

Logic and **L**ogical **P**hilosophy Online First Articles (2024) [DOI: 10.12775/LLP.2024.014](http://dx.doi.org/10.12775/LLP.2024.014)

Nissim France[z](https://orcid.org/0000-0002-6993-4392)

Phrasal Coordination Relatedness Logic

Abstract. I presented a sub-classical *relating logic* based on a relating via an NL-inspired relating relation R_{ss}^c . The relation R_{ss}^c is motivated by the NL-phenomenon of phrasal (subsentential) coordination, exhibiting an important aspect of contents relating among the arguments of binary connectives. The resulting logic \mathcal{L}_{ss}^c can be viewed as a relevance logic exhibiting a contents related relevance, stronger than the variable-sharing property of other relevance logics like R.

Note that relating here is not "tailored" to justify some predetermined logic; rather, the relating relation is *independently justified*, and induces a logic not previously investigated.

Keywords: relating logic; sub-sentential coordination; relevance logic

1. Introduction

A hallmark of logical object-languages is that they are *freely generated* from some set of atomic formulas. Thus, when considering the connectives of classical logic, for *any* formulas φ and ψ , their conjunction $\varphi \wedge \psi$, disjunction $\varphi \vee \psi$, and implication $\varphi \rightarrow \psi$ are well-formed formulas. Furthermore, for propositional logics the atomic generators are usually viewed as *propositional variables*, amenable for arbitrary uniform substitutions.

I consider this free generation as an *over-abstraction* of the syntax of natural language, of which formal logical object-languages originate as abstractions.

Special Issue: Relating Logic and Relating Semantics. II. Guest Editors: T. Jarmużek & F. Paoli © The Author(s), 2024. Published by Nicolaus Copernicus University in Toruń

Published online March 16, 2024

One facet of this over-generation was discussed in [\[3](#page-13-0)]. Here, I want to consider another facet of this over-generation, namely the *disregarding of contents relating* when constructing compound sentences.^{[1](#page-1-0)}

It is certainly possible to use contents based relatedness in the semantics, mainly as a *filter on truth-conditions*, as in *relatedness semantics* [\[6\]](#page-13-1), following Epstein [\[2\]](#page-13-2). In this semantics, an *arbitrary* binary relation *R* is imposed on formulas of the object-language, a relation used, usually as a filter on truth-conditions, in defining a logic model-theoretically. A detailed history of relating logic can be found in [\[7\]](#page-13-3).

The idea of employing relatedness in terms of content already is not completely new. For example, Krajewski [\[8\]](#page-13-4) considers relatedness by stipulating an *arbitrary* relatedness relation among propositional variables and among predicate names, extended to formulas in a certain way.

In this paper I also investigate content considerations in the syntactic formation rules. I define a logic \mathcal{L}_{ss} by imposing a rather *non-arbitrary*, fixed relation R_{ss} , motivated by an intriguing phenomenon in natural language (NL). The phenomenon is the ability of NL to express *subsentential (phrasal) coordination*: [2](#page-1-1) as explained in Section [2.](#page-1-2)

In order to impose R_{ss} , the object-language L_{ss} of the logic \mathcal{L}_{ss} cannot be propositional, as the definition of R_{ss} depends on sub-atomic components of atomic sentences in a (quantification free) first-order language, as specified in Section [3.1.](#page-3-0)

2. Meaning connection among arguments of binary connectives in natural languages

While sentential combination via sentential connectives is also present in (some) natural languages, the latter have a richer structure allowing also for *sub-sentential (phrasal) coordination*, either as *constituent*[3](#page-1-3) *coordination* or as *non-constituent coordination*, as in[4](#page-1-4)

 1 I use 'sentences' and 'formulas' as synonyms.

² In an abuse of nomenclature, for convenience, I include implication also as a coordination. It is not in accordance with standard linguistics nomenclature but should cause no confusion.

³ Constituency is a syntactic property the exact details of which, theory dependent, are immaterial here.

⁴ Natural language sentences and phrases considered are in italics and are always mentioned, never used.

Mary sings and/or dances Mary loves Bill and/or John Bill and/or John love Mary Mary is pretty and loves John Mary loves and Sue hates John Fred bought a shirt for Bill and a sweater for George (1)

This kind of coordination is more frequently used than its sentential counterpart. For an overview [see [5](#page-13-5)].

In this paper, coordination with *plural predication* like

John and Mary are siblings

is excluded. In addition, natural languages allow *anaphora*, as in[5](#page-2-0)

If Mary is happy, she smiles (2)

Consider also the following recursive coordinations.

Mary can either [sing and dance] or [sing and play the guitar]

As mentioned above, such sentences are more dominant in ordinary discourse compared to *sentential* coordination as in

Mary is happy and/or grass is green If Mary is happy, grass is green (3)

It is important to realise that because I treat only propositional connectives, I am not concerned here with sentences with quantified subject and/or object, like

everyone/every girl/someone/some girl loves Bill and/or John

involving issues of conjunction reduction [see, e.g., [9](#page-13-6) and further references therein], the latter not always preserving semantic equivalence $('≡'$ -identity of meaning). While

Everyone sings and dances ≡ *Everyone sings and everyone dances*

we have

Everyone sings or dances \neq *Everyone sings or everyone dances*

⁵ The form '*If Mary is happy then she smiles*' is less colloquial.

For the simple, non-quantified subjects and objects used here, the semantic equivalence preservation by a translation to sentential coordination is justified.

Thus, the sentences in (1) and (2) are semantically equivalent to their respective expansions to sentences with sentential coordinations.

Mary sings and/or Mary dances Mary loves Bill and/or Mary loves John Bill loves Mary and/or John loves Mary Mary is pretty and Mary loves John Mary loves John and Sue hates John Fred bought a shirt for Bill and Fred bought a coat for George If Mary is happy, Mary smiles (4)

And for the recursive coordinations:

[Mary can sing and Mary can dance] or [Mary can sing and Mary can play the guitar] (5)

I will take coordinated sentences resulting from translation of sentences with sub–sentential coordination or with anaphoric references as indicating the *semantic connection* between the combined subsentence; the connection arising from *sharing* a sub-sentential phrase.

3. The logic \mathcal{L}_{ss}

In this section I introduce the logic \mathcal{L}_{ss} , taking its name from *subsentential* coordination as discussed above.

3.1. The object-language *L***ss**

The object-language L_{ss} is a fragment of L_{qf} , the quantifier-free standard first-order language over the connectives $C = \{\neg, \wedge, \vee, \rightarrow\}$ (negation, conjunction, disjunction and implication, respectively). By '∗' is meant any binary connective in *C*. The *L*ss-fragment is obtained by restricting L_{qf} to formulas called R_{ss} -proper, where R_{ss} is a relating relation, as specified in the next section. Individual constants are ranged over by a, b , and closed formulas by φ, ψ .

3.2. The relating relation *R***ss**

The relating relation *R*ss mimics the NL subsentential phrase sharing discussed in Section [2.](#page-1-2) For the language L_{ss} , this amounts to sharing an individual constant or a predicate name (of any arity).

Before defining he relating relation R_{ss} , consider, as motivating examples, regimenting the NL-sentences in (4) and (5) in L_{qf} .

Example 3.1. The L_{af} -regimentation of the sentences in [\(4\)](#page-3-1) and [\(5\)](#page-3-2) under the obvious choice of constants and predicate names look as follows.

Example 3.2*.* Similarly, the regimentation of the sentences in [\(3\)](#page-2-2) look as follows.

$$
H(m) \land G(g)
$$

$$
H(m) \rightarrow G(g)
$$

Clearly, no sharing is present among the coordinated subformulas. ⊣

DEFINITION 3.1 (shared subsentential phrase relatedness). L_{af} -formulas φ and ψ are *subsentential phrase sharing related*, denoted $\varphi R_{ss}\psi$, iff one of the following conditions is satisfied:

- 1. φ and ψ share an individual constant.
- 2. φ and ψ share a predicate name.

The non- R_{ss} -relating of φ and ψ is indicated by $\varphi R_{ss} \psi$. Let $TR_{ss}\varphi$ iff $\psi R_{ss}\varphi$ for every $\psi \in \Gamma$.

COROLLARY 3.1. R_{ss} is reflexive and symmetric.

Most importantly, *R*ss *is not transitive*.

Example 3.3 (non-transitivity of R_{ss}). $P(m)R_{ss}Q(m)$ and $Q(m)R_{ss}Q(n)$ hold but $P(m)R_{ss}Q(n)$.

COROLLARY 3.2 (negation). $\varphi R_{ss}\psi$ iff $\varphi R_{ss}\psi$.

COROLLARY 3.3. If φ and ψ share some subformula, say χ , then φ and ψ are R_{ss} -related.

In a sense, under the usual interpretation of first-order logics, R_{ss} related formulas share some kinds of 'aboutness': either they apply pos-sibly different predications^{[6](#page-5-0)} to some individual constant, or they apply the same predication to different individual constants. Clearly, this is an aspect of *shared contents*.

DEFINITION 3.2 (R_{ss} -proper formulas). An L_{af} -formula φ is R_{ss} -proper iff

- *ϕ* is atomic, or
- φ is of the form $\chi * \xi$ and $\chi R_{ss}\xi$ holds, or
- φ is of the form $\neg \psi$ and ψ is R_{ss} -proper.

If φ is not R_{ss} -proper, it is R_{ss} -improper.

COROLLARY 3.4 (decidability of R_{ss} -properness). For an arbitrary L_{af} formula φ , it is decidable whether φ is R_{ss} -proper.

Let $L_{ss} := \{ \varphi \in L_{\text{af}} \mid \varphi \text{ is } R_{ss} \text{-proper} \}.$ Clearly, all the formulas in Example [3.1](#page-4-0) are R_{ss} -proper, while the formulas in Example [3.2](#page-4-1) are not.

The following proposition is an immediate consequence of Definition [3.2.](#page-5-1)

PROPOSITION 3.1 (R_{ss} -properness propagation).

- 1. Atomic sentences are *R*ss-proper.
- 2. The negation of an R_{ss} -proper φ is R_{ss} -proper.
- 3. The negation of an R_{ss} -improper φ is R_{ss} -improper.
- 4. For $* \in \{\wedge, \vee, \rightarrow\}$:
	- (i) The $*$ -combination of two R_{ss} -proper formulas φ and ψ is:
		- R_{ss} -proper if $\varphi R_{ss}\psi$.
		- R_{ss} -improper if $\varphi R_{ss} \psi$.
	- (ii) If at least one of φ and ψ is R_{ss} -improper the \ast -combination is:
		- R_{ss} improper if $\varphi R_{ss} \psi$.
		- R_{ss} -proper if $\varphi R_{ss}\psi$.

⁶ Here 'predication' should also refer to relating to other individual via some *n*-ary relation, not just applying a unary predicate name.

Note that the *R*ss-properness *is not compositional*. The following two examples show this.

Example 3.4*.* Here is an example of two *R*ss-proper sentences the conjunction of which is *not R*ss-proper. By definition, atomic sentences are R_{ss} -proper, so both $P(a)$ and $Q(b)$ are R_{ss} -proper. However, since $P(a)R_{ss}Q(b)$, we have that $P(a) \wedge Q(b)$ is R_{ss} -improper. ⊣

Example 3.5. Here is an example of a combination of R_{ss} -improper formulas that becomes R_{ss} -proper. Let $\varphi = P(a) \wedge Q(b)$. Clearly, $P(a)R_{ss}Q(b)$, so φ is R_{ss} -improper.

Similarly, let $\psi = P(a) \wedge S(c)$, which is R_{ss} -improper.

Now consider $\chi = \varphi \vee \psi$. Since φ and ψ share the subformula $P(a)$, we have by Corollary $3.3 \varphi R_{ss} \psi$ $3.3 \varphi R_{ss} \psi$. So, χ is R_{ss} -proper. \Box

3.3. Defining **Lss**

The models interpreting \mathcal{L}_{ss} are the same as those interpreting first-order classical logic, with one extra proviso.

DEFINITION 3.3 (interpretation). A *model* for \mathcal{L}_{ss} is a tuple $\mathcal{M} = \langle D, I \rangle$, where:

- *D* is a non-empty domain of interpretation.
- *I* is an interpretation function mapping individual constants to elements of *D* and predicate symbols to their extensions in *D*, where the following proviso is imposed, prohibiting some "accidental" *R*ssrelating.

proviso (normality):

- (a) For constants *a* and *b*: if $a \neq b$ then $I[[a] \neq I[[b]]$.
- (b) For predicate symbols (of any arity) *S* and *T*: if $S \neq T$ then $I\|S\| \neq I\|T\|.$

I is extended to mapping formulas to truth-values as usual.

DEFINITION 3.4 (\mathcal{L}_{ss} -logical consequence). φ is a \mathcal{L}_{ss} -logical consequence of *Γ*, denoted $\Gamma \models_{\mathcal{L}_{ss}} \varphi$, iff for every \mathcal{L}_{ss} model and \mathcal{L}_{ss} -interpretation *I*:

 $I[\![\varphi]\!] = t$ (i.e., is true) whenever $I[\![\psi]\!] = t$ for every $\psi \in \Gamma$, and $TR_{ss}\varphi$ (i.e., $\psi R_{ss}\varphi$ for every $\psi \in \Gamma$).

I.e., \mathcal{L}_{ss} -logical consequence is truth preservation (from assumptions to conclusion) *and R*ss-relating of the conclusion to each assumption.

The non-transitivity of R_{ss} -relating propagates to non-transitivity of *R*ss-logical consequence.

PROPOSITION 3.2 (non-transitivity of $\models_{\mathcal{L}_{ss}}$). $\models_{\mathcal{L}_{ss}}$ is non-transitive.

Example 3.6 (non-transitivity of $\models_{\mathcal{L}_{ss}}$). $P(a) \land \neg P(a) \models_{\mathcal{L}_{ss}} Q(a) \land \neg Q(a)$. Also, $Q(a) \wedge \neg Q(a) \models_{\mathcal{L}_{\text{ss}}} Q(c)$; but $P(a) \wedge \neg P(a) \not\models_{\mathcal{L}_{\text{ss}}} Q(c)$.

4. Properties of \mathcal{L}_{ss}

First, the following proposition follows directly from the definition of \mathcal{L}_{ss} -logical consequence.

PROPOSITION 4.1 (sub-classicality). \mathcal{L}_{ss} is sub-classical.

Next, the following important proposition holds due to the nontransitivity of *R*ss-logical consequence.

PROPOSITION 4.2 (paraconsistency and paracompleteness of \mathcal{L}_{ss}). \mathcal{L}_{ss} is both paraconsistent and paracomplete.

PROOF. Clearly, an arbitrary ψ need not be R_{ss} -related to a contradiction $\varphi \land \neg \varphi$ or to a tautology $\varphi \lor \neg \varphi$. So $\varphi \land \neg \varphi \models_{\mathcal{L}_{ss}} \psi$ and $\psi \models_{\mathcal{L}_{ss}} \varphi \lor \neg \varphi$ need not hold. ⊣

Still, some weaker form of explosion and implosion does hold.

PROPOSITION 4.3 (R_{ss} -relating explosion and implosion). If $\psi R_{ss}\varphi$ (hence, also $\psi R_{ss}\varphi \wedge \neg \varphi$ and $\psi R_{\mathcal{L}_{ss}}\varphi \vee \neg \varphi$), then

 $\varphi \wedge \neg \varphi \models_{\mathcal{L}_{ss}} \psi \qquad \psi \models_{\mathcal{L}_{ss}} \varphi \vee \neg \varphi$

PROPOSITION 4.4 (semantic "half" deduction theorem). If $\Gamma, \varphi \models_{\mathcal{L}_{\text{ss}}} \psi$ then $\Gamma \models_{\mathcal{L}_{\text{ss}}} \varphi \to \psi$.

PROOF. The argument about truth-propagation is like in classical logic. I therefore present only the argument about R_{ss} -relatedness. If $\Gamma, \varphi \models_{\mathcal{L}_{ss}}$ *ψ*, then $TR_{ss}\psi$ and $\varphi R_{ss}\psi$. Hence $TR_{ss}\varphi \to \psi$, by Corollary [3.3.](#page-5-2) →

The following example shows that the converse of Proposition [4.4](#page-7-0) does not hold.

Example 4.1*.* By inspection, we have

$$
P(b), P(b) \to (P(a) \to Q(a)) \models_{\mathcal{L}_{\text{ss}}} (P(a) \to Q(a))
$$

However,

$$
P(b), P(b) \to (P(a) \to Q(a)), P(a) \not\models_{\mathcal{L}_{\text{ss}}} Q(a)
$$

 $\text{because } P(b)R_{ss}Q(a).$

5. A natural-deduction system for \mathcal{L}_{ss}

In this section, I attend to presenting a proof system, a natural-deduction (ND) system \mathcal{N}_{ss} , for \mathcal{L}_{ss} . Recall that the the objects language L_{ss} is a sublanguage of the classical first-order quantifier-free language L_{cf} .

The point of departure is Gentzen's ND-system *NK* for classical logic [\[4](#page-13-7)]. However, the latter is not concerned with *R*ss-relating, so it has to be modified to account for the latter too.

The basic idea in the modification is to add to each NK -rule R_{ss} *relating of the conclusion to each premise* as a side condition. However, because of the non-transitivity of the logical consequence relation, this modification does not suffice, as exemplified by the following example.

Example 5.1 (non-transitivity of derivation)*.* Consider the following "derivation" (where $\vdash_{\mathcal{N}_{ss}}$ is defined below) for the invalid

$$
P(b), P(b) \to (P(a) \to Q(a)), P(a) \vdash_{\mathcal{N}_{\text{ss}}} Q(a)
$$

The invalidity of

$$
P(b), P(b) \to (P(a) \to Q(a)), P(a) \models_{\mathcal{L}_{\text{ss}}} Q(a)
$$

stems from $P(b)R_{ss}Q(a)$.

The derivation is applying twice in consecution the modified modusponens rule (implication elimination $(\rightarrow E_{ss})$).

$$
\frac{P(b) \quad P(b) \to (P(a) \to Q(a))}{P(a) \to Q(a)} \quad (\to E_{\rm ss}) \quad P(a) \quad (\to E_{\rm ss})
$$

$$
Q(a) \quad (\to E_{\rm ss})
$$

In this derivation:

- Each formula is R_{ss} -proper.
- In each application of $(\rightarrow E_{ss})$, the conclusion is R_{ss} -related to each premise.
- Still, the conclusion of the derivation is *not* R_{ss} -related to each initial assumption. ⊣

Consequently, the side condition on each *NK*-rule has to be stronger:

1. The conclusion in each rule has to be *R*ss-related to each premise and to each open assumption on which that premise depends.

2. For assumption discharging rules, the *R*ss-relatedness is also imposed on at least one sub-derivation from the discharged assumption (see remark below).

Denote the combination of those two conditions, serving together as a side-condition on rules, by $R_{\rm ss}^{\rm c}$.

The way to implement the side condition R_{ss}^c is by adopting the technique employed in the ND-system for the relevant logic \mathbf{R} [\[1](#page-13-8)]. Each assumption is uniquely labelled by an index, and the rules propagate the dependence on assumption, recording the set α of indices of assumptions on which a formula φ in a derivation depends in the form of φ_{α} .

While for **R** the index sets α are employed for *tracking use* of an assumption in a derivation (in order to avoid vacuous discharge), in \mathcal{N}_{ss} those indices are employed to impose *R*ss-relating of a conclusion to the open assumption on which it depends.

Note that an assumption discharged by an application of a rule is no longer in the index of the conclusion, and is exempt from being R_{ss} related to it.

We thus obtain the following definition of the side condition R_{ss}^{c} imposed on each *NK*-rule ρ , to get the corresponding \mathcal{N}_{ss} -rule ρ_{ss} .

DEFINITION 5.1 (R_{ss}^c) . Consider any *NK*-rule ρ with *n* indexed premises $\pi_{i\alpha_i}$, $1 \leq i \leq n$, and conclusion ψ_{β} . Let $\alpha = \bigcup_{1 \leq i \leq n} \alpha_i$. Then,

- 1. $\pi_i R_{ss} \psi$ for $1 \leq i \leq n$.
- 2. $\varphi_j R_{ss} \psi$ for every $j \in \alpha$, where φ_j is the open assumption indexed *j*.

The rules of \mathcal{N}_{ss} are displayed below:

$$
\frac{\varphi_{\alpha} \psi_{\beta}}{(\varphi \wedge \psi)_{\alpha \cup \beta}} (Ax_{ss})
$$
\n
$$
\frac{\varphi_{\alpha} \psi_{\beta}}{(\varphi \wedge \psi)_{\alpha \cup \beta}} (\wedge I_{ss}), R_{ss}^{c} \frac{(\varphi \wedge \psi)_{\alpha}}{\varphi_{\alpha}} (\wedge_{1} E_{ss}), R_{ss}^{c} \frac{(\varphi \wedge \psi)_{\alpha}}{\psi_{\alpha}} (\wedge_{2} E_{ss}), R_{ss}^{c}
$$
\n
$$
[\varphi]_{i}
$$
\n
$$
\vdots
$$
\n
$$
\frac{\psi_{\alpha}}{(\varphi \rightarrow \psi)_{\alpha - \{i\}}} (\rightarrow I_{ss}^{i}), R_{ss}^{c} \frac{\varphi_{\alpha} (\varphi \rightarrow \psi)_{\beta}}{\psi_{\alpha \cup \beta}} (\rightarrow E_{ss}), R_{ss}^{c}
$$
\n
$$
\frac{\varphi_{\alpha}}{(\varphi \vee \psi)_{\alpha}} (\vee_{1} I_{ss}), R_{ss}^{c} \frac{\psi_{\alpha}}{(\varphi \vee \psi)_{\alpha}} (\vee_{2} I_{ss}), R_{ss}^{c}
$$

$$
[\varphi]_i \quad [\psi]_j
$$

\n
$$
\frac{(\varphi \vee \psi)_{\alpha} \quad \chi_{\beta} \quad \chi_{\gamma}}{\chi_{\alpha \cup \beta \cup \gamma - \{i,j\}}} \quad (\vee E_{ss}^{i,j}), R_{ss}^c
$$

\n
$$
[\varphi]_i \quad [\varphi]_j
$$

\n
$$
\vdots \quad \vdots
$$

\n
$$
\frac{\psi_{\beta} \quad (\neg \psi)_{\gamma}}{(\neg \varphi)_{\beta \cup \gamma - \{i,j\}}} \quad (\neg I_{ss}^{i,j}), R_{ss}^c
$$

\n
$$
\frac{(\neg \neg \varphi)_{\alpha}}{\varphi_{\alpha}} \quad (dne_{ss}), R_{ss}^c
$$

Remark 5.1*.* 1. Note that the bad derivation in Example [5.1](#page-8-0) is blocked, as the second application of $(\rightarrow E_{ss})$ violates the side condition $R_{ss}^{\rm c}$ in $Q(a)$ not being R_{ss} -related to the premise $P(b)$.

2. Note that while the conditional introduction rule $(\rightarrow I)$ has one sub-derivation, requiring ψ to be R_{ss} -related to the discharged assumption φ , the disjunction elimination rule ($\vee E$) has two sub-derivations, requiring the arbitrary conclusion χ to be R_{ss} -related to at least one disjunct (a discharged assumption); this ensure already the *R*ss-relatedness of χ to the major premise, the disjunction $\varphi \vee \psi$.

This is exemplified^{[7](#page-10-0)} in Example [5.2.](#page-10-1) \rightarrow

Clearly, the structural rule of Weakening (adding an arbitrary assumption) cannot be admissible, as the assumption does not need to be R_{ss} -related to the conclusion. A weaker form of Weakening, namely, adding an assumption *R*ss-related to the conclusion, is admissible. The axiom could, therefore, be taken as

$$
\overline{\Gamma,\varphi_i:\varphi_i} \ (Ax_{ss},\ \Gamma\ R_{ss}\ \varphi)
$$

Example 5.2*.* I show below that

First, note that

$$
P(a) \to P(b), P(b) \to Q(b) \models_{\mathcal{L}_{\text{ss}}} (P(a) \lor P(b)) \to Q(b)
$$

Classical validity is obvious, and the conclusion is clearly *R*ss-related to both assumptions. The derivation is in Figure [1.](#page-11-0)

Showing R_{ss}^c : I show for exemplification the justification (holding of the side condition) of two of the derivation steps. The other steps are justified too, as can be seen by inspection.

⁷ I thank a referee of this journal for raising the issue of disjunction.

Figure 1.

- 1. Consider the last application of $(\rightarrow I_{\text{ss}}^3)$:
	- First, the conclusion $(P(a) \vee P(b)) \rightarrow Q(b)$ is R_{ss} -related to its (direct) premise, sharing $Q(b)$, which depends on $\{1, 2, 3\}$.
	- The conclusion is R_{ss} -related to assumption 1, sharing both $P(a)$ and $P(b)$.
	- Similarly, the conclusion is R_{ss} -related to assumption 2, sharing both $P(a)$ and $Q(b)$.
	- Assumption 3 is discharged by the application of the rule, so need not be checked for being R_{ss} -related to the conclusion. It happens, though, to be, sharing the sub-formula $(P(a) \vee P(b))$.
- 2. Consider the application of $(\vee E_{\text{ss}}^{4,5})$:
	- First, its conclusion $Q(b)_{1,2,3}$ is indeed R_{ss} -related to its direct premise, the disjunction $P(a) \vee P(b)$ by sharing *b*.
	- While in the left sub-derivation the conclusion $Q(b)_{1,2,4}$ is not R_{ss} related to the discharged disjunct $P(a)$, the conclusion $Q(b)_{2,5}$ of the right sub-derivation *is* R_{ss} -related to the second disjunct, the discharged $P(b)$, sharing *b*. ⊣

6. Conclusion

I presented a sub-classical *relating logic* based on a relatedness via an NL-inspired relating relation R_{ss}^c . The relation R_{ss}^c is motivated by the NL-phenomenon of phrasal (subsentential) coordination, exhibiting an important aspect of contents relatedness among the arguments of binary connectives.

The resulting logic \mathcal{L}_{ss} can be viewed as a relevance logic exhibiting a contents related relevance, stronger than the variable-sharing property of other relevance logics like R.

Note that relatedness here is not "tailored" to justify some predetermined logic; rather, the relating relation is *independently justified*, and induces a logic not previously investigated.

Future work may include:

- A more thorough examination of the logic \mathcal{L}^c_{ss} , in particular providing a completeness proof for \mathcal{N}_{ss} .
- Strengthening the side condition R_{ss}^c so as to validate the *full* (not just "half") semantic deduction theorem.
- Incorporate into *R*ss some *lexically derived* relating. For example

If the sky is cloudy it will rain

where '*cloudy*' and '*rain*' can be considered related by the underlying lexical semantics.

• Recovering sharing relating applicable to quantification.

References

- [1] Alan R. Anderson and Nuel D. Belnap Jr. *Entailment*, (vol. 1). Princeton University Press, N.J., 1975.
- [2] Richard L. Epstein. Relatedness and implication. *Philosophical Studies*, 36: 137–173, 1979. DOI: [10.1007/BF00354267](https://doi.org/10.1007/BF00354267)
- [3] Nissim Francez. Diversification of object-languages for propositional logics. *Journal of Logic, Language and Information*, 2017. DOI: [10.1007/s10849-](https://doi.org/10.1007/s10849-018-9266-6) [018-9266-6](https://doi.org/10.1007/s10849-018-9266-6)
- [4] Gerhard Gentzen. Investigations into logical deduction. Pages 68–131 in M. E. Szabo, editor, *The Collected Papers of Gerhard Gentzen*. North-Holland, Amsterdam, 1935. English translation of the 1935 paper in German.
- [5] Martin Haspelmath. Coordination. Pages 1–51 in Timothy Shopen, editor, *Language typology and syntactic description, volume II: complex constructions*. Cambridge University Press, Cambridge, UK, 2007.
- [6] Tomasz Jarmużek and Bartosz J. Kaczkowski. On some logic with a relation imposed on formulae: tableau system F. *Bulletin of the Section of Logic*, $43(1/2): 53-72, 2014.$
- [7] Mateusz Klonowski. History of relating logic: the origin and research directions. *Logic and Logical Philosophy*, 30(4): 579–629, 2021. DOI: [10.12775/](https://doi.org/10.12775/LLP.2021.021) [LLP.2021.021](https://doi.org/10.12775/LLP.2021.021)
- [8] Stanisław Krajewski. Relatedness logic. *Reports on Mathematical Logic*, 20: 7–14, 1986.
- [9] Viola Schmitt. Boolean and non-boolean conjunction. In *The Wiley Blackwell Companion to Semantics*. Willey & Sons, 2020. DOI: [10.1002/](https://doi.org/10.1002/9781118788516.sem111) [9781118788516.sem111](https://doi.org/10.1002/9781118788516.sem111)

Nissim Francez Faculty of Computer Science Technion – Israel Institute of Technology Haifa, Israel francez@cs.technion.ac.il <https://orcid.org/0000-0002-6993-4392>