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True, Untrue, Valid, Invalid, Provable, Unprovable

Abstract. There are many approaches to paraconsistency, ranging from
the very moderate to the more radical. In this paper I explore and extend
the more radical end of the spectrum, where there are truth-value gluts. In
particular I will look at paraconsistent metatheory  the machinery of truth,
validity, and proof  as developed in a glut-friendly paraconsistent setting.
The aim is to evaluate the philosophical and technical tenability of such an
approach. I will show that there are very significant technical challenges to
face on this sort of radical approach, but that there is good philosophical
support for facing these challenges.
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1. Introduction

1.1. From moderate to radical paraconsistency

There are many approaches to paraconsistency (see Beall and Restall,
2005, p. 80; Weber, 2022). Some are very moderate, aiming to extend
standard classical theories with a non-explosive consequence relation in
certain places, analogous to the way the transfinite extends but does
not alter the finite natural numbers (Carnielli and Coniglio, 2016, p. x).
Moderate approaches deny the principle of ex falso quodlibet (EFQ) be-
cause of possible inconsistency in our minds, or our language, or discus-
sive contexts, or other worlds, but hold that consistency-based theorizing
in science and mathematics is on the whole reliable and correct. And
they assume that any theory needs a classical representation (e.g., a non-
triviality ‘consistency’ proof, relative to some classical system) to be ac-
ceptable. Other approaches to paraconsistency are very radical, aiming
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to recast or revise standard classical theories (e.g. Routley, 1977). They
deny EFQ because the ‘consistency hypothesis’ has failed1 and theories
must be reconsidered and rehabilitated on a paraconsistent basis, so
some classical results may be rejected, and new ones accepted perhaps
even without classical representation.

In this paper I will explore and extend the more radical end of the
spectrum, where there are gluts or dialetheias,2 developing themes from
(Weber, 2021). The aim is to evaluate the philosophical and technical
tenability of a very radical approach. The strategy is to argue that, if
there is good reason to use a glutty theory, then there is good reason to
use a glutty metatheory too; the key issue is how to go about doing so.

We will begin with basic notions of truth and falsity, and how these
relate to un-truth. A textbook way of allowing gluts, as in Priest’s
(2008), is to distinguish falsity from un-truth: a proposition may be false
in the sense of having a true negation, without also failing to be true.
This is often done via some notational markers like + and −, where, e.g.,
�

− A is distinct from 2
+ A. Indeed, this is in part what appears to make

it possible for there to be non-trivial inconsistency at all. But I will argue
that this approach is problematic, and outline an alternative in which
falsity implies un-truth  so some (glutty) propositions are both true
and un-true. Extending these notions to semantic validity, we consider
ways in which an argument may be thought of as both valid and invalid,
and here highlight the importance of an absurdity constant ⊥ in the
language. Finally, we consider operationalizing these notions in terms of
derivability, where some conclusions may be thought of as both provable
and unprovable.

The aim in presenting all of this together, in panoramic snapshot,
is to appreciate the philosophical coherence  some might say single-
mindedness  of such an approach, by explicitly identifying some of its
guiding principles and how they are repeatedly applied. These are what
in Section 1.2 I call the Ordinariness and Non-Classicality hy-
potheses, and the Dialetheic Paraconsistency thesis. The aim
is also to admit that the current state of the program is far from a

1 The mainstream hypothesis “[. . . ] that all that can be spoken of or described
(non-trivially) is consistent” (Priest et al., 1989, p. 4); the idea that this hypothesis
has failed is floated in (Routley and Meyer, 1976).

2 Some authors have sought to distinguish glut theory from dialetheism (see, e.g.,
Ficara, 2021). This is worth discussing further but for now I will treat the terms as
synonymous.
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completed utopia and will require some dedicated and creative future
researchers. I will conclude that there are very significant technical chal-
lenges to face on this sort of radical approach, but that there is good
philosophical support for facing these challenges.

1.2. A question, and two hypotheses

Let’s begin by facing a skeptical (but sincere) question for the radical
approach. An amalgam of questions and comments I’ve heard over the
years says:

Okay, maybe thought or language can be inconsistent, but the world
and its truths are obviously consistent. Bridges (mostly) do not fall
down and the shoes on my feet are not also non-shoes. What would
‘radically’ paraconsistent things even be supposed to look like?

I will sketch a response, guided by a few key principles. One is the
Ordinary-ness Hypothesis. ‘Paraconsistent’ objects are ordinary ob-

jects, described in a paraconsistent language and theorized with a
paraconsistent logic.

This tells us not to look for some exotic or wild sorts of ‘paraconsistent’
entities to populate our theories. Rather, our theories are about everyday
entities, like bridges and shoes; the theory just happens to be governed
by a background paraconsistent logic. On this approach, paraconsistency
is not about some “realm beyond the consistent” (Priest, 2006, p. 209).
Maybe your shoes are so old and full of holes they really are both shoes
and not shoes anymore (Beall and Colyvan, 2001, cf.[). Ordinariness

tells us to expect the expected.
The second hypothesis is the

‘Non-classicality is not Classical’ Hypothesis. Conventional standard
theories are relative to classical logic. When conventional concepts,
definitions, proofs and theorems are expressed ina paraconsistent lan-
guage and established using only paraconsistently valid arguments,
they may diverge from the classical case.

This tells us not to look for copies or replicas of classical theories, some-
how delivered by non-classical logics. Such a goal, the so-called ‘classical
recapture’, has long been pursued by paraconsistent researchers but as
we will see in this paper, there are significant reasons to set new goals in-
stead (cf. Sylvan and Copeland, 2000; Meadows and Weber, 2016). Why
pursue a non-classical path just to regain what the classical already had?
Non-Classicality tells us to expect the unexpected.
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Putting these together, ordinariness says to expect the expected
with respect to experience, while non-Classicality says to expect the
unexpected with respect to classical theories. Between these two poles, a
radical approach can still find balance. We will see that, e.g., a ‘paracon-
sistent chair’ is just an unsurprising chair  and that in itself is surprising.

1.3. Gluts

According to truth-glut theory (Beall, 2009) or dialetheism (Priest et
al., 1983) some propositions are both true and false: there is some true
proposition p such that ¬p is true, too. Such p is true simpliciter, not
(only) true in some model, though it is that, too. Such p is true in the
actual world, whatever ‘true in the actual world’ happens to mean.

A reason for believing in gluts is that some of them appear at the end
of what look like deductive proofs, and accepting that this is so provides
direct resolution of famous paradoxes in logico-mathematics, especially
the interrelated self-referential fixed-point phenomena that underly the
famous limitive theorems; this is argued directly in (Priest, 2006, ch. 1,
2, 3) and indirectly (but to my mind even more compellingly) in (Priest,
2002a); see (Weber, 2021, ch. 0, 1). A reason this solution is appealing
is that it seems to avoid the ‘revenge’ (all?) other solutions face. All
approaches to the paradoxes seem eventually to contradict themselves, or
else go terminally silent (which itself may be some kind of performative
contadiction). Dialetheism contradicts itself, too  it explicitly endorses
contradictions, including in the statement ‘no sentence is both true and
false’ (see Section 1.5 below)  but it is the only approach where that is
not a cost.3

In this sense dialetheism is not a ‘solution’ to the paradoxes  it does
not make them ‘go away’  but rather a response that attempts to accept
the paradoxes and learn from them. If there is a fixed point knot at
the bottom of semantics, set theory, recursion theory, and perhaps even
arithmetic, as the years from Russell to Gödel and Turing seem to show,
then the way forward, according to dialetheism, is to take this knot as a
part of logico-mathematics to be studied and gripped, not untied.

3 As Shapiro puts it, “An important advantage  perhaps the major advantage 
of the dialetheic program is the possibility of a single uniform semantics [. . . ]. [W]e do
not need to keep running through richer and richer metalanguages in order to chase
our semantic tails. [. . . ] We embrace some contradictions in the semantics, and get
it all from the start” (Shairo, 2002, p. 818), adding: “Or so says Priest”.
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1.4. Methodology: Paraconsistency and Meta-Paraconsistency

For dialetheism to be rationally coherent, there needs to be an accom-
panying paraconsistent logical system in which inconsistency does not
spread to all propositions. This is encapsulated in the following truism.

Paraconsistency Thesis. Not everything is true. Not everything is true
even if some contradictions are.

Combining with gluts, we get

Dialetheic Paraconsistency. Some but not all contradictions are true.

Following through on dialetheic paraconsistency as a program re-
quires setting up notions of truth, satisfaction, validity, and provability
that deliver results without over-delivering. To escape revenge and main-
tain its self-styled status as the only approach that does escape revenge,
dialetheic paraconsistency must set up its own framework in a way that
does not appeal to unavailable notions or otherwise run afoul of its own
proscriptions. If a position eschews classical logic, but must use classical
logic essentially in order even to state the position, that is prototypical
failure.4

Let us at least try to do better. I would suggest that, since the
modern logic project launched at the turn of the 20th century to rousing
Hilbertian aspirations, we have grown accustomed to bad news and dis-
appointment. All the big-name results are negative: first order languages
cannot pin down intended models (Löwenheim-Skolem); axiomatic sys-
tems cannot reach the full set of truths (Gödel); truth is not even express-
ible (Tarski); many important problems are not computable, including
the question of which problems are computable (Church, Turing); and
so on. A thoroughly paraconsistent approach keeps alive the possibility
of doing better, but only through genuine Non-classicality.

How then to arrange an internally coherent dialetheic paraconsistent
system? Perhaps unsurprisingly, we will focus on the role of negation,
in the notions of truth, validity, and proof. To do this, we first need to
fix the background framework for these developments, a logic and some
mathematics to build logic and mathematics.

4 A referee describes this as logical constancy  avoiding the ‘inconstancy’ or
incoherence (in Sylvan’s phrase) of a mismatch between philosophical motives and
methodological approach. See (Weber, 2021, ch. 3).
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1.5. Logic for the metatheory

There are many available paraconsistent logics. Here is an axiomatic pre-
sentation of a a Hilbert System for the logic BCK (cf. Ono and Komori,
1985, p. 173) plus a de Morgan negation (Badia et al., 2019), quantifiers,
and identity.

The language is of first order logic with identity, containing logical
operators &, ∨, ¬, ⊥, ⇒ (where ⇒ is not definable in terms of the other
operators), quantifiers ∀, ∃, a binary relation = and punctuation, all with
usual formation rules.

1. A ⇒ (B ⇒ A)
2. (A ⇒ (B ⇒ C)) ⇒ (B ⇒ (A ⇒ C))
3. ⊥ ⇒ A
4. (A ⇒ B) ⇒ ((C ⇒ A) ⇒ (C ⇒ B))
5. (A ⇒ C) ⇒ ((B ⇒ C) ⇒ (A ∨ B ⇒ C))
6. (A ⇒ (B ⇒ C)) ⇒ (A&B ⇒ C)
7. A ⇒ (B ⇒ A&B)
8. A ⇒ A ∨ B
9. B ⇒ A ∨ B

10. ¬¬A ⇔ A
11. ¬(A&B) ⇔ ¬A ∨ ¬B
12. ¬(A ∨ B) ⇔ ¬A&¬B
13. A ∨ ¬A
14. ∀xA(x) ⇒ Ay
15. ∀x(A ⇒ Bx) ⇒ (A ⇒ ∀xBx)
16. ∀x(A ∨ B) ⇒ (A ∨ ∀xBx)
17. Ay ⇒ ∃xA(x)
18. ∀x(A ⇒ B) ⇒ (∃xA(x) ⇒ B)
19. ¬∃xA ⇔ ∀x¬A
20. ¬∀xA ⇔ ∃x¬A
21. ∀x(x = x)
22. ∀x∀y(x = y ⇒ (Ax ⇒ Ay))

Rule 1 If A and A ⇒ B then B
Rule 2 If A then ∀xA

Then an argument from A0, . . . , An to A is valid,

A0, . . . , An ⊢ A

iff A is an axiom, or follows from axioms or A0, . . . , An by rules.
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The conjunction connective & is an intensional, multiplicative oper-
ator that residuates the conditional,

Fact 1. A & B ⇒ C iff A ⇒ (B ⇒ C)

(unlike the truth-functional lattice conjunction ∧ discussed in Section 2.1
below). See (Weber, 2021, ch. 4) for further discussion. Two further
important facts to note are that this logic obeys a deduction theorem,

Fact 2. A0, . . . , An ⊢ B iff ⊢ A0 & . . . & An ⇒ B.

and that it is ‘Curry paraconsistent’,

Fact 3. A ⇒ (A ⇒ B) 0 A ⇒ B, and A 0 A & A.

Versions of structural contraction are not valid, in the sense that one may
have A & A ⊢ B without A ⊢ B, due to Curry’s paradox (cf. Section 5.1).

The appeal of such a system is to extend the language with a two
place relation ∈ and a variable binding term forming operator {· : ·}, for
a naive set theory:

Axiom 1 (Comprehension).
∀x(x ∈ {y : A} ⇔ A), ∀x(x /∈ {y : A} ⇔ ¬A)

The negative form of comprehension is added manually (where ‘x /∈ y’
abbreviates ¬(x ∈ y)) since ⇒ does not contrapose.5

The system without de Morgan negation (so deleting logical axioms
10-13) plus positive naive comprehension, which seems to be initially due
to Grĭsin, has been proven non-trivial, due to the absence of contraction
(cf. Petersen, 2000). Whether the addition of de Morgan negation is
non-trivial or not is an open (classical) question (see Weber, 2021, ch. 3,
§3) for discussion. This weaker system alone can be used to define and
prove properties of the most basic widgets, such as

• subsets x ⊆ y := ∀z(z ∈ x ⇒ z ∈ y)
• singletons x ∈ {a} ⇔ x = a, x /∈ {a} ⇔ x 6= a
• ordered pairs 〈a, b〉 := {{a}, {a, b}} from which one proves the law

〈a, b〉 = 〈c, d〉 ⇔ a = c & b = d

5 Given comprehension, ⊥ in our language is definable as ∀x∀yx ∈ y. And with
this, transitivity (logic axiom 5) does give (A ⇒ B) ⇒ ((B ⇒ ⊥) ⇒ (A ⇒ ⊥)). But
¬A is not definable as A ⇒ ⊥. In particular, the latter does not follow from the
former, because inconsistency does not necessarily explode  that is paraconsistency!
For the role of ⊥ in nearby languages (see Badia, 2016).
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• products X ×Y = {〈x, y〉 : x ∈ X & y ∈ Y }, and relations Z ⊆ X ×Y
• an indexing set {0, 1, 2, . . .} obeying some limited form of induction

The development of this machinery can be found in (Cantini, 2003; Terui,
2004). We can take these as further postulates for now, in the spirit of
inspiring pioneer exercises like (Arruda and Batens, 1982).

Ideally, one would also want to add to this system an axiom of ex-
tensionality, asserting that ∀z(z ∈ x ⇔ z ∈ y) ⇔ x = y. However it is
known that this, in terms of the BCK arrow, will trivialise (Weber, 2021,
ch. 4). Without extensionality, we really have a property theory rather
than a set theory. This can be dealt with by adding another conditional
to the system, e.g., an implication connective from weak relevant logic as
in (Brady, 2006), but this is not without problems (Field, 2020; Weber,
2020), and trying to solve them now would take us too far off track. With
this flagged, for our purposes here we will only need to know when two
sets are not identical  when they differ with respect to membership 
and this can be stated as

Axiom 2. ∀x∀y(x 6= y ⇔ ∃z(z ∈ x & z /∈ y) ∨ ∃z(z /∈ x & z ∈ y))

Remark 1. If the Russell set is both a member of itself and not, then it
is not self identical either (even though it also is self-identical, by logical
axioms).

There are many approaches to paraconsistent set theory: for LP set
theory, see (Restall, 1992; Martinez, 2021); for non-transitive approaches,
see (Ripley, 2015; Istre, 2017); for others, see (Libert, 2003), (Carnielli
and Coniglio, 2016, ch. 8), (Batens, 2020). So this is one example, which
seems to have some promise from field testing, but it is not presented here
as final or definitive. It seems likely that there are improvements and
additions (for example, restricted quantifiers (Beall et al., 2006; Badia
et al., 2022), using sparingly below) that will in future make for a fuller
account for framing (paraconsistent) mathematics.

2. True and Untrue

The goal is to use the meta-system just sketched to build up some stan-
dard internal machinery for logic, starting with the notion of truth in
a model. First we will look at a a ‘standard’ way of presenting a glut-
friendly paraconsistent system, as found in, e.g., (Priest, 2008) or (Beall



True, untrue, valid, invalid, provable, unprovable 9

and Logan, 2017), which is to distinguish between falsity and untruth.
E.g. in presenting the relational semantics for FDE (first degree entail-
ment), we find

Note that it is now very important to distinguish between being false
in an interpretation and not being true in it. (There is, of course, no
difference in the classical case.) The fact that a formula is false (relates
to 0) does not mean that it is untrue (it may also relate to 1). And
the fact that it is untrue (does not relate to 1) does not mean that it is
false (it may not relate to 0 either). (Priest, 2008, p. 143)

The whole paraconsistent enterprise, it might seem, is made possible by
separating falsity and untruth, so that a sentence might be both true
and false, but never both true and untrue. This distinction underwrites
a consistent presentation of possible inconsistency.

I will set out how this is done, how it might be problematic, and how
it might be undone. To keep things contained, we will make the ‘object’
level logic of study the well-known logic of paradox LP.

2.1. Models

Let us look at a standard presentation of first order LP with identity.
Let us emphasize that, following standard procedure, what we are about
to look at is built in classical logic and set theory. This is for display
and comparison only.

For the language, we have variables x, y, z, constants a, b, c, . . . ,
predicate symbols F n, Gn, Hn, . . . for predicates of any arity n > 0,
a special two-place identity relation =, connectives ∧, ∨, ¬, quantifiers
∀, ∃, and brackets. (Note that the conjunction ∧ here is not the & from
above.) Variables and constants are terms t0, t1, . . . . If t0, . . . , tn

are terms and F is an n-place predicate then F (t0, . . . , tn) is an atomic
formula. If A, B are formulas and x is a variable, then ¬A, A∧B, A∨B,
∀xA(x) and ∃xF (x) are formulas.

Definition 1 (Standard Model Structures). A (standard) model struc-
ture M = 〈D, I 〉 consists of a non-empty domain D and interpreation
I such that

• If c is a constant, I (c) ∈ D.
• If F is an n-place predicate, then

I
+(F ), I −(F ) ⊆ {〈d1, . . . , dn〉 : d1, . . . , dn ∈ D}
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such that the interpretation is exhaustive, I +(F ) ∪I −(F ) = D, but
without insisting that it is exclusive (which would be written I +(F )∩
I −(F ) = ∅).

• For identity, I +(=) = {〈x, x〉 : x ∈ D}, but without insisting
I −(=) = ∅.

The interpretation of F consists of separate specifications of the ex-
tension and anti-extension of F , its members and non-members. It is
assumed that these are exhaustive but not exclusive. Similarly it is not
assumed that the anti-extension of = is empty.

Definition 2. For each interpretation, a standard valuation v relates
formulas to truth values {t, f}, via base conditions

t ∈ v(F (t0, . . . , tn)) iff 〈I (t0), . . . , I (tn)〉 ∈ I
+(F )

f ∈ v(F (t0, . . . , tn)) iff 〈I (t0), . . . , I (tn)〉 ∈ I
−(F )

and by recursion,

t ∈ v(¬A) iff f ∈ v(A)

f ∈ v(¬A) iff t ∈ v(A)

t ∈ v(A ∧ B) iff t ∈ v(A) and t ∈ v(B)

f ∈ v(A ∧ B) iff f ∈ v(A) or f ∈ v(B)

t ∈ v(A ∨ B) iff t ∈ v(A) or t ∈ v(B)

f ∈ v(A ∨ B) iff f ∈ v(A) and f ∈ v(B)

t ∈ v(∀xA) iff t ∈ v(A(x/d) for all d ∈ D

f ∈ v(∀xA) iff f ∈ v(A(x/d) for some d ∈ D

t ∈ v(∃xA) iff t ∈ v(A(x/d) for some d ∈ D

f ∈ v(∃xA) iff f ∈ v(A(x/d) for all d ∈ D

This would seem to have the virtue of ‘relaxing’ the classical condi-
tions (which can simply be re-obtained by replacing ∈ with = above). A
valid argument is truth preserving, semantically, iff when all the premises
are ‘at least’ true, then the conclusion is ‘at least’ true. This leaves room
for gluts to be modeled consistently.

Remark 2. If the membership relation ∈ and /∈ are from classical set the-
ory then the above semantics are equivalent to a three valued functional
presentation:
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v(A) =















{t} if t ∈ v(A), f /∈ v(A)

{f} if t /∈ v(A), f ∈ v(A)

{t, f} if t, f ∈ v(A)

If the background negation and membership relation are consistent, then
this rules out anything being both true and untrue, e.g., t ∈ v(A) and
t /∈ v(A). And if that is to be ruled out, then at least one of the following
needs to be blocked:
Exhaustion. If t /∈ v(A) then t ∈ v(¬A)
Exclusion. If t ∈ v(¬A) then t /∈ v(A)
Priest drops exclusion, as it “multiplies contradictions beyond neces-
sity” (Priest, 2006, p. 71) since otherwise, if A is both true and false,
then it would be true and untrue.

2.2. From classical to non-classical

The standard approach is to provide a consistent account of what non-
trivial inconsistency might look like; but upon reflection, for a committed
dialetheist it can start to seem self-defeating and revenge-inviting to at-
tempt to maintain consistency at such a ‘meta’-level. Does the standard
approach restore coherence to gluts by removing the gluttiness of gluts?
If truth and falsity do not contradict then why is a true/false pair a
(true) contradiction?

The standard way opens paths to revenge, via strengthened liars
formulated with classical negation (Omori and Weber, 2019). Assuming
the meta-level is expressive enough, one can forsee a revenge sentence
on the horizon, along the lines of, e.g., a property F such that F(x) iff
x /∈ I +(F). It makes a good deal more sense to take /∈ to be not classical.
If paraconsistent dialetheism tells us to forswear classical negation to
resolve the liar, then a paraconsistent dialetheist cannot revert back to
classical negation to describe their own semantics! That would seem to
violate the spirit of the project and undercut what it is for. If truth
and untruth are absolutely exclusive, then one has reinstated the sort of
consistency conditions that lead to paradox in the first place, the sort of
conditions that the dialetheic paraconsistent approach councils against,
against a difference between ‘not-(A is true)’ and ‘not-(A) is true’.

With a fully paraconsistent metatheory there is no in-principle prob-
lem with inconsistent set membership. Going non-classical at the meta-
level, indeed, one could add to the above semantic conditions the stipu-
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lation that truth and falsity contradict: adopting both exclusion and
exhaustion gives natural ‘contradictory’ interaction between t and f.
On this track, ‘excludes’ itself can be inconsistent.

Similarly for I +(F ) and I −(F ), the intended picture of the stan-
dard presentation is

F + F −

F + ∩ F −

If these are classical, then while for some a it is allowed that

a ∈ I
+(F ) ∩ I

−(F )

one of the following would still have to go:
Exhaustion. If a /∈ I +(F ) then a ∈ I −(F ).
Exclusion. If a ∈ I −(F ) then a /∈ I +(F ).
Else there are cases where a ∈ I +(F ) and a /∈ I +(F ).

Again, though, arguably this sort of external contradiction is just
what a dialetheist means, to preserve the contradictory interactions,

∀x(x ∈ I
+(F ) iff x /∈ I

−(F ))

∀x(x ∈ I
−(F ) iff x /∈ I

+(F ))

The picture returns to

F −

+
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Allowing this back in (or never having pushed it out) means there will
be significant ‘noise’ in the models; but part of the aim was to listen to
the noise.6

2.3. Models Redux: Listen to the Noise

We now reformulate the notion of a model, using a background paracon-
sistent logic and set theory, as in Section 1.5. This is done, principally, by
dropping the positive and negative valences on interpretations  which
are not so covert ways of reintroducing consistency  and instead return-
ing to the simpler idea that truth and falsity are dual.

Definition 3 (Glutty Models). For M = 〈D, I 〉, if F is an n-place
predicate, then we say simply

I (F ) ⊆ {〈d1, . . . , dn〉 : d1, . . . , dn ∈ D}

For identity, everything is self-identical, I (=) = {〈x, x〉 : x ∈ D}.

Since A ∨ ¬A and ¬(A & ¬A) are theorems of our background logic,
we have automatically that both exhaustion and exclusion  paraconsis-
tently understood  hold:

∀x ∈ D(x ∈ I (F ) ∨ x /∈ I (F ))

¬∃x ∈ D(x ∈ I (F ) & x /∈ I (F ))

(These are formulated using restricted quantification, an issue we will
note in Section 5.1 below.) Similarly with identity, nothing is not iden-
tical to itself, ¬∃x ∈ D2(x /∈ I (=)), even if also sometimes some things
are non-self-identical. Rather than give independent truth and untruth
clauses, by restoring the connection, duality means that one already
determines the other (even if also they can diverge).

Then the base conditions on semantics look very familiar indeed:

6 Of course, one may fairly ask (as a referee does) whether the picture is really
so felicitous. In inconsistent instances, surely, the paraconsistent model theory clearly
differs (in some sense) from the classical one. Perhaps we should add that there is
still space in the picture for some inconsistency along the boundary  but in the same
breath, we should reiterate that there are no true contradictions, since ¬(A ∧ ¬A) is
valid in our background logic. This is a question of the Ordinariness Hypothesis

in practice; we will indeed see some problems in the next section. See also (Weber et
al, 2016) and (Weber, 2021, ch. 10).
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Definition 4. A glutty pre-valuation v is such that

t ∈ v(F (t0, . . . , tn) iff 〈I (t0), . . . , I (tn)〉 ∈ I (F )

f ∈ v(F (t0, . . . , tn) iff 〈I (t0), . . . , I (tn)〉 /∈ I (F )

The other semantic conditions are as in Def. 2 above, plus

t ∈ v(A) iff f /∈ v(A)

f ∈ v(A) iff t /∈ v(A)

The semantics reflect both the law of excluded middle and the law
of non-contradiction,

(t ∈ v(A) ∨ f ∈ v(A)), ¬(t ∈ v(A) & f ∈ v(A))

both valid in the background and foreground logic. This, I would submit,
multiplies contradictions as necessary.7

It is now important to see that, contra remark 2,

Remark 3. With a paraconsistent metatheory, two valued relational se-
mantics are not equivalent to a three valued functional presentation
(Priest, 2008, p. 151, footnote 5).

To see this, suppose we have a binary relation

R ⊆ {a} × {0, 1}

There are three cases (omitting the empty case), which would seem to
correspond precisely to three states:

R(a, 0) and ¬R(a, 1) ‘iff’ R(a) = {0}

R(a, 1) and ¬R(a, 0) ‘iff’ R(a) = {1}

R(a, 0) and R(a, 1) ‘iff’ R(a) = {0, 1}

But the iffs are in scare quotes, because if ¬ is negation in a para-
consistent language, then ¬R(a, 1) does not rule out R(a, 1). Whereas
R = {〈a, 0〉} does rule out 〈a, 1〉 ∈ R, by the law of ordered pairs:
if 〈a, 1〉 ∈ {〈a, 0〉} then 〈a, 1〉 = 〈a, 0〉 and then 0 = 1. Assuming that
0 = 1 is unacceptable (by the Paraconsistency Thesis; cf. Section 3.3

7 There may be a connection here with Priest’s work on hypercontradictions

(Priest, 1984), as a referee points out, though note that study is situated in classical
metatheory and so is taking a different perspective.
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below) then the two formalisms  three valued functions and two valued
relations  are not equivalent.8

Making these arrangements on truth is not so difficult. Matters be-
come more complicated when we apply this account to validity and proof.

3. Valid and Invalid

3.1. Truth in a model

Definition 5 (Semantic Validity). A sentence is true in a model M 

A, when t ∈ vM(A). A sentence is a theorem when it is true in every
model. An argument is semantically valid A0, . . . , An � B iff for every
model, if M  A0, . . . , An then M  B.

An argument is valid iff all assignments making premises true make
the conclusion true. An argument is invalid iff there is an assignment
making the premises true but the conclusion untrue.

As before, it is tempting to distinguish ‘positive’ and ‘negative’ clau-
ses, e.g., with notation like M 

+ A and M 
− A. But instead the

dialetheist can follow the simpler path already before us and just say

M  A iff t ∈ vM(A) M 1 A iff t /∈ vM(A)

M  ¬A iff f ∈ vM(A) M 1 ¬A iff f /∈ vM(A)

So M  A or M  ¬A, and not both and sometimes also both and that
is that.

8 To prove this (classically (which I’ve urged we should not feel obliged to do)),
we could use a three-valued classical model. Let ν be a function from the language
to {t, b, f}. Then

ν(R(a, 0) ∨ R(a, 1)) = t

ν(¬R(a, 1)) = b

ν(R(a, 0)) = f

Thus, if we have soundness, the move from 1 /∈ R(a) to R(a) = {0} is not valid. See
(Priest, 2006, p. 287).
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3.2. The Invalidity Problem

Except that may not be that. In the language of LP, for any propositional
atom p, consider the assignment v such that

〈p, z〉 ∈ v ⇔ (z = f ∨ z = t)

which makes every sentence both true and false: Then

〈p, t〉 ∈ v 〈¬p, t〉 ∈ v

〈p, f〉 ∈ v 〈¬p, f〉 ∈ v

The existence of such a valuation is not news; its existence is an exercise
in (Priest, 2008, 8.10, problem 5).

If we endorse exclusion and exhaustion, though, then this valua-
tion does not merely make everything true and false; it makes everything
true and untrue. We could then argue about whether or not to endorse
exclusion in particular  but it would be a distraction, since we can
arrive at the same problem more indirectly. Let p be some true contra-
diction. Consider the assignment vp such that

〈p, z〉 ∈ vp ⇔ (z = f ∨ z = t) & p

Then since a conjunction with a false conjunct is false,

〈p, t〉 ∈ vp 〈p, t〉 /∈ vp

〈p, f〉 ∈ vp 〈p, f〉 /∈ vp

Then some assignment makes any A true and untrue, and so A 2 A
because there is a way the premise can hold without the conclusion, for
all A. The argument from A to itself is invalid (as well as valid) and
indeed every argument is invalid; see (Batens, 2019; Young, 2019; Priest,
2020).

It remains the case that only some  not all  arguments are still
valid, but this still seems bad. What is the point, in the end, of a
dialetheist saying that ex false quodlibet is invalid if everything is invalid?

3.3. A methodological note

How bad is the invalidity problem for a dialetheist?
Dialetheism contradicts itself  dialetheism itself is both true and

false, according to itself (Priest, 1979)  and rightly so. This is not
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however a ‘get out of jail free’ card that allows us, for example, to use
some paraconsistently invalid notions in the background framework and
then excuse doing so as just more acceptable inconsistency. That itself
would be a bad methodological slide, of the form “since I allow and admit
some contradictions somewhere, I can allow any contradiction anywhere.”
That is self-defeating, or incoherent.

Paraconsistency is a tool that comes in after we’ve already made a
commitment to not be self-defeating. You wouldn’t say “I am consis-
tent because I use classical logic”; rather you say “I use classical logic
because I am consistent.” Classical logic does not guarantee consistency.
It expresses a commitment to consistency. So too for paraconsistency: we
begin with a commitment to coherence, rather than expect our formalism
alone to guarantee it. The Paraconsistency Thesis from Section 1.4
is there to say that something is still missing from our account.

3.4. A solution

To prevent all arguments from being rendered invalid, we assume at least
one proposition ⊥, that is absolutely false, never in any way true. This is
in our background logic, as the axiom ⊥ ⇒ A. As in Section 1.4 above,
paraconsistency can be taken as the thesis that at least one proposition
is utterly false, even if some contradictions are true  although now we
are amping that up a little to say that some proposition is necessarily
false (not at all true, in all interpretations). One such proposition is
t = f since if this were true then there is only one truth value and hence
no point in ever asking what truth value any sentence has. Similarly for
0 = 1. Another such proposition is ∀x∀yx ∈ y since then every object
would have every property, which would mean t = f again. We listen to
the noise; we don’t blow out our eardrums.

The following definition makes this official.

Definition 6. A valuation is a pre-valuation (def 4) such that t ∈ v(⊥)
iff ⊥.

The ‘⊥’ on the right is a condition in the meta-theory, i.e., a valuation
is such that if it assigned truth to ⊥ in a model then ⊥ would be true
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in real life, which it is not and cannot be, on pain of absurdity. Under
this definition there is no coherent trivial interpretation.9

Whether there are further problems to face here, we return to in
(Weber, 2021, ch. 10) and in Section 5.1 below.

4. Provable and Unprovable

From semantics we turn to derivations. An argument is proof theoreti-
cally valid iff it is derivable in a proof system, e.g., if there is a sequence
leading from the premises to the conclusion by means of valid rules. An
argument is invalid iff there is no such sequence. One might think that
the abstractions of model theoretic semantics make imaginings about
dialetheias fairly easy; whereas when it comes to the concrete, down-to-
earth business of constructing proofs out of fixed and finite ink marks,
such story-telling becomes much harder. Let us see.

4.1. Soundness and Completeness

Soundness and completeness theorems are usually invoked so that deriva-
tion failures correspond to counterexamples. Here we can do as follows.

Here is a natural deduction system for LP (cf. Priest, 2002b, p. 309).

A B

A ∧ B

A ∧ B

A

A ∧ B

B

A

A ∨ B

B

A ∨ B

A ∨ B

A
·
·
·
C

B
·
·
·
C

C

A ∨ ¬A

¬¬A

A

A

¬¬A

¬(A ∧ B)

¬A ∨ ¬B

¬(A ∨ B)

¬A ∧ ¬B

¬A ∧ ¬B

¬(A ∨ B)

¬A ∨ ¬B

¬(A ∧ B)

9 The same result might be achieved in a more fine grained way, by specifying
for each interpretation at least one sentence that is not satisfied, but it could be a
different sentence in different models, rather than a single sentence ⊥ that cuts across
all of them. Since ⊥ is already available, though, the approach here is simpler. Again
see (Badia, 2016) for the role of ⊥ in controlling the structure of models.
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Definition 7 (Proof theoretic validity). An argument from A0, . . . , An

to B is valid A0, . . . , An ⊢ B if and only if there is a derivation of B
from {A0, . . . , An} using the above rules.

Using this we can establish soundness and (weak) completeness cor-
respondence between the natural deduction system and the semantics of
def. 2 with respect to LP, namely that definitions 5 and 7 are equivalent.
This is a modification of (Weber et al, 2016; Badia et al., 2022; Omori
and Weber, 2023).

Theorem 4 (Soundness). If A0, . . . , An ⊢ A then A0, . . . , An � A.

Proof. Each of the rules of the natural deduction system are semanti-
cally valid. For example, ¬(A∨B) ⊢ ¬A∨¬B is truth preserving. Proof:
using the LP semantics, suppose t ∈ v(¬(A ∨ B)). Then f ∈ v((A ∨ B))
and then f ∈ v(A) and f ∈ v(B). Then t ∈ (¬A) and t ∈ v(¬B), and so
t ∈ v(¬A ∧ ¬B) as required. The other cases are similar. ⊣

Proving (weak) completeness is by a constructive method due to
Kalmár in 1935. Notation: for an LP-interpretation v, let

A = {pi : t ∈ v(pi)} ∪ {¬pi : f ∈ v(pi)}

where {p0, . . . , pn} is the set of all the propositional atoms occuring in A.

Theorem 5 (Completeness). If � A then ⊢ A.

Proof. First we show that, for any LP-interpretation v,

1. if t ∈ v(A) then A ⊢ A
2. if f ∈ v(A) then A ⊢ ¬A

The proof is by induction.10 If A is a propositional atom then the result
is immediate. For complex formulas, to illustrate, consider conjunction.
For (1), if t ∈ v(A ∧ B) then t ∈ v(A) and t ∈ v(B). By induction
hypothesis, A ⊢ A and B ⊢ B. So then A, B ⊢ A ∧ B. For (2), if
f ∈ v(A ∧ B) then f ∈ v(A) or f ∈ v(B). Then A ⊢ ¬A or B ⊢ ¬B. Then
A, B ⊢ ¬A ∨ ¬B, and then A, B ⊢ ¬(A ∧ B). Other cases are similar.

Now suppose � A, that is, t ∈ v(A) for every v. There are finitely
many assignments v0, . . . , vm of different values  either f or t  to the

10 Recall in Section 1.5 above that we assume some limited form of mathematical
induction, a practice which seems essential and is continued in (Badia et al., 2022) 
but which is not completely unproblematic. See (Weber, 2021, ch. 6).
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propositional atoms in A. For each such vi build the finite set Avi
.

Then as we just saw, Avi
⊢ A, for each i ¬ m. Then these Avi

can
be combined into a provable theorem by excluded middle; this provable
theorem proves A; and the result follows by transitivity of consequence.

⊣

Note that the ‘if / then’ in the statements of both soundness and
completeness is the ⇒ of our metatheory  which does not contrapose.
That is why we gave direct arguments for each, rather than the nowadays
more standard proofs showing that counterexamples correspond to an ab-
sence of a derivation. In this context, the existence of a counterexample
may not quite always amount to the absence of a derivation; it may
amount to a derivation that is not a derivation (and so in that sense an
‘absence’), in a sense we now explore.

4.2. Inconsistent Proofs

If a proof is a sequence of propositions arrived at by step-by-step ap-
plication of valid rules, it is perhaps harder than truth or validity to
see how derivations might be inconsistent (Shairo, 2002). Nevertheless,
there is reason to think the proof relation is inconsistent (Priest, 1979;
Routley, 1979; Berto, 2007; Weber, 2022). If

G = ‘this sentence is unprovable’

is both true and false there is a sentence which is both provable and
unprovable, which means that there is both a proof of it and there is no
proof of it. What does that look like? What is an inconsistent proof?

It is tempting to begin to imagine some sort of strange or paradox-
ical objects, like the tape of a Turing Machine wrapped into a Möbius
strip, or a device built from some exotic quantum materials. A guid-
ing methodological idea  the Ordinariness Hypothesis  is to de-
mystify the problem, and adopt the attitude that what we are seeking is
new not because of some surprising technology, but because of new ways
of thinking about regular technology.

A proof is a sequence. If there is a proof of G then we know what
that looks like: 〈A0, . . . , An, G〉. If there is no proof of G then there is
no sequence ending with G with certain properties. How can that be,
especially if we already accept that there is at least one such sequence?
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Let 〈a0, a1〉 be a (short) sequence. Set theoretically this is broken
down to be

{{a0}, {a0, a1}} = {{x : x = a0}, {x : x = a0 ∨ x = a1}}

= {y : y = {x : x = a0} ∨ y = {x : x = a0 ∨ x = a1}}

using the standard definitions of singletons and pairs, underwriting the
law of ordered pairs, as in Section 1.5 above.

Now suppose a0 6= a0. (Don’t panic; just suppose. We still know
that a0 = a0, because it is an axiom that everything is self-identical,
and we could even prove it to be so if we defined identity in terms of
a biconditional so that x = y ⇔ ∀z(x ∈ z ⇔ y ∈ z). Still, an object
like the Russell set will, additionally, be non-self-identical, as in remark
1 above.) Then a0 ∈ {a0}, and a0 /∈ {a0}, so by Axiom 2, {a0} 6= {a0}.
Similarly, 〈a0, a1〉 = 〈a0, a1〉 6= 〈a0, a1〉.

So too for any tuple 〈. . . , a0, . . .〉 containing a0. This more general
fact is proved with the help of the following lemma.

Lemma 6 (Non-self-identity). If a 6= a then ∀y(a 6= y).

Proof. Suppose y = a. If a has property a 6= a then y 6= y too, by
substitution. ⊣

Proposition 7. If Y = {a0, . . . , an} and ai 6= ai for some i ∈ {0, . . . , n}
then Y 6= Y .

Proof. For
ai /∈ Y ⇔ ai 6= a0 & · · · & ai 6= an

by axiom 2. So ai /∈ Y , by the previous lemma. But also ai ∈ Y . So
Y 6= Y . ⊣

Note that we are not proving that in general x 6= x & x ∈ y ⇒ y 6= y.
This only holds when y is extensionally listed out using identity. Some
sets can’t be so listed, like V = {x : ∃y(x ∈ y)}. Nevertheless we can lift
the result to tuples.

Theorem 8. If ai 6= ai for some 0 ¬ i ¬ n, then ¬∃Y (Y = 〈a0, . . . , an〉).

Proof. Let a 6= a, and Y = 〈a0, . . . , an〉, and a = a0 ∨ . . . ∨ a = an. As
this is for any n, we show a /∈ Y by induction. For the base case: a /∈
〈a0〉 = {a0}. For the induction step: suppose a /∈ 〈a0, . . . , ak〉 for 0 ¬ k <
n. Then since 〈a0, . . . , ak+1〉 = 〈〈a0, . . . , ak〉, ak+1〉, and we know a 6=
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ak+1, we have a /∈ 〈a0, . . . , ak+1〉. Thus 〈a0, . . . , an〉 6= 〈a0, . . . , an〉, and
so ex hypothesi ∀Y (Y 6= 〈a0, . . . , an〉), and the conclusion follows. ⊣

The intended application here is that if a sequence of formulas 〈A0,
. . . , An, G〉 includes an inconsistent element, say G 6= G, then the se-
quence is inconsistent 〈A0, . . . , An, G〉 6= 〈A0, . . . , An, G〉 and so it is not
a sequence: ¬∃Y (Y is a sequence ending in G).

This begins to answer the question of what it could mean for some-
thing to be both provable and not: there is a derivation, and also there is
no derivation, because the derivation contains a contradictory element.
An inconsistent proof  a proof that is a non-proof  looks like a proof,
ending with an inconsistent object.11

Priest (Priest, 2006, p. 242) outlines how the Gödel code of the Gödel
sentence would correspond to an inconsistent number, in a model of
inconsistent arithmetic. Here we are taking a more direct approach by
describing the object itself as inconsistent, not just its coding.

What, then, does an inconsistent object look like? Ordinariness

already tells us the basics of the answer  it looks like an object  but
going into that discussion will have to wait for another day.

5. Conclusion

5.1. Assessment

The aim of this paper has been to present a fairly extreme approach to
paraconsistent (meta)theory, in order to evaluate its philosophical and
technical tenability.

5.1.1. What has been done

There is good philosophical support for such an approach, and hence for
facing the challenges it may throw up. Guided by the ordinariness

11 A referee notes that, given some proof 〈A0, . . . , Am〉 we could add an irrelevant
‘detour’ along the way  informally, a few extra sentences does not stop a proof from
being a proof; but such a detour could include an inconsistent object, so there is
prima facie always a way to make a proof inconsistent. This is not too different from
the general situation of being able to ‘inconsistentize’ most anything, as we saw with
validity and the counterexample problem. Turning a proof into an inconsistent proof,
note, does not ipso facto make the original proof inconsistent. But a fuller account of
inconsistent proof theory is called for.
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and non-classicality hypotheses, we get a picture that on the surface
level is nearly indistinguishable from familiar presentations of classical
logic: with truth and falsity contradicting, conditions on models can
be stated easily and naturally. By respecting the Paraconsistency

thesis we can see why the ‘invalidity problem’ can be avoided and can
go on to establish soundness and completeness results for the extensional
fragment of the language, as well as outline the start of a paraconsistent
computability picture. What I hope this picture presents is, to para-
phrase Schopenhauer, that we are not trying to see new exotic objects
that no one has yet seen, but rather to think in new ways about the old
objects that everybody sees.

5.1.2. What is still to do

There are, though, some very significant technical challenges to face on
this sort of radical approach. Let me name a few here, as open problems.

We have avoided saying anything about the conditional operator ⇒,
which is not truth functional and not particularly amenable to easy treat-
ment. In general A ⇒ B is not equivalent to ¬(A & ¬B), which overall
is good, but does result in some awkwardness, e.g., it feeds into problems
with duality and restricted quantifiers. In Section 2.3 above we stated
as duals expressions of the form

∀x ∈ D(Ax ∨ ¬Ax), ¬∃x ∈ D(Ax & ¬Ax)

These are not dual though if ∀x ∈ D(Ax), ∃x ∈ D(Ax) are defined
as ∀x(x ∈ D ⇒ Ax), ∃x(x ∈ D & Ax), respectively. This becomes
particularly plangent when we come to the notion of validity itself 
usually stated in conditional terms: an argument is valid iff if every
model of the premises is a model of the conclusion, and invalid when
some model of the premises is not a model of the conclusion. But if
these clauses are ∀ ⇒, ∃& sentences respectively, then there is a gap
between them. Perhaps such core notions, in the end, have faced such
radical testing that they need to be revisited in paraconsistent light.

A recurring theme of the technical challenge is that paraconsistency
can be very good at global ‘absolute generality’, so the existence of a
set of all sets or unrestricted universal quantification are unproblematic,
but then struggles with local restrictions, so the existence of succes-
sor ordinals (a still unsolved problem from (Weber, 2010), cf. (Weber,
2021, p. 190)) or restricted quantification becomes more difficult. In-
deed, we have avoided details about very basic things, like numbers in
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finite arithmetic, that are used to track step-by-step processes. There
are paraconsistent theories of arithmetic that would seem to do most of
what one wants here (see. e.g., Weber, 2021, ch.6), but there are also
many other better studied paraconsistent arithmetics with inconsistent
models that leave the required properties underdetermined (Ferguson,
2019; Tedder, 2021), cf. (Weber, 2022, §3). Most of the hard technical
work remains to be done.

5.1.3. A further problem

Let me admit here a problem that has a technical solution but remains,
I think, philosophically vexing. As flagged in Section 1.5, once we admit
the ⊥ particle as absolutely unacceptable, we can define a kind of ‘or-
else negation’ A ⇒ ⊥ that allows one to express ‘this sentence is false,
on pain of absurdity’. Formally, this amounts to the Curry sentence,
C ⇔ (C ⇒ ⊥). The logical system used in our metatheory is designed
to handle Curry sentences, by disavowing contraction on all levels. We
have mathematical reassurance that the resulting system is not trivial.
But there is something philosophically discordant about handling the
Curry problem this way. The whole dialetheic paraconsistent approach
as I’ve pitched it is about accepting the impossible fixed point knot in
the foundations of logic as a true contradiction. We cannot, it seems,
uncritically apply the same methodology to Curry.

Criticism of dialetheic paraconsistency along these lines  about
Curry’s paradox, revenge, and how it relates to Priest’s principle of
uniform solution (that the same type of problem should have the same
type of solution)  have been aired repeatedly, including in (Beall, 2014;
Burgis and Bueno, 2019); cf. (Murzi and Rossi, 2020). I think there is
something to say in reply here  that dropping contraction makes di-
aletheic sense, if a true sentence A is different from the (very same) false
sentence A, so A & A is as far from A as A & B. And then the revealed
answer to Curry is that

if this sentence is true and this sentence is true, then ⊥

is deeply different from

if this sentence is true, then ⊥

and each would require an additional iteration of ‘this sentence is true’
to be proven so. One might worry that, if this can be made sense of,
it is still a hierarchical solution of the sort dialetheism is at pains to
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avoid. One might reply that just because some hierarchies are untenable
does not make all iterative structures bad. In any case, there seems to
be both philosophical and technical work here to do. We’ve dealt with
truth and falsity, but the line between coherence and absurdity remains
unresolved.

5.1.4. A way forward?

Finally, a fair question is whether much of what I’ve been suggesting can
be done.12 Of course, that may seem like an odd question, since a great
deal of ingenious technical work already has been done, by a great many
dedicated researchers going back at least to the 1950s (surveyed in (We-
ber, 2022)). Most of that work, though, is based eventually on classical-
ity or some other form of conventional reassurance, and not in the fully
radical paradigm I’ve been outlining here and elsewhere. The radical
paraconsistent project  can that be done? If it can, it will take not only
some bravery and perseverance, but also a willingness to think creatively,
to reformulate not only the answers, but the questions themselves.

5.2. Ordinary Non-classicality

Let me end a rather programmatic paper on a programmatic note.
If the world as we know it is consistent and behaves according to

classical logic, there will never be a satisfactory answer to what the
‘paraconsistent’ bits of the world are like. There are no such bits. If the
world as we know it behaves according to paraconsistent logic then there
is already a simple answer to what the paraconsistent bit of the world is
like. It is the world. If there is a project to do here, the challenge is not
to add new truth values, or new modalities, or more valences, or the like,
to classical logic; it is to start to look at the non-classical as ordinary, and
the ordinary as non-classical. And then the real, hard work can begin.
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