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Procedural Semantics and its Relevance to Paradox

Abstract. Two semantic paradoxes, the Liar and Curry’s paradox, are anal-
ysed using a newly developed conception of procedural semantics (semantics
according to which the truth of propositions is determined algorithmically),
whose main characteristic is its departure from methodological realism.
Rather than determining pre-existing facts, procedures are constitutive of
them. Of this semantics, two versions are considered: closed (where the
halting of procedures is presumed) and open (without this presumption).
To this end, a procedural approach to deductive reasoning is developed,
based on the idea of simulation. As is shown, closed semantics supports
classical logic, but cannot in any straightforward way accommodate the
concept of truth. In open semantics, where paradoxical propositions nat-
urally ‘belong’, they cease to be paradoxical; yet, it is concluded that the
natural choice—for logicians and common people alike—is to stick to closed
semantics, pragmatically circumventing problematic utterances.
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1. Introduction

Semantic antinomies are often addressed against a background of what
might be called ‘methodological realism’. By this term I want to refer
to the presumption, mostly unexpressed yet implicit in the theoretical
setup, that objects must be thought of as having their properties im-
manently, i.e., that these properties belong to their bearers, whether or
not observed or pondered over, and are as such available for study. This
presumption is also compatible with less realistic ontological convictions,
hence the qualification ‘methodological’: for e.g. a nominalist with re-
spect to some domain of entities there is no need ever to run into conflict
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with the predictions of methodological realism, as long as the entities in
question do not behave importantly differently than do real objects.

For those who study the logical paradoxes, however, methodological
realism is unfortunate, or so I shall argue. For let us have a look at the
good old Liar:

1. l = ‘l is not true.’

In a methodologically realist understanding of property attribution, it
is difficult to escape the conclusion that, for every item x and every
property P , the first either instantiates the latter or it does not. However,
if P = being true, then in both cases 1 immediately reverses this fact,
inescapably leading to contradiction. Of course one might hold that
having some property is not an all-or-nothing matter. It could be that
x is P to some degree. But then it would seem that we can divide P
into sub-properties Pi, representing all of the degrees to which P can be
instantiated, and for any Pi, x either has this property or not. Whether
or not x is P tout court then depends on which degree Pi is the least
that still counts as P , which is likely to be a matter of taste; hence, for
every P and every taste there is a fact of the matter: either x is P or
not. A more sophisticated approach has it that, apart from being P or
not, x has the option of being neutral as regards P . But then again, it
seems that being neutral as regards P is being fully positive as regards
being neutral as regards P , the alternatives being being P and not being
P . The bottom-line must still be that objects just are a certain way,
irrespective of who cares to find out.

If so, then the property truth is among those ways things can be,
and exactly this is what the Liar paradox makes highly problematic
to maintain. For l cannot be true, but for that reason it cannot fail
to be true either. Any squeezing of a neutral refuge in between truth
and falsehood only helps for one round, since it invites ‘revenge’: on
all accounts the neutral territory is an alternative to truth and must
therefore count as non-truth, only to give the paradox yet another whirl.

A second interesting paradox based on the concept of truth is Curry’s
paradox. In its most basic form, it is displayed by sentences like c:

2. c = ‘If c is true, then the Eiffel Tower is in Rome.’

Assume that c is true. Then the conditional holds, and its antecedent is
true, so its consequent must be true as well, which means that the Eiffel
Tower is in Rome. In summary: if c is true, then the Eiffel Tower is in
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Rome. Now, that is just the content of c, hence, c is true. But then the
Eiffel Tower must be in Rome—where it is not. Contradiction.

The semantics of choice for methodological realism ismodel-theoretic:
the truth of propositions is ultimately based on descriptions (models)
of reality in terms of individuals and the properties and relations they
instantiate as a matter of primitive fact. My suggestion is that the
only way to make sense of paradoxes like the Liar and Curry’s paradox
is to adopt, at least for properties like truth, a procedural semantics
instead. If procedures are what eventually determines predication, then
the principle of bivalence is false in a special way: the certainty that
some object be either P or not P is not taken away by the availability of
a third variant, but by the possibility that, since the procedure does not
halt, there is no conclusion at all. This is not in itself a new thought: the
role of circularity in the emergence of semantic paradoxes has long been
appreciated, at least since the dispute between Russell and Poincaré on
the matter (Russell, 1906). In Behmann (1931) this point, in relation to
Russell’s paradox, is put in a slightly more procedural light, when the
author speaks of the ‘process’ of substituting away the ‘abbreviation’ F
(which stands for ‘to not apply to oneself’1) in the expression F (F ), and
concludes that ‘one gets into an endless regress’.

Here I want to investigate what follows if procedures are viewed, not
as ways to find out about meaning, but rather as being constitutive of
meaning. In using the term ‘procedural semantics’, I follow Suppes, who,
in relation to issues about the semantics of computational procedures as
they were encountered in the 1970’s, wrote:

In finest detail, the meaning of a word, phrase, or utterance is a proce-
dure, or collection of procedures. (Suppes, 1980)

Thus, if someone tells me that an object in the distance is a cow, I have
a perceptual and conceptual procedure for making computations on the
input data that reach my peripheral sensory system, and as these data
change with the shortening of the distance between the object and me,
my computations change and I come to a firm view as to whether the
object in question is indeed a cow. (Suppes, 1982, p 29)

Several important ideas leading up to this notion had already been de-
veloped in the late 1960’s by Tichý (1969, 1971, 2004) as part of his
Transparent Intensional Logic, a theory in which intensions are defined

1 I.e. F (φ) := ¬φ(φ)
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in terms of constructions (i.e., algorithmic procedures; see also (Duží
et al., 2010)). More recently Horty (2007) and Eder (2019) have identi-
fied Frege’s concept of sense as having procedural affinities. Hints in this
direction can also be found in Dummett (1981), in whose work there is a
prominent place for the relation between the principle of bivalence and
realism (Dummett, 1982, 1991). Eder (ibid.) discusses the connection
between a procedural view of meaning and the paradoxes, drawing on

[. . . ] the idea that paradoxical sentences correspond to sense-procedures
that, because of their internal structure, fail to determine a truth value.

The type of procedural semantics I have in mind treats the truth of
propositions as being determined by the outcome of a procedure: a test,
often (but not always) performed on certain physical objects. E.g. to
find out whether a certain teacup is blue, the most obvious procedure
is using one’s eyes to check whether it looks blue. Of course there are
other procedures to find out (ask the vendor), but only one of them is
definitional: that an object is blue is primarily a matter of the way it
looks in favourable circumstances. What the vendor says is derivative.

Procedural semantics is not intrinsically at odds with realism. It
does, however, provide a way to flesh out anti-realism in such a way that
arbitrariness of judgment is avoided. The significance of giving up of
methodological realism for dealing with the paradoxes is that we only
have to care about actual outcomes: if there is no outcome, then no con-
clusion needs to be drawn. No state of affairs out there for which a blank
space must be kept in the books. This is, admittedly, a metaphysical
rather than a logical point, but it does have repercussions for the logic as
well. One could—indeed, one must—say that there are truth gaps, but as
a mere way of speaking: the ‘gaps’ are no longer represented in the logic
itself. This position marks an important difference with the approach
of e.g. Tichý (1969), Moschovakis (1994, 2006) and Muskens (2005), by
which algorithms, interpreted as Fregean senses, are studied as logical
objects. According to Tichý and Moschovakis, truth gaps are reflected
by truth functions being partial. Muskens, who associates propositions
with queries in logic programming, explains truth gaps by the divergent
behaviour of some of them. Of course all this makes perfect sense, but
there is a risk of losing sight of the hard questions about the gaps: there
is no mathematical or logical problem with partial functions or diverging
queries, but there is a conceptual problem with objects being neither P
nor ¬P for any predicate, including truth. (A similar point essentially
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applies to the ground-breaking work of Kripke (1976), even though there
is a clear sense in which the gaps have been theoretically ‘dealt with’.)

A second respect in which the present proposal differs from existing
approaches is that utter simplicity is pursued with respect to the inter-
pretation of those elements of logic in whose working any complexity
appears to be lacking, such as the truth-functional connectives. Surely
simplicity can be deceptive, but as more involved treatments of the para-
doxes (making use of, e.g. multivalued logic, fixed points, revisions, strat-
ified truth predicates, or different versions of one connective) so far do
not seem to have put the issues to rest, it may be worthwhile to see
if the procedural approach allows a return to the most basic versions
of ‘not’, ‘or’, ‘every’, and so on—even of ‘true’. Hence, no predicate is
typed in a Russellian sense (Raclavský, 2014). As for the meaning of the
quantifiers: the assumption of implicit domain restrictions (e.g., Barwise
and Etchemendy, 1987) may be sound in the context of the pragmatics of
a conversation, but is hardly convincing as part of the primary meaning
of these expressions. Nor shall I at this point be concerned with modality
or possible worlds. What is said about simulation, however, (Section 3)
does foreshadow a way in which the semantics can be made relevant for
counterfactual theorizing in a most natural way.

To see where a procedural approach to semantics leads, in partic-
ular in relation to the options for dealing with the Liar paradox and
Curry’s paradox, I shall first discuss (Section 2) what I want to call
closed procedural semantics. Here the presumption is that procedures
always terminate. In Section 3 the idea of hypothetical reasoning will be
expounded in terms of procedures. With the help of these preliminaries
it will be demonstrated that closed procedural semantics yields classical
logic, but the truth-predicate (to be separately discussed in In Section 4)
cannot be made to fit into this scheme. Section 5 will then be dedicated
to how open procedural semantics differs from the closed variant. It will
be shown that this semantics can accommodate truth in its naive form,
without thereby inviting either the Liar or Curry’s paradox, but on pain
of losing much of classical logic. In the final section I shall argue that the
‘natural’ solution to deal with this situation is to purge the language from
problematic utterances, thereby—in a very pragmatic way—keeping the
best of both worlds.
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2. Step One: Closed Procedural Semantics

What would the procedure for the truth-predicate be like? Let b be the
sentence ‘This teacup is blue’, and consider the following sentence:

3. b is true.

An intuitive procedure for finding out whether 3 is true would be the
following:

1. Find out whether b is true,
2. i.e. find out whether ‘This teacup is blue’ is true,
3. i.e. find out whether this teacup is blue.

The last step consists of calling the procedure for blueness, and applying
it to the teacup. Let us assume that the teacup is indeed blue, then
the latter procedure will return a positive outcome, which will feed the
procedure for the truth of b, making it return a positive outcome as well.
Hereby the conclusion that b is true has been affirmed and the procedure
halts.

It is important to distinguish between two levels of reasoning. On the
utterance level we say things like: ‘This teacup is blue,’ i.e., we utter some
proposition p. On the procedural level, where we have a glance ‘under the
hood of’ the cognitive engine, we speak about procedures. Here I shall
use the following notation: Πp is the procedure that determines whether
p. The procedure could return a positive outcome (or +) in which case,
on the utterance level, p is confirmed. It could also return a negative
outcome, (or −), in which case p is refuted. The crucial point is that it
could also, for a variety of reasons, fail to return an outcome. If so, then
there is nothing to be said on the utterance level.

This third possibility is the reason why procedural semantics is in
a better position to deal with Liar sentences and the like. Applying
the procedure for truth to the Liar (ΠT (l)), what we do is, informally
speaking, the following:

1. Find out whether l is true,
2. i.e. find out whether ‘l is not true’ is true,
3. i.e. find out whether l is not true,
4. i.e. find out whether l is true and reverse the outcome,
5. . . .

However, step 4 includes running the procedure for truth with respect
to l. Since this is done as part of this very procedure, the algorithm is
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caught in a loop, so it will not terminate. It will not return an outcome.
Hence, we are, at the utterance level, at a loss to say whether or not
l is true (this, in my opinion, squares tolerably well with philosophical
experience!). The thing to keep in mind is that this condition cannot be
recast as an outcome in its own right, for this would alter the procedure
and with it (by the very logic of procedural semantics) the predicate that
is being evaluated. I shall return to this point below.

It is useful to draw the following distinction. In closed procedural se-
mantics (hereafter, for short, ‘closed semantics’) the additional presump-
tion is that every (semantic) procedure will always return an outcome.
This will be called the closure presumption. The closure presumption
is an assumption on the procedural level. It will be shown that the
logic belonging to closed semantics is classical logic. In open procedural
semantics the closure presumption is absent.

Although the general idea can be extended to richer languages, we
shall, in the interest of simplicity, in this text stick to (non-modal) first-
order logic. Every predicate will have its procedure, and every logical
constant as well. We shall assume that all semantic procedures can
be meaningfully represented by some propositional content p, and write
Πp for the defining procedure for p (there may be many procedures
computing the same result, but only one of them has this status). A
procedure as understood here will always produce the same outcome
when run on the same input; this will be called the stability presumption.
As said above, + and − are the only possible outcomes. Procedures will
often be combined to produce compound procedures.

In a procedural analysis of expressions of first-order logic, the ter-
minal sub-procedures are those belonging to atomic sentences. Defin-
ing these in procedural terms is comparatively demanding: clearly, the
outcome of, say, Πp∧q depends on that of Πp and Πq in an extremely
straightforward way. Nothing comparable is available for the procedure
(let us write ΠB(c)) by which to decide whether teacup c is blue (B).
As our present interest is almost exclusively in procedures of the for-
mer type, my discussion of atomic sentences will be brief and somewhat
sketchy. The bottom-line is that ΠB(c) will be the defining procedure
that returns + if teacup c is blue and − if it is not. This is what
Definition 2.1 says.

Definition 2.1 (Defining procedure for an atomic sentence). Let Φ be a
procedure with set of outcomes {+,−}, which has access to input from n
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objects, and let Φ(a1 . . . an) be Φ operating on the objects a1 . . . an. Let
furthermore P be a predicate such that, by definition, for any choice of
a1 through an, P (a1 . . . an) iff Φ(a1 . . . an) returns + and ¬P (a1 . . . an)
iff Φ(a1 . . . an) returns −. Then Φ(a1 . . . an) is the defining procedure for
the atomic sentence P (a1 . . . an), i.e., Φ(a1 . . . an) = ΠP (a1...an).

The phrase ‘access to input from . . . objects’ in Definition 2.1 is
broadly interpretable. ‘Access’ suggests a causal efficacy on the process
from the part of the objects, but they can be ignored as well. The objects
in question, furthermore, can be anything from which information can
be extracted, ranging from teacups and bosons to prime numbers. I
believe this is as it should be: in the interesting cases Φ is a nontriv-
ial procedure which gathers significant information from the objects it
operates on, thereby making P a meaningful predicate. An example
of such a Φ is the procedure of using one’s eyes to see if some object
is blue. A lot more could be said about the procedures that ‘find’ the
objects themselves (belonging to e.g. descriptions, proper names, and
functions), but that would be too much a digression from the core issues
to be discussed here.

Definition 2.2 provides a list of the defining procedures of most the
basic logical symbols. As there are alternative definitions possible, these
are presented as named rules.

Definition 2.2 (Defining procedures for the logical constants).

CONJ Πp∧q : Run Πp and Πq simultaneously. Return + if both
procedures do. Return − if one of them does.

DISJ Πp∨q : Run Πp and Πq simultaneously. Return + if one of
them does. Return − if both procedures do.

NEG Π¬p : Run Πp and return the opposite of its outcome.
IMP Πp→q : Run Πp. If the outcome is +, run Πq and return its

outcome. If the outcome is −, return +.
FALS Π⊥: Return −.
EXIST Π∃xp(x) : Run Πp(x) with respect to all objects x in the relevant

domain simultaneously. Return + if one of them does. Return
− if all of them do.

ALL Π∀xp(x) : Run Πp(x) with respect to all objects x in the relevant
domain simultaneously. Return + if all of them do. Return
− if one of them does.
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It may seem as though, by the present proposal, finding out the truth
of some statement p always proceeds by running Πp, but this is not so.
To find out that p is to find out that, should Πp be run, it will return a
positive outcome. This can be done by performing the test immediately,
but that is not the only way to obtain this knowledge—not even the
typical way. Most things that are known, are not known by immediate
perception, but by reasoning. If the semantics is procedural, then it is
natural to take a procedural view on reasoning as well.

Reasoning often starts from existing knowledge. Suppose someone
knows, for certain p and q, that p∧ q. By procedural semantics, to know
that p ∧ q means that one has access to the information that running
Πp∧q will yield a positive outcome. (This should not be mistaken for
knowing that Πp∧q will have that outcome—that is knowledge on the
procedural level, which need not in any way reach the awareness of the
knower: all she knows is that p ∧ q.) Knowledge on the procedural level
has explanatory value for what else the knower can know without further
information. Hence, if what is known is p ∧ q, we can infer, on a meta-
level, that, as the knower has access to the fact that Πp∧q will return +,
she must, given the description of Πp∧q according to CONJ, also have
access to the fact that Πp will return +.

This, by the present approach, is what we express by writing down
a deduction rule like p ∧ q � p, the elimination rule for conjunction.
The introduction rule (p, q � p ∧ q) can be motivated in a similar way.
Observe that only the procedural definition CONJ is needed to obtain
both rules, which means that, if CONJ belongs in some way effectively
to the cognitive repertoire of the knower, she has implicit knowledge
of both rules. The fact that CONJ is the only defining procedure for
conjunction secures that they hang together in the right way. If this is
true for all logical concepts, then Tonk-like phenomena2 are impossible
in the procedural semantics.

The proofs for all the rules in Lemma 2.1 proceed similarly. Most of
them are very immediate.

Lemma 2.1. The following deduction rules are valid for arbitrary p and q:

∧-intro p, q � p ∧ q
∧-elim p ∧ q � p p ∧ q � q

2 The ‘perverse’ connective tonk combines the introduction rule of the disjunction
with the elimination rule of conjunction (Prior, 1960), thereby making the logic to
which it belongs trivial.
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∨-intro p � p ∨ q q � p ∨ q
∨-elim p ∨ q, p→ r, q → r � r
dissyll p ∨ q,¬p � q
→-elim p, p→ q � q
dblneg ¬¬p � p
negexist ¬∃xp(x) � ∀x¬p(x)
negall ¬∀xp(x) � ∃x¬p(x)

Proof. (of the less obvious cases)
∨-elim: If Πp∨q returns +, then either Πp or Πq must have done so

(DISJ). Reasoning by cases, using →-elim, yields the result.
dissyll: The disjunctive syllogism can be derived without recourse to

∨-elim. Given DISJ, if Πp∨q returns + and Πp returns −, then it must
have been due to Πq returning +.

dblneg: To return the opposite of the opposite of + (by twice applying
Π¬p) is again to return +. The usual introduction rule for negation
(reductio, see below) plays no part here. a

Clearly, Lemma 2.1 is incomplete, which is because some of the miss-
ing rules can only be elucidated after having discussed hypothetical rea-
soning.

3. Hypotheses and Simulation

In the previous section, we saw some examples of reasoning from what
is known, e.g. that p ∧ q. As a matter of fact, however, the procedu-
ral machinery works just as well in total absence of empirical (or any)
knowledge. It is a remarkable fact about the human type of intelligence
that we may know that if p ∧ q, then surely p, even though we do not
have the slightest clue as to whether p∧ q in the first place. This ability
is called hypothetical reasoning. Compare Ramsey’s famous quote on the
matter (2000):

If two people are arguing ‘If p, then q?’ and are both in doubt as to
p, they are adding p hypothetically to their stock of knowledge and
arguing on that basis about q; so that in a sense ‘If p, q’ and ‘If p, q’ are
contradictories. We can say that they are fixing their degree of belief
in q given p.

What does it mean to ‘add p hypothetically to (one’s) stock of knowl-
edge’? I would suggest that assuming some state of affairs p hypotheti-
cally is running a simulation of the procedure Πp, making it return +. In
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most cases, one cannot force Πp to do so—that would be to manipulate
reality itself! What is needed is an ersatz procedure (hereafter, an EP),
let us call it Σp, which is realistic enough, but open to manipulation, in
order to compute different scenarios. Here ‘realistic’ does not mean real:
a good toy model with enough analogy to what really happens will do.
In fact, for the type of hypothetical reasoning that logic is interested in,
the analogy must be limited, because logical deductions abstract away
from specific propositions.

The approach to simulating procedures I will advance here is based on
the fact that procedures contain sub-procedures. As the procedure itself
will be counted among its own sub-procedures, they do so by definition;
but generally speaking, sub-procedures are fully functional procedures in
their own right. Although they may get their input from various sources,
to play the theoretical role I have in mind for them, they also must have
+ or − as their only possible outcomes and otherwise be opaque from the
viewpoint of the main procedure. In the causal structure of a procedure
we can furthermore distinguish between proximal and distal processes.
As regards ‘calling’ (the activating of a procedure), proximal processes
causally precede distal ones, whereas the causal flow of the outcomes
goes in the opposite direction. E.g. Πp∧q calls its sub-procedure Πp,
which then produces an outcome that has an effect on Πp∧q in turn.

An EP Σp∧q for Πp∧q will be a procedure that is proximally identical
to Πp∧q, i.e., it is an exact copy of it, but for some sub-procedures, in
this case Πp and Πq, which have been replaced by others, say, Σp and Σq.
Let us call these the test procedures. Test procedures are ‘dummies’: all
they do is return an outcome of choice, thanks to which the behaviour
of the EPs can be studied, and therefore, by proxy, that of the real
procedures. A test case is a combination of outcomes from the test
procedures. Of course, this also requires that all the EPs involved in the
process are connected in the same way that the original procedures are.
Let us call EPs meeting this requirement coordinated EPs. As the above
example suggests, exactly which of the sub-procedures Πp1 , Πp2 , . . . of
the original procedure will be replaced by EPs is an essential feature of
the simulation. I shall call this its specificity, which will be represented
by the set {p1, p2, . . . } of their subscripts.

Here is an example (Fig. 1). Suppose we have a procedure Πc, where
c = This teacup is blue and there is no rhinoceros in this room. The
content of c makes Πc a very complex procedure. An obvious way to
realize it, however, is to use the sub-procedures Πb and Πr, testing for
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Figure 1. Simulation of a procedure

blueness of the cup and this room being rhino-free, with Πc (working
according to CONJ) being a test for their conjunction. Suppose we are
neither interested in the colour of teacups, nor in the content of this
room. All we want to know is whether or not b (This teacup is blue)
follows from c. Such knowledge is not commonly obtained (although it
would certainly work) by some massive simulation involving a teacup
and a room, leading to the observation that, if this is how things stand,
the teacup is indeed blue. Thinking in terms of procedures makes it
obvious that it is enough to consider the proximal part of Πc. This is
the part that CONJ describes, and to my mind it is no coincidence that
procedural shortcuts of this type exactly parallel the sort of semantic
abstractions that logic is all about. In this case, to run a simulation of
Πc, the EP Σc must be of specificity {b, r}.

In simulations of, say, the weather or the stock-markets, we want the
simulation to match reality as well as possible, which, in the terminology
used here, would come to seeking maximal specificity. In logic, however,
limiting specificity serves to abstract away from specific content. A way
to achieve this is to let the specificity of the EPs involved in the sim-
ulation be that of the set of propositional terms used in the deduction
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(for present purposes, we are interested in propositional, not individual
terms3). We shall call this the specificity of the deduction. In fact, a
specificity below that of the deduction may work as well. This can be
defined as follows. Let Πp be a procedure with simulations Σp and Σ′

p,
then the specificity of the second will be said to be below that of the first
if Σ′

p is identical to Σp, except that some test procedures of Σ′
p replace

more proximal sub-procedures of Πp than do those of Σp (this effectively
makes Σ′

p a simulation of Σp). A simulation of specificity below that of
the deduction will never support an invalid deduction, but it may fail to
establish a valid one.

With all this in place, we can say what it means for a deduction
p1,p2, · · · � q to be established by simulation. Once we have coordinated
EPs Σp1 , Σp2 , . . . , and Σq, for Πp1 , Πp2 , . . . , and Πq respectively, of the
specificity of the deduction or below, to carry out the simulation means
to try all possible test cases, to see if, whenever the outputs of Σp1 , Σp2 ,
. . . , are +, that of Σq is + as well. This will establish the deduction.
And this will, by Lemma 3.1, allow us to trust its validity:

Lemma 3.1. If the deduction p1, p2, · · · � q has been established by
simulation, then, if Πp1 , Πp2 , . . . all return +, so does Πq.

Proof. For the coordinated EPs Σp1 , Σp2 , . . . and Σq (for Πp1 , Πp2 ,
. . . and Πq, respectively) there is a test case by which the outcomes of
the test procedures exactly match those of the original sub-procedures
of Πp1 , Πp2 , . . . and Πq. Suppose that Πp1 , Πp2 , . . . all return +,
then in this test case Σp1 , Σp2 , . . . all return + as well, for they are
proximally identical to them. That the deduction p1, p2, · · · � q has been
established means that, whenever Σp1 , Σp2 , . . . all return +, so does Σq,
and therefore also in this case. Hence, by proximal identity, Πq returns
+ as well. a

With this account of hypothetical reasoning we can expand our stock
of deduction rules.

Lemma 3.2. The following deduction rules are valid for arbitrary p:

falsum p,¬p � ⊥
efsq ⊥ � p

3 Employing procedural semantics for the explanation of the behaviour of indi-
vidual terms in deductions in first-order logic is quite an additional challenge. Fortu-
nately, this is inessential to the issues discussed here.
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Proof. falsum: In no test case will the EPs Σp and Σ¬p both return
+, thus establishing the deduction vacuously.

efsq: For an EP Σ⊥ for Π⊥ we can take one identical to the original.
This will in all ‘test cases’ return −, thus establishing the deduction
vacuously. a

For the next couple of rules we need the closure presumption. Apart
from this, two of them (→-intro and reductio) are special in that they
are not established by simulation, but by considering what would follow
if the antecedent of the statement would be established by simulation.

Lemma 3.3. The following deduction rules are valid for arbitrary p and
q in closed semantics:
bival � p ∨ ¬p
→-intro (p � q) � p→ q
reductio (p � ⊥) � ¬p

Proof. bival: Thanks to the closure presumption, Πp will return either
+ or −, in which latter case Π¬p returns + (NEG). The result follows
from the definition of ∨ by DISJ.
→-intro: Suppose Πp returns +, then, thanks to Lemma 3.1, so does

Πq and, by IMP, Πp→q as well. If not, thanks to closure, Πp must return
− and, by IMP, Πp→q again returns +.

reductio: By Lemma 3.1, if Πp returns +, then so does Π⊥. As the
latter is not the case, the former cannot be either, so, by closure, Πp

returns − and, by NEG, Π¬p returns +. a

Theorem 3.1. Closed procedural semantics provides a full implementa-
tion of classical logic.

Proof. Lemmas 2.1, 3.2, and 3.3 provide a complete inventory of the
rules of classical logic. a

4. Truth

Definition 2.1 can be read as a very general template for how to handle
predication in procedural semantics. One of the predicates is the truth-
predicate T . In the interesting cases, the object a for which T (a) has
to be tested is something of a propositional nature. I take this to be an
easy test, and one that will always reach a verdict: its outcome should
depend on properties of a which can be determined unconditionally (e.g.,
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being a well-formed formula). We could define the procedure for T so
as to make it produce a negative outcome if a is not propositional, or
no outcome. Let us choose the first option; nothing depends on this
decision. If a is propositional, then it is the name of a proposition, say
p, which we can also name ‘p’, so that we can say things like a = ‘p’. To
retrieve the content of a we shall write [a], so p = [a].

There is little doubt that the intuitive understanding of truth is such
that anyone who understands the concept will assent to T (‘p’) just in
case they assent to p. At least since the work of Tarski, it has been
known that this notion of truth is in conflict with classical logic; here
I nevertheless intend to stick to this utterly simple idea (also known as
naïve, or transparent truth). The procedural definition will be:

Definition 4.1 (Truth).

TRUE ΠT (a) : If a is propositional, run Π[a] and return its outcome;
else, return −.

Given this, the rules for the truth-predicate T are very straightfor-
ward:

Lemma 4.1. For any proposition p, the following deduction rules with
respect to the predicate T are valid:

T -intro p � T (‘p’)
T -elim T (‘p’) � p

When studying the behaviour of the paradoxes, we can describe pro-
cedures as it is done in Definition 2.2; however, to see how a procedure
works out in practice, it is often helpful to make use of what I shall
call an unfolding scheme (two of these were given in an informal way in
the Introduction). This is a step-wise representation, not of what has
to be done in succession; it is a re-wording of the action to be taken,
unpacking every step in the next, guided by definitions or information.
For the procedure of finding out if l is true, the unfolding scheme would
look like this:

1. Run ΠT (l) and return its outcome.
2. i.e. run ΠT (‘¬T (l)’) and return its outcome. (=)
3. i.e. run Π¬T (l) and return its outcome. (TRUE)
4. i.e. run ΠT (l) and return the opposite of its outcome. (NEG)

. . .
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As we saw before, the procedure gets into a loop (step 4), preventing
there to be an outcome.

Confronted with this fact, it is tempting to try to handle this no-
outcome condition and turn it into an outcome in its own right, so it is
worth pursuing this idea to see where it leads. Let us try to extend the
procedure, i.e., to insert a second procedure which will return an outcome
just in case the old procedure would not. As this is another alternative
for the outcome +, it seems reasonable to redirect this new outcome to
−. By way of hypothesis, assume that we have this ‘improved’ version
of TRUE, call it TRUE′, at our disposal. In this context we temporarily
rename the old predicate (according to TRUE) and call it T 0, the result
of which is that the rules of Lemma 4.1 are valid for T 0. So for the
predicate T we now have:

Definition 4.2. Truth, alternative definition

TRUE′ ΠT (a) : Run ΠT 0(a) and return its outcome. If there is no
outcome, return −.

If we apply this procedure to the truth of l, we must consider the fol-
lowing cases.

Suppose that ΠT (l)

• returns +. Then ΠT 0(l) must have returned +, i.e. ΠT 0(‘¬T (l)’) must
have. Therefore Π¬T (l) must have returned +, and ΠT (l) must have
returned −. Contradiction.

• returns −. Then:
– either ΠT 0(l) must have returned −, i.e. ΠT 0(‘¬T (l)’) must have.

Therefore Π¬T (l) must have returned −, and ΠT (l) must have
returned +. Contradiction.

– or ΠT 0(l) must have returned no outcome, likewise for ΠT 0(‘¬T (l)’).
Therefore Π¬T (l) has returned no outcome, and neither has ΠT (l).
Contradiction.

• returns no outcome. This is impossible, given the definition of
TRUE′.

The conclusion must be that TRUE′ does not define a feasible procedure.
This should not come as a surprise: it is well known from Turing’s

proof that there is no general solution to the halting problem. But a
procedure as per TRUE′ must be prepared to decide about halting for
any ΠT 0(a), thus, any Π[a], belonging to any statement a whatsoever.
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Just waiting to see if ΠT 0(a) stops will not work! Exactly this is what
belies the seemingly innocent phrase ‘If there is no outcome’ in the defi-
nition TRUE′. The point is quite general: there is no way to improve on
TRUE in such a way that there will always be an outcome. Only if we
could be certain of the halting behaviour of a procedure, could we view
the hanging of a procedure as an outcome. That this cannot be done is
quite fundamental.

Yet, what is most worrisome about the predicate T according to
TRUE is not its ‘gappiness’. The real problem is that, at least in clas-
sical logic, we can use seemingly legitimate deductions to derive blatant
falsehoods. Let us first take the Liar paradox. Just as above, l = ‘¬T (l)’:

Deduction 4.1. The Liar paradox

1 [ T (l) ] (ass.)
2 T (‘¬T (l)’) (=)
3 ¬T (l) (T -elim)
4 ⊥ (falsum)

5 ¬T (l) (reductio)
6 T (‘¬T (l)’) (T -intro)
7 T (l) (=)
8 ⊥ (falsum)

It seems that we can deduce a contradiction out of nothing—i.e., with
no potentially fallacious presumptions.

Curry’s paradox is brought forth by a sentence that is also self-
referential, but not by saying of itself that it is false, but by saying
of itself that if it is true, some claim—freely to be chosen—is true. Here
we shall take r = The Eiffel Tower is in Rome. The Curry sentence will
be c, with c = ‘T (c)→ r’. Now we can make the following deduction:

Deduction 4.2. Curry’s paradox

1 [ T (c) ] (ass.)
2 T (‘T (c)→ r’) (=)
3 T (c)→ r (T -elim)
4 r (→-elim)

5 T (c)→ r (→-intro)
6 T (‘T (c)→ r’) (T -intro)
7 T (c) (=)
8 r (→-elim)
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leading to the very obvious (if contingent) misstatement that the Eiffel
Tower is in Rome (r).

Having to choose between truth and classical logic is for many a
logician quite conflict of loyalties. It has, however, long been appreciated
that the conflict must be faced (Burgess, 1986; Gupta, 1982; Leitgeb,
2007; McGee, 1985). Some choose bending truth, whereas others bend
classical logic. Let us first try the second horn.

5. Step two: Open Procedural Semantics

There is nothing illegitimate in questioning whether it is really worth
the effort to modify the beautiful edifice of classical logic, mainly to
make room for a single predicate to have its way. But truth is not just
any predicate. It is a profoundly logical concept—arguably the central
concept of logic. It is annoyingly simple and unmistakably fundamental.
We use the concept even before we reflect on it: to say that some state-
ment is true is often just a way to make that statement. No difference
in intention whatsoever.

To throw out truth seems inconceivable. Yet, if we stick to TRUE as
the defining procedure, there is, for arbitrary a, no general rule to the
effect that � T (a) ∨ ¬T (a). To preserve truth on these terms, therefore,
it seems that we must look beyond closed semantics. This operation
comes with revisions to classical logic. Procedural semantics offers a
way of doing this, one in which the passage from classical logic into a
logic that handles predicates like T is entirely natural. The departure
from our original assumptions is minimal: it is only dropping the closure
presumption. Consequently, all the definitions in Definition 2.1, 2.2, and
4.1 will be kept as they are, and, as a result, all the deduction rules in
Lemma 2.1, 3.1, and 3.2 remain valid. But this modification, however
modest, deprives us from the rules in Lemma 3.3.

The good news is that, as is easily shown, it is enough to disman-
tle both paradoxes under discussion. As for the Liar, Deduction 4.1 is
blocked at step 5, owing to the failure of reductio. Deduction 4.2 (Curry’s
paradox) is blocked at step 5 for want of →-intro. Thus, there will be
no explosion (even though the bomb itself, efsq, is still present in open
semantics (Lemma 3.2)!). And the Eiffel Tower stays where it is.

Reassuring though all this may be, one might still want to learn
in more detail how it is possible at all for these rules to fail. Take
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reductio: how could the fact that the assumption that p has impossible
consequences not lead to ¬p? The answer is that, in open semantics,
Πp might not halt at all: that it is demonstrably unable to return +
does not mean that it will return −. It may also be that Πp returns no
outcome—as is the case with T (l).

In Deduction 4.2 (Curry’s paradox), the main character on stage
is not reductio, but →-intro. In this case, the question is even more
pressing: whence its failure? How is it that we can have a valid deduction
p � q and yet no implication p→ q? This time, the answer appears to be
that deductions, in the present interpretation, come with the assumption
that the procedures involved reach a conclusion. The deduction p � q is
established, once it is demonstrated that if Πp returns +, then so does
Πq. But only if the first procedure halts, will Πp→q return +. If Πp

does not return an outcome, then neither will Πp→q. And we can indeed
prove directly that ΠT (c) will not halt. To know if c is true, we must
proceed as follows:

1. Run ΠT (c) and return its outcome.
2. i.e. run ΠT (‘T (c) → r’) and return its outcome. (=)
3. i.e. run ΠT (c)→r and return its outcome. (TRUE)
4. i.e. run ΠT (c). If it returns +, run Πr and return its outcome; if it

returns −, return +. (IMP)
. . .

which is circular.
Now, although this certainly appears to bring some clarity into the

status of the Curry sentence itself, it may still seem somewhat strange
that Deduction 4.2 is valid up to step 4—in open as well as in closed se-
mantics. Or, more generally, how could a deduction p � q be established
in the first place, if we know that Πp does not return an outcome?

The answer to this riddle is specificity. A simulation, after all, re-
mains a surrogate: it is ascertained to behave as the original procedure
would have, provided that the latter terminates. But a less specific sim-
ulation may reach a conclusion where the original procedure would not
have reached one. Since most deductions (including Deduction 4.2) are
built up from smaller ones, which can be established by simulations of
a specificity below that of the whole deduction, it may occur that, even
though all the building blocks of the argument can be soundly estab-
lished, the argument as a whole is a misrepresentation of what actually
obtains. This is possible if the closure presumption fails.
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For a very simple example of just this discrepancy between simulation
and original, consider the deduction T (l) � T (l). It is doubtlessly valid
(it is an instance of p � p), thanks to the simulation of specificity {T (l)}
(in which a test-procedure Σp replaces the entire procedure ΠT (l)). Yet,
as is easily checked using IMP, it is not possible to confirm T (l)→ T (l).

6. Discussion

The motivation behind procedural semantics as defended in this text
has much in common with that behind Kripke’s (1976) theory of truth,
or the Revision Theory of Truth (Gupta and Belnap, 1993; Herzberger,
1982). But where both these approaches start out from realistic assump-
tions, subsequently trying to see how—and to which extent—the realm
of truth can be charted by studying multiple iterations of its application
(using stabilization or fixed points), no such conception pertains to the
present proposal. In procedural semantics, there is no convergence to
any sort of verdict with respect to the truth of paradoxical sentences.
In relation to this, neither the concept of truth, nor the logic in which
it is embedded, are in any way enriched with extra notions, like neutral
values (Kleene, 1938), operators modifying the truth-predicate, or non-
classical alternatives for implication (Field, 2002, 2003). Therefore the
spirit of procedural semantics may be closer to that of logical intuition-
ism, where truth is also found by executing a procedure (searching for a
proof). Here, like in open procedural semantics, the point of departure
from classical logic is giving up bivalence, where the ‘gap’ is not filled
with some neutral value, but really left open. Also, the constructivist
character of intuitionism shows clear kinship with the anti-realist treat-
ment of truth presented here.

Thanks to this anti-realist element, procedural semantics provides
full legitimation for the contingency that the truth of some proposition
p, no matter how well-formed and meaningful, cannot be resolved. On
the utterance level, we can say that the teacup is blue, but not that the
Liar is true (or false)—of course we can say so, but without any solid
ground. There is nothing to say, and even this nothing to say is more
like an exclamation in the Wittgensteinian sense, than the pointing at a
state of affairs. Very much in Wittgenstein’s spirit, we had better keep
silent about such propositions. We may gladly accept this limitation,
for on the procedural level we are able to speak about such things. But
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common discourse is not like that, and, on pain of talking nonsense, we
must try to find out which utterances to eschew.

That is one problem. The second problem is which semantics should
be preferred: closed or open? The utterly central concept of truth ap-
pears to demand open semantics, but, as we have seen, in this system
deductive reasoning is seriously impoverished; downright embarking on
open semantics would leave us with a sorry residue of the logic we know
and love. But is there a way out, if we want to keep truth? Strangely
enough, there appears to be one. The point is that it is hard to see what
benefits, apart from accommodating truth, open semantics has in store
anyway, given that the accommodation does not go beyond preventing
the paradoxes to cause explosion. Indeed, if it held other promises, it
might be given a try; but despite its positive ring, ‘open’ semantics is a
barren land, where no logician should want to stay longer than necessary.
It is its existence which is interesting, not its content.

So how can we stay out of it? The fact is that we do so on a daily
basis. We just circumvent propositions which are problematic in the way
that the Liar and Curry’s sentence are. There is, in Yablo’s words

no ground for claiming that our procedures are vitiated by the para-
doxes, unless one is prepared to accept that we find their vitiation very
little handicap in practice. (Yablo, 1985)

Because, on the utterance level, we stay within the segment of language
where the closure presumption holds, we have all of classical logic at
our disposal, and truth! And so, in the dilemma mentioned above—
bending truth or bending classical logic—we lean towards the first horn
after all. There remains a significant challenge, though, which is that
no intrinsic feature of propositions is fully discriminating. Propositions
whose procedures will terminate cannot be told apart by being non-well-
formed, nor can they be picked out by the fact that they contain the
truth-predicate (see Russell’s paradox), or by their being self-referential.
Self-referring sentences need not be paradoxical (e.g., ‘This sentence con-
tains no adverb.’), and there are paradoxes without self-reference (Yablo,
1993).

As far as the use of the truth-predicate is concerned, whether or not
its use gives rise to circular reference is dependent on global properties of
the entire domain of discourse. Kripke (1976) cites an amusing dialogue
between Russell and Moore, which must have gone more or less like this:
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Russell: George, surely you always tell the truth, don’t you?
Moore: Well, that’s not quite correct. Not always!
Russell: Man, that must have been the only falsehood you ever uttered.

Should Moore, when he was five years old, once have misled his mother
about taking a candy, Moore would have been right, and Russell, wrong.
But if Moore was really as truthful as Russell took him to be (i.e., in
all his other utterances) then everything said in the above dialogue is
paradoxical.

It would seem, then, that, after having purged our conversations
from problematic claims, we make our utterances in good faith—trusting
them to make sense, which, on the procedural level, means ‘trusting’
the procedures to be effective. It appears to be a fruitful strategy. In
everyday life, the concept of truth thrives in large swathes of classical
discourse. There is always a risk of hitting a snag, and making claims
that work out paradoxically. But these are only words; nothing will
explode in the real world. Surely this is an astonishingly pragmatic way
of settling the stand-off between classical logic and truth, but it seems
to me that procedural semantics demonstrates that there are few other
options.
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