losing content because of the cut rule: it shows that in saying that
the sequences transformed with the cut rule are proofs then one is also
saying that sequences transformed without the cut rule are proofs. From
an expressivist point of view, this is precisely what the admissibility of
the cut rule reveals.

5. Belnap’s Display Logic

Display logic is a direct expressive development of sequent calculus. In
display logic, sequents X ⇒ Y are composed of structures X, Y that are
built out of formulas by using structural connectives. The way in which
structures are constructed determines the inferential properties that are
made explicit by logical operators. In fact, substructural logics show
how the meaning of logical operators varies depending precisely on how
sequences are handled. By making structures explicit in the language,
display logic allows to establish rules to operate on and transform them
in the calculus.

As is well known, Gentzen’s sequent calculus already distinguishes
between logical rules applied to complex formulas and structural rules
applied to sequences of formulas. So, display logic can be seen as a
generalization of the expressive resources required to make structures
explicit.

Belnap (1982) notices three main aspects of the use of sequences in
sequent calculus that have an inferential significance. First, sequences
can occur as antecedents or as consequents in a sequent: formulas oc-
curring in sequences in the antecedents are treated as having a positive
polarity, while formulas occurring in sequences in the consequents are
treated as having a negative polarity. Second, sequences can group for-
mulas together by means of “,”: sequences of formulas grouped together
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indicate a single content and are treated as conjunctions or disjunctions
depending on their polarity. Third, sequences can be empty: empty
sequences indicate null contents and again are treated as truth or falsity
depending on their polarity.

In light of this, Belnap introduces three structural connectives to
make these significances explicit: a unary connective “∗” to reverse the
polarity of a substructure, a binary connective “◦” to fuse formulas to-
gether in conjunctive and disjunctive substructures depending on the
polarity, and a zero-place item “I” to express truth and falsity, again
depending on the polarity.

The original purpose of display logic was to provide a strategy to
prove cut-elimination for relevant and other substructural logics. In fact,
the cut rule that is normally used in cut elimination is a form of mix.
The problem is that mix is often invalid in substructural logics (Restall,
1998).

Belnap solves the problem in two steps. First, he associates connec-
tives with structural operators by means of introduction rules like the
following ones:

X ◦ A ⇒ B
X ⇒ A → B

X ⇒ A B ⇒ Y
A → B ⇒ ∗X ◦ Y

Second, he defines reversible “display rules” for structural operators
such that the cut formula can always be isolated either in the antecedent
or the consequent and the simple cut rule can be applied:

X ◦ Y ⇒ Z

X ⇒ ∗Y ◦ Z

X ⇒ Y ◦ Z

∗Y ◦ X ⇒ Z

X ⇒ Z ◦ Y

X ⇒ Y

∗Y ⇒ ∗X

∗ ∗ X ⇒ Y

The possibility to always reduce sequences and display single (but
possibly complex) formulas on the left-hand side and right-hand side
of a sequent is often already conceived as an expressive result that im-
proves on Gentzen’s inferential characterization of logical vocabulary. As
Belnap puts it:

The nub is this. If a rule for → only shows how A → B behaves in
context, then that rule is not merely explaining the meaning of →. It
is also and inextricably explaining the meaning of the context.

(Belnap, 1996, 81)

The idea is that if inferential rules are specified for sequences, then the
inferential roles that they establish are the result of the meaning of the
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formulas and the way in which they occur in sequences. By allowing for-
mulas to stand as antecedents and consequents in isolation, display logic
allows a separated and more precise characterization of their inferential
roles.

Once again, however, the expressive significance of display logic is far
more general. From the expressivist point of view, the really interesting
result achieved by display logic is the possibility of making explicit the
structure with which formulas occur in an inference, so that rules can be
established to govern how such structures can be transformed.

Since the inferential properties of logical operators are grounded in
these transformations, the framework is suitable to accommodate various
non-classical logics. As a consequence, of course, Belnap’s proof of cut-
elimination can be extended to several of these. The strategy is to define
rules for the introduction of connectives in which enough structural op-
erators are explicit and then establish rules for these structural operators
to enforce the inferential behavior of the connectives in different logics.7

6. Some consequences of the expressivist approach

There are a few points worth highlighting in the aftermath of the appli-
cations of the expressivist strategy that we have considered.

First, logical forms have been discussed here with respect not so much
to their impact on proof theory, as to their expressive role: this might
suggest that the former depends on the latter. Such an implication,
however, is not defended in this paper. In all the examples that we have
reviewed, a proof-theoretic problem is solved by improving the expressive
resources of logical languages: the problem of defining rigorous deriva-
tions for Frege, the problem of proving the coherence of a system for
Gentzen, and the problem of proving cut elimination in relevance logic
for Belnap. However, in none of these cases are logical forms the solution

7 Things are actually more complicated than this. The development of display
calculi for non-classical logics has seen the introduction of an increasing number of
structural operators to match the different inferential behavior of different connec-
tives. For a comprehensive review, see (Goré, 1998b,a). However, this is not nec-
essarily an advance on the expressivist front. Following this approach, in fact, the
boundaries between logical systems and their algebraic semantics become more and
more diaphanous: expressive power and generality are achieved not so much in terms
of logical forms that make explicit inferential properties, as in the metalanguage of
algebraic semantics in which models are defined to represent those properties.



522 Giacomo Turbanti

per se. The solution for Frege is to sanitize proofs against any infection
from psychological processes, and the solution for Gentzen is to establish
the inversion principle in his proof systems, the solution for Belnap is to
allow the elimination of simple cuts. The expressive advance in logical
forms that they introduce is essential to make explicit the inferential
properties that their solutions address, but does not constitute the so-
lution itself. In the case of Gentzen’s inversion principle, the proofs of
normalization show that they are not even required.

Second, the three cases considered here may look like three levels
of a cumulative development of the expressive resources of logical lan-
guages, that improves more and more our understanding of inferences
and their structure. The first step in such a progressive path would be
to introduce propositional connectives to say that contents are related
to one another in ways that are significant for our inferential practices.
This achievement, however, would still leave implicit how transitions are
possible from one content to another. The second step, then, would
be to put forward sequents to say that certain transitions between con-
tents are good derivations. This would still leave implicit what makes
a transition a good one. Therefore, the third step would be to intro-
duce structural operators to say that sequents have structures on which
good derivations depend. It may even be tempting to extrapolate what
the next step would be along that path: presumably, it would feature
expressive resources to say explicitly what is implicitly done by taking
contents to have structures that determine the inferential properties of
the derivations in which they occur. It must be clear, however, that the
acknowledgment of the expressive role of logical forms is distinct from the
evaluation of the expressivist strategy itself. Depending on the theory
of inference that is endorsed, the expressive results delivered by certain
logical forms could be considered in different ways. An inferentialist,
for instance, might welcome them as allowing a better understanding of
inferential relations and, therefore, conceptual contents. A representa-
tionalist, on the other hand, might acknowledge their value merely as
new techniques in proof analysis that, however, do not really improve
our logical knowledge.

Third, the expressivist understanding of logical forms presented here
clearly shifts most of the explanatory burden on the theory of infer-
ence that defines the reasons why they determine valid inferences. In
this sense, logical expressivism offers a rather deflationary account of
logical forms. The only thing that can be said about logical forms per
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se, from an expressivist point of view, is that they are patterns of log-
ical constants and variables. Yet as logical constants and variables are
necessarily defined with respect to valid inferences, any determination
of logical forms therefore presupposes a theory of inference. One of the
consequences of this approach is that conflicts about the interpretation of
logical forms cannot be construed as regarding logical forms themselves,
but must be traced back to incompatibilities between different theories
of inference. Interestingly, however, such incompatibilities sometimes
only emerge thanks to the expressive role of logical forms. In this sense,
therefore, logical expressivism could still have a positive role to play in
the philosophy of logic.

Fourth, in the expressivist understanding of logical forms their only
role is to make explicit inferential properties. This idea invites us to
rethink a certain standard conception according to which the process of
formalization consists in the translation of natural language sentences
into formulas in logical languages, that are then related to one another
by rules of inference. The expressivist reading, instead, starts from in-
ferences and conceives formalization as the development of logical forms
to make explicit inferential rather than linguistic properties. In this
sense, the fact that the languages of logical systems may share certain
structural features with natural languages depends on whether such fea-
tures are intrinsic to the very possibility to express contents and drawing
inferences. Of course, this is a possibility that must be taken seriously
into account by both logic and semantics. Still, the notion of logical
form, as it is understood by logical expressivism, does not coincide with
the notion of syntactic form.

7. Conclusion

From a historical point of view, the standard languages of modern logic
were essentially defined in the period roughly between Frege’s Begriffs-
schrift (1879) and Gentzen’s Untersuchungen (1934/35). Afterwards,
the problem of developing logical forms could have appeared as essen-
tially solved. New generations of logicians had begun to encounter well-
established logical vocabularies and see their most urgent task to be
rather the development of a strong theory of inference to ground them.
Yet, of course, the development of logical forms has never really stopped,
because they are part and parcel of the enterprise of understanding in-
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ference in which logic consists. With respect to such a process, the
examples considered in this paper are particularly clear in illustrating
why new logical forms are defined whenever the expressive need rises not
just to talk about the properties of valid inferences, but to infer their
consequences in a calculus. Logical expressivism ascribes to logical forms
precisely the function of satisfying such a need.
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