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Constructive Logic is Connexive and Contradictory

Abstract. It is widely accepted that there is a clear sense in which the first-
order paraconsistent constructive logic with strong negation of Almukdad
and Nelson, QN4, is more constructive than intuitionistic first-order logic,
QInt. While QInt and QN4 both possess the disjunction property and the
existence property as characteristics of constructiveness (or constructivity),
QInt lacks certain features of constructiveness enjoyed by QN4, namely the
constructible falsity property and the dual of the existence property.

This paper deals with the constructiveness of the contra-classical, con-
nexive, paraconsistent, and contradictory non-trivial first-order logic QC,
which is a connexive variant of QN4. It is shown that there is a sense in
which QC is even more constructive than QN4. The argument focuses on
a problem that is mirror-inverted to Raymond Smullyan’s drinker paradox,
namely the invalidity of what will be called the drinker truism and its dual
in QN4 (and QInt), and on a version of the Brouwer-Heyting-Kolmogorov
interpretation of the logical operations that treats proofs and disproofs on
a par. The validity of the drinker truism and its dual together with the
greater constructiveness of QC in comparison to QN4 may serve as further
motivation for the study of connexive logics and suggests that constructive
logic is connexive and contradictory (the latter understood as being negation
inconsistent).

Keywords: constructive logic; connexive logic; contradictory logics; Drinker
principle; Drinker truism; Brouwer-Heyting-Kolmogorov interpretation

1. Introduction

The drinker principle and its dual are bewildering sentences that are
valid in classical first-order logic, QCL, and that are invalid in both
intuitionistic first-order logic, QInt, and in the first-order constructive
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paraconsistent logic with strong negation from Almukdad and Nelson
[1], QN4.1

The drinker principle and its dual are invalid in QC, the connexive
version of QN4, as well. Unlike the drinker principle and its dual, two
other sentences, the drinker truism and its dual, may be seen as plausible
and appealing principles. Here the problem is that QCL, QInt, and QN4
fail to validate these theses. However, the drinker truism and its dual are
not only valid in QC but can also be justified from the point of view of
an improved version of the Brouwer-Heyting-Kolmogorov (BHK) inter-
pretation of the logical operations. This interpretation may be called the
connexive López-Escobar interpretation. I interpret these observations as
showing that there is a sense in which the connexive logic QC is more
constructive than QInt and QN4. Since it is the connexivity (actually,
the “hyperconnexivity”) of the constructive logic QC2 that enables the
validation of the drinker truism and its dual, the present study suggests
that constructive logic is connexive and hence contra-classical. The step
from QInt to QN4 secures the constructible falsity property and the
dual of the existence property as indicators of constructiveness, and the
step from QN4 to QC delivers the drinker truism and its dual as valid.
In addition to providing further motivation for the study of connexive
logics, the greater constructivity of the non-trivial negation inconsistent
logic QC in comparison to the constructiveness of QInt and QN4 suggests
that constructive logic is not only connexive but also contradictory.

2. The first-order logics QInt, QInt+, QCL, QN4, and QC

Since it suffices for present purposes, we use a simple first-order language
L without function symbols and identity predicate. The set of terms con-
tains denumerably many individual variables and for every individual c
from a given, non-empty set of individuals, it contains an individual con-
stant c. We use the letters x and y for arbitrary individual variables, the
letter a for an arbitrary constant, and the letter t for an arbitrary term.
Moreover, the vocabulary of L comprises the connectives ∼ (unary), ∧
(binary), ∨ (binary), → (binary), the universal and particular quantifiers

1 A natural deduction proof system for QN4 can be found, in [20, p. 96] and a
sequent calculus for QN4 is given in [1] and, independently, already in [24]. As far as
the present author recalls, the name ‘N4’ was introduced in [26].

2 For surveys on connexive logic see [14, 29].
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∀ and ∃, for every n > 0 denumerably many n-place predicate symbols,
and brackets, ( and ). The set of atomic L-formulas and the set of all
L-formulas are recursively defined as usual, and the binary connective ↔
is defined by (A ↔ B) := ((A → B) ∧ (B → A)). A literal is an atomic
formula or a negated atomic formula. We use P and Q for arbitrary
predicate symbols (of an appropriate arity) and the letters A, B, C, D,
A1, A2 for arbitrary formulas. The notions of a free variable, a bound
variable, and a term t being free (for replacement with) a variable in
a formula are defined as usual. We will often omit outermost brackets
of L-formulas and we write A(t/x) for the result of replacing all free
occurrences of x in A by t. The language L+ is obtained from L by
omitting the negation symbol, ∼.

We first present the predicate logics QInt, QInt+, QCL, QN4, and
QC as axiomatic proof systems HQInt, HQCL, HQN4, and HQC.

Definition 1. The schematic axioms and rules of HQInt are:

a1 A → (B → A)
a2 (A → B) → ((A → (B → C)) → (A → C))
a3 A → (B → (A ∧ B))
a4 (A ∧ B) → A
a5 (A ∧ B) → B
a6 A → (A ∨ B)
a7 B → (A ∨ B)
a8 (A → C) → ((B → C) → ((A ∨ B) → C))
a9 (A → B) → ((A → ∼B) → ∼A)

a10 ∼A → (A → B)
a11 A(t) → ∃xA(x) (t is free for x in A)
a12 ∀xA(x) → A(t) (t is free for x in A)

r1 A A → B
B

r2
A → B(x)

A → ∀xB(x)
(x not free in A)

r3
A(x) → B

∃xA(x) → B
(x not free in B)

If axioms a9 and a10 are omitted, one obtains an axiomatization HQInt+

of first-order positive intuitionistic logic, QInt+, in the language L+.

Definition 2. The system HQCL is obtained from HQInt by adding
∼∼A → A as further axiom.



4 Heinrich Wansing

Definition 3. The schematic axioms and rules of the paraconsistent
calculus HQN4 are a1–a8, i.e., the axioms of first-order positive intu-
itionistic logic, r1–r3, and

a13 ∼∼A ↔ A
a14 ∼(A ∧ B) ↔ (∼A ∨ ∼B)
a15 ∼(A ∨ B) ↔ (∼A ∧ ∼B)
a16 ∼(A → B) ↔ (A ∧ ∼B)
a17 ∼∃xA ↔ ∀x∼A
a18 ∼∀xA ↔ ∃x∼A.

Definition 4. The schematic axioms and rules of HQC are those of
HQN4 except that a16 is replaced by

a19 ∼(A → B) ↔ (A → ∼B).

Definition 5. Let ∆∪A be a set of formulas and λ ∈ {HQInt, HQInt+,
HQCL, HQN4, HQC}. We write ∆ ⊢λ A and say that A is derivable
from ∆ in λ iff there is a sequence of formulas 〈A1, · · ·, An, A〉 with n  0
and such that every formula in the sequence either belongs to ∆, is an
axiom of λ, or is obtained from formulas preceding it in the sequence by
means of one of the rules r1–r3.

If it is clear from the context which λ ∈ {HQInt, HQInt+, HQCL,
HQN4, HQC} is meant, we simply write ∆ ⊢ A instead of ∆ ⊢λ A. For
a later purpose, we define the weight of an L-formula.

Definition 6. The weight w(A) of an L-formula A is inductively defined
as follows:

w(l) = 0 for literals l
w(A♯B) = w(A) + w(B) + 1 for ♯ ∈ {∧, ∨, →}
w(♯xA) = w(A(a/x)) + 1 for ♯ ∈ {∀, ∃}, variables x,

and constants a
w(∼∼A) = w(A) + 1

w(∼(A → B)) = w(A) + w(∼B) + 2
w(∼(A♯B)) = w(∼A) + w(∼B) + 2 for ♯ ∈ {∧, ∨}

w(∼♯xA) = w(∼A(a/x)) + 1 for ♯ ∈ {∀, ∃}, variables x,
and constants a.

The logics QInt, QN4, and QC each have a Kripke semantics [cf. 5, 17,
27, 18], which we need not consider for present purposes, and Gentzen-
style proof systems. The Kripke semantics with respect to which the
paraconsistent logics QN4 and QC are complete is four-valued, allowing
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for truth value gaps and gluts. Because of its user-friendliness we here
consider the cut-free G3-style sequent calculus G3C for QC from [18],
which for uniformity of notation we call “G3QC.” We use uppercase
Greek letters to stand for finite, possibly empty multisets of formulas,
A, Γ to stand for {A} ⋒ Γ , and ∆, Γ to stand for ∆ ⋒ Γ , where ⋒ is
multiset union. Sequents are of the form Γ ⇒ A, and ∅ stands for the
empty multiset.

Definition 7. The rules of the calculus G3QC are the following:
Logical axioms:

P, Γ ⇒ P ∼P, Γ ⇒ ∼P , for atomic formulas P

Logical rules:

A, B, Γ ⇒ C

(A ∧ B), Γ ⇒ C
L∧

Γ ⇒ A Γ ⇒ B
Γ ⇒ (A ∧ B)

R∧

A, Γ ⇒ C B, Γ ⇒ C

(A ∨ B), Γ ⇒ C
L∨

Γ ⇒ A
Γ ⇒ (A ∨ B)

R∨1
Γ ⇒ B

Γ ⇒ (A ∨ B)
R∨2

(A → B), Γ ⇒ A B, Γ ⇒ C

(A → B), Γ ⇒ C
L→

A, Γ ⇒ B

Γ ⇒ (A → B)
R→

A(t/x), ∀xA, Γ ⇒ B

∀xA, Γ ⇒ B
L∀

Γ ⇒ A(y/x)

Γ ⇒ ∀xA
R∀

A(y/x), Γ ⇒ B

∃xA, Γ ⇒ B
L∃

Γ ⇒ A(t/x)

Γ ⇒ ∃xA
R∃

A, Γ ⇒ C

∼∼A, Γ ⇒ C
L∼∼

Γ ⇒ A
Γ ⇒ ∼∼A

R∼∼

∼A, ∼B, Γ ⇒ C

∼(A ∨ B), Γ ⇒ C
L∼∨

Γ ⇒ ∼A Γ ⇒ ∼B
Γ ⇒ ∼(A ∨ B)

R∼∨

∼A, Γ ⇒ C ∼B, Γ ⇒ C

∼(A ∧ B), Γ ⇒ C
L∼∧

Γ ⇒ ∼A
Γ ⇒ ∼(A ∧ B)

R∼∧1
Γ ⇒ ∼B

Γ ⇒ ∼(A ∧ B)
R∼∧2

∼(A → B), Γ ⇒ A ∼B, Γ ⇒ C

∼(A → B), Γ ⇒ C
L∼→

A, Γ ⇒ ∼B

Γ ⇒ ∼(A → B)
R∼→

∼A(y/x), Γ ⇒ B

∼∀xA, Γ ⇒ B
L∼∀

Γ ⇒ ∼A(t/x)

Γ ⇒ ∼∀xA
R∼∀

∼A(t/x), ∼∃xA, Γ ⇒ B

∼∃xA, Γ ⇒ B
L∼∃

Γ ⇒ ∼A(y/x)

Γ ⇒ ∼∃xA
R∼∃

where (i) in R∀ and in R∼∃, y must not occur free in Γ, ∀xA, respectively

in Γ, ∼∃xA and (ii) in L∃ and in L∼∀, y must not occur free in ∃xA, Γ, B,

respectively in ∼∀xA, Γ, B.
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Definition 8. If the axioms and rules displaying negation are removed
from G3QC, this results in a G3-style sequent calculus G3QInt+ for
QInt+. If the rules L∼→ and R∼→ in G3QC are replaced by the rules

A, ∼B, Γ ⇒ C

∼(A → B), Γ ⇒ C
L∼→′

Γ ⇒ A Γ ⇒ ∼B
Γ ⇒ ∼(A → B)

R∼→′

one obtains a G3-style sequent calculus G3QN4 for QN4.

As other G3-style calculi, G3QC and G3QN4 allow one to prove cut-
admissibility.

Theorem. The rule

Γ ⇒ A A, ∆ ⇒ B

Γ, ∆ ⇒ B
Cut

is (i) an admissible rule of G3QC and (ii) an admissible rule of G3QN4.

Proof. For (i) see [18]; (ii) can be shown analogously. ⊣

Corollary. 1. Cut is an admissible rule of G3QInt+.

2. QC is a conservative extension of QInt+.

That is, to the extent to which G3QInt+ captures it, constructive deriv-
ability is encapsulated in G3QC. Both G3QN4 and G3QC are faithfully
embeddable into G3QInt+ under straightforward and slightly different
translations that reflect the difference between the axioms a16 and a19,
which can be seen as confirming that QN4 and QC in different ways
capture the constructive core of QInt.

The logic QC is negation inconsistent already in its propositional
fragment. Here is a derivation in G3QC of one example of a provable
contradiction, where we assume that A is a unary predicate letter:

A(x), ∼A(x) ⇒ ∼A(x)

A(x) ⇒ ∼(∼A(x) → A(x))
R∼→

∅ ⇒ ∼(A(x) → (∼A(x) → A(x)))
R∼→

∅ ⇒ ∼∀x(A(x) → (∼A(x) → A(x)))
R∼∀

A(x), ∼A(x) ⇒ A(x)

A(x) ⇒ ∼A(x) → A(x)
R→

∅ ⇒ A(x) → (∼A(x) → A(x))
R→

∅ ⇒ ∀x(A(x) → (∼A(x) → A(x)))
R∀
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3. The drinker principle, the drinker truism, and their duals

In [21], Raymond Smullyan presented various “logical curiosities.” One is
the so-called “drinker principle,” a principle that according to Smullyan
at first sight seems downright crazy but turns out to be valid in classical
logic. Smullyan explained the name “drinker principle” by remarking
that in front of students he usually prefaced its study with the following
story:

A man was at a bar. He suddenly slammed down his fist and said,
“Gimme a drink, and give everyone elsch a drink, caush when I drink,
everybody drinksh!” So drinks were happily passed around the house.
Some time later, the man said, “Gimme another drink, and give ev-
eryone elsch another drink, caush when I take another drink, everyone
takesch another drink!” So, second drinks were happily passed around
the house. Soon after, the man slammed some money on the counter
and said, “And when I pay, everybody paysh!” [21, p. 209]

The puzzling question is “Does there really exist someone such that
if he drinks, everybody drinks?”. Upon translation into the language of
first-order logic, the question is whether

∃x(P (x) → ∀yP (y)) (DP)

is valid. The fact that classical logic validates DP is often referred to
as “the drinker paradox.” Smullyan also mentions a no less at first
sight downright crazy dual version of the drinker principle, DDP, namely,
“there is someone such that if anybody at all drinks, then he does,” i.e.,

∃x(∃yP (y) → P (x)). (DDP)

The dual drinker principle DDP, using the predicate letter A instead of
P , is called “Plato’s Law” by E. Beth in [2, p. 18], who paraphrases it as
“There is an object with the peculiarity that, if there exists one object
with the property A, then the first object has to possess the property A.”
Note that Beth does not give any justification for calling DDP “Plato’s
Law.”3 Since DDP is valid in classical first-order logic, too, a defender of
classical logic faces a dual drinker paradox. Independent from Smullyan’s
discussion of the drinker paradox and its dual and independent from

3 An anonymous reviewer remarked that she or he would guess that Beth’s calling
DDP “Plato’s law” is in reference to the theory of the forms, where the existing drinker
is the form of all drinkers.



8 Heinrich Wansing

Beth’s discussion of “Plato’s Law,” both principles have been studied
in first-order superintuitionistic logic [see 4, 12, 15, 19]. The drinker
paradox is called “Wel2” and the dual drinker paradox “Wel1” in [19].
The drinker paradox is called “F” in [12] and [15], and the dual drinker
paradox is called “G” in [15].4 Smullyan is mentioned in [32], but neither
[4] nor [12], [15], or [19] are referred to there.

Whilst the validity of DP and DDP in classical logic is bewildering
(paradoxical), there are some principles the invalidity of which in QN4
(as well as QInt and QCL) can be seen as problematic. I will call these
principles “the drinker truism” and “the dual drinker truism”:

∼∃x(P (x) → ∼∃yP (y)) (DT)

(“It is false that there is someone such that if she drinks, then it is false
that someone drinks.”)

∼∃x(∀yP (y) → ∼P (x)). (DDT)

(“It is false that there is someone such that if everybody drinks, it is
false that she drinks.”)

The two formulas DT and DDT are valid in QC and have simple
derivations in G3QC:

P (z) ⇒ P (z)

P (z) ⇒ ∃yP (y)
R∃

P (z) ⇒ ∼∼∃yP (y)
R∼∼

∅ ⇒ ∼(P (z) → ∼∃yP (y))
R∼→

∅ ⇒ ∼∃x(P (x) → ∼∃yP (y))
R∼∃

P (z), ∀yP (y) ⇒ P (z)

∀yP (y) ⇒ P (z)
L∀

∀yP (y) ⇒ ∼∼P (z)
R∼∼

∅ ⇒ ∼(∀yP (y) → ∼P (z))
R∼→

∅ ⇒ ∼∃x(∀yP (y) → ∼P (x))
R∼∃

The provability of DT and DDT in HQC is guaranteed by axiom a19.
With it, DT is provably interderivable in HQC with ∀x(P (x)→∃yP (y)),
and DDT is provably interderivable in HQC with ∀x(∀yP (y)→P (x)).

4 It was shown by Casari [4] that Wel1, the dual drinker paradox, is valid on
any first-order Kripke frame with constant domain if the frame’s partial order is a
well-order (i.e., has no infinite descending chains) and that Wel2, the drinker paradox,
is valid on any first-order Kripke frame with constant domain if the frame’s partial
order is a dual well-order (i.e., has no infinite ascending chains). Komori [12] showed
that the logic LF defined as the addition of F , i.e., the drinker paradox, to first-
order intuitionistic logic has no characteristic Kripke model but enjoys the disjunction
property. Nakamura [15] proved that LF has a stronger disjunction property, called
“HD” after Harrop, and that the logic LG defined as the addition of G, i.e., the dual
drinker paradox, to first-order intuitionistic logic has no characteristic Kripke model
but enjoys the HD property and hence the disjunction property. Moreover, he showed
that both LF and LG lack the existence property.
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If the negated existential ∼∃xP (x) is read as “No one drinks”, it
seems that DT indeed ought to be valid: No one is such that if she
drinks, no one drinks. If that is conceded, rendering “No one is such
that if she drinks, no one drinks” as DT causes a problem for QCL,
QInt, and QN4. Regarding DDT, the problem is that “No one is such
that she doesn’t drink if everybody drinks” appears to be valid.

For QC (but also for QN4) rendering “No one is such that if she
drinks, no one drinks” as DT is confronted with another problem. A
state s from a Kripke model for QC (or QN4) supports the truth of
∼∃xP (x) iff for every state t above s in the model and every object
a from the domain of t, the state t supports the falsity of P (a) [see,
e.g., 27]. Receiving support of falsity does, however, not mean failure of
receiving support of truth, so it may be questionable whether ∼∃xP (x)
expresses “No one drinks” in QC.

Can DT and DDT be justified by themselves? At least we do not need
the full power of axiom a19 to obtain a justification of DT and DDT. In
QC (as in QCL, QInt, and QN4), ∼∃xA(x) is logically equivalent with
∀x∼A(x). Semantically speaking, is it plausible to assume that for any
object a, ∼(P (a)→∼∃yP (y)) is valid? The Kripke semantics for the log-
ics QN4 and QC suggests to think of logics as theories of information flow
[cf. 28]. If a state from a Kripke model for QN4 or QC supports the truth
of a conditional A → B, this can be seen to mean that the state supports
the truth of the claim that the information that A is true provides the
information that B is true. Moreover, support of truth and support of
falsity are taken to be two separate notions in their own right. Neither
does support of truth exclude support of falsehood, nor vice versa. It
then seems plausible to assume that any state not just fails to support the
truth but actually supports the falsity of the claim that the information
that P (a) is true provides the information that ∼P (a) is true, i.e., that
P (a) is false. Since ∼∃yP (y) entails ∼P (a) for any object a, it seems
plausible to assume that for any object a, ∼(P (a)→∼∃yP (y)) is valid.

In the Kripke semantics for the logics QN4 and QC, for a given
elementary property P (x) it is not precluded that there is a state, say s,
which for some (or even any) entity a of a given domain of individuals
provides contradictory information speaking in favour of P (a) being true
and P (a) being false, i.e., the state s supports both the truth and the
falsity of P (a). Although such a situation is not precluded, DT and DDT

retain their plausibility. The meaning of the constructive conditional
and the strong negation is such that DT and DDT are valid, so that even
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the considered state s supports the truth of DT and DDT (if validity is
defined as support of truth at any state). Similarly, at the propositional
level, the validity of (P (a) ∨ Q(a)) → ∼(∼P (a) ∧ ∼Q(a)), for example,
is unproblematic. Any state s supports the truth of the latter formula
even if s is a state that supports the truth of P (a), Q(a), ∼P (a), and
∼Q(a) for every object a from the domain under consideration.

Further justification for DT and DDT emerges from the point of view
of a certain proof/disproof interpretation of the logical operations that
improves on the BHK-interpretation, see Section 5.

4. Constructiveness

4.1. Characteristics of constructiveness

An uncontroversial characteristic of constructiveness of a logic based
on L is the invalidity and unprovability of the Law of Excluded Mid-
dle (LEM), A ∨ ∼A. In QInt the LEM is interderivable with Double
Negation Elimination (DNE), ∼∼A → A which may be seen as a prob-
lematic feature of QInt, if the DNE could be given a justification that
is acceptable from a constructive point of view for a convincing notion
of negation different from intuitionistic negation. Moreover, there are
two other properties of QInt that have been put forward as indicating
that QInt formulated in L is a system of constructive logic, namely the
disjunction property and the existence property, that both fail for QCL
[see 5, Section 5.4]:

if ⊢ A ∨ B then (⊢ A or ⊢ B) (Disjunction property)

if ⊢ ∃xA(x) then ⊢ A(c/x) for some constant c (Existence property)

where {A ∨ B, ∃xA(x)} is a set of closed formulas.5

David Nelson seems to have been the first to suggest that the dis-
junction property and the existence property ought to be complemented
by their duals, the constructible falsity property and the dual existence
property. For QN4 and for QC these properties hold:

if ⊢ ∼(A ∧ B) then (⊢ ∼A or ⊢ ∼B) (Constructible falsity property)

5 Van Dalen [5, p. 174] points out that the proofs of the disjunction property and
the existence property that he presents are carried out in a non-constructive classical
meta-theory. Whether the proofs of the salient results about QC can be given in QC
as meta-theory is a topic for another study.
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if ⊢ ∼∀xA(x) then ⊢ ∼A(c/x) for some constant c
(Dual existence property)

where {∼(A ∧ B), ∼∀xA(x)} is a set of closed formulas.
Whereas the provability of the LEM blocks the disjunction prop-

erty for QCL, the provability of the Law of Non-Contradiction (LNC),
∼(A ∧ ∼A), blocks the constructible falsity property for QInt.

4.2. The Brouwer-Heyting-Kolmogorov interpretation

Often, intuitionistic logic is identified with constructive logic. Troelstra
and van Dalen [22, p. 9], for example, in “discussing pure logic . . . treat
“constructive” and “intuitionistic” as synonymous.” The constructive
understanding of the logical operators occurring in L-formulas is then
usually explained in term of the so-called Brouwer-Heyting-Kolmogorov
interpretation (BHK-interpretation) of the logical operations. In the lit-
erature, one can find various for present purposes insignificantly different
versions of the BHK-interpretation. In any case the BHK-interpretation
comes as a recursive definition of the notion “π is a proof of L-formula
A.” We identify a proof of an open formula A(x) with a proof of ∀xA(x),
and for ease of later extension by refutation clauses suggested by Edgar
López-Escobar, we will work with the BHK-interpretation as presented
by Jean-Yves Girard [9, p. 5f.], who believes that “Heyting’s semantics
of proofs” is “[o]ne of the greatest ideas in logic” [9, p. 71]. With an
adjustment of notation and a slight modification of the clauses for quan-
tified formulas [cf. 5, p. 154], Girard’s version of the BHK-interpretation
is as follows:

1. For atomic sentences, we assume that we know intrinsically what a
proof is; for example, pencil and paper calculation serves as a proof
of “27 × 37 = 999”.

2. A proof of A ∧ B is a pair 〈π1, π2〉 consisting of a proof π1 of A and
a proof π2 of B.

3. A proof of A ∨ B is a pair 〈i, π〉 with:
– i = 0, and π is a proof of A, or
– i = 1, and π is a proof of B.

4. A proof of A → B is a function f , which maps each proof π of A to
a proof f(π) of B.

5. In general, the negation ∼A is treated as A → ⊥ where ⊥ is a
sentence with no possible proof.
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6. A proof of ∀xA is a function f , which maps each point a of the
domain of definition to a proof f(a) of A(a/x).

7. A proof of ∃xA is a pair 〈a, π〉 where a is a point of the domain of
definition and π is a proof of A(a/x).

Some comments on the first clause of the above version of the BHK-
interpretation are in place. The example of an elementary statement
that is given is a statement from number theory and contains a function
symbol and the identity predicate that are not present in the vocabulary
of our first-order language L. Elementary sentences provable in some
mathematical or empirical theory are usually considered to be necessar-
ily true against the background of that theory. In general, a proof of
an elementary closed L-formula can be understood in a much weaker
sense, namely as providing evidence speaking in favour of the formula’s
truth. The proof would “tell the formula true.” It is a construction that
supports the truth of the formula and does not necessarily show that
the formula is true or even necessarily true. We will assume that proofs
of atomic sentences are atomic, non-compound proofs. Van Dalen [5,
p. 154] gives another example and explains that “a proof of ‘2 + 3 =
5’ consists of the successive constructions of 2, 3 and 5, followed by a
construction that adds 2 and 3, followed by a construction that compares
the outcome of this addition and 5.” Even if atomic proofs involve the
construction of numbers and constructions that multiply or add some
constructed numbers, these constructions of numbers are different from
constructions that amount to proofs of statements, and the comparison
of numbers can be seen as an elementary activity.

In the presentation of the BHK-interpretation in [5, p. 154], van
Dalen writes that “[i]n order to deal with the quantifiers we assume that
some domain D of objects is given.” It is not explicitly said that the
domain is a domain of constructed elements that grows as the result of
presenting proofs over time. Troelstra and van Dalen [22, p. 9] point out
that the BHK-interpretation “is quite informal and rests itself on our
understanding of the notion of construction and implicitly, the notion
of mapping; it is not hard to show that, on a very “classical” inter-
pretation of construction and mapping” the BHK-clauses “justify the
principles of two valued (classical) logic.” Moreover, they note that the
notion of absurdity, ⊥, is to be regarded as an unexplained primitive
notion, that any mapping whatsoever may count as a proof of ⊥ → A,
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and that ⊥ → A has been rejected by Ingebrigt Johansson [11] as a non-
constructive principle.

According to Troelstra and van Dalen, the BHK-clauses nevertheless
“suffice to show that certain logical principles should be generally ac-
ceptable from a constructive point of view, while some other principles
from classical logic are not” [22, p. 10]. Notably, the examples given
usually involve negation, one example of a principle that is highly im-
plausible given the BHK-interpretation is the Law of Excluded Middle.
The Law of Excluded Middle cannot be strictly refuted on the basis
of the BHK-Interpretation, but the interpretation allows one to give a
“weak counterexample.” A proof of A ∨ ∼A for any A would amount to
a universal method for obtaining either a proof of A or a proof of ∼A,
while there is no reason to assume that such a method exists.

According to Buss, [3, p. 65], it is not difficult to see that the sequent
calculus LJ for intuitionistic first-order logic HQInt is sound under the
BHK interpretation, insofar that any formula provable in it has a proof in
the sense of the BHK interpretation. Since the set of L-formulas provable
in LJ and HQInt coincide, HQInt is sound under the BHK interpretation
as well. Given certain concerns about how negation is treated in the BHK
interpretation, we restrict our attention to HQInt+ in the language L+.
If we think of derivations from assumptions, a proof of A from premises
A1, . . . , An, then is a function f such that if it is applied to proofs π1,
. . . , πn of A1, . . . , An, one obtains a proof f(π1, . . . , πn) of A. If such a
function exists, the inference from A1, . . . , An to A is regarded by the
intuitionists as constructively valid, and a formula for which the BHK-
interpretation ensures the existence of a proof is seen as constructively
acceptable and justified.

Fact 1 (Soundness of HQInt+ w.r.t the BHK-interpretation).
If {A1, . . . , An} ⊢HQInt+ A then there exists a function f such that for

any proofs π1, . . . , πn of A1, . . . , An, f(π1, . . . , πn) is a proof of A.

Proof. It is enough to show that there exist proofs of axioms a1–a8,
a11, and a12, and that the rules r1–r3 preserve the existence of proofs. ⊣

4.3. The López-Escobar interpretation

The BHK-interpretation can be and has been criticized, however, for
its treatment of negation as “implies absurdity” not only by Johansson.
Edgar López-Escobar reasons as follows [see also 25]:
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For example, if one accepts that there is no construction that proves an
absurdity (as do most people) then a salient property of the construc-
tion π that proves “not-A” is that when π is applied to a particular
non-existent construction (namely a proof of A) it yields another non-
existent construction! [13, p. 362f.]

By the BHK-clause for negation, a proof of the intuitionistically valid
∼(A ∧ ∼A) is a function f , which maps each proof π of A ∧ ∼A to a
proof f(π) of ⊥, which does not exist. Since (A ∧ ∼A) has no proof, any
function (mapping, construction) whatsoever proves ∼(A∧∼A), but this
conception may be criticized as being non-constructive, which might have
led Troelstra and van Dalen [22, p. 9] to considering hypothetical proofs
in their BHK-clause for negation. An early criticism can be found in the
work of George Griss [cf. 7], whose criticism of intuitionistic negation
results from a certain understanding of mental constructions. As Thomas
Ferguson explains (notation adjusted), for Griss

[c]onstructions serving to witness a conditional act as transformations
whose application to constructions of an antecedent yield constructions
of the consequent. In this context, the executability of a construction
is interpreted as the possibility of successful acts of transformation. In
principle the act of applying a function can only be considered success-
ful in case there exists some operand to which the function is applied.
Consequently, Griss’ reading requires that the possibility of a construc-
tion of A serves as a precondition of the possibility of constructions of
A → B. [7, p. 3]

This precondition is not satisfied for ∼(A ∧ ∼A) understood intuition-
istically as (A ∧ (A → ⊥)) → ⊥; the required construction cannot be
executed because there is no construction of (A ∧ (A → ⊥)) on which it
could be performed.

Whether or not the criticism of the BHK-clause for negation is seen as
convincingly justifying the rejection of that clause, there is an alternative
to it proposed by Edgar López-Escobar [13]. He suggested to supplement
the BHK interpretation of positive intuitionistic logic with the primitive
notion of refutation (or disproof ) to give an interpretation for negation.
As a result, and upon disregarding ⊥, one obtains a semantics for the
four-valued paraconsistent constructive logic with strong negation in-
troduced by David Nelson and his co-author, Ahmad Almukdad, and
now known as the system N4 [see 1, 25, 16]. López-Escobar gives the
following disproof interpretation of the intuitionistic connectives ∧, ∨,
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→, the quantifiers ∀ and ∃, and the strong negation ∼ (notation and
presentation adjusted):

(i) the construction c refutes A ∧ B iff c is of the form 〈i, d〉 with i
either 0 or 1 and if i = 0, then d refutes A and if i = 1 then d
refutes B;

(ii) the construction c refutes A ∨ B iff c is of the form 〈d, e〉 and d
refutes A and e refutes B;

(iii) the construction c refutes A → B iff c is of the form 〈d, e〉 and d
proves A and e refutes B;

(iv) the construction c refutes ∀xA iff c is of the form 〈a, d〉 and d refutes
A(a/x);

(v) the construction c refutes ∃xA iff c is a general method of con-
struction such that given any individual (i.e. construction) from
the species under consideration, c(a) (i.e. c applied to a) refutes
A(a/x);

(vi) [t]he construction c refutes ∼A iff c proves A.6

Definition 9. The López-Escobar interpretation of the logical opera-
tions is obtained from the BHK-interpretation by replacing the clause 5
for negation by the above clauses (i)–(vi) and adding the clauses:

(vii) for atomic sentences, we assume that we know intrinsically what
a refutation is;

(viii) the construction c is a proof of ∼A iff c refutes A.

We will assume that proofs and disproofs of atomic sentences (closed for-
mulas) are atomic. Whilst the first five disproof clauses specify the form
of (canonical) refutations of conjunctions, disjunctions, implications, and
quantified formulas, the clause for strong negation is different. It spec-
ifies that a construction c is a refutation of ∼A just in case the very
same construction c is a proof of A. Similarly, clause (viii) requires that
a construction c proves ∼A iff c itself refutes A (and not iff c is a proof
of A → ⊥ and thus has a specific form).

A fundamental assumption made by López-Escobar is that for no
formula A there exists a construction that both proves and disproves A.
If it is assumed that for no formula A there exist proofs of both A and

6 The numbering in [13] is different. There the above clause (v) is numbered (vi)
and the above clause (vi) is numbered (viii).
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∼A, then ex contradictione quodlibet expressed as a formula, (A∧∼A) →
B, becomes provable.7

Fact 2 (Soundness of HQN4 w.r.t. to the López-Escobar interpretation).
If {A1, . . . , An} ⊢HQN4 A then there exists a function f such that for any

proofs π1, . . . , πn of A1, . . . , An, f(π1, . . . , πn) is a proof of A.

Proof. It is enough to show that there exist proofs for the axioms of
HQN4 and that the rules r1–r3 preserve the existence of proofs. Axioms
a14–a19 require the consideration of disproofs. ⊣

Note that López-Escobar does not draw a distinction between a pos-
itive notion of validity as a conversion of proofs and disproofs into a
proof and negative validity as a conversion of proofs and disproofs into
a disproof. He is justified in avoiding such a bilateralism at the level of
derivability insofar as every disproof of A is a proof of ∼A and vice versa.
In general, however, from the perspective of proof-theoretic semantics,
proof-theoretic bi- and multilateralism understood as a multiplicity of
derivability relations have advantages [cf. 31].

5. The connexive López-Escobar interpretation

Definition 10. The connexive López-Escobar interpretation is obtained
from the López-Escobar interpretation by replacing clause (iii) by the
following clause

(ix) the construction c refutes A → B iff c is a function f , which maps
each proof π of A to a disproof f(π) of B.

Fact 3 (Soundness of HQC w.r.t. the connexive López-Escobar inter-
pretation). If {A1, . . . , An} ⊢HQC A then there is a function f such that

for any proofs π1, . . . , πn of A1, . . . , An, f(π1, . . . , πn) is a proof of A.

Proof. It suffices to show that there exist proofs for the axioms of HQC
and that the rules r1–r3 preserve the existence of proofs. Axiom a20 is
taken care of by clause (ix). ⊣

The following weakening clause for derivations is sound:

7 Note that the notion of refutation in the López-Escobar interpretation is to be
distinguished from the notion of refutation in the theory of refutation calculi [cf. 10].
The latter theory is concerned with the axiomatization of the non-theorems of given
logics.
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if A is derivable from {A1, . . . , An}, then A is derivable from
{A1, . . . , An, B} for any formula B.

From a proof π of A from {A1, . . . , An} one can define the (n + 1)-place
function π′ that for any formula B maps any proof of B and any proofs
π1, . . . , πn of A1, . . . , An, respectively, to π(π1, . . . , πn). Therefore, one
and the same construction can be a proof of formulas (A → (B → A))
and (A → (C → A)). Also, any proof π of a formula A is also a proof
of A ∨ B, for any L-formula B. According to the BHK-interpretation
thus one and the same construction proves infinitely many syntactically
different L-formulas. According to the López-Escobar and the connexive
López-Escobar interpretation, it may happen that two syntactically dis-
tinct formulas have identical proofs or identical disproofs. Any formulas
A and ∼∼A, for example, have both identical proofs and identical dis-
proofs, i.e., no proofs, respectively disproofs, of A and ∼∼A are distinct.8

In view of such a situation, one may find the following property desirable.

Definition 11. Proof/disproof parity is satisfied whenever for every L-
formula A, the following equivalence holds: A has the same proofs as an
L-formula B iff A and B have the same disproofs.

Observation 1. The López-Escobar interpretation does not enjoy
proof/disproof parity.

Proof. We have

π is a proof of ∼(A → B)
iff π is a disproof of A → B
iff π is a pair 〈π1, π2〉 such that π1 is proof of A and π2 is disproof of B
iff π is a pair 〈π1, π2〉 such that π1 is proof of A and π2 is proof of ∼B
iff π is a proof of A ∧ ∼B.

Now, every disproof of ∼(A → B) is a proof of A → B, but a proof of
A → B is different from a disproof of A ∧ ∼B because every disproof of
A ∧ ∼B is a proof of ∼A ∨ B, and a proof of ∼A ∨ B is different from a
function f , which maps each proof π of A to a proof f(π) of B. ⊣

8 In [30], this identification of derivations of syntactically different formulas is
used to define a notion of inherited identity of derivations in a bilateral cut-free sequent
calculus for propositional N4 that makes use of two kinds of sequent arrows, one
standing for proofs (verifications) and the other for disproofs (falsifications). Based
on that concept of inherited identity, a proof-theoretic notion of synonymy is defined.
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Observation 2. Suppose proof/disproof parity holds for literals. Then it
holds for the connexive proof/disproof interpretation, i.e., the connexive
López-Escobar interpretation.

Proof. The proof is by induction on the weight w(A) of L-formulas A.
If w(A) = 0, the claim holds by assumption. Let A be a conjunction
A1 ∧ A2, so that w(A) = w(A1) + w(A2) + 1. Suppose A and B have the
same proofs. Then

for every π, π is a proof of A1 ∧ A2 iff π is a proof of B
iff for every π, π = 〈π1, π2〉, where π1 is a proof of A1 and

π2 is a proof of A2 iff π = 〈π1, π2〉 is a proof of B, where
B = B1 ∧ B2, π1 is a proof of B1, and π2 is a proof of B2.

By the induction hypothesis, A1 and B1, respectively A2 and B2, have
the same proofs iff they have the same disproofs. Therefore, ∼A1 ∨ ∼A2

and ∼B1 ∨ ∼B2 have the same proofs, and thus A1 ∧ A2 and B1 ∧ B2

have the same disproofs.
Suppose A and B have the same disproofs. Then

for every π, π is a disproof of A1 ∧ A2 iff π is a disproof of B
iff for every π, π = 〈0, π′〉 and π′ is a disproof of A1 or π = 〈1, π′〉

and π′ is a disproof of A2 iff π is a disproof of B, where
B = B1 ∧ B2, π′ is a disproof of B1, or π′ is a disproof of B2.

By the induction hypothesis, A1 and B1, respectively A2 and B2, have
the same proofs iff they have the same disproofs. Therefore, ∼A1 ∨ ∼A2

and ∼B1 ∨ ∼B2 have the same disproofs, and thus A and B have the
same proofs.

The cases where A is a disjunction A1 ∨ A2 is analogous.
Let A be an implication A1 → A2, so that w(A) = w(A1)+w(A2)+1.

Suppose A and B have the same proofs. Then

for every π, π is a proof of A1 → A2 iff π is a proof of B
iff for every π, π is a function f , which maps each proof π1 of A1

to a proof f(π1) of A2 iff π is a proof of B, where B = B1 → B2

and f maps each proof π2 of B1 to a proof f(π2) of B2.

By the induction hypothesis, A1 and B1, respectively A2 and B2, have
the same proofs iff they have the same disproofs. Therefore, A1 → ∼A2

and B1 → ∼B2 have the same proofs, and thus A1 → A2 and B1 → B2

have the same disproofs.
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Suppose A and B have the same disproofs. Then

for every π, π is a disproof of A1 → A2 iff π is a disproof of B
iff for every π, π is a function f , which maps each proof π1 of A1

to a disproof f(π1) of A2 iff π is a disproof of B, where B =
B1 →B2 and f maps each proof π2 of B1 to a disproof f(π2)
of B2.

By the induction hypothesis, A1 and B1, respectively A2 and B2, have
the same proofs iff they have the same disproofs. Therefore

for every π, π is a disproof of A1 → A2 iff π is a disproof of B
iff for every π, π is a function f , which maps each proof π1 of A1

to a proof f(π1) of ∼A2 iff π is a disproof of B, where B =
B1 → B2 and f maps each proof π2 of B1 to a proof f(π2)
of ∼B2.

and hence A1 → ∼A2 and B1 → ∼B2 have the same disproofs, and thus
A1 → A2 and B1 → B2 have the same proofs.

Let A be of the form ∀xC, so that w(A) = w(C(a/x)) + 1. Suppose
A and B have the same proofs. Then

for every π, π is a proof of ∀xC iff π is a proof of B
iff for every π, π is a function f , which maps each point a

of the domain of definition to a proof f(a) of C(a/x) iff
π is a proof of B, where B = ∀yD and π is a function f ,
which maps each point a of the domain of definition to
a proof f(a) of D(a/y).

By the induction hypothesis, for each point a of the domain of defini-
tion, C(a/x) and D(a/y) have the same proofs iff they have the same
disproofs. Therefore, ∃x∼C and ∃y∼D have the same proofs, and thus
for every π, π is a pair 〈a, π〉, where a is a point of the domain of definition
and π is a disproof of C(a/x) iff π is a pair 〈a, π〉 where a is a point of
the domain of definition and π is a disproof of D(a/x). That is, ∀xC
and ∀yD have the same disproofs.

Suppose A and B have the same disproofs. Then

for every π, π is a disproof of ∀xC iff π is a disproof of B
iff for every π, π is of the form 〈a, π′〉 and π′ refutes C(a/x)

iff π is a disproof of B, where B = ∀yD and π is of the form
〈a, π′〉 and π′ refutes D(a/y).
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By the induction hypothesis, C(a/x) and D(a/y) have the same proofs
iff they have the same disproofs. Therefore, ∃x∼C and ∃y∼D have the
same disproofs, and thus ∀xC and ∀yD have the same proofs.

The case where A has the form ∃xC is analogous.
Suppose A has the form ∼∼C, so that w(A) = w(C) + 1. Then

for every π, π is a proof of ∼∼C iff π is a proof of B
iff for every π, π is a proof of C iff π is a proof of B
iff for every π, π is a disproof of C iff π is a disproof of B

(by the induction hypothesis)
iff for every π, π is a disproof of ∼∼C iff π is a disproof of B.

Suppose A has the form ∼(C → D), so that w(A) = w(C) + w(∼D) + 2.
Observe that for every π, (i) π is a proof of ∼(C → D) iff π is a proof
of C → ∼D, by clauses (viii), (ix), and the BHK-clause for conditionals
and (ii) π is a disproof of C → ∼D iff π is a disproof of ∼(C → D), by
clauses (ix), (vi), and the BHK-clause for conditionals. Then

for every π, π is a proof of ∼(C → D) iff π is a proof of B
iff for every π, π is a proof of C → ∼D iff π is a proof of B
iff for every π, π is a disproof of C → ∼D iff π is a disproof of B

(by the induction hypothesis)
iff for every π, π is a disproof of ∼(C → D) iff π is a disproof of B.

The cases where A is a negated disjunction ∼(C ∨ D) or a negated
conjunction ∼(C ∧ D) follow an analogous pattern.

Suppose A has the form ∼∃xC, so that w(A) = w(∼C(a/x)) + 1.
Suppose A and B have the same proofs. Then

for every π, π is a proof of ∼∃xC iff π is a proof of B
iff for every π, π is a disproof of ∃xC iff π is a proof of B
iff for every π, π is a function f , which maps each point a

of the domain of definition to a proof f(a) of ∼C(a/x)
iff π is a proof of B, where B = ∀yD and π is a function f ,
which maps each point a of the domain of definition to a
proof f(a) of ∼D(a/y).

By the induction hypothesis, for each point a of the domain of definition,
∼C(a/x) and ∼D(a/y) have the same proofs iff they have the same
disproofs. Therefore, ∃x∼C and ∃y∼D have the same proofs, and thus
for every π, π is a pair 〈a, π〉, where a is a point of the domain of definition
and π is a disproof of C(a/x) iff π is a pair 〈a, π〉 where a is a point of
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the domain of definition and π is a disproof of D(a/x). That is, ∀xC
and ∀yD have the same disproofs.

Suppose A and B have the same disproofs. Then

for every π, π is a disproof of ∀xC iff π is a proof of B
iff for every π, π is of the form 〈a, π′〉

and π′ refutes C(a/x) iff π is a proof of B, where
B = ∀yD, π is of the form 〈a, π′〉 and π′ refutes D(a/y).

By the induction hypothesis, C(a/x) and D(a/y) have the same proofs
iff they have the same disproofs. Therefore, ∃x∼C and ∃y∼D have the
same disproofs, and thus ∀xC and ∀yD have the same proofs.

The case where A has the form ∃xC is analogous. ⊣

One may wonder whether proof/disproof parity as a property of the
connexive proof/disproof interpretation implies the congruentiality of a
logic with respect to which the connexive proof/disproof interpretation
is sound. This is not the case. The two distinct formulas P (a) → P (a)
and Q(a) → Q(a) are mutually derivable in QC, but their negations
∼(P (a)→P (a)) and ∼(Q(a)→Q(a)) are not mutually derivable in QC.

6. Another proof/disproof interpretation

The connexive proof/disproof interpretation is not the only proof/dis-
proof interpretation that enjoys proof/disproof parity. Nissim Francez
[8, p. 89] (notation adjusted), refers to

(A → B) → ∼(∼A → B) and (∼A → B) → ∼(A → B)

as “Boethius’ ∼l-theses,” (i.e., “Boethius’ negation-left-theses”) and sug-
gests a motivation of these theses in terms intonational stress patterns
in English. His natural deduction proof system N ∼l lays down a falsi-
fication condition for conditionals that amounts to replacing the above
axiom a19 by the axiom:

a20 ∼(A → B) ↔ (∼A → B).

Axiom a21 gives rise to the following disproof clause::

(⋆) π is a disproof of A → B iff π is a function f which maps each
disproof π of A to a proof f(π) of B.
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Let us refer to the result of replacing the disproof clause for con-
ditionals in the López-Escobar interpretation by clause (⋆) as “the ∼l-
interpretation.”

Observation 3. Suppose that proof/disproof parity holds for literals and
the clause for negated conditionals in Definition 6 is altered to w(∼(A →
B)) = w(∼A) + w(B) + 1. Then proof/disproof parity holds for the ∼l-
interpretation.

Proof. The case of formulas of the form ∼(C → D) in the proof of
Observation 2 becomes

for every π, π is a proof of ∼(C → D) iff π is a proof of B
iff for every π, π is a proof of ∼C → D iff π is a proof of B
iff for every π, π is a disproof of ∼C → D iff π is a disproof of B

(by the induction hypothesis)
iff for every π, π is a disproof of ∼(C → D) iff π is a disproof of B. ⊣

However, given the drinker truism and the dual drinker truism, the
∼l-interpretation allows one to validate two bewildering principles that,
following Smullyan’s drinker story, may be called “the nondrinker prin-
ciple” and “the dual nondrinker principle”:

∀x(∼P (x) → ∀y∼P (y)) (NDP)

(“Everybody is such that if it is false that she drinks, then for everyone
it is false that they drink.”)

∀x(∃y∼P (y) → ∼P (x)) (DNDP)

(“Everybody is such that if for someone it is false that she drinks, then
it is false that they drink.”).

On the ∼l-interpretation

∼∃x(P (x) → ∼∃yP (y)) is valid
iff ∀x∼(P (x) → ∀y∼P (y)) is valid
iff ∀x(∼P (x) → ∀y∼P (y)) is valid

∼∃x(∀yP (y) → ∼P (x)) is valid
iff ∀x∼(∀yP (y) → ∼P (x)) is valid
iff ∀x(∃y∼P (y) → ∼P (x)) is valid.

If the drinker truism and its dual are wanted, we thus have an “ab-
stainer paradox” and a “dual abstainer paradox” that speak against the
∼l-interpretation.
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7. Connexive implication within intuitionistic logic

Davide Fazio, Antonio Ledda, and Francesco Paoli [6] have shown that
a connexive implication, that we will denote with the symbol ‘→c’, can
be defined within intuitionistic logic by putting

(A →c B) := (A → B) ∧ (∼A → ∼B),

where it is important to recall that ∼ here is intuitionistic negation.
That is, the characteristic principles of connexive logic are provable:

Aristotle’s theses: ∼(A→c∼A), ∼(∼A→cA),
Boethius’ theses: (A→cB)→c∼(A→c∼B), (A→c∼B)→c∼(A→cB),

while (A →c B) is not interderivable with (A →c B) ∧ (B →c A). This
is a very remarkable and certainly also surprising observation. It shows
that one can get a connexive implication with respect to the intuitionistic
implies-absurdity-negation.

In a sense then, QInt is a constructive connexive logic. However,
since the constructible falsity property and the dual of the existence
property fail for QInt, the point remains that both QN4 and QC can be
seen as being more constructive than QInt.

8. Summary

The first-order logics QN4 and QC are more constructive than intuition-
istic first-order logic, QInt, insofar as they enjoy certain established con-
structivity properties that QInt lacks. The non-trivial first-order logic
QC is unorthodox because it is connexive (and thus contra-classical)
and, moreover, not only paraconsistent but even negation inconsistent,
see Table 1.

The step from HQN4 to HQC, i.e., the replacement of axiom a16 by
axiom a19 that results in both connexivity and negation inconsistency,
gives one a logic that validates the drinker truism, DT, and the dual
drinker truism, DDT. Moreover, the move from QN4 to QC is moti-
vated not only by the desire to validate the principles DT and DDT,
but also by observing that the connexive proof/disproof interpretation
enjoys proof/disproof parity (under the assumption that proof/disproof
parity holds for literals), see Table 2.
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constructivity properties QInt QN4 QC

disjunction property X X X

existence property X X X

constructible falsity property x X X

dual of the existence property x X X

contra-classicality x x X

negation inconsistency x x X

Table 1. Constructivity, contra-classicality, and negation inconsistency

proof interpretation proof/disproof interpretation connexive proof/disproof
Brouwer-Heyting-Kolmogorov López-Escobar interpretation

sound for QInt sound for QN4 sound for QC

does not validate validates validates
∼∼A → A ∼∼A → A ∼∼A → A

∼(A ∧ B) → (∼A ∨ ∼B) ∼(A ∧ B) → (∼A ∨ ∼B) ∼(A ∧ B) → (∼A ∨ ∼B)
∼∀xP (x) → ∃x∼P (x) ∼∀xP (x) → ∃x∼P (x) ∼∀xP (x) → ∃x∼P (x)
∼(A → B) ↔ (A → ∼B) ∼(A → B) ↔ (A ∧ ∼B) ∼(A → B) ↔ (A → ∼B)
does not validate does not validate validates
∼∃x(P (x) → ∼∃yP (y)) ∼∃x(P (x) → ∼∃yP (y)) ∼∃x(P (x) → ∼∃yP (y))
∼∃x(∀yP (y) → ∼P (x)) ∼∃x(∀yP (y) → ∼P (x)) ∼∃x(∀yP (y) → ∼P (x))

does not qualify for does not enjoy enjoys
proof/disproof parity proof/disproof parity proof/disproof parity

(if it holds for literals)

Table 2. Proof and proof/disproof interpretations

The logic QN4 validates double negation elimination, all De Morgan
laws, and the interdefinability of the existential and universal quantifiers
familiar from classical logic. From the point of view of QN4 and the
López-Escobar interpretation, these principles are constructively accept-
able (and double negation elimination does not lead to the validity of the
Law of Excluded Middle if the latter is added to HQN4 or HQC). The
logic QC is contra-classical as it is presented in the language of QCL and
validates axiom a19, which is not a theorem of classical logic. If contra-
classicality is not in principle excluded by one’s methodology, then it is
conceivable that the BHK-interpretation and the López-Escobar inter-
pretation miss some constructively perfectly acceptable principles which
are not theorems of classical logic. According to the connexive López-
Escobar interpretation, the drinker truism and its dual are valid, which
both are not theorems of classical logic. The intuitive plausibility of
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DT and DDT and proof/disproof parity as a constructiveness feature
possessed by the connexive López-Escobar interpretation suggest that
the contradictory logic QC is even more constructive than QN4.
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